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Abstract—In this letter, we consider the problem of ver-
ifying pre-opacity for discrete-time control systems. Pre-
opacity is an important information-flow security property
that secures the intention of a system to execute some
secret behaviors in the future. Existing works on pre-
opacity only consider non-metric discrete systems, where
it is assumed that intruders can distinguish different output
behaviors precisely. However, for continuous-space con-
trol systems whose output sets are equipped with metrics
(which is the case for most real-world applications), it is
too restrictive to assume precise measurements from out-
side observers. In this letter, we first introduce a concept of
approximate pre-opacity by capturing the security level of
control systems with respect to the measurement precision
of the intruder. Based on this new notion of pre-opacity, we
propose a verification approach for continuous-space con-
trol systems by leveraging abstraction-based techniques.
In particular, a new concept of approximate pre-opacity
preserving simulation relation is introduced to characterize
the distance between two systems in terms of preserving
pre-opacity. This new system relation allows us to verify
pre-opacity of complex continuous-space control systems
using their finite abstractions. We also present a method
to construct pre-opacity preserving finite abstractions for
a class of discrete-time control systems under certain
stability assumptions.

Index Terms—Discrete event systems, opacity, formal
abstractions.

Manuscript received 14 September 2022; revised 17 November 2022;
accepted 7 December 2022. Date of publication 20 December 2022;
date of current version 4 January 2023. This work was supported
in part by the National Natural Science Foundation of China under
Grant 62061136004, Grant 62173226, and Grant 61833012; in part
by the German Research Foundation under Grant ZA 873/7-1; and in
part by the National Science Foundation under Grant ECCS-2015403.
Recommended by Senior Editor C. Seatzu. (Junyao Hou and Siyuan Liu
contributed equally to this work.) (Corresponding author: Xiang Yin.)

Junyao Hou and Xiang Yin are with the Department of Automation
and Key Laboratory of System Control and Information Processing,
Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
yinxiang@sjtu.edu.cn).

Siyuan Liu is with the Department of Electrical and Computer
Engineering, Technical University of Munich, 85737 Ismaning, Germany,
and also with the Department of Computer Science, Ludwig Maximilian
University of Munich, 80539 Munich, Germany.

Majid Zamani is with the Department of Computer Science, Ludwig
Maximilian University of Munich, 80539 Munich, Germany, and also with
the Department of Computer Science, University of Colorado Boulder,
Boulder, CO 80309 USA.

Digital Object Identifier 10.1109/LCSYS.2022.3230770

I. INTRODUCTION

C
YBER-PHYSICAL systems (CPS) are the technolog-

ical backbone of the increasingly interconnected and

smart world where security vulnerability can be catastrophic.

However, the tight interaction between embedded control

software and the physical environment in CPS may expose

numerous attack surfaces for malicious exploitation. In the

last decade, the analysis of various security properties for CPS

has drawn considerable attention in the literature [3], [9]. The

concept of opacity was originally introduced in computer sci-

ence literature [11] for the analysis of cryptographic protocols.

Afterwards, opacity was widely investigated in the domain of

discrete-event systems (DES) since it allows researchers to

analyze the information-flow security for dynamical systems

in a formal way [6]. Roughly speaking, opacity is a confiden-

tiality property that characterizes whether or not a dynamical

system will reveal some potentially sensitive behavior to an

external malicious observer (intruder) based on the information

flow.

In the past decades, different notions of opacity were

proposed in the literature to capture different security require-

ments in the context of DES, including language-based notions

in [8] and state-based notions in [7], [12], [13]. The recent

results in [2], [15] show that these notions are transformable to

each other. Corresponding to the different opacity notions, var-

ious verification and synthesis approaches were also developed

in the DES literature; see [5], [6], [8], [9], [10] and the refer-

ences therein. Although the majority of the above-mentioned

works on opacity are applied to DES models with discrete

state sets, the analysis of opacity for control systems with

continuous state sets has become the subject of many studies

recently [1], [9], [17]. In particular, a new concept of approx-

imate opacity is proposed in [17] which is more applicable

to control systems since it allows us to quantitatively evaluate

the security level of control systems whose outputs are phys-

ical signals. More recently, a new concept of opacity, called

pre-opacity, was proposed in [16] to characterize whether or

not the secret intention of the system can be revealed. In

other words, different from the other opacity notions which

consider the current or past secret behaviors of the system,

pre-opacity captures whether or not an outside observer can

be prematurely certain that the system will conduct some

secret behaviors in the future. In fact, in many practical

scenarios, systems are indeed more interested in hiding their
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intentions to do something particularly important in the future.

