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Abstract

We define and study the Dirichlet fractional Gaussian fields on the Sierpinski gasket and
show that they are limits of fractional discrete Gaussian fields defined on the sequence of
canonical approximating graphs.
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1 Introduction

Let K C R? be the Sierpinski gasket fractal. A first goal of the paper is to introduce and study
a family of Gaussian fields on K indexed by a parameter s > 0 and satisfying

E(X.(f)X.(g)) = /K (—A)* f(~A)*gdp, 1)

where f, g belong to a space of suitable test functions on K, p is the Hausdorff measure and
A is the Dirichlet Laplacian on K. Such a field is heuristically defined as the distribution
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Xs = (—A)7*W where W is a white noise on L?(K,u). We will mostly be interested in the
regularity properties of those fields and in the convergence of their natural discretizations.
dp In3

Concerning the regularity properties, the value s = 3 d’; is a critical value, where d, = 75 is
In5

the Hausdorff dimension of K and d,, = 135 is called the walk dimension. More precisely, the
study of X is divided according to two ranges:

e 0<s< 2‘3—*;: For this range of parameters we show that the Gaussian field X, can not be
defined pointwise but belongs to a Sobolev space of distributions that we identify;

e 5> 2651’;: For this range, we show that the Gaussian field X can be defined pointwise and

admits a Holder regular version.

The critical value s = 2‘2—’; corresponds to a log-correlated field on K that will tentatively
be further studied in a later work.

A second goal of the paper is to introduce discrete analogues of the fractional Gaussian fields
X by using the canonical graph approximation G,,, m > 0 of the Sierpinski gasket, see Figure

ASA

Figure 1: Sierpinski gasket graphs Gy, G1, G2 and Gj3

Those discrete fields are given by X" = (—A,,) *W,, where A,, is the Dirichlet graph
Laplacian on G,,, and W, is a sequence of i.i.d. standard Gaussian normal on the vertices of
Gp,. We will show the convergence of X" to X, first in law in a space of tempered distributions,
and then in law in a suitable Sobolev space.

This paper is natural complement to the recent paper [5] which studied fractional Gaussian
fields associated to the Neumann Laplacian on the Sierpinski gasket for the range of parameters
2%—’; <s<1-— Q‘fl—hw. However, as noted above, in the present paper we are rather interested in
the fractional Gaussian fields associated with the Dirichlet Laplacian, study the whole range
of parameters s > 0 and also introduce the family of discrete fields X" for which we prove
convergence when m — +o00. In a subsequent work, we plan to study the maxima of the discrete
log-correlated field on the gasket and their possible rescaling limits; we refer for instance to [6]

for an introduction and motivation to such questions.

The paper is organized as follows. In Section 2, after some preliminaries, we introduce the
discrete and continuous fractional Gaussian fields on the gasket. A highlight result is Theorem
which states the existence of a Gaussian random variable X, which takes values in a
suitable space of tempered distributions and that satisfies . We then prove in Proposition
that this random tempered distribution X defines an L? function on K if and only if
s > 2%:. Section 3 deals with the regularity theory of the random tempered distribution Xj.

For s < ;Zl—hw we quantify this regularity by introducing a scale of distributional Sobolev spaces



and for s > ;ﬁl—’:ﬂ, using the entropy method as in [I], we study the Holder regularity property

of the L? function on K defined by X,. Finally, in Section 4, we prove the convergence of the
discrete fields X" to X,.

Acknowledgment: The authors thank an anonymous referee for the careful reading of an
earlier version of the manuscript which led to improvements in the presentation and arguments.

2 Discrete and continuous FGFs on the Sierpinski gasket

2.1 Discrete and continuous Dirichlet Laplacians

We first define the (Dirichlet) Laplacians on the Sierpinski gasket and Sierpinski gasket graphs.
For further references and more general fractals, see for instance [2] 9] [10].
Let Vo = {p1,p2,p3} be a set of vertices of an equilateral triangle of side 1 in C. Define
o

fi(z) = 5 + pi

for i = 1,2,3. Then the Sierpinski gasket K is the unique non-empty compact subset in C such
that

The set Vj is called the boundary of K, we will also denote it by K.

The Hausdorff dimension of K with respect to the Euclidean metric (denoted d(z,y) = |x—y|
in this paper) is given by dj, = % A (normalized) Hausdorff measure on K is given by the
Borel measure p on K such that for any iq,--- ,i, € {1,2,3},

p(fiy o ofi, (K)) =3""

This measure p is dp-Ahlfors regular, i.e. there exist constants ¢, C' > 0 such that for every
z € K and r € [0,diam(K)],
crdn < ju(B(z,r)) < Crie, (2)

We define a sequence of sets {V, }m>0 inductively by

3
Vm-‘,—l = U fz(vm)
=1

Then we have a natural sequence of Sierpinski gasket graphs (or pre-gaskets) {G, }m>0 whose
edges have length 27 and whose set of vertices is V,, see Figure Notice that #V,,, = 3(3n;+1) .
We will use the notations Vi, = Up,>oV;, and V0 = Um>0Vm \ Vo.

For any p € V;,,, denote by V,,,,, the collection of neighbors of p in Gy,. Then #V,, , = 4 if
p ¢ Vo and #V,,, = 2 if p € Vj. Let £(V};,) be the set of functions f : V;;, — R. Then for any

f € 4(Viy), we consider the discrete Laplacian on V;,, defined by

Apf(p)=5" Y (f(@)=f(®), pEVm\Vo

q€EVm,p

The semigroup generated by the discrete Laplacian A,, on V;, is denoted by {P/"}:>0.
Let C(K) be the set of continuous functions on K. We define

D ={f € C(K), there exists g € C(K) such that lim max |A,,f(p)—g(p)|=0}.
m*)OOpEVm\VO



For f € D, the Kigami Laplacian A of f on K is then defined by
Af(p) = g(p), (3)

where g is in C'(K) and satisfies lim, oo maxycy; \v; [Amf(p) — g(p)| = 0.

The notations Cy(K) and Dy denote respectively the sets of functions in C(K) and D which
vanish on 0K (See for instance [10, Example 3.7.3] and [9, Section 2]). We will also consider
the discrete measures on {V, }m>o0:

2

PEVm

For later use, we denote by a,, the number ¥ and thus p, = i szVm Op-
For any function f : V, — R, we consider the quadratic form

m

Em(f, f) = > (fl@) = fw)?,

m z,YEVm,x~y
where x ~ y denotes that x,y are neighbors in G,,. Note that &,,(f, f) is non-decreasing in m.
Define
E(f. )= Tim En(]. )

and

fO:{fEC(K)iml_igrloogm(faf)<oo,f:00n 0K}.

By Theorem 4.1 and Lemma 4.1 in [9], (€, Fp) is a local regular Dirichlet form on L?(K, ).
Moