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Abstract—In this letter, we consider the problem of ver-
ifying pre-opacity for discrete-time control systems. Pre-
opacity is an important information-flow security property
that secures the intention of a system to execute some
secret behaviors in the future. Existing works on pre-
opacity only consider non-metric discrete systems, where
it is assumed that intruders can distinguish different output
behaviors precisely. However, for continuous-space con-
trol systems whose output sets are equipped with metrics
(which is the case for most real-world applications), it is
too restrictive to assume precise measurements from out-
side observers. In this letter, we first introduce a concept of
approximate pre-opacity by capturing the security level of
control systems with respect to the measurement precision
of the intruder. Based on this new notion of pre-opacity, we
propose a verification approach for continuous-space con-
trol systems by leveraging abstraction-based techniques.
In particular, a new concept of approximate pre-opacity
preserving simulation relation is introduced to characterize
the distance between two systems in terms of preserving
pre-opacity. This new system relation allows us to verify
pre-opacity of complex continuous-space control systems
using their finite abstractions. We also present a method
to construct pre-opacity preserving finite abstractions for
a class of discrete-time control systems under certain
stability assumptions.

Index Terms—Discrete event systems, opacity, formal
abstractions.
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|. INTRODUCTION

YBER-PHYSICAL systems (CPS) are the technolog-

ical backbone of the increasingly interconnected and
smart world where security vulnerability can be catastrophic.
However, the tight interaction between embedded control
software and the physical environment in CPS may expose
numerous attack surfaces for malicious exploitation. In the
last decade, the analysis of various security properties for CPS
has drawn considerable attention in the literature [3], [9]. The
concept of opacity was originally introduced in computer sci-
ence literature [11] for the analysis of cryptographic protocols.
Afterwards, opacity was widely investigated in the domain of
discrete-event systems (DES) since it allows researchers to
analyze the information-flow security for dynamical systems
in a formal way [6]. Roughly speaking, opacity is a confiden-
tiality property that characterizes whether or not a dynamical
system will reveal some potentially sensitive behavior to an
external malicious observer (intruder) based on the information
flow.

In the past decades, different notions of opacity were
proposed in the literature to capture different security require-
ments in the context of DES, including language-based notions
in [8] and state-based notions in [7], [12], [13]. The recent
results in [2], [15] show that these notions are transformable to
each other. Corresponding to the different opacity notions, var-
ious verification and synthesis approaches were also developed
in the DES literature; see [5], [6], [8], [9], [10] and the refer-
ences therein. Although the majority of the above-mentioned
works on opacity are applied to DES models with discrete
state sets, the analysis of opacity for control systems with
continuous state sets has become the subject of many studies
recently [1], [9], [17]. In particular, a new concept of approx-
imate opacity is proposed in [17] which is more applicable
to control systems since it allows us to quantitatively evaluate
the security level of control systems whose outputs are phys-
ical signals. More recently, a new concept of opacity, called
pre-opacity, was proposed in [16] to characterize whether or
not the secret intention of the system can be revealed. In
other words, different from the other opacity notions which
consider the current or past secret behaviors of the system,
pre-opacity captures whether or not an outside observer can
be prematurely certain that the system will conduct some
secret behaviors in the future. In fact, in many practical
scenarios, systems are indeed more interested in hiding their
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intentions to do something particularly important in the future.
Nevertheless, the results developed in [16] are again tailored
to DES models with discrete state sets, which prevents it
from being applied to real-world CPS with continuous state
sets.

