
Qubit Mapping and Routing via MaxSAT

Abtin Molavi, Amanda Xu, Martin Diges, Lauren Pick, Swamit Tannu, Aws Albarghouthi
University of Wisconsin-Madison, Madison, WI, USA

{amolavi, axu44, mdiges, lpick2, stannu, albarghouthi}@wisc.edu

Abstract—Near-term quantum computers will operate in a
noisy environment, without error correction. A critical problem
for near-term quantum computing is laying out a logical circuit
onto a physical device with limited connectivity between qubits.
This is known as the qubit mapping and routing (QMR) problem,
an intractable combinatorial problem. It is important to solve
QMR as optimally as possible to reduce the amount of added
noise, which may render a quantum computation useless. In this
paper, we present a novel approach for optimally solving the
QMR problem via a reduction to maximum satisfiability (MAXSAT).
Additionally, we present two novel relaxation ideas that shrink
the size of the MAXSAT constraints by exploiting the structure of a
quantum circuit. Our thorough empirical evaluation demonstrates
(1) the scalability of our approach compared to state-of-the-art
optimal QMR techniques (solves more than 3x benchmarks with 40x
speedup), (2) the significant cost reduction compared to state-of-
the-art heuristic approaches (an average of ∼5x swap reduction),
and (3) the power of our proposed constraint relaxations.

Index Terms—quantum computing, qubit mapping

I. INTRODUCTION

Quantum computers enable efficient simulation of quantum

mechanical phenomena, and therefore open up the door to

advances in quantum physics, chemistry, material design, opti-

mization, machine learning, and beyond. Unfortunately, near-

term quantum computers face significant reliability challenges

as quantum hardware is highly error-prone: quantum bits

(qubits) used for computation are sensitive to environmental

noise. Furthermore, implementing quantum error correction [1]

to detect and correct hardware errors requires thousands of

physical qubits, and therefore is unlikely to become viable

soon. In the meantime, near-term quantum computers with

several dozens of qubits are expected to operate in a noisy

environment without any error correction using a model of

computation called noisy intermediate-scale quantum (NISQ)

computing [2].

A critical problem in NISQ computing is laying out a logical

circuit onto a physical device with limited connectivity between

qubits. This is known as the qubit mapping and routing (QMR)

problem. Specifically, we can only apply two-qubit gates on

physically adjacent qubits, so we need to move (route) qubits to

physically adjacent locations. Qubit routing is a noisy process

that can be detrimental to successful execution. Thus, our goal

is to lay out the circuit in such a way that minimizes the

required routing.

Solving QMR optimally is known to be NP-hard [3]. Thus,

a majority of the proposed techniques have been heuristic in

nature, producing suboptimal results [4]. A small number of

techniques have been proposed for solving QMR optimally,

mostly by reducing the problem to optimizing an objective

(a) Number of benchmarks
solved

(b) Size of largest circuit solved

Fig. 1: Comparison against constraint-based tools

function subject to constraints, e.g., integer linear programming
or satisfiability modulo theories [5], [6], [7]. While such

constraint-based approaches produce optimal results with

minimum noise, they have not been scalable to larger circuits.

In this paper, we propose a novel constraint-based approach

that significantly advances the state of the art (see Fig. 1). We

believe that scaling constraint-based approaches is an important

problem for two reasons: (1) With heuristic QMR techniques,

one can easily add an unacceptable amount of noise for NISQ

computers, producing uninformative outputs. (2) Constraint-

based techniques present an optimal baseline with which to

evaluate the solution quality of heuristic algorithms, and can

therefore help us understand and improve their operation.

QMR as MAXSAT. Our primary insight is that we can reduce the

QMR problem to maximum satisfiability (MAXSAT) [8, Chapter

19]. MAXSAT is the optimization analogue of the Boolean

satisfiability (SAT) problem. While SAT solving is the canonical

NP-complete problem, the past two decades have witnessed

impressive advances in SAT solving with industrial-grade tools

applied at scale (e.g., at Amazon [9], SAT solvers are invoked

millions of times daily). MAXSAT solvers are typically simple

loops that repeatedly invoke a SAT solver to get better and better

solutions. Compared to other approaches that use satisfiability
modulo theories (SMT) solvers [5], [6], [7], MAXSAT solvers

are lighter weight as they do not require complex theory-solver

interaction. At a high level, we demonstrate that a MAXSAT

approach can and should be used for solving QMR constraints.

As summarized in Fig. 1, compared to state-of-the-art

constraint-based tools [5], [10], our approach can solve

significantly more QMR problems (∼3x) and scale to larger

circuits. In addition, our approach is an order of magnitude

1078

2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-6654-6272-3/22/$31.00 ©2022 IEEE
DOI 10.1109/MICRO56248.2022.00077

20
22

 5
5t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
M

ic
ro

ar
ch

ite
ct

ur
e

(M
IC

R
O

) |
 9

78
-1

-6
65

4-
62

72
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
IC

R
O

56
24

8.
20

22
.0

00
77

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 06,2023 at 12:14:41 UTC from IEEE Xplore. Restrictions apply.

(a) Number of benchmarks
solved

(b) Size of largest circuit solved

Fig. 2: Comparison against enabling local relaxation

faster (∼40x) than the fastest constraint-based tool. Compared

to state-of-the-art heuristic-based QMR tools, our approach

achieves an average of ∼3.6x to 7x reduction in the number of

inserted swap operations. Further, on ∼14% of the benchmarks,

our approach inserts no swap operations at all.

Sketching-like encoding. Our MAXSAT encoding is inspired by

program sketching [11], a program-synthesis paradigm where

a synthesizer automatically completes holes in a program. In

our setting, these holes are the routing operations—specifically,

SWAP gates that exchange the contents of two adjacent qubits.

We encode every possible SWAP as a Boolean variable, where

assigning the variable to true denotes performing a SWAP of a

specific pair of adjacent physical qubits. We therefore ask the

MAXSAT solver to minimize the number of SWAP variables set

to true.

Relaxation techniques. While solving MAXSAT constraints

results in an optimal QMR solution, for large circuits, the

MAXSAT solver may not be able to efficiently solve the

generated constraints. In this paper, we demonstrate a novel

relaxation of constraint-based solutions to QMR, which we

call locally optimal relaxation. The idea is to slice the circuit

horizontally into a number of consecutive subcircuits and solve

a set of smaller MAXSAT problems for each of them. We

demonstrate that our locally optimal relaxation can scale our

approach (as shown in Fig. 2) while still producing almost-

optimal results (as detailed in Section VII).

Additionally, we present a relaxation for efficiently mapping

cyclic circuits, like in quantum approximate optimization
algorithms (QAOA) [12]. Cyclic circuits are where the same

subcircuit is repeated more than once. Instead of generating

one big set of constraints for the entire circuit, we solve

a special set of MAXSAT constraints only for the repeated

subcircuit in isolation, and then stitch the subcircuits back

together to generate a mapping for the entire circuit. Our

results demonstrate that this relaxation can make our technique

scale to larger QAOA circuits.

Contributions. We summarize our contributions as follows:

• A novel constraint-based approach for optimally solving

the qubit mapping and routing problem via a reduction to

maximum satisfiability (MAXSAT).

1: cx q0,q1
2: cx q0,q2
3: cx q3,q2
4: cx q0,q3

q0 • • •
q1

q2

q3 •

(a) Original circuit

p0 p1 p2 p3

(b) Physical qubit connectivity graph
MaxSAT constraints

set of hard and
soft constraints

p1 • • •
p0

p2 ×
p3 • ×

 Circuit with swaps

1: cx p1,p0
2: cx p1,p2
3: cx p3,q2
 swap p2,p3
4: cx p1,p2

Solution to MaxSAT problem is an optimal
(1) initial mapping from logical to physical qubits, and
(2) a modified circuit with inserted swap operations (routing)

q0 �→ p1

q1 �→ p0

q2 �→ p2

q3 �→ p3

Initial map

×
×

Fig. 3: Running example and overview

• A locally optimal constraint relaxation based on circuit

slicing.

• A specialized constraint relaxation for cyclic circuits, e.g.,

as in QAOA.

• A thorough empirical evaluation demonstrating (1) the

scalability of our approach compared to state-of-the-

art constraint-based techniques, (2) the significant cost

reduction compared to heuristic approaches, and (3) the

power of our proposed constraint relaxations.