Nevertheless, the results developed in [16] are again tailored

to DES models with discrete state sets, which prevents it

from being applied to real-world CPS with continuous state

sets.

Our contribution. In this letter, we consider the problem

of verifying pre-opacity for discrete-time control systems.

Motivated by the limitations of the results in [16], we first

introduce a new concept called approximate K-step pre-

opacity which is more applicable to control systems. To be

more specific, unlike discrete-event systems whose state sets

are discrete and outputs are logic events, control systems are

in general metric systems whose state and output sets are

physical signals. Therefore, the notion of pre-opacity in [16]

is too restrictive by assuming that one can always precisely

distinguish between two outputs in the context of control

systems. Note that the verification of pre-opacity for control

systems is in general undecidable. In this letter, we pro-

pose an abstraction-based pre-opacity verification approach for

continuous-space control systems. In particular, we first pro-

pose a notion of approximate K-step pre-opacity preserving

simulation relation, which is a system relation that can be used

to characterize the closeness between two systems in terms of

preserving pre-opacity. Based on this system relation, one can

verify pre-opacity of a complex control system using its finite

abstraction, instead of directly applying verification algorithms

on the original control system which is undecidable. Moreover,

for the class of incrementally input-to-state stable nonlinear

control systems, we show that one can always construct finite

abstractions which preserve pre-opacity of the control systems.

The proposed abstraction-based methodology is the first in

the literature that provides a sound way for verifying pre-

opacity of discrete-time control systems with continuous state

spaces.

II. PRELIMINARIES

A. Notation

We denote by N and R the set of non-negative inte-

gers and real numbers, respectively. They are annotated

with subscripts to restrict them in the usual way, e.g., R≥0

denotes the set of non-negative real numbers. Given a vec-

tor x ∈ R
n, we denote by ‖x‖ the infinity norm of x. A

set B ⊆ R
m is called a box if B =

∏m
i=1 [ci, di], where

ci, di ∈ R with ci < di for each i ∈ {1, . . . , m}. For any

set A =
⋃M

j=1 Aj of the form of finite uion of boxes, where

Aj =
∏n

i=1 [c
j
i, d

j
i], we define span(A) = min{span(Aj)|j =

1, . . . , M}, where span(Aj) = min{|d
j
i − c

j
i||i = 1, . . . , m}.

For any µ ≤ span(A), define [A]µ =
⋃M

j=1 [Aj]µ, where

[Aj]µ = [Rm]µ ∩ Aj and [Rm]µ = {a ∈ R
m|ai = kiµ, ki ∈

Z, i = 1, . . . , m}. We denote the different classes of compar-

ison functions by K, K∞ and KL, where K = {γ : R≥0 →

R≥0 : γ is continuous, strictly increasing and γ (0) = 0};

K∞ = {γ ∈ K : limr→∞ γ (r) = ∞}; KL = {β : R≥0 ×

R≥0 → R≥0 : for each fixed s, the map β(r, s)

belongs to class K with respect to r and, for each fixed

nonzero r, the map β(r, s) is decreasing with respect to s and

β(r, s) → 0 as s → ∞}.

B. System Model

In this letter, the system model that can be used to describe

both continuous-space and finite control systems is a tuple

S = (X, X0, U, ✲ , Y, H),

where X is a (possibly infinite) set of states, X0 ⊆ X is a

(possibly infinite) set of initial states, U is a (possibly infinite)

set of inputs, ✲ ⊆ X × U × X is a transition relation, Y

is a (possibly infinite) set of outputs, and H : X → Y is the

output function. For the sake of simplicity, we also denote a

transition (x, u, x′) ∈ ✲ by x
u
✲ x′, where we say that

x′ is a u-successor, or simply successor, of x. For each state

x ∈ X, we denote by U(x) the set of all inputs defined at x,

i.e., U(x) = {u ∈ U : ∃x′ ∈ X s.t. x
u
✲ x′}, and by U

post
u (x)

the set of u-successors of state x. A system S is said to be

• metric, if the output set Y is equipped with a metric

d : Y × Y → R≥0;

• finite (or symbolic), if X and U are finite sets;

A finite state run of a system S generated from initial state

x0 ∈ X0 under input sequence u1, . . . , un is a sequence of

transitions x0
u1
✲ x1

u2
✲ · · ·

un
✲ xn, where xi

ui+1
✲ xi+1

for all 0 ≤ i ≤ n − 1. The corresponding output run is a

sequence of outputs H(x0)H(x1) · · · H(xn).

C. Exact Pre-Opacity

In many scenarios, the system wants to hide its intention to

reach some secret states at some future instants in the presence

of a malicious intruder (outside observer). In this letter, we

adopt a state-based formulation of secrets. Specifically, we

assume that XS ⊆ X is a set of secret states. In the sequel,

we incorporate the secret state set XS in the system definition

and use S = (X, X0, XS, U, ✲ , Y, H) to denote a metric

system. We consider that the intruder knows the dynamics

of the system and can observe the output sequences of the

system, but cannot actively affect the behavior of the system.

To characterize whether or not the secret intention of a system

can be revealed, a notion of K-step pre-opacity is proposed

in [16] and recalled as follows.

Definition 1: Consider a system S = (X, X0, XS, U,
✲ , Y, H) and a constant K ∈ N. We say

that S is K-step pre-opaque if for any finite sequence

x0
u1
✲ x1

u2
✲ · · ·

un
✲ xn, any non-negative inte-

ger t ≥ K, there exist a finite sequence x′
0

u′
1
✲ x′

1
u′

2
✲ · · ·

u′
n
✲ x′

n

u′
n
✲ · · ·

u′
n+t
✲ x′

n+t such that

H(xi) = H(x′
i),∀i = {0, . . . , n},

and x′
n+t /∈ XS.

Intuitively, pre-opacity requires that the intruder can never

predict that the system will visit a secret state for some spe-

cific future instant. The above definition of K-step pre-opacity

requires that for any behavior of the system and any t ≥ K,

there exists a behavior whose prefix generates exactly the same

output and will reach a non-secret state in exact t steps. Thus,

in the remainder part of this letter, we will refer to this def-

inition as exact pre-opacity. Interested readers are referred

to [16, Sec. V] for an illustrative example on the application

of exact pre-opacity. A detailed discussion on the relationships
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between pre-opacity and other notions of opacity can be found

in [16, Fig. 3].

D. Approximate Pre-Opacity

The notion of exact pre-opacity introduced in the previous

subsection essentially assumes that the intruder can always

measure each output or distinguish between two different out-

puts precisely. However, for metric systems whose outputs are

physical signals, due to the imperfect measurement precision

of potential outside observers (which is the case for almost

every physical system), it is very difficult to distinguish two

observations if their difference is very small. Therefore, in the

following definition, we propose a “weak” and “robust” ver-

sion of pre-opacity called δ-approximate pre-opacity which is

more applicable to metric systems.

Definition 2: Consider a system S = (X, X0, XS, U, ✲ ,

Y, H) and a constant δ ∈ R≥0. We say that S is

δ-approximate K-step pre-opaque if for any finite sequence

x0
u1
✲ x1

u2
✲ · · ·

un
✲ xn, any non-negative inte-

ger t ≥ K, there exist a finite sequence x′
0

u′
1
✲ x′

1
u′

2
✲ · · ·

u′
n
✲ x′

n

u′
n
✲ · · ·

u′
n+t
✲ x′

n+t such that

max
i∈{0,...,n}

d(H(xi), H(x′
i)) ≤ δ,

and x′
n+t /∈ XS.

When δ = 0, approximate pre-opacity boils down to the

exact version in Definition 1. We use the following example

to illustrate the notions of exact and approximate pre-opacity.

Example 1: Consider system S = (X, X0, XS, U, ✲ ,

Y, H) shown in Figure 1, where X = {A, B, C, D, E, F, G, H},

X0 = {A, E}, XS = {C, H}, U = {u, u′}, Y =

{1.1, 1.2, 2.1, 2.3, 2.9, 3.1, 4.0, 4.2} ⊆ R equipped with met-

ric d defined by d(y1, y2) = |y1 − y2|, ∀y1, y2 ∈ Y . We mark

all secret states by red and the output of each state is speci-

fied by a value associated to it. First, one can check that S is

not exact K-step pre-opaque for any K ∈ N, since we know

immediately that the system is at secret state when value 3.1 or

4.0 is observed. Next, consider an intruder with measurement

precision δ = 0.2. We claim that S is 0.2-approximate 1-step

pre-opaque. For example, consider a finite path A
u
✲ B

which generates output path [1.1][2.3] and will reach a secret

state in 1 step. However, the intruder cannot predict for sure

that the system will be at a secret state in 1 step since there

is another path E
u
✲ F generating an indistinguishable out-

put path[1.2][2.1], but will reach a non-secret state G /∈ XS.

Similarly, when observing [1.2][2.1] (generated by the finite

path E
u
✲ F), the intruder cannot predict for sure that the

system will be at a secret state after 2 steps either, since there

exists another path A
u
✲ B

u
✲ C

u
✲ D which will

reach non-secret state D in 2 steps. This protects the possible

secret intention of executing E
u
✲ F

u
✲ G

u
✲ H.

III. APPROXIMATE SIMULATION RELATION FOR K -STEP

PRE-OPACITY

In the last section, we introduced notions of exact and

approximate pre-opacity for control systems. However, the

(approximate) pre-opacity is in general hard (or even infeasi-

ble) to check for control systems since there is no systematic

Fig. 1. Example to illustrate δ-approximate K -step pre-opacity.

way in the literature to check pre-opacity for systems with

infinite state sets so far. On the other hand, existing tools and

algorithms (such as [16]) in DES literature can be leveraged

to check pre-opacity for finite systems. Therefore, to solve the

pre-opacity verification problem for control systems, it would

be more feasible to verify pre-opacity on their finite abstrac-

tions and then carry back the result to the concrete ones. The

key to the construction of such finite abstraction is the estab-

lishment of formal relations between the concrete and abstract

systems.

In this section, we first propose a new system relation called

approximate K-step pre-opacity preserving simulation rela-

tion, and then show the usefulness of the proposed system

relation in terms of verifying pre-opacity.

Definition 3 (Approximate K-step Pre-Opacity Preserving

Simulation Relation): Consider two metric systems

Sa = (Xa, Xa0, XaS, Ua,
a
✲ , Ya, Ha) and Sb =

(Xb, Xb0, XbS, Ub,
b
✲ , Yb, Hb) with the same output

sets Ya = Yb and metric d. Given ε ∈ R≥0, a relation

R ⊆ Xa × Xb is called an ε-approximate K-step pre-opacity

preserving simulation relation (ε-AKP simulation relation)

from Sa to Sb if

1) a) ∀xa0 ∈ Xa0, ∃xb0 ∈ Xb0 : (xa0, xb0) ∈ R;

b) ∀xb0 ∈ Xb0, ∃xa0 ∈ Xa0 : (xa0, xb0) ∈ R;

2) ∀(xa, xb) ∈ R : d(Ha(xa), Hb(xb)) ≤ ε;

3) For any (xa, xb) ∈ R, we have

a) ∀xa
ua

a
✲ x′

a, ∃xb
ub

b
✲ x′

b : (x′
a, x′

b) ∈ R;

b) ∀xb
ub

b
✲ x′

b, ∃xa
ua

a
✲ x′

a : (x′
a, x′

b) ∈ R.

c) ∀xb
ub

b
✲ x′

b ∈ Xb\XbS, ∃xa
ua

a
✲ x′

a ∈

Xa\XaS : (x′
a, x′

b) ∈ R.

We say that Sa is ε-AKP simulated by Sb, denoted by Sa �ε
A

Sb, if there exists an ε-AKP simulation relation R from Sa

to Sb. A (finite) system Sb that simulates Sa through the ε-AKP

simulation relation is called a pre-opacity preserving (finite)

abstraction of Sa. Note that the proposed ε-AKP simulation

relation is still a one-sided relation because conditions 1) and

3) are asymmetric.

The following theorem shows how to use the above

proposed simulation relation in terms of verifying pre-opacity.

Theorem 1: Consider two metric systems Sa = (Xa, Xa0,

XaS, Ua,
a
✲ , Ya, Ha) and Sb = (Xb, Xb0, XbS, Ub,

b
✲ , Yb, Hb) with the same output sets Ya = Yb and metric

d and let ε, δ ∈ R≥0. If Sa �ε
A Sb, then we have:

Sb is δ-approximate K-step pre-opaque

⇒ Sa is (δ + 2ε)-approximate K-step pre-opaque.