Our contribution. In this letter, we consider the problem
of verifying pre-opacity for discrete-time control systems.
Motivated by the limitations of the results in [16], we first
introduce a new concept called approximate K-step pre-
opacity which is more applicable to control systems. To be
more specific, unlike discrete-event systems whose state sets
are discrete and outputs are logic events, control systems are
in general metric systems whose state and output sets are
physical signals. Therefore, the notion of pre-opacity in [16]
is too restrictive by assuming that one can always precisely
distinguish between two outputs in the context of control
systems. Note that the verification of pre-opacity for control
systems is in general undecidable. In this letter, we pro-
pose an abstraction-based pre-opacity verification approach for
continuous-space control systems. In particular, we first pro-
pose a notion of approximate K-step pre-opacity preserving
simulation relation, which is a system relation that can be used
to characterize the closeness between two systems in terms of
preserving pre-opacity. Based on this system relation, one can
verify pre-opacity of a complex control system using its finite
abstraction, instead of directly applying verification algorithms
on the original control system which is undecidable. Moreover,
for the class of incrementally input-to-state stable nonlinear
control systems, we show that one can always construct finite
abstractions which preserve pre-opacity of the control systems.
The proposed abstraction-based methodology is the first in
the literature that provides a sound way for verifying pre-
opacity of discrete-time control systems with continuous state
spaces.

Il. PRELIMINARIES
A. Notation

We denote by N and R the set of non-negative inte-
gers and real numbers, respectively. They are annotated
with subscripts to restrict them in the usual way, e.g., R>g
denotes the set of non-negative real numbers. Given a vec-
tor x € R", we denote by | x| the infinity norm of x. A
set B € R” is called a box if B = [[, [c;, d;], where
¢i,di € R with ¢; < d; for each i € {l,...,m}. For any
set A = U]Ai 1A;j of the form of finite uion of boxes, where
Aj =TT, [ch., dﬁ], we define span(A) = min{span(A;)|j =
1,..., M}, where span(4;) = min{|d§ — Ci-”i =1,...,m}.
For any u < span(A), define [A], = Uﬂil [Aj],, where
[Aly = [R™], N A and [R™], = {a € R'a; = kit k; €

Z,i=1,...,m}. We denote the different classes of compar-
ison functions by K, Ko and KL, where K = {y : Rsg —
R>o : y is continuous, strictly increasing and y(0) = 0};

Koo = {y € K : limo0y(r) = oo}; KL = {B : Rxp x
Ry — Ryo for each fixed s, the map B(r,s)
belongs to class I with respect to r and, for each fixed
nonzero r, the map B(r, s) is decreasing with respect to s and
B(r,s) = 0 as s - oo}.

B. System Model

In this letter, the system model that can be used to describe
both continuous-space and finite control systems is a fuple

S=X,Xo, U, — .Y, H),

where X is a (possibly infinite) set of states, Xo € X is a
(possibly infinite) set of initial states, U is a (possibly infinite)
set of inputs, —— C X x U x X is a transition relation, Y
is a (possibly infinite) set of outputs, and H : X — Y is the
output function. For the sake of simplicity, we also denote a
transition (x, u,x) € — by x —“+ X/, where we say that
x' is a u-successor, or simply successor, of x. For each state
x € X, we denote by U(x) the set of all inputs defined at x,
ie, Ux)={ueU:3I € X s.t. x — X'}, and by UZ”" (x)
the set of u-successors of state x. A system S is said to be

o metric, if the output set Y is equipped with a metric

d:YxY— Rsp;

o finite (or symbolic), if X and U are finite sets;

A finite state run of a system § generated from initial state
Xxo € Xo under input sequence uy, ..., u, is a sequence of
.. up up Up Uit1
transitions xg X1 e Xp, Where x; —— Xjy|
for all 0 < i < n — 1. The corresponding output run is a

sequence of outputs H(xg)H (x1) - - - H(xy).

C. Exact Pre-Opacity

In many scenarios, the system wants to hide its intention to
reach some secret states at some future instants in the presence
of a malicious intruder (outside observer). In this letter, we
adopt a state-based formulation of secrets. Specifically, we
assume that Xg € X is a set of secret states. In the sequel,
we incorporate the secret state set Xs in the system definition
and use S = (X, X0, X5, U, —— , Y, H) to denote a metric
system. We consider that the intruder knows the dynamics
of the system and can observe the output sequences of the
system, but cannot actively affect the behavior of the system.
To characterize whether or not the secret intention of a system
can be revealed, a notion of K-step pre-opacity is proposed
in [16] and recalled as follows.

Definition 1: Consider a system S = (X, Xo,Xs, U,
,Y,H) and a constant K € N. We say
that S is K-step pre-opaque if for any finite sequence

ui u Un
X0 X1 e

u
. . 1
ger t > K, there exist a finite sequence x, — x|
;: ’ A M:H»t ,
Xn X+t

H(x;)) = H(X;),¥i={0,...,n},

Xp, any non—negativg inte-

/
u2 u

such that

and x;,, ¢ Xg.

Intuitively, pre-opacity requires that the intruder can never
predict that the system will visit a secret state for some spe-
cific future instant. The above definition of K-step pre-opacity
requires that for any behavior of the system and any ¢ > K,
there exists a behavior whose prefix generates exactly the same
output and will reach a non-secret state in exact ¢ steps. Thus,
in the remainder part of this letter, we will refer to this def-
inition as exact pre-opacity. Interested readers are referred
to [16, Sec. V] for an illustrative example on the application
of exact pre-opacity. A detailed discussion on the relationships
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between pre-opacity and other notions of opacity can be found
in [16, Fig. 3].

D. Approximate Pre-Opacity

The notion of exact pre-opacity introduced in the previous
subsection essentially assumes that the intruder can always
measure each output or distinguish between two different out-
puts precisely. However, for metric systems whose outputs are
physical signals, due to the imperfect measurement precision
of potential outside observers (which is the case for almost
every physical system), it is very difficult to distinguish two
observations if their difference is very small. Therefore, in the
following definition, we propose a “weak” and “robust” ver-
sion of pre-opacity called §-approximate pre-opacity which is
more applicable to metric systems.

Definition 2: Consider a system S = (X, Xo, Xs, U, — ,
Y,H) and a constant § € Rso. We say that § is
8-approximate K-step pre-opaque if for any finite sequence
X0 —> x] —2» ... — 4 x,, any non-negativg inte-
ger t > K, there exist a finite sequence x; _h, x|

/ u W »
n / n n ’
x), e X, such that

/
u2 u,

“max d(H(x), H(x})) <,
i€{0,...,n
and x),, ¢ Xs.

When § = 0, approximate pre-opacity boils down to the
exact version in Definition 1. We use the following example
to illustrate the notions of exact and approximate pre-opacity.

Example 1: Consider system S = (X, Xo, X5, U, —— ,
Y, H) shown in Figure 1, where X = {A,B,C, D, E, F, G, H},
Xo = {AE}, Xs = {(C,H,, U = {uu}, Y =
{1.1,1.2,2.1,2.3,2.9,3.1,4.0,4.2} € R equipped with met-
ric d defined by d(y1, y2) = [y1 — y2l, Yy1,y2 € Y. We mark
all secret states by red and the output of each state is speci-
fied by a value associated to it. First, one can check that § is
not exact K-step pre-opaque for any K € N, since we know
immediately that the system is at secret state when value 3.1 or
4.0 is observed. Next, consider an intruder with measurement
precision § = 0.2. We claim that S is 0.2-approximate 1-step
pre-opaque. For example, consider a finite path A .+ B
which generates output path [1.1][2.3] and will reach a secret
state in 1 step. However, the intruder cannot predict for sure
that the system will be at a secret state in 1 step since there
is another path £ s F generating an indistinguishable out-
put path[1.2][2.1], but will reach a non-secret state G ¢ Xg.
Similarly, when observing [1.2][2.1] (generated by the finite
path E —~+ F), the intruder cannot predict for sure that the
system will be at a secret state after 2 steps either, since there

exists another path A “+ B—"+ C —+ D which will
reach non-secret state D in 2 steps. This protects the possible
secret intention of executing £ ‘v F G- H.