II. AN ILLUSTRATIVE EXAMPLE

In this section, we provide background on the qubit mapping

and routing (QMR) problem and walk through a running

example that motivates our approach.

QMR primer. Quantum computers typically support two kinds

of operations, single-qubit gates (e.g., NOT, analogous to a

bit flip), and two-qubit gates (e.g., CNOT, analogous to an

exclusive or). Due to various physical design constraints,

NISQ-era quantum computers support two-qubit operations

only between certain pairs of physical qubits as described

by a connectivity graph. Consider, for instance, the simple

connectivity graph in Fig. 3(b), which illustrates a small device

with four physical qubits, p0, . . . , p3. Edges between physical

qubits denote whether we can perform two-qubit operations

between them. For example, we can perform a two-qubit

operation over p0 and p1, but not p0 and p2.

In order to execute a quantum circuit on a particular device,

the compiler maps the logical qubits that appear in the circuit

to appropriate physical qubits such that every two-qubit gate

can be applied. Consider the circuit in Fig. 3(a); the first gate

is a CNOT between logical qubits q0 and q1 (denoted in the

assembly code on the right as cx q0,q1). Therefore, the logical

1079

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 06,2023 at 12:14:41 UTC from IEEE Xplore. Restrictions apply.

qubits q0 and q1 should be mapped to physical qubits that are

adjacent in the connectivity graph, e.g., physical qubits p3 and

p4 in the graph in Fig. 3(b).

Typically, a static initial map does not suffice and so the map

has to be transformed during circuit execution to accommodate

for other two-qubit gates later on in the circuit. This process,

called routing, is achieved by inserting SWAP operations, which

exchange the values of two connected qubits. For instance,

suppose we want to perform a two-qubit gate on p1 and p3.

They are not connected in the connectivity graph; therefore,

we need to bring them next to each other. One way to do so

is to swap the qubits p2 and p3.

Our goal is to solve the QMR problem optimally:

Find an initial map that requires the least routing (number of
swap operations to be inserted).

Each additional gate in the circuit increases the probability

of error. In particular, two-qubit gate error rates are significantly

higher than one-qubit gate error rates. In addition, two-qubit

gates such SWAPs have significantly longer gate latency, which

can make qubits prone to decoherence errors, so minimizing

the number of SWAPs is critical.

Our MAXSAT approach. Finding an optimal QMR solution is a

combinatorially challenging problem; indeed, it is NP-complete.

In this paper, we capitalize on the success of satisfiability (SAT)

solvers for finding satisfying assignments of Boolean formulas.

E.g., for a Boolean formula a ∧¬b, setting a to true and

b to false is a satisfying assignment. While the satisfiability

problem is the quintessential NP-complete problem, algorithmic

and engineering progress in satisfiability has made SAT solving

practical in many instances [8]. Since QMR is an optimization

problem, we use a MAXSAT solver, which builds upon a SAT

solver to find an optimal satisfying assignment.

Roughly speaking, given a circuit and a connectivity graph,

we generate a set of Boolean formulas (constraints) whose

optimal satisfying assignment corresponds to an initial mapping

of logical to physical qubits and a set of SWAP operations to be

inserted before each two-qubit gate. Specifically, the crucial bit

of our encoding is that we model all possible SWAP operations

as Boolean variables; for example, swap p0,p1 would have a

corresponding Boolean variable in every location it could be

placed in the circuit. Then, if a Boolean variable is assigned to

true in the solution to the MAXSAT problem, the corresponding

SWAP is inserted into the circuit; otherwise, it is not.

Fig. 3 provides an example of the QMR problem. The circuit

Fig. 3(a) applies two-qubit operations between the logical qubit

q0 and three other logical qubits, but every physical qubit is

only connected to at most two other physical qubits. Therefore,

SWAPs are needed here. It turns out that inserting a single swap

is sufficient for this example. Fig. 3(bottom) shows an optimal

QMR solution that can be discovered by solving the MAXSAT

constraints (the inserted SWAP is highlighted in green).

A MAXSAT solver is typically implemented as a loop that

queries a SAT solver for better and better solutions, until it

arrives at an optimal one. Therefore, a benefit of using a

q0 • • •
q1

q2

q3 •

final
mapping from

slice 1

MaxSAT
constraints

for slice 1

•

•

MaxSAT
constraints

for slice 2

backtrack if no solution is found

Slice 1 Slice 2

locally
optimal

mapping

Fig. 4: Illustration of our locally optimal relaxation

MAXSAT solver is that, even for large circuits where the solver

cannot efficiently find an optimal solution, the solver may be

terminated early to extract the best solution found so far (if it

has progressed past the first loop iteration).

Slicing and cyclic circuits. As mentioned previously, for large

circuits, the MAXSAT solver may not be able to efficiently solve

the generated constraints. In the worst case, the MAXSAT solver

will not even find a non-optimal solution to the QMR problem

in a feasible amount of time. In this paper, we demonstrate a

locally optimal relaxation of the constraints, in which we slice

the circuit horizontally into a number of consecutive subcircuits

and solve a set of smaller MAXSAT problems for each of them.

This relaxation allows us to scale our approach to larger circuits

by sacrificing a guarantee of global optimality.

This idea is illustrated for our running example in Fig. 4.

First we slice the circuit into two slices (it could be more, but

we stick to two slices for illustration), as shown in the shaded

areas. We solve the MAXSAT constraints for the first slice; this

generates an optimal solution for the slice in isolation. We then

take the final mapping from this solution—i.e., the mapping

at the end of slice 1 after all swaps have been executed—and

add it to the constraints for solving slice 2. As we describe in

Section V, in some cases we need to backtrack as the solution

of slice 1 may be incompatible with slice 2.

We also present an analogous idea for efficiently solving

QMR for cyclic circuits, which consist of repeated instances

of the same subcircuit. Rather than generating a monolithic

set of constraints for the entire circuit at once, we instead

generate and solve a special set of MAXSAT constraints only

for the repeated subcircuit in isolation. We then stitch copies

of the solution to generate a mapping for the entire circuit. We

describe this idea in Section VI.

The two aforementioned relaxations can be easily composed

by slicing subcircuits of a cyclic circuit, thus exploiting both

the cyclic and slice-like structure of a circuit.

III. QUBIT MAPPING AND ROUTING

We now define the qubit mapping and routing problem.

1080

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 06,2023 at 12:14:41 UTC from IEEE Xplore. Restrictions apply.

Connectivity graph. We will use G = (Phys,Edges) to denote

a connectivity graph between physical qubits on a quantum

device, where

• Phys = {p0, p1, . . .} is the set of physical qubits and

• Edges ⊆ Phys × Phys is the set of edges connecting

physical qubits.

Graph edges denote on which pairs of physical qubits we can

perform two-qubit operations.

Quantum circuit. We will use C to denote a quantum circuit

over logical qubits, Logic = {q0,q1, . . .}. Specifically, a circuit

C is a sequence of gate applications, where each gate is an

operation that applies to one or two logical qubits. We will

use gk to denote the kth gate in the circuit, gk(q) to denote

the application of the one-qubit gate gk to logical qubit q, or

gk(q,q′) to denote the application of the two-qubit gate gk to

qubits q and q′.

Qubit map. Given a circuit C and an undirected connectivity

graph G, a qubit map M : Logic → Phys is an injective function

from logical qubits to physical qubits.

Our goal is to find a map sequence 〈M1, . . . ,M|C|〉, where

|C| is the number of gates in the circuit, such that if the kth

gate in the circuit is a two-qubit gate gk(q,q′), then

(Mk(q),Mk(q′)) ∈ Edges,

i.e., logical qubits q and q′ are mapped to physical qubits that

are connected in the connectivity graph.

Example 1: Recall our running example. The initial map,

M1, is shown in Fig. 3(bottom). Observe that logical qubits q0

and q1 are mapped to adjacent physical qubits, p1 and p0, i.e.,

(M(q0),M(q1)) ∈ Edges.

SWAP operations. We will use s(p, p′) to denote the SWAP

operation that swaps the physical qubits p and p′.
Suppose that in qubit map M we have M(q) = p and M(q′) =

p′. Applying s(p, p′) in M results in a new map M′ that is just

like M but where M′(q) = p′ and M′(q′) = p. Note that SWAP

operations are only allowed on pairs of connected physical

qubits, i.e., (p, p′) ∈ Edges.