Proof: Let us consider an arbitrary initial state x0 ∈ Xa0, an

arbitrary finite run x0
u1

a
✲ x1

u2

a
✲ , . . .

un

a
✲ xn in Sa, and

any non-negative integer t ≥ K. Since Sa �ε
A Sb, by conditions

1)-a), 2) and 3)-a) in Definition 3, there exists an initial state
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x′
0 ∈ Xb0 and a finite run x′

0

u′
1

b
✲ x′

1

u′
2

b
✲ · · ·

u′
n

b
✲ x′

n in Sb

such that

∀i ∈ {0, . . . , n} : d(Ha(xi), Hb(x
′
i)) ≤ ε. (1)

Since Sb is δ-approximate K-step pre-opaque, by

Definition 2, for any non-negative integer t ≥ K,

there exist an initial state x′′
0 ∈ Xb0 and a finite run

x′′
0

u′′
1

b
✲ x′′

1

u′′
2

b
✲ · · ·

u′′
n

b
✲ x′′

n

u′′
n

b
✲ x′′

n+1 · · ·
u′′

n+t

b
✲ x′′

n+t such

that x′′
n+t ∈ Xb\XbS and

max
i∈{0,...,n}

d(Hb(x
′
i), Hb(x

′′
i )) ≤ δ. (2)

Again, since Sa �ε
A Sb, by conditions 1)-b), 2), 3)-b) and 3)-c)

in Definition 3, there exists an initial state x′′′
0 ∈ Xa0 and a finite

run x′′′
0

u′′′
1

a
✲ x′′′

1

u′′′
2

a
✲ · · ·

u′′′
n

a
✲ x′′′

n

u′′′
n

a
✲ x′′′

n+1 · · ·
u′′′

n+t

a
✲ x′′′

n+t

such that x′′′
n+t ∈ Xa\XaS and

∀i ∈ {0, . . . , n + t} : d(Ha(x
′′′
i ), Hb(x

′′
i )) ≤ ε. (3)

Combining inequalities (1), (2), (3), and using the triangle

inequality, we have

max
i∈{0,...,n}

d(Ha(xi), Ha(x
′′′
i )) ≤ δ + 2ε. (4)

Since x0 ∈ Xa0 and x0
u1

a
✲ x1

u2

a
✲ · · ·

un

a
✲ xn are arbi-

trary, we conclude that Sa is (δ + 2ε)-approximate K-step

pre-opaque.

We should mention that, essentially, Theorem 1 provides

us with a sufficient but not necessary condition for verifying

pre-opacity of control systems using abstraction-based tech-

niques. In particular, when encountered with a complex control

system Sa (possibly with infinite state set), one can build a

finite abstraction Sb for Sa through the proposed ε-AKP sim-

ulation relation. Then, one can verify pre-opacity of the finite

abstraction Sb leveraging existing algorithms in DES litera-

ture, and then carry back the verification result to the concrete

system Sa by employing the result obtained in Theorem 1.

Note that such δ and ε are parameters that specify two differ-

ent types of precision. The parameter δ is used to specify the

intruder’s measurement precision under which one can guar-

antee pre-opacity of a single system, whereas ε appeared in

the proposed ε-AKP simulation relation is used to describe

the “distance” between two systems in terms of preserving

pre-opacity.

Remark 1: In order to verify δ-approximate K-step pre-

opacity for finite systems, one can combine techniques in [16]

and [17]. Specifically, one can first construct the δ-approximate

current-state estimator as defined in [17], and then use the

reachability analysis provided in [16] to check pre-opacity.

The reader is referred to [4, Sec. III] for more details about

how these two techniques can be combined.

We illustrate the newly proposed ε-AKP simulation relation

and the preservation of pre-opacity between two related finite

systems by the following example.

Example 2: Consider systems Sa and Sb shown

in Figures 2(a) and 2(b), respectively. All secret

states are marked by red and the output of each

state is specified by the value associated to it. Let

us consider the following relation R = {(A, L),

(B, I), (C, I), (D, I), (E, J), (F, J), (G, J), (H, K)}. We claim

Fig. 2. Example of ε-approximate 0-step pre-opacity preserving
simulation relation.

that R is an ε-approximate K-step pre-opacity preserving

simulation relation from Sa to Sb when ε = 0.1. First,

for both initial states A and H in Sa, we have L, K ∈ Xb0

in Sb such that (A, L) ∈ R and (H, K) ∈ R. Thus, con-

dition 1) in Definition 3 holds. Also, one can check that

d(Ha(xa), Hb(xb)) ≤ 0.1 for any (xa, xb) ∈ R. Therefore,

condition 2) in Definition 3 holds. Moreover, one can check

that conditions 3)-a) and 3)-b) in Definition 3 hold as well.

For example, for (B, I) ∈ R and B
u

a
✲ C, we can choose

I
u

b
✲ I such that (C, I) ∈ R. Finally, condition 3)-c) in

Definition 3 is also satisfied. As an example, for (H, K) ∈ R

and the transition K
u

b
✲ J ∈ Xb\XbS in Sb, there exists a

transition H
u

b
✲ G ∈ Xa\XaS in Sa such that (G, J) ∈ R.