[11. APPROXIMATE SIMULATION RELATION FOR K-STEP
PRE-OPACITY

In the last section, we introduced notions of exact and
approximate pre-opacity for control systems. However, the
(approximate) pre-opacity is in general hard (or even infeasi-
ble) to check for control systems since there is no systematic

[1.1] [2.3] [3.1] [4.2)

L@
u" u
T«

[1.2] [2.1] [2.9] [4.0]

Fig. 1. Example to illustrate §-approximate K-step pre-opacity.

way in the literature to check pre-opacity for systems with
infinite state sets so far. On the other hand, existing tools and
algorithms (such as [16]) in DES literature can be leveraged
to check pre-opacity for finite systems. Therefore, to solve the
pre-opacity verification problem for control systems, it would
be more feasible to verify pre-opacity on their finite abstrac-
tions and then carry back the result to the concrete ones. The
key to the construction of such finite abstraction is the estab-
lishment of formal relations between the concrete and abstract
systems.

In this section, we first propose a new system relation called
approximate K-step pre-opacity preserving simulation rela-
tion, and then show the usefulness of the proposed system
relation in terms of verifying pre-opacity.

Definition 3 (Approximate K-step Pre-Opacity Preserving
Simulation  Relation): Consider two metric systems
Sa =  (Xa, Xa0, Xas, Ua, P Yo, Hy) and S, =
(Xp, Xpo, Xps, Up, , Yp, Hy) with the same output

sets Y, = Y, and metric d. Given ¢ € Rsp, a relation
R C X, x Xp is called an e-approximate K-step pre-opacity
preserving simulation relation (e-AKP simulation relation)
from S, to Sy, if

) a) Vxa € Xq0, Ixpo € Xpo : (Xa0, X60) € R;

b) Vxpo € Xpo, Ixa0 € Xuo : (Xa0, Xp0) € R;
2) V(xa,xp) € R : d(Ha(xa), Hp(xp)) < &;
3) For any (x4, xp) € R, we have

up
a) Vx, x;,, Ixp - X, (x,x,) €R;
up u
b) Vxp 3 xp,, Axg aa x, : (x,,x,) €R.
u, U,
c) Vxp bb x/b € Xp\Xps, Ix, aa x; IS

Xa\Xas : (x,,x) € R.

We say that S, is e-AKP simulated by Sj, denoted by S, <%
Sp, if there exists an ¢-AKP simulation relation R from S,
to Sp. A (finite) system S, that simulates S, through the e-AKP
simulation relation is called a pre-opacity preserving (finite)
abstraction of S,. Note that the proposed ¢-AKP simulation
relation is still a one-sided relation because conditions 1) and
3) are asymmetric.

The following theorem shows how to use the above
proposed simulation relation in terms of verifying pre-opacity.

Theorem 1: Consider two metric systems S, = (X, Xq0,
XaSa Uaa ’ Yaa Ha) and Sb = (Xb9Xb01XbS7 Ub9

a
- Yy, Hp) with the same output sets Y, = Y} and metric

d and let &, § € Rxq. If S, <4 Sp, then we have:

Sp is §-approximate K-step pre-opaque
= S, is (8 + 2¢)-approximate K-step pre-opaque.

Proof: Let us consider an arbitrary initial state xg € X0, an

uj uz Un

arbitrary finite run xg X1 R X, in S, and

a a a
any non-negative integer t > K. Since S, <% Sp, by conditions
1)-a), 2) and 3)-a) in Definition 3, there exists an initial state
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/ /

x € Xpo and a finite run x;, L;' X, LZ lZ’ x), in Sp
such that
Vie{0,...,n} : d(Hu(x;), Hp(x)) < €. ¢))

Since S, is d-approximate K-step pre-opaque, by
Definition 2, for any non- negative integer ¢t > K,
there exist an initial state xo € Xpo and a finite run