Optimal qubit mapping and routing (QMR). An optimal
solution to the QMR problem is a map sequence 〈M1, . . . ,M|C|〉
that minimizes the cost of routing qubits between adjacent

maps in the sequence; formally:

min
|C|−1

∑
i=1

cost(Mi,Mi+1)

where cost(M,M′) is the smallest number of SWAP operations

needed to go from M to M′.
Example 2: Continuing our running example: Only one swap

operation happens, right before the fourth gate, making the total

cost 1. So, M3 = M2 = M1. Before the fourth gate, the physical

qubits p2 and p3 are swapped, resulting in the map M4 that is

the same as M1 except that M4(q2) = p3 and M4(q3) = p2.

IV. OPTIMAL QMR VIA MAXSAT

In this section, we will present our approach for discovering

an optimal solution of the QMR problem via a reduction to

maximum satisfiability (MAXSAT). We begin by providing some

background on MAXSAT.

A. MaxSAT Background

MAXSAT is the optimization analogue of the classical

Boolean satisfiability problem, SAT. Before turning to our

encoding, we will define both of these problems.

The SAT problem. In the satisfiability problem (SAT), we are

given a Boolean formula and our goal is to find an assignment

to the variables that makes the formula true—a model of the

formula. We will use standard notation to denote Boolean

operations: ∧ (AND), ∨ (OR), ¬ (NOT), and → (implication).

Example 3: Consider the following formula, where a,b,c
are Boolean variables:

(¬a∧b)→ c

This formula is satisfiable because there is a model that makes

it true. One such model is:

I = [a �→ false, b �→ true, c �→ true]

Given a formula φ , we will use I |= φ to denote that I is a

model of φ . If φ has no models, then it is unsatisfiable.

The MAXSAT problem. In the MAXSAT problem, we are

given two sets of Boolean formulas: Hard constraints and Soft
constraints. Our goal is to find a single assignment I that is a

model of all hard constraints and as many soft constraints as

possible.

Example 4: Consider the MAXSAT problem with one hard

constraint and two soft ones:

Hard = {¬a∨b}
Soft = {b, a∧¬b}

Since a∧¬b in Soft is the negation of ¬a∨ b, there is no

model of Hard that is also a model of {a∧¬b}. Therefore the

maximum number of formulas from Soft that can evaluate to

true is one. A solution is I = [a �→ false,b �→ true].

B. MaxSAT Encoding of Optimal QMR

We will now present our MAXSAT encoding for optimally

solving the QMR problem. Throughout, we fix a circuit C
over logical qubits Logic and a connectivity graph G =
(Phys,Edges).

Our encoding will define a set of hard constraints and a

set of soft constraints, (Hard,Soft), constituting a MAXSAT

instance. A solution to this MAXSAT instance yields an optimal

solution to the QMR problem, specifically, (1) an optimal map

sequence, 〈M1, . . . ,M|C|〉, and (2) a sequence of SWAPs before

every two-qubit gate to perform routing. The soft constraints

aim to minimize the number of inserted SWAPs.

Our encoding uses two sets of Boolean variables: the map
variables, which represent the sequence of maps 〈M1, . . . ,M|C|〉,

1081

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 06,2023 at 12:14:41 UTC from IEEE Xplore. Restrictions apply.

Mapping constraints:

Hard A: Maps are injective functions. For every gate gk in the
circuit, every logical qubit q, and every pair of distinct physical
qubits p, p′, we add the following hard constraint:

map(q, p,k)→¬map(q, p′,k)

Similarly, for every gk, every pair of distinct logical qubits,
q,q′, and every physical qubit p, we add the following hard
constraint:

map(q, p,k)→¬map(q′, p,k)

Hard B: Executing two-qubit gates. For every two-qubit gate
gk(q,q′), we add the following hard constraint:∨

(p,p′)∈Edges

(map(q, p,k)∧map(q′, p′,k))

Routing constraints:

Hard C: Only one swap. For the kth gate and for its ith SWAP,
we add the hard constraint:∨

(p,p′)∈Edges′

(
swap(p, p′,k, i)∧unique(p, p′)

)

where

unique(p, p′)�
∧

(r,r′)∈Edges′\{(p,p′)}
¬swap(r,r′,k, i)

Here Edges′ = Edges ∪ {(p0, p0)}, a synthetic edge used to
denote a no-op SWAP.

Hard D: The effect of SWAPs. For every gate gk and sequence
S of swaps of physical qubits, s(p0, p′0), . . . ,s(pn−1, p′n−1), we
add the following hard constraint:(∧

0�i<n
swap(pi, p′i, i,k)

)
→ effect(S)

where

effect(S)�
∧

q∈Logic,
phys∈Phys

(map(q, p,k−1)↔map(q,π(S, p),k))

Soft constraints:

Soft: Minimize the number of SWAPs. For every gate k, we
add the following soft constraint:

swap(p0, p0,k)

Fig. 5: Formalization of our MAXSAT encoding

and the swap variables, which represent where SWAPs are

inserted in the circuit. In what follows, we describe our

constraints in a semi-formal manner with examples and refer

to Fig. 5 for the complete formalization.

1) Mapping Constraints: We start by describing the con-

straints that specify that our map sequence is valid.

We will use the Boolean variable map(q, p,k) to denote that,

for a logical qubit q ∈ Logic and a physical qubit p ∈ Phys,

q maps to p right before the kth gate of the circuit. In other

words, if map(q, p,k) is assigned true, then this means that

Mk(q) = p.

Example 5: Recall our running example from Fig. 3. The

initial map, M1, shown in Fig. 3(bottom), maps q0 to p1.

This is represented in our encoding by assigning the variable

map(q0, p1,1) to true in the solution to the MAXSAT constraints.

Similarly, all other variables map(q0, pi,1), where i �= 1, are

set to false, because q0 can only be mapped to a single physical

qubit.

Hard A: Maps are injective functions. Our first set of

hard constraints (formalized in Fig. 5) specify that our map
variables model injective functions. Following Example 5, such

constraints ensure that we cannot set both map(q0, p1,1) and

map(q0, p2,1) to true in a solution of the MAXSAT constraints.

Additionally, we cannot map different logical qubits to the

same physical qubit.

Hard B: Executing two-qubit gates. Our second set of hard

constraints specify that for each two-qubit gate in the circuit,

the two logical qubits it acts on are mapped to adjacent physical

qubits.

Example 6: In our running example, the first gate is a CNOT

over q0 and q1. Therefore, we should initially map q0 and q1

to adjacent physical qubits. One way to satisfy this is to set

map(q0, p0,1) and map(q1, p1,1) to true, since (p0, p1) is an

edge in the connectivity graph. However, we cannot satisfy this

constraint by setting map(q0, p0,1) and map(q1, p3,1) to true,

since there is no edge connecting physical qubits (p0, p3).

2) Routing Constraints: We now describe the routing

constraints. The key idea is that right before a two-qubit gate,

g(q,q′), we want to insert a sequence of SWAPs to ensure

that the two logical qubits, q and q′, are mapped to adjacent

physical qubits.

Suppose, for illustration, that the kth gate in the circuit is

a CNOT over q0 and q1. Right before this CNOT, we allow

our encoding to insert up to n SWAPs. We can think of this

through the lens of program sketching [11], where we don’t

know which qubits to swap before the kth gate, so we add up

to n SWAPs with unknown parameters (denoted with • below)

and the goal of our encoding is to discover those parameters.

swap •,•
· · ·

swap •,•
cx q0,q1

Specifically, for every inserted SWAP with unknown pa-

rameters, we create a number of Boolean variables denoting

every possible instantiation of the parameters. Formally, the

Boolean variable swap(p, p′,k, i) denotes that the ith SWAP

inserted before gate k is over physical qubits p and p′. (If

both parameters are set to the same qubit, then the SWAP is

considered a no-op.)

1082

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 06,2023 at 12:14:41 UTC from IEEE Xplore. Restrictions apply.

Example 7: Suppose n= 1—i.e., we only allow up to 1 SWAP

before a two-qubit gate—and we have a device with only two

physical qubits, p0 and p1, with an edge between them. For

the fourth gate in the circuit, we will have the following set

of Boolean variables:

{swap(p0, p0,4,1),swap(p0, p1,4,1)}
If the first variable is set to true in a solution to the MAXSAT

constraints, then no SWAP is inserted before the fourth gate

(no-op); if the second variable is set to true, then a SWAP

operation is inserted that swaps p0 and p1.