Therefore, one can conclude that R is an ε-AKP simulation

relation from Sa to Sb, i.e., Sa �0.1
A Sb. Furthermore, it can

be seen that Sb is δ-approximate 0-step pre-opaque with

δ = 0.2. Therefore, according to Theorem 1, we can readily

conclude that Sa is 0.4-approximate 0-step pre-opaque, where

0.4 = δ + 2ε, without applying any verification algorithm to

Sa directly.

IV. PRE-OPACITY OF CONTROL SYSTEMS

In this section, we proceed to investigate how to construct

pre-opacity preserving finite abstractions for control systems.

In particular, we show that for a class of discrete-time con-

trol systems under certain stability assumptions, one can build

finite abstractions which preserve pre-opacity of the concrete

control systems under the proposed ε-AKP simulation relation.

A. Discrete-Time Control Systems

In this section, we consider a class of discrete-time control

systems of the following form.

Definition 4: A discrete-time control system � is defined

by the tuple � = (X,S,U, f ,Y, h), where X, S ⊆ X, U, and Y

are the state, secret state, input, and output sets, respectively.

The map f : X × U → X is the state transition function, and

h : X → Y is the output map. The dynamics of � is described

by difference equations of the form

� :

{

ξ(k + 1) = f (ξ(k), υ(k)),

ζ(k) = h(ξ(k)),
(5)

where ξ : N → X, ζ : N → Y, and υ : N → U rep-

resent the state, output, and input signals, respectively. We

write ξxυ(k) to denote the point reached at time k under

the input signal υ from initial condition x = ξxυ(0), and

ζxυ(k) to denote the output corresponding to state ξxυ(k), i.e.,

ζxυ(k) = h(ξxυ(k)). Throughout this section, we assume that
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the output map satisfies the following Lipschitz condition:

‖h(x) − h(x′)‖ ≤ α(‖x − x′‖) for some α ∈ K∞, for all

x, x′ ∈ X.

B. Construction of Finite Abstractions

Next, we present how to construct finite abstractions which

preserve pre-opacity for a class of discrete-time control

systems. Specifically, the finite abstraction is built under the

assumption that the concrete control system is incrementally

input-to-state stable [14] as defined next.

Definition 5: System � = (X,S,U, f ,Y, h) is called incre-

mentally input-to-state stable (δ-ISS) if there exist functions

β ∈ KL and γ ∈ K∞ such that ∀x, x′ ∈ X and ∀υ, υ ′ ∈

N → U, the following inequality holds for any k ∈ N:

‖ξxυ(k) − ξx′υ ′(k)‖ ≤ β(‖x − x′‖, k) + γ (‖υ − υ ′‖∞). (6)

Next, in order to construct pre-opacity preserving finite

abstractions for a control system � = (X,S,U, f ,Y, h) in

Definition 4, we define an associated metric system S(�) =

(X, X0, XS, U, ✲ , Y, H), where X = X, X0 = X, XS = S,

U = U, Y1 = Y, H = h, and x
u
✲ x′ if and only if

x′ = f (x, u). In the sequel, we will use S(�) to denote the

concrete control systems interchangeably. Now, we are ready

to introduce a finite abstraction for a control system �. To do

so, we assume that sets X, S and U are of the form of finite

union of boxes. Consider a tuple q = (η, µ, θ) of parame-

ters, where 0 < η ≤ min{span(S), span(X\S)} is the state set

quantization, 0 < µ ≤ span(U) is the input set quantization,

and θ is the designed inflation parameter. A finite abstraction

of � is defined as

Sq(�) = (Xq, Xq0, XqS, Uq,
q
✲ , Yq, Hq), (7)

where Xq = Xq0 = [X]η, XqS = [Sθ ]η, where S
θ = {x ∈

X : ∃x′ ∈ S, s.t. ‖x − x′‖ ≤ θ} denotes the θ -expansion of

set S, Uq = [U]µ, Yq = {h(xq) | xq ∈ Xq}, Hq(xq) = h(xq),

∀xq ∈ Xq, and

xq
uq

q
✲ x′

q if and only if ‖x′
q − f (xq, uq)‖ ≤ η. (8)

Now, we are ready to present the main result of this section,

which shows that under some condition over the quantization

parameters η, θ and µ, the finite abstraction Sq(�) constructed

in (7) indeed simulates our concrete control system S(�)

through approximate K-step pre-opacity preserving simulation

relation as in Definition 3.