/" " "

YW % u2 U, o U 7 n+t
Xo = X T Ty Xy~ N~ Xagq such
that xZ_H € Xp\Xps and
_max dHp (). Hy(x))) <. @)
i€{0,...,

Again, since S, _A Sp, by conditions 1)-b), 2), 3)-b) and 3)-c)
in Definition 3, there exists an initial state x;’ € X,0 and a finite

v /" " " ///
u u

m M m W n /"

Untt
n moo X"

run x, a X T Xn P Xnt1 n+t
such that x;/,, € Xa\XaS and
Vie{0,....n+1): dH, ), Hy(d)) < e. 3)

Combining inequalities (1), (2), (3), and using the triangle
inequality, we have

. ?1&)( d(Hy(x), Hy(x]")) < 8 + 2e. 4)

i€{0,...,

u

u
Since xp € X40 and xg — x| X, are arbi-

trary, we conclude that Sa is (& + 28) apprgmmate K-step
pre-opaque. |

We should mention that, essentially, Theorem 1 provides
us with a sufficient but not necessary condition for verifying
pre-opacity of control systems using abstraction-based tech-
niques. In particular, when encountered with a complex control
system S, (possibly with infinite state set), one can build a
finite abstraction S} for S, through the proposed ¢-AKP sim-
ulation relation. Then, one can verify pre-opacity of the finite
abstraction Sj, leveraging existing algorithms in DES litera-
ture, and then carry back the verification result to the concrete
system S, by employing the result obtained in Theorem 1.
Note that such § and ¢ are parameters that specify two differ-
ent types of precision. The parameter § is used to specify the
intruder’s measurement precision under which one can guar-
antee pre-opacity of a single system, whereas ¢ appeared in
the proposed ¢-AKP simulation relation is used to describe
the “distance” between two systems in terms of preserving
pre-opacity.

Remark 1: In order to verify §-approximate K-step pre-
opacity for finite systems, one can combine techniques in [16]
and [17]. Specifically, one can first construct the §-approximate
current-state estimator as defined in [17], and then use the
reachability analysis provided in [16] to check pre-opacity.
The reader is referred to [4, Sec. III] for more details about
how these two techniques can be combined.

We illustrate the newly proposed ¢-AKP simulation relation
and the preservation of pre-opacity between two related finite
systems by the following example.

Example 2: Consider systems S, and S, shown
in Figures 2(a) and 2(b), respectively. All secret
states are marked by red and the output of each
state is specified by the value associated to it. Let
us consider the following relation R = {(A,L),
B,D,(C, 1), D, D, (), (F,J),(G,J),H, K} We claim

[1.1] [3.1]

O@

ol
u
—®

[2.9] [1.1)

(@) Sa

(b) Sp

Fig. 2. Example of e-approximate 0O-step pre-opacity preserving
simulation relation.

that R is an e-approximate K-step pre-opacity preserving
simulation relation from S, to S, when ¢ = 0.1. First,
for both initial states A and H in S,;, we have L, K € Xpo
in Sp such that (A,L) € R and (H,K) € R. Thus, con-
dition 1) in Definition 3 holds. Also, one can check that
d(Hy(x4), Hp(xp)) < 0.1 for any (x4, xp) € R. Therefore,
condition 2) in Definition 3 holds. Moreover, one can check
that conditions 3)-a) and 3)-b) in Definition 3 hold as well.

For example, for (B,I) € R and B —:» C, we can choose

1 —Z» I such that (C,I) € R. Finally, condition 3)-c) in
Definition 3 is also satisfied. As an example, for (H,K) € R
and the transition K —Z» J € Xp\Xps in Sp, there exists a

transition H —— G € X,\X,s in Sy such that (G,J) € R.
Therefore, one can conclude that R is an ¢-AKP simulation
relation from S, to Sp, i.e., S, jg'l Sp. Furthermore, it can
be seen that S; is &-approximate O-step pre-opaque with
6 = 0.2. Therefore, according to Theorem 1, we can readily
conclude that S, is 0.4-approximate O-step pre-opaque, where
0.4 = § + 2¢, without applying any verification algorithm to
S, directly.