Hard C: Only one swap. As indicated by the above example,

for a specific SWAP with unknown parameters, only one of

its associated Boolean variables can be set to true, since

there’s only one possible instantiation of its parameters. This

is enforced by a standard only-one hard constraint [13].

Hard D: The effect of SWAPs. The most involved routing

constraint is encoding the effect of a sequence of SWAPs on

the map sequence. Specifically, we have to encode how the

inserted SWAPs transform map Mk−1 into Mk.

We define a function π(S, p) that specifies the effect of a

sequence of SWAPs S on a physical qubit p, i.e., which qubit

p gets routed to after executing the swaps in S. The following

example provides a simple illustration:

Example 8: For the sequence S that just swaps p and p′,
we have π(S, p) = p′. For the sequence S that swaps p and p′
and then p′ and p′′, we have π(S, p) = p′′.

The final set of hard constraints (Hard D) encodes the

effect of every possible sequence S of n SWAPs. While the

number of sequences is exponential in n, in practice, we have

experimentally found that a small constant suffices for finding

optimal solutions (Section VII).

3) Soft Constraints and Optimality: We have described all

the required hard constraints. Finally, we define a set of soft

constraints with the goal of minimizing the number of inserted

SWAPs. Informally, we want to ensure that as many SWAPs

are no-ops as possible. So, we maximize the number of true
Boolean variables of the form swap(p, p,k).

Fig. 5 fully formalizes all of the hard and soft constraints

that our encoding generates. So, if we are given a circuit C and

a connectivity graph G, we can use our encoding to generate

a MAXSAT instance (Hard,Soft) whose solution results in an

optimal QMR solution.

Given a model I |= (Hard,Soft), we can extract a valid map

sequence from the assignments of the Boolean variables of the

form map(q, p,k) by setting Mk(q) = p exactly when I assigns

map(q, p,k) to true.

This following theorem states optimality of our solutions:

Theorem 1: Let I be a solution for (Hard,Soft). Let

〈M1, . . . ,M|C|〉 be the map sequence corresponding to I as

described above. Then, 〈M1, . . . ,M|C|〉 is an optimal solution

of the QMR problem (as per Section III).

In the theorem above, we make the assumption that n (the

number of SWAPs allowed before each CNOT) is set to the

diameter of the connectivity graph. This ensures that we can

always bring any two qubits into adjacent positions.

Encoding size. If n, the number of SWAPs allowed before each

CNOT, is held constant (see Section VII), the MAXSAT encoding

from Section IV scales polynomially with the size of the input

circuit and architecture. In particular, a naive implementation

requires O(|C| · |Edges|) variables and O(|Phys|2 · |Logic| · |C|)
constraints (Hard A is the dominating term). However, using a

standard “only-one” encoding [13], we need only O(|Phys| ·
|Logic| · |C|) constraints. This is a more compact representation

than EX-MQT [6] and matches the asymptotic behavior of a

subsequent SMT approach, TB-OLSQ [5]. While the number

of constraints is roughly the same as TB-OLSQ, our sketch-

based view allows us to eschew the use of integer arithmetic,

eliminating the expensive theory-lemma generation of an SMT

solver.

V. A LOCALLY OPTIMAL RELAXATION

Solving the MAXSAT encoding presented in the previous

section results in an optimal QMR solution. However, this can

be expensive in practice due to the complexity of MAXSAT. In

this section, we will present a relaxation that produces locally
optimal solutions. Specifically, our approach slices the circuit

into a number of subcircuits and solves a MAXSAT problem

for each of them in sequence. The result is that we need to

solve a number of smaller MAXSAT problems.

Slicing the circuit. We can think of a circuit C as a sequence of

subcircuits, or slices, 〈C0, · · · ,Cs〉. Recall Fig. 4, which shows

a circuit viewed as two slices. We will now demonstrate how

to solve QMR by solving MAXSAT constraints for each slice in

isolation.

We do this iteratively, starting with C0 and going through the

rest of the slices. First, for C0, we simply generate a MAXSAT

instance (Hard0,Soft0) and solve it as described in the previous

section. This results in a model I0. Then for every slice Ci,

where i > 0, we run the following procedure:

1) Generate MAXSAT constraints (Hardi,Softi) for Ci
2) For every variable map(q, p, |Ci−1|) set to true in Ii−1,

add map(q, p,1) to Hardi.

3) Solve (Hardi,Softi), generating a model Ii

The interesting step here is step 2, which connects the final

mapping from slice i−1 with the initial mapping from slice i.
Specifically, we add the final mapping from slice i−1 as hard

constraints on the initial mapping for slice i.
Example 9: Consider the circuit and connectivity graph in

Fig. 6. If we solve QMR using the MAXSAT encoding, a possible

optimal initial map is the one that maps qi to pi, as shown on

the right, which requires no SWAPs to be inserted.

Suppose, however, that we slice the circuit into two slices,

as highlighted. Solving the first slice might, for example, result

in the map shown on the bottom right, with no swaps. This is

optimal for the slice, but sub-optimal overall, since now we

need to insert a SWAP between the two gates. Specifically, we

will need to swap p0 and p1 (or p2).

1083

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 06,2023 at 12:14:41 UTC from IEEE Xplore. Restrictions apply.

q0 •
q1 •
q2

Circuit with two slices

p0 p1 p2

Connectivity graph

Optimal initial map
No swaps needed•

•

A possible locally
optimal initial map
1 swap needed

q0 �→ p1

q1 �→ p0

q2 �→ p2

q0 �→ p0

q1 �→ p1

q2 �→ p2

Fig. 6: Example demonstrating local relaxation

Backtracking. If our constraints allow a number of swaps

n less than the diameter of the connectivity graph, then we

could generate unsatisfiable formulas for some slices. In such

cases, we backtrack to the previous slice and ask the MAXSAT

solver to generate a different final mapping. Backtracking from

a mapping involves adding the negation of its corresponding

satisfying assignment (previously returned by the MAXSAT

solver) as an additional hard constraint to ensure that the

MAXSAT solver does not return the same mapping. After this

additional constraint is added, backtracking is performed by

re-invoking the solver.

Example 10: Consider again the map on the bottom right

in Fig. 6. Let us suppose that we want to backtrack and find

a different mapping from this one for the first slice. In order

to guarantee that we do not return the same mapping again

when re-invoking the MAXSAT solver, we add the following

hard constraint:

¬(map(q0, p1,2)∧map(q1, p0,2)∧map(q2, p2,2)
)

This constraint is exactly the negation of the encoding of the

mapping that we wish to exclude.

VI. EXPLOITING CYCLIC CIRCUITS

For some quantum algorithms, the quantum circuits have a

repeated structure, applying the same subcircuit multiple times.

We call such circuits cyclic circuits.

The canonical algorithm that results in a cyclic circuit is the

quantum approximate optimization algorithm (QAOA). QAOA is

a general procedure for obtaining approximate solutions to NP-

hard combinatorial problems such as determining a maximum

cut in a graph. This is a promising near-term application since

it solves problems of general practical interest and can be

performed in the presence of noise without error-correction.

The general structure of a QAOA circuit is shown in Fig. 7.

Notice how the same subcircuit Cγ,β repeats.1

A relaxation for cyclic circuits. For cyclic circuits, instead

of solving a MAXSAT encoding for the entire circuit, we can

relax the problem and only consider the repeating subcircuit.

After finding an optimal solution for the subcircuit, we can

extend the solution to the entire circuit. This results in a smaller

1Every cycle uses different parameters, γ,β , but the structure of the circuit
remains the same, which is what matters for QMR. Also, the initial set of
one-qubit gates (H) is irrelevant for QMR.

q0 H

Cγ1,β1
Cγ2,β2

· · ·
Cγn,βnq1 H · · ·

q2 H · · ·

Fig. 7: The cyclic structure of a QAOA circuit

Cyclic circuit

p0 p1 p2 p3

Physical qubit connectivity graph
MaxSAT constraints

for subcircuit
+ constraint

final map = initial map

p1 • • •
p0

p2 × ×
p3 • × ×

 Sub-circuit with swaps
q0 �→ p1

q1 �→ p0

q2 �→ p2

q3 �→ p3

Initial map

×
×

• • •

•
…

q0 • • •
q1

q2

q3 •

×
×

Final map
Same as initial map

• • •

•

Fig. 8: Illustration of our cyclic circuit approach

MAXSAT problem that can generally be completed faster than

the entire circuit, at the expense of a loss in optimality.

Suppose we have a circuit 〈C, . . . ,C〉, where the same

subcircuit C is repeated a number of times, and a connectivity

graph G. We follow the following simple recipe for solving

the QMR problem; the key idea (step 2 below) is to ensure

that the final map, M|C|, is the same as the initial map, M1,

enabling us to stitch together two or more copies of C:

1) Let (Hard,Soft) be the MAXSAT constraints for (C,G).
2) For every pair of logical and physical qubits, q and p,

add the following constraint to Hard:

map(q, p,1)↔map(q, p, |C|)
3) Solve (Hard,Soft), generating a model I.

The resulting circuit, with the initial map and swaps from

I, can now be repeated an arbitrary number of times. This is

because the map of logical to physical qubits is the same at

the beginning and at the end.

Example 11: Fig. 8 revisits our running example, but with

the same circuit iterated a number of times. Our cyclic-circuit

approach in this case solves the same constraints as for Fig. 3,

except that we add the hard constraint that the initial and final

maps are the same. This results in the final circuit with two

SWAPs, where the final SWAP is inserted to reset the mapping

to its initial state (i.e., to swap back p2 and p3). Now this

1084

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 06,2023 at 12:14:41 UTC from IEEE Xplore. Restrictions apply.

subcircuit can be iterated any number of times on this physical

connectivity graph.

This cyclic relaxation can be profitably combined with our

local relaxation. Specifically, the MAXSAT constraints generated

in step 1 for subcircuit C may be those that result from slicing

it as described in Section V. Using such constraints, as we do

in our evaluation (Section VII), allows our approach to handle

larger subcircuits C.

VII. IMPLEMENTATION AND EVALUATION

Implementation. We implemented our approach in a tool we

call SATMAP.2 The value of n, the number of swaps allowed

before each two-qubit gate, is set to 1. We experimentally

determined n = 1 is sufficient for near-optimal solutions.

SATMAP generates MAXSAT constraints and calls the MAXSAT

solver Open-WBO-Inc-MCS [14] with default parameters. This

solver provides the best known solution if it is interrupted

before an optimal solution is found.

We convert all MAXSAT solutions to circuits. To ensure cor-

rectness of our QMR solutions, we implemented an independent

verifier. The verifier traverses a circuit, evaluating its effects

on an initial map and checking that all two-qubit gates act on

connected qubits.

Throughout this section, whenever we say SATMAP, we imply

that the locally optimal relaxation (Section V) is performed.

The cyclic relaxation is turned off by default and evaluated

later on cyclic circuits. The slice size refers to the number of

two-qubit gates to include in each slice in the local relaxation.

We always run SATMAP at four slice sizes, 10, 25, 50, and 100,

and report the solution with the best cost. Solution costs are in

terms of CNOT gates added (SWAP decomposes to 3 CNOTs).

Benchmarks. For evaluation, we used the set of benchmarks

collected in [10].3 These 160 circuits were derived from the

RevLib suite [15] and programs written in the Quipper [16]

and ScaffoldCC [17] quantum programming languages. They

cover a wide spectrum of circuit size, ranging in number of

qubits from 3 to 16, and in two-qubit gates from 5 to over

200,000. The median number of two-qubit gates among these

benchmarks is 123.

Except in the evaluation of Q4, the connectivity graph used

is the IBM Q20 Tokyo architecture with 20 qubits, depicted

in Fig. 9b. This connectivity graph was chosen as the largest

typically used for evaluation in related work [3], [18], [19].

Benchmarks were evaluated on a cluster of Intel® Xeon® and

AMD Opteron™ CPUs clocked an average of 2.5GHz.

Research questions. We designed a set of experiments to

answer the following research questions:

Q1 How does SATMAP compare to constraint-based

techniques?

Q2 How does SATMAP compare to heuristic approaches?

Q3 What is the impact of local relaxation and cyclic

circuit relaxation?

2https://github.com/qqq-wisc/satmap
3https://github.com/cda-tum/qmap/tree/main/examples

(a) Tokyo− (b) IBM Q20 Tokyo (c) Tokyo+

Fig. 9: Variations of the IBM Q20 Tokyo graph

Fig. 10: Log-scale runtime comparison of EX-MQT, TB-
OLSQ, and SATMAP on the set of benchmarks EX-MQT
solved

Q4 How does architecture variation impact performance?

Q5 What is the scalability vs. optimality tradeoff?

Q6 Can we use SATMAP with noise models?

Q1: Constraint-based approaches

Experimental setup. To address Q1, we compared SATMAP to

the SMT-based tools EX-MQT [6] and TB-OLSQ [5]. The latter

tool takes the relative execution time of each gate as input and

can optimize several different objective functions. We set the

execution time of each gate to 1 and the objective function

to SWAP minimization to match our definition of QMR. For

each of the benchmarks, SATMAP was allotted 30 minutes of

compilation time and the other tools were each allotted 1 hour

of compilation time to be as fair as possible and account for

any potential hidden overheads. Each tool was allotted 5GB of

RAM for each of the benchmarks.

Results. None of the tools were able to provide a solution to

the QMR problem for all of the benchmarks within the time and

memory restrictions. However, as Table I indicates, SATMAP

handles a significantly higher proportion of the complete set,

solving 109/160 (68%) of the benchmarks as compared to 4/160

(2.5%) solved by EX-MQT and 38/160 (24%) solved by TB-

OLSQ. The additional benchmarks solved by SATMAP include

circuits with up to 598 two-qubit gates versus a maximum of

23 for EX-MQT and 90 for TB-OLSQ.

Since these tools are all designed to provide optimal solu-

Tool # Solved (out of 160) Largest circuit solved

EX-MQT 4 23
TB-OLSQ 38 90
SATMAP 109 598

TABLE I: Comparison against constraint-based tools. Size
of largest circuit solved is the number of two-qubit gates.

1085

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 06,2023 at 12:14:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 11: Log-scale runtime comparison of TB-OLSQ and SATMAP on the complete set of benchmarks TB-OLSQ solved

tions, there is no variation in quality of the solutions.4 Without

sacrificing optimality, SATMAP significantly outperformed the

two other tools in terms of runtime. The mean improvement

over EX-MQT was about 400x and the mean improvement over

TB-OLSQ was about 20x, as shown in Fig. 10 and Fig. 11.

Summary: SATMAP is significantly more scalable than
EX-MQT and TB-OLSQ. It finds solutions 400x and 20x
faster (respectively) and can be applied to much larger
circuits, up to 598 two-qubit gates.

Q2: Heuristic approaches

Experimental setup. To address Q2, we compared SATMAP

to the heuristic tools MQTH [10], SABRE [18], and TKET [3].

MQTH applies A∗ search to determine the optimal next mapping

given the current one. SABRE and TKET both use heuristic

“scores” to choose SWAPs to apply to the qubits relevant to

a particular topological layer or timestep of a circuit, with

SABRE applying a reversal procedure to determine a good

initial mapping. These three were chosen to represent the state-

of-the-art in terms of heuristic tools based on their widespread

use in practice. Each is relied upon as a part of industrial

quantum compilation toolkits. Since TKET and SABRE involve

some element of nondeterminism, we took the mean cost of

20 runs of the heuristic tools. As in the evaluation of Q1,

SATMAP was allotted 30 minutes of compilation time and 5GB

of RAM for each of the benchmarks. The heuristic tools are

less resource intensive, so they solved all of the instances well

within those runtime and memory bounds.

Results. For the 109 benchmarks solved within the timeout

by SATMAP, the resulting solutions were generally better than

the heuristic tools. Fig. 12 presents the cost ratio on each

benchmark: the total number of gates added by the heuristic

tools divided by the total number of gates added by SATMAP.

For each heuristic tool, there are rare instances (fewer than

10 benchmarks) when the heuristic outperforms SATMAP due

to application of the local relaxation or early termination of

the MAXSAT solver, resulting in ratios less than 1. On average,

SATMAP adds 5.2x, 7.0x, and 3.6x fewer gates than MQTH,

SABRE, and TKET, respectively. For all heuristic tools, there

was at least one instance where SATMAP produced a solution

with over 15x fewer gates. For about 14% of benchmarks,

4TB-OLSQ formulates QMR in terms of time coordinates, which treats a
broader class of circuits as equivalent, allowing solutions not considered by the
other tools. Additionally, a minor relaxation in TB-OLSQ produces suboptimal
solutions in rare cases. The difference in cost due to these considerations is
less than one SWAP in all cases.