Theorem 2: Consider a δ-ISS control system � =

(X,S,U, f ,Y, h) as in Definition 5 and its associated met-

ric system S(�). For any desired precision ε > 0, and any

tuple q = (η, µ, θ) of quantization parameters satisfying

β
(

α−1(ε), 1
)

+ γ (µ) + η ≤ α−1(ε), (9)

β
(

α−1(ε), 1
)

+ η ≤ θ, (10)

we have S(�) �ε
A Sq(�).

Proof: Given a desired precision ε > 0 appeared in

Definition 3, let us consider a relation R ⊆ X ×Xq defined by:

1The output set is assumed to be equipped with the infinity norm:
d(y1, y2) = ‖y1 − y2‖, ∀y1, y2 ∈ Y .

(x, xq) ∈ R if and only if ‖x − xq‖ ≤ α−1(ε). First, accord-

ing to the construction of Sq(�) in (7), for any initial state

x0 ∈ X0 in S(�), there exists an initial state xq0 ∈ Xq0 in

Sq(�) such that ‖xa0 − xq0‖ ≤ η. By (9), we further have

η ≤ α−1(ε). Thus, we get that (x0, xq0) ∈ R and condition 1)-

a) in Definition 3 readily holds. Moreover, for any xq0 ∈ Xq0,

there exists x0 = xq0 ∈ X0 such that ‖x0 −xq0‖ = 0 ≤ α−1(ε).

Hence, (x0, xq0) ∈ R and condition 1)-b) in Definition 3 is also

satisfied. Now consider any (x, xq) ∈ R. By the definition of

R and the Lipschitz assumption, we have ‖H(x) − Hq(xq)‖ =

‖h(x) − h(xq)‖ ≤ α(‖x − xq‖) ≤ ε, which shows that con-

dition 2) in Definition 3 is satisfied. Further, let us proceed

to prove condition 3) in Definition 3. First, consider any

pair (x, xq) ∈ R. Given any input u ∈ U and the transition

x
u
✲ x′ = f (x, u) in S(�), let us choose an input uq ∈ Uq

such that ‖u − uq‖ ≤ µ, where µ ≤ span(U). From the δ-ISS

assumption on �, the distance between x′ and f (xq, uq) is

bounded as:

‖x′ − f (xq, uq)‖
(6)
≤ β

(

‖x − xq‖, 1
)

+ γ
(

‖u − uq‖
)

≤ β
(

α−1(ε), 1
)

+ γ (µ). (11)

Besides, by the structure of Sq(�) as in (8), we have

‖f (xq, uq) − x′
q‖ ≤ η. (12)

Now, combining the inequalities (9), (11), (12), and triangle

inequality, we obtain:

‖x′ − x′
q‖ = ‖x′ − f (xq, uq) + f (xq, uq) − x′

q‖

≤ ‖x′ − f (xq, uq)‖ + ‖f (xq, uq) − x′
q‖

≤ β
(

α−1(ε), 1
)

+ γ (µ) + η ≤ α−1(ε).

Therefore, we can conclude that (x′, x′
q) ∈ R and condition 3)-

a) in Definition 3 holds. Next, let us show that the condition

3)-b) in Definition 3 holds as well. Consider xq and any input

uq ∈ Uq in Sq(�). Let us choose u = uq. Then, we get the

unique transition x
u
✲ x′ = f (x, u) in S(�). Be leveraging

the δ-ISS assumption on �, we have that the distance between

x′ and f (xq, uq) is bounded as:

‖x′ − f (xq, uq)‖ ≤ β
(

‖x − xq‖, 1
)

+ γ
(

‖u − uq‖
)

≤ β
(

α−1(ε), 1
)

. (13)

Based on the structure of Sq(�), there exists x′
q ∈ Xq s.t.:

‖f (xq, uq) − x′
q‖ ≤ η, (14)

which, by the definition of Sq(�) in (8), implies the existence

of xq
uq

q
✲ x′

q in Sq(�). Combining inequalities (9), (13), (14),

and triangle inequality, we obtain:

‖x′ − x′
q‖ = ‖x′ − f (xq, uq) + f (xq, uq) − x′

q‖

≤ ‖x′ − f (xq, uq)‖ + ‖f (xq, uq) − x′
q‖

≤ β
(

α−1(ε), 1
)

+ η ≤ α−1(ε).