IV. PRE-OPACITY OF CONTROL SYSTEMS

In this section, we proceed to investigate how to construct
pre-opacity preserving finite abstractions for control systems.
In particular, we show that for a class of discrete-time con-
trol systems under certain stability assumptions, one can build
finite abstractions which preserve pre-opacity of the concrete
control systems under the proposed e-AKP simulation relation.

A. Discrete-Time Control Systems

In this section, we consider a class of discrete-time control
systems of the following form.

Definition 4: A discrete-time control system X is defined
by the tuple ¥ = (X, S, U, f, Y, h), where X, S € X, U, and Y
are the state, secret state, input, and output sets, respectively.
The map f : X x U — X is the state transition function, and
h : X — Y is the output map. The dynamics of X is described
by difference equations of the form

) S+ 1) =f(EK), vk)),
> { £k = he (k). ©)
where £ : N - X, ¢ : N - Y, and v : N — U rep-

resent the state, output, and input signals, respectively. We
write &,(k) to denote the point reached at time k under
the input signal v from initial condition x = &, (0), and
Ly (k) to denote the output corresponding to state &, (k), i.e.,
Cxv (k) = h(& (k). Throughout this section, we assume that
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the output map satisfies the following Lipschitz condition:
|h(x) — h(X)|| < a(lx — X'||) for some a € Ky, for all
x,x eX.

B. Construction of Finite Abstractions

Next, we present how to construct finite abstractions which
preserve pre-opacity for a class of discrete-time control
systems. Specifically, the finite abstraction is built under the
assumption that the concrete control system is incrementally
input-to-state stable [14] as defined next.

Definition 5: System ¥ = (X, S, U, f, Y, h) is called incre-
mentally input-to-state stable (§-ISS) if there exist functions
B € KL and y € Ky such that Vx,x¥ € X and Vv, v €
N — U, the following inequality holds for any k € N:

[Exw (k) = &vv BN < Bllx = X[ K) + ¥ (v = V'llo). (6)

Next, in order to construct pre-opacity preserving finite
abstractions for a control system ¥ = (X,S,U,f,Y, k) in
Definition 4, we define an associated metric system S(X) =
X, Xo,Xs, U, — ,Y,H), where X =X, Xg =X, Xg =S8,
U=T,Y =Y H =h and x —— X if and only if
X = f(x,u). In the sequel, we will use S(X) to denote the
concrete control systems interchangeably. Now, we are ready
to introduce a finite abstraction for a control system X. To do
so, we assume that sets X, S and U are of the form of finite
union of boxes. Consider a tuple q = (n, i, ) of parame-
ters, where 0 < 1 < min{span(S), span(X\S)} is the state set
quantization, 0 < u < span(U) is the input set quantization,
and 6 is the designed inflation parameter. A finite abstraction
of ¥ is defined as

Sq(z) = (Xq,XqO,XqS, Uq, —q’ s Yq,Hq), (7N

where Xq = Xq0 = [X];, Xqs = [Se],,, where SY = {x €
X: 3 €8, st |lx—x|| <6} denotes the O-expansion of
set S, Uq = [U]M’ Yq = {]’l(.Xq) | .Xq S Xq}, Hq()Cq) = l’l(Xq),
VXq € Xq, and

Xq —;» Xy if and only if [l — f(xq. uq)| < 7. (8)

Now, we are ready to present the main result of this section,
which shows that under some condition over the quantization
parameters 1, 6 and u, the finite abstraction Sq(X) constructed
in (7) indeed simulates our concrete control system S(X)
through approximate K-step pre-opacity preserving simulation
relation as in Definition 3.