SATMAP did not add any gates, compared to 0%, 3%, and 10%

for MQTH, SABRE, and TKET, respectively. Benchmarks where

SATMAP added no gates and a heuristic tool added some gates

are represented by the orange points at the top of the plot.

Benchmarks where neither tool added gates have a cost ratio

of 1.

Summary: when SATMAP terminates, it gives much
higher quality solutions than heuristic tools overall. It
almost always reduces the total cost—up to 6.97x on avg.

Q3: Impact of Relaxations

Local relaxation. We conducted experiments to determine

the effect of the locally optimal relaxation (Section V) on

performance in terms of execution time and cost. We tested the

slice sizes, 10, 25, 50, and 100, against NL-SATMAP, which is

SATMAP with local relaxation disabled.

Small slice sizes produce easier MAXSAT problems that can

each individually be solved faster. However, restricting the

“view” of the solver can lead to increased overall solve time

due to repeated backtracking. We can observe this tradeoff by

comparing the number of instances for which a solution was

found within the 30 minute timeout (shown in Table II).

The situation is similar in terms of solution quality. For

small slice sizes, local optima can diverge significantly from

global optima. However, for moderate slice sizes, this effect

is less pronounced. Fig. 13 presents the cost ratio of local

relaxation levels: the total number of gates added by the tool

with local relaxation divided by the total number of gates

added by NL-SATMAP. For a slice size of 10, NL-SATMAP

consistently produces better solutions, with an average cost

ratio of 2.69. For larger slice sizes, the benchmarks where

NL-SATMAP discovers better solutions are outnumbered by

the benchmarks where the slow rate of convergence in a large

solution space leads to worse solutions due to early termination.

For example, with a slice size of 25, NL-SATMAP produces a

better solution in 5 out of 70 cases, but a worse solution in 13

out of 70. This results in a mean ratio of less than 1 (0.92).

Summary: the local relaxation is a significant contributor
to the performance of SATMAP. Appropriate application of
local relaxation enables the use of constraint-based tools
on large benchmarks, with little loss in solution quality for
smaller ones.

Cyclic relaxation. To evaluate the cyclic relaxation, we

programmatically generated a standard QAOA circuit for solving

the maximum cut problem on 3-regular graphs, parameterized

1086

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 06,2023 at 12:14:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 12: The cost of the solution produced by each heuristic tool divided by the cost of the solution produced by
SATMAP. Points at the top of the plot represent benchmarks where SATMAP added zero gates and the heuristic tool
added a positive number, resulting in an undefined ratio. They are not included in the listed mean ratio.

Fig. 13: The cost of the solution produced by the different
levels of local relaxation divided by the cost of the solution
produced by NL-SATMAP

Slice size # Solved (out of 160) Largest circuit solved

10 87 427
25 103 598
50 92 598
100 71 128

NL-SATMAP 70 128

TABLE II: Comparison of different levels of local relaxation
in terms of instances solved

by the number of qubits and the number of cycles (repetitions of

the subcircuit Cγ,β). We use CYC-SATMAP to denote SATMAP

with the cyclic relaxation enabled.

We tested SATMAP, CYC-SATMAP, and TKET on QAOA

circuits with 6, 8, 10, 12 and 16 qubits, each with two and

four cycles. The results are presented in Table IV. Missing

entries correspond to timeouts.

CYC-SATMAP solves all of the instances within the timeout,

while SATMAP cannot come up with a solution for circuits

with 10 qubits or 16 qubits. When it comes to cost, for 6 and 8

qubits, CYC-SATMAP outperforms SATMAP, whereas for 10 and

Tool Main Set (total 160) QAOA (total 10)
Solved Largest solved # Solved Largest solved

TB-OLSQ 38 90 0 –
NL-SATMAP 70 128 5 36

SATMAP 109 598 7 72
CYC-SATMAP – – 10 96

TABLE III: Comparison between TB-OLSQ, NL-SATMAP,
SATMAP, and CYC-SATMAP

12 qubits, the opposite is true.5 Additionally, except with 12

qubits, CYC-SATMAP determines a solution much more quickly

than SATMAP. Neither SATMAP nor CYC-SATMAP has a clear

advantage in terms of solution quality when both produce some

solution. In some cases, CYC-SATMAP enables us to find a

better solution than the best heuristic tool, TKET. For instance,

with 16 qubits, CYC-SATMAP solutions are > 3x better than

TKET.

Summary: the cyclic relaxation improves performance
of our approach on cyclic circuits in three respects: (1) it
renders larger circuits tractable (such as 16-qubit QAOA),
(2) it produces a solution faster, and (3) it produces better
solutions within a fixed timeout for some circuits.

Breakdown of effects. Table III summarizes the effects of our

encoding and relaxations, starting with TB-OLSQ as the baseline.

Without relaxations, NL-SATMAP can solve 70 benchmarks,

while TB-OLSQ only 38. With local relaxation, SATMAP can

solve 109 benchmarks, with a largest circuit of size 598,

compared to TB-OLSQ’s 90. We also see the same behavior

in QAOA benchmarks, with the local relaxation (SATMAP)

and cyclic relaxations (CYC-SATMAP) allowing us to solve

progressively more benchmarks. TB-OLSQ is unable to solve

any of our QAOA benchmarks within the allotted time.

Q4: Impact of Architecture

Experimental setup. Finally, we investigated the effectiveness

of SATMAP as compared to the best heuristic tool, TKET, when

varying the properties of the connectivity graph. We constructed

5Note that SAT solvers do not provide a monotonicity guarantee on
performance with respect to increasing circuit size—e.g., we can solve a
12-qubit circuit with SATMAP but not a 10-qubit circuit. This is due to the
search strategy employed by the underlying solver.

1087

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 06,2023 at 12:14:41 UTC from IEEE Xplore. Restrictions apply.

Qubits Cycles CYC-SATMAP SATMAP TKET

Cost Time Cost Time Cost Time

6
2 12 130 12 1800 12 < 0.1

4 24 130 60 203 42 < 0.1

8
2 12 361 18 954 21 < 0.1

4 24 361 63 372 30 < 0.1

10
2 84 253 54 1155 33 0.14

4 168 253 – – 102 0.24

12
2 84 1800 21 261 48 0.33

4 168 1800 105 1800 87 0.32

16
2 24 288 – – 78 0.30

4 48 288 – – 147 0.41

TABLE IV: Quality of solutions and runtime (s) of CYC-SATMAP, SATMAP, and TKET on QAOA circuits

Fig. 14: The cost of the solution produced by TKET divided by the cost of the solution produced by SATMAP on three
different connectivity graphs: Tokyo+, Tokyo, and Tokyo−

two modified versions of the IBM Tokyo architecture: (1)

increasing sparsity of the graph by removing diagonal edges

(Tokyo−, Fig. 9a), and (2) increasing connectivity by adding

diagonal edges (Tokyo+, Fig. 9c). The average degree of

a vertex in Tokyo is exactly halfway between Tokyo+ and

Tokyo−. We applied the same procedure as in the evaluation

of Q2 with the use of these different architectures as the only

difference.

Results. In a similar manner to Q2, Fig. 14 shows the cost ratio

on each benchmark for the three architectures. On Tokyo−,

heuristic tools and SATMAP produce very similar solutions.

The difference between the cost of the solution produced

by TKET and SATMAP was less than 10 gates for 61 of the

85 benchmarks solved by SATMAP, with a mean cost ratio

near 1. Results on Tokyo+ are more in line with those on

Tokyo, but with more variance across the benchmark set. Again

comparing TKET to SATMAP, the standard deviation in cost ratio

on Tokyo+ is 9.09 as opposed to 3.92 on Tokyo (excluding

infinite ratios). These results suggest the existence of two

effects. First, heuristic solutions are well-suited to finding near

optimal solutions on sparse connectivity graphs. Second, the

success of SATMAP on Tokyo as compared to Tokyo− and

Tokyo+ may indicate constraint-based tools are better suited to

non-uniform architectures where the connectivity varies across

qubits. We observe the same behavior on SABRE and MQTH,

so we focus on TKET here since it’s the best-performing tool.

Summary: heuristic-based tools are not robust to varia-
tions in the connectivity graph, tending to produce better
results on sparse graphs (Tokyo−) than highly connected
ones (Tokyo+).

Q5: Scalability and Optimality

Time Limits. First, we study the impact of the time bound on

the number of benchmarks solved and the cost of the solution.

We consider the following time limits (in seconds): 100, 300,

600, 1800, 3600, 5400, and 7200. We compare each time limit

against the original 1800 seconds by computing the cost ratio

like in Q2. All other configurations are the same including

the architecture, Tokyo. As expected, the cost ratio decreases

exponentially as the time allotted increases meaning solution

quality improves with more time. Additionally, the number

of benchmarks solved and size of the largest circuit solved

both increase given more time. The change in the number of

benchmarks solved across time is less dramatic, increasing

from 103 to 111.

Cost vs Circuit Size. Second, we analyze the optimality of

the solution compared to circuit size. Since we do not have

ground truth optimal cost, we use the cost ratio data from

Q2 comparing SATMAP to the best performing heuristic tool,

TKET. We observe a downward trend in cost ratio as circuit

size increases, suggesting a loss in optimality as circuit size

1088

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 06,2023 at 12:14:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 15: Comparison of average cost ratio across different
time bounds with a baseline of 1800 seconds. Each point
is labeled with the size of the largest circuit solved.

Fig. 16: Solution quality compared to TKET across different
circuit sizes.

increases. This is expected as the local relaxation creates more

slices for larger circuits.

Q6: Noise Models

To demonstrate the versatility of our approach, we also use

a weighted MAXSAT encoding to incorporate noise models,

with the aim of maximizing the fidelity of the output circuit.

Weighted MAXSAT is a generalization of MAXSAT where soft

constraints are assigned a positive weight, and the objective is

to maximize the sum of the weights of the satisfied soft clauses.

The MAXSAT problem as defined previously is equivalent to

weighted MAXSAT where all weights are 1.

Example 12: Consider the weighted MAXSAT problem with

one hard constraint and two soft constraints,

Hard = {a∨b}
Soft = {(¬a,weight : 5),(¬b,weight : 1)}

The solution is I = [a �→ false,b �→ true], with a weight of 5.

In the noise-aware version of SATMAP, we use soft-clause

weights to encode the fidelity of operations, e.g, a variable

swap(p1, p2,k) is assigned a weight (probability between 0

and 1) corresponding to the fidelity of performing a SWAP

on the edge (p1, p2). The result is an optimization objective

equivalent to TB-OLSQ’s. We used the error rates supplied by

the “FakeTokyo” backend from the IBM Qiskit development

kit.

Fidelity maximization is a more complex objective than

SWAP minimization, so both tools, SATMAP and TB-OLSQ,

solved fewer benchmarks from the set of 160 within the

same timeout from Q1. However, we observe an even bigger

gap between the two tools, with SATMAP solving ∼4x more

benchmarks: The fidelity maximization version of TB-OLSQ

was able to solve 23 benchmarks, whereas SATMAP was able

to solve 89. For the 23 benchmarks solved by TB-OLSQ, the

fidelity achieved by by SATMAP was the same except for 5

examples, which incur a small fidelity reduction of 0.004 to

0.09 due to relaxation.

VIII. RELATED WORK

Constraint-based Approaches. Many prior works utilize

constraint solvers for mapping and routing logical qubits.

Several tools leverage ILP solvers to minimize the number

of SWAPs and circuit depth [20], [21], [22]. At the same time,

several others translate QMR to Boolean constraints and use

SMT solvers [6], [23]. Besides restricted connectivity, mapping

logical qubits onto physical qubits can be challenging due to

non-uniform gate latency and error rates. To that end, Tan et al.

leverage SMT solvers to minimize the total circuit runtime [5]

whereas Murali et al. use SMT solvers to maximize success

probability by accounting for variability in gate errors [7].

Furthermore, some tools cast QMR as a path planning problem

and leverage temporal planners [24], [25]. However, most

constraint-based solvers face severe scalability issues due to

the exponential search space.

The closest work to ours is TB-OLSQ [5] which uses a

satisfiability modulo theories (SMT) encoding that is more

efficient than earlier work [6]. Our encoding is different in a

number of ways: (1) We restrict ourselves to fully Boolean

encoding, allowing us to sidestep the complexity of SMT vs SAT

solving. (2) We model SWAPs via Boolean variables in a view

that mimics sketch-based program synthesis. (3) We introduce

novel relaxations that increase scalability while maintaining

almost optimality.

Heuristic-based Approaches. Due to the limited scalability of

constraint-based tools, most industry compilers and open-source

quantum compiler projects use heuristic methods for performing

QMR. For example, IBM Qiskit uses SABRE, a bidirectional

local search algorithm that slices the circuit into subcircuits and

finds locally optimal mappings, similar to our locally optimal

relaxation [18]. In contrast, the MQT compiler uses a slow but

exhaustive A∗ search [10]; the approach is made feasible by

only applying A∗ between gates in consecutive topological

layers of the circuit. Furthermore, recent work combines A∗
with novel search space pruning techniques to enable time

optimal QMR solutions [26]. Tools like Enfield use subgraph

isomorphism and token swapping [19], whereas others use

hierarchical product algorithms for modular architecture [27]

and SWAP networks [28]. Majority of the heuristic methods try

to minimize the distance between logical qubits and use greedy

but efficient local search to reduce the number of gates and

circuit depth. For example, TKET heuristic performs a greedy

search to find an initial qubit mapping that results in the

least number of SWAPs and inserts routing gates by iteratively

1089

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 06,2023 at 12:14:41 UTC from IEEE Xplore. Restrictions apply.

permuting the logical to physical mapping [3], [29]. Similarly,

earlier work uses local permutations of physical to logical qubit

map and sub-graph isomorphism to solve the QMR problem [30].

A large body of work focuses on restricted qubit architectures

with 1D, and 2D nearest neighbor connectivity [31], [32],

[33], [34]. Whereas recent works focus on IBM machines and

develop greedy search strategies for IBM architectures [35],

[36]. While others develop application-specific [37], [38] and

noise-aware strategies that use hardware-level characteristics

to improve fidelity [39], [40], [41], [42], [43], [44], [45].

IX. DISCUSSION

Importance of optimality. Our results demonstrate a big

gap in terms of added SWAPs between heuristic-based QMR

algorithms and our constraint-based technique. For near-term,

noisy quantum computers, reducing the number of SWAPs

is critical for successfully executing quantum algorithms.

Therefore, our results indicate that, going forward, (1) we need

to improve existing heuristic algorithms to bring them closer

to optimal or (2) improve the scalability of constraint-based

techniques.

Scaling the MAXSAT approach. Our MAXSAT approach

produces significant improvements over existing optimal ap-

proaches. However, SAT solving is an NP-complete problem and

scalability remains an issue. We see two avenues for scaling our

MAXSAT approach to stay ahead of the growth in the number

of qubits: First, we can employ parallel SAT-solving strategies.

All of our experiments used a single-threaded solver. Today,

there are SAT solvers that can run on cloud infrastructure

with impressive improvements.6 Second, at the algorithmic

level, we can combine our MAXSAT approach with heuristic

approaches. For instance, we can only solve the mapping

constraints (optimally) and leave the routing process for a

heuristic approach or an approximation algorithm [23].

Future architectures. Quantum computing is a field in flux,

and there is no clear indication of how future connectivity

graphs will look like, as it depends on the underlying physical

substrate used and engineering advances. The ideal, of course,

is to build a device with as much connectivity and as little

cross-talk as possible. Our results demonstrate that for higher

connectivity, the performance of heuristic approaches diverges

from the optimal. So it is prudent to robustify heuristic ap-

proaches to changes in the connectivity graph to accommodate

the rapid developments NISQ computing hardware.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their thoughtful

feedback and Rui Huang for providing scripts to generate

QAOA circuits. This work is supported by NSF grants #1652140

and #2212232 and awards from Meta and Amazon. This

research is also partially supported by the Vice Chancellor

Office for Research and Graduate Education at the University of

Wisconsin–Madison with funding from the Wisconsin Alumni

Research Foundation.

6https://satcompetition.github.io/2021/

REFERENCES

[1] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[2] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[3] A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons,
and S. Sivarajah, “On the qubit routing problem,” arXiv preprint
arXiv:1902.08091, 2019.

[4] B. Tan and J. Cong, “Optimality study of existing quantum computing
layout synthesis tools,” IEEE Transactions on Computers, vol. 70, no. 9,
pp. 1363–1373, 2020.