Therefore, we conclude that (x′
q, x′) ∈ R and condition 3)-b)

in Definition 3 holds. Finally, let us show that condition 3)-c)

in Definition 3 holds. To this end, we firstly consider an arbi-

trary transition xq

uq
✲ x′

q with x′
q /∈ XS in Sq(�). Similar to
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Fig. 3. A pre-opacity preserving finite abstraction of a control system.

the proof of condition 3)-b), we can show the existence of a

transition x
u
✲ x′ in S(�) where (x′, x′

q) ∈ R holds, and the

input is chosen as u = uq ∈ Uq. Then by the construction of

the secret set in the finite abstraction, one has XqS = [Sθ ]η
with the inflation parameter satisfying θ ≥ β(α−1(ε), 1) + η

and 0 < η ≤ min{span(S), span(X\S)}, which also implies

that the size of the non-secret region in Sq(�) is smaller

than that in S(�). Therefore, since (x′, x′
q) ∈ R which implies

‖x′ − x′
q‖ ≤ β(α−1(ε), 1) + η ≤ θ , we obtain that x′ /∈ XS.

Thus, we conclude that condition 3)-c) in Definition 3 holds,

which completes the proof.

V. EXAMPLE

Here, we provide an example to illustrate the proposed

abstraction-based pre-opacity verification approach. Consider

the following simple control system:

� :

{

ξ(k + 1) = 0.2ξ(k) + v(k)

ζ(k) = ‖ cos(0.1πξ(k))‖,
(15)

where the state set is X = X0 = [0, 12), the secret set is

XS = [11, 12), the input set is a singleton U = {0.05}, and

the output set is Y = [0, 1]. The output function of the system

satisfies the Lipschitz condition as in Definition 4 with α(r) =

0.1πr. The main goal of the example is to verify approximate

pre-opacity of the system using the proposed abstraction-based

approach.

Next, we apply our main results to achieve this goal. First,

let us construct a finite abstraction Sq(�) of � which preserves

pre-opacity with desired precision ε = 0.4 as in Definition 3.

Note that by Definition 5, one can readily check that this control

system � is δ-ISS with β(r, k) = 0.2kr and γ (r) = 2r. Next,

a tuple of quantization parameters q = (η, µ, θ) = (1, 0, 2.3)

are chosen such that inequalities (9)-(10) are satisfied. By

Theorem 2, we have S(�) �0.4
A Sq(�). Given the quantization

parameters q = (η, µ, θ) = (1, 0, 2.3), the state set X is dis-

cretized into 12 discrete states as Xq = Xq0 = {0, 1, 2, . . . , 11},

the discrete secret set is XqS = {8, 9, 10, 11}, the discrete

input set is Uq = {0.05}, and the discrete output set is

Yq = {0, 0.31, 0.59, 0.81, 0.95, 1}. The obtained finite abstrac-

tion Sq(�) of � is shown in Fig. 3. The states marked in

red represent the secret states, and the output of each state is

specified by a value associated to it. Note that the system can be

initiated from any state since Xq = Xq0 and the input u = 0.05

is omitted in the figure for the sake of better presentation. One

can readily check that Sq(�) is exact 0-step pre-opaque since

for any run generated from any initial state of the system and

any future instant k ≥ 0, there exists another run with exactly

the same output trajectory such that it will reach a non-secret

state in exactly k steps. As an example, consider a state run

11
u
✲ 2

u
✲ 1

u
✲ 0

u
✲ 1 which generates an output

run [0.95][0.81][0.95][1][0.95]. There exists another state run

9
u
✲ 2

u
✲ 1

u
✲ 0

u
✲ 1 which generates exactly the

same output behavior, and will reach non-secret states (either

0 or 1) in any future time step k ≥ 0. Finally, by leveraging

Theorem 1, we can readily conclude that the concrete system �

is 0.8-approximate 0-step pre-opaque without directly applying

verification algorithms on it.

VI. CONCLUSION

In this letter, we proposed an abstraction-based verification

framework tailored to a security property called pre-opacity

for discrete-time control systems. The concept of pre-opacity

was first extended to an approximate version which is more

applicable to control systems with continuous-space outputs.

Then, a notion of approximate pre-opacity preserving simu-

lation relation was proposed, based on which one can verify

pre-opacity of control systems using their finite abstractions.

We also investigated how to construct finite abstractions that

preserve pre-opacity for a class of control systems via the

proposed system relation. Finally, an example was presented to

illustrate the proposed abstraction-based verification approach.

For future work, an interesting problem is how to synthesize

controllers to enforce pre-opacity for general control systems.
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