Theorem 2: Consider a §-ISS control system X =
X,S,U,f,Y, h) as in Definition 5 and its associated met-
ric system S(X). For any desired precision ¢ > 0, and any
tuple q = (1, u, 8) of quantization parameters satisfying

o™ @ 1) + 70 +1=a”'(), ©)
pla'@.1) +n <0,

we have S(X) <§ Sq(X).
Proof: Given a desired precision ¢ > 0 appeared in
Definition 3, let us consider a relation R C X x Xq defined by:

(10)

IThe output set is assumed to be equipped with the infinity norm:
d(yi,y2) = Iyt —y2ll. Vy1.y2 € Y.

(x,xq) € R if and only if [|x — xg] < a~!(e). First, accord-
ing to the construction of Sq(X) in (7), for any initial state
X0 € Xo in S(X), there exists an initial state x40 € Xg40 in
Sq(X) such that ||x,0 — x40l < n. By (9), we further have
n < a~(e). Thus, we get that (xo, x40) € R and condition 1)-
a) in Definition 3 readily holds. Moreover, for any xqo € Xqo,
there exists xo = xqo € Xp such that ||xg —xqoll =0 < a~l(e).
Hence, (x0, xq0) € R and condition 1)-b) in Definition 3 is also
satisfied. Now consider any (x, xq) € R. By the definition of
R and the Lipschitz assumption, we have ||H(x) — Hq(xg)|l =
1h(x) — h(xg)ll < a(llx — xqll) < &, which shows that con-
dition 2) in Definition 3 is satisfied. Further, let us proceed
to prove condition 3) in Definition 3. First, consider any
pair (x,xq) € R. Given any input # € U and the transition
x — X = f(x,u) in S(X), let us choose an input u; € U,
such that ||u — uq|l < u, where u < span(U). From the §-1SS
assumption on X, the distance between x’ and f (xq, ug) is
bounded as:

©6)
IX = f (g ug) Il < B(lx = xqll, 1) + v (Ilu — ug|l)

< (a7 @ 1) +y (. an
Besides, by the structure of §q(X) as in (8), we have
If (xq. uq) — x4l < 1. (12)

Now, combining the inequalities (9), (11), (12), and triangle
inequality, we obtain:
X" = xgll = llx" — f(xq, uq) +f(xq, uq) — x|
< I = f(xq, ug) Il + IIf (xq, uq) — Xqll
=pla'@ ) +ya+n=ae.

Therefore, we can conclude that (x/, xa) € R and condition 3)-
a) in Definition 3 holds. Next, let us show that the condition
3)-b) in Definition 3 holds as well. Consider x; and any input
ug € Uy in Sq(X). Let us choose u = u,y. Then, we get the
unique transition x ¥ = f(x,u) in S(X). Be leveraging
the §-ISS assumption on X, we have that the distance between
x" and f(xq, ug) is bounded as:

IX = f (g ug) Il < B(Ilx — xqll, 1) + v (llu — ugll)

< B(a”'@.1). (13)
Based on the structure of Sq(X), there exists qu € Xq s.t.:
If (xq. 1tq) — Xl < 1, (14)

which, by the definition of Sq(X) in (8), implies the existence
of xq i;» X in Sq(%). Combining inequalities (9), (13), (14),
and triangle inequality, we obtain:
||x/ _ xaH = ||x/ _f(xq7 uq) +f(xq, uq) — X:Z]||
< |Ix = f (g, ug) Il + IIf (xq, uq) — xgl
= pla”'@.1) +n =o' Ce).