[5] ——, “Optimal layout synthesis for quantum computing,” in 2020
IEEE/ACM International Conference On Computer Aided Design (IC-
CAD). IEEE, 2020, pp. 1–9.

[6] R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits to
ibm qx architectures using the minimal number of swap and h operations,”
in 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE,
2019, pp. 1–6.

[7] P. Murali, J. M. Baker, A. J. Abhari, F. T. Chong, and M. Martonosi,
“Noise-adaptive compiler mappings for noisy intermediate-scale quantum
computers,” arXiv preprint arXiv:1901.11054, 2019.

[8] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. IOS
press, 2009, vol. 185.

[9] J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. Luckow,
N. Rungta, O. Tkachuk, and C. Varming, “Semantic-based automated
reasoning for aws access policies using smt,” in 2018 Formal Methods
in Computer Aided Design (FMCAD). IEEE, 2018, pp. 1–9.

[10] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for
mapping quantum circuits to the ibm qx architectures,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 7, pp. 1226–1236, 2018.

[11] A. Solar-Lezama, Program synthesis by sketching. University of
California, Berkeley, 2008.

[12] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint:1411.4028, 2014.

[13] I. P. Gent and P. Nightingale, “A new encoding of alldifferent into sat,”
in International Workshop on Modelling and Reformulating Constraint
Satisfaction, 2004, pp. 95–110.

[14] S. Joshi, P. Kumar, V. Manquinho, R. Martins, A. Nadel, and S. Rao,
“Open-WBO-Inc in MaxSAT Evaluation 2018,” in MaxSAT Evaluation
2018: Solver and Benchmark Descriptions, vol. B-2018-2. Department
of Computer Science, University of Helsinki, 2018, pp. 16–17.

[15] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “Revlib:
An online resource for reversible functions and reversible circuits,” in
38th International Symposium on Multiple Valued Logic (ismvl 2008),
2008, pp. 220–225.

[16] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron,
“Quipper: A scalable quantum programming language,” CoRR, vol.
abs/1304.3390, 2013. [Online]. Available: http://arxiv.org/abs/1304.3390

[17] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong,
and M. Martonosi, “Scaffcc: A framework for compilation and analysis
of quantum computing programs,” in Proceedings of the 11th ACM
Conference on Computing Frontiers, ser. CF ’14. New York, NY,
USA: Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2597917.2597939

[18] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for nisq-
era quantum devices,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 1001–1014.

[19] M. Y. Siraichi, V. F. d. Santos, C. Collange, and F. M. Q. Pereira,
“Qubit allocation as a combination of subgraph isomorphism and token
swapping,” Proceedings of the ACM on Programming Languages, vol. 3,
no. OOPSLA, pp. 1–29, 2019.

[20] D. Bhattacharjee, A. A. Saki, M. Alam, A. Chattopadhyay, and S. Ghosh,
“Muqut: Multi-constraint quantum circuit mapping on nisq computers,”
in 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2019, pp. 1–7.

[21] A. Chakrabarti, S. Sur-Kolay, and A. Chaudhury, “Linear nearest neighbor
synthesis of reversible circuits by graph partitioning,” arXiv preprint
arXiv:1112.0564, 2011.

[22] D. Bhattacharjee and A. Chattopadhyay, “Depth-optimal quantum circuit
placement for arbitrary topologies,” arXiv preprint arXiv:1703.08540,
2017.

1090

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 06,2023 at 12:14:41 UTC from IEEE Xplore. Restrictions apply.

[23] M. Y. Siraichi, V. F. d. Santos, S. Collange, and F. M. Q. Pereira, “Qubit
allocation,” in Proceedings of the 2018 International Symposium on Code
Generation and Optimization. ACM, 2018, pp. 113–125.

[24] D. Venturelli, M. Do, E. G. Rieffel, and J. Frank, “Temporal planning
for compilation of quantum approximate optimization circuits.” in IJCAI,
2017, pp. 4440–4446.

[25] D. Venturelli, M. Do, E. Rieffel, and J. Frank, “Compiling quantum
circuits to realistic hardware architectures using temporal planners,”
Quantum Science and Technology, vol. 3, no. 2, p. 025004, 2018.

[26] C. Zhang, A. B. Hayes, L. Qiu, Y. Jin, Y. Chen, and E. Z. Zhang, “Time-
optimal qubit mapping,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2021, pp. 360–374.

[27] A. M. Childs, E. Schoute, and C. M. Unsal, “Circuit transformations for
quantum architectures,” arXiv preprint arXiv:1902.09102, 2019.

[28] B. O’Gorman, W. J. Huggins, E. G. Rieffel, and K. B. Whaley,
“Generalized swap networks for near-term quantum computing,” arXiv
preprint arXiv:1905.05118, 2019.

[29] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and
R. Duncan, “t|ket〉: a retargetable compiler for nisq devices,” Quantum
Science and Technology, vol. 6, no. 1, p. 014003, 2020.

[30] D. Maslov, S. M. Falconer, and M. Mosca, “Quantum circuit placement:
optimizing qubit-to-qubit interactions through mapping quantum circuits
into a physical experiment,” in Proceedings of the 44th annual Design
Automation Conference. ACM, 2007, pp. 962–965.

[31] Y. Hirata, M. Nakanishi, S. Yamashita, and Y. Nakashima, “An efficient
conversion of quantum circuits to a linear nearest neighbor architecture,”
Quantum Information & Computation, vol. 11, no. 1, pp. 142–166, 2011.

[32] M. Saeedi, R. Wille, and R. Drechsler, “Synthesis of quantum circuits for
linear nearest neighbor architectures,” Quantum Information Processing,
vol. 10, no. 3, pp. 355–377, 2011.

[33] A. Shafaei, M. Saeedi, and M. Pedram, “Optimization of quantum circuits
for interaction distance in linear nearest neighbor architectures,” in 2013
50th ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
2013, pp. 1–6.

[34] R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, and
R. Drechsler, “Look-ahead schemes for nearest neighbor optimization of
1d and 2d quantum circuits,” in 2016 21st Asia and South Pacific design
automation conference (ASP-DAC). IEEE, 2016, pp. 292–297.

[35] A. Zulehner and R. Wille, “Compiling su (4) quantum circuits to ibm qx
architectures,” in Proceedings of the 24th Asia and South Pacific Design
Automation Conference, 2019, pp. 185–190.

[36] A. Kole, S. Hillmich, K. Datta, R. Wille, and I. Sengupta, “Improved
mapping of quantum circuits to ibm qx architectures,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 10, pp. 2375–2383, 2019.

[37] G. G. Guerreschi and J. Park, “Two-step approach to scheduling quantum
circuits,” Quantum Science and Technology, vol. 3, no. 4, p. 045003,
2018.

[38] M. Alam, A. Ash-Saki, and S. Ghosh, “Circuit compilation methodologies
for quantum approximate optimization algorithm,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2020, pp. 215–228.

[39] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: a case
for variability-aware policies for nisq-era quantum computers,” in Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2019, pp.
987–999.

[40] P. Das, S. Tannu, S. Dangwal, and M. Qureshi, “Adapt: Mitigating idling
errors in qubits via adaptive dynamical decoupling,” in MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, 2021,
pp. 950–962.

[41] P. Das, S. Tannu, and M. Qureshi, “Jigsaw: Boosting fidelity of nisq
programs via measurement subsetting,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
937–949.

[42] P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F. Bogorin,
M. Brink, L. Capelluto, O. Günlük, T. Itoko, N. Kanazawa et al.,
“Demonstration of quantum volume 64 on a superconducting quantum
computing system,” Quantum Science and Technology, vol. 6, no. 2, p.
025020, 2021.

[43] S. S. Tannu and M. Qureshi, “Ensemble of diverse mappings: Improving
reliability of quantum computers by orchestrating dissimilar mistakes,”

in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 253–265.

[44] T. Patel and D. Tiwari, “Veritas: accurately estimating the correct
output on noisy intermediate-scale quantum computers,” in 2020 SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). IEEE Computer Society, 2020, pp. 188–203.

[45] S. Stein, N. Wiebe, Y. Ding, P. Bo, K. Kowalski, N. Baker, J. Ang, and
A. Li, “Eqc: ensembled quantum computing for variational quantum
algorithms,” in Proceedings of the 49th Annual International Symposium
on Computer Architecture, 2022, pp. 59–71.

1091

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 06,2023 at 12:14:41 UTC from IEEE Xplore. Restrictions apply.