Therefore, we conclude that (x,, x') € R and condition 3)-b)
in Definition 3 holds. Finally, let us show that condition 3)-c)
in Definition 3 holds. To this end, we firstly consider an arbi-

.. Ug . . ..
trary transition x, —— x; with x, ¢ Xs in S;(%). Similar to
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Fig. 3. A pre-opacity preserving finite abstraction of a control system.

the proof of condition 3)-b), we can show the existence of a
transition x —— x’ in S(X) where (¥, xa) € R holds, and the
input is chosen as u = ugq € Uq. Then by the construction of
the secret set in the finite abstraction, one has Xqs = [S@],7
with the inflation parameter satisfying 6 > B(a~!(¢), 1) + 1
and 0 < n < min{span(S), span(X\S)}, which also implies
that the size of the non-secret region in §,(X) is smaller
than that in S(X). Therefore, since (X', xa) € R which implies
lx" — xa|| < B(a~(e), 1) + n < 6, we obtain that X' ¢ Xj.
Thus, we conclude that condition 3)-c) in Definition 3 holds,
which completes the proof. |

V. EXAMPLE

Here, we provide an example to illustrate the proposed
abstraction-based pre-opacity verification approach. Consider
the following simple control system:

5 . J§k+ 1) =0.28(k) + v(k)
| ¢k = [l cos(0.1&(K)) I

where the state set is X = Xy = [0, 12), the secret set is
Xs = [11, 12), the input set is a singleton U = {0.05}, and
the output set is Y = [0, 1]. The output function of the system
satisfies the Lipschitz condition as in Definition 4 with a(r) =
0.1z r. The main goal of the example is to verify approximate
pre-opacity of the system using the proposed abstraction-based
approach.

Next, we apply our main results to achieve this goal. First,
let us construct a finite abstraction Sq(X) of ¥ which preserves
pre-opacity with desired precision ¢ = 0.4 as in Definition 3.
Note that by Definition 5, one can readily check that this control
system X is §-ISS with B(r, k) = 0.2%r and y (r) = 2r. Next,
a tuple of quantization parameters g = (1, 1, 6) = (1,0, 2.3)
are chosen such that inequalities (9)-(10) are satisfied. By
Theorem 2, we have S(X) j%”' Sq(XZ). Given the quantization
parameters g = (n, i, 0) = (1,0, 2.3), the state set X is dis-
cretized into 12 discrete states as X, = X,0 = {0, 1,2, ..., 11},
the discrete secret set is X, = {8,9, 10, 11}, the discrete
input set is U; = {0.05}, and the discrete output set is
Y, ={0,0.31,0.59, 0.81, 0.95, 1}. The obtained finite abstrac-
tion Sq(X) of X is shown in Fig. 3. The states marked in
red represent the secret states, and the output of each state is
specified by a value associated to it. Note that the system can be
initiated from any state since X; = X0 and the input # = 0.05
is omitted in the figure for the sake of better presentation. One
can readily check that S§q(X) is exact O-step pre-opaque since
for any run generated from any initial state of the system and
any future instant k > 0, there exists another run with exactly
the same output trajectory such that it will reach a non-secret

state in exactly k steps. As an example, consider a state run
u u u

11 2 1 0 1 which generates an output
run [0.95][0.81][0.95][1][0.95]. There exists another state run

15)

u u u

9 2 1 0 — 1 which generates exactly the
same output behavior, and will reach non-secret states (either
0 or 1) in any future time step k > 0. Finally, by leveraging
Theorem 1, we can readily conclude that the concrete system X
is 0.8-approximate 0-step pre-opaque without directly applying
verification algorithms on it.

V1. CONCLUSION

In this letter, we proposed an abstraction-based verification
framework tailored to a security property called pre-opacity
for discrete-time control systems. The concept of pre-opacity
was first extended to an approximate version which is more
applicable to control systems with continuous-space outputs.
Then, a notion of approximate pre-opacity preserving simu-
lation relation was proposed, based on which one can verify
pre-opacity of control systems using their finite abstractions.
We also investigated how to construct finite abstractions that
preserve pre-opacity for a class of control systems via the
proposed system relation. Finally, an example was presented to
illustrate the proposed abstraction-based verification approach.
For future work, an interesting problem is how to synthesize
controllers to enforce pre-opacity for general control systems.
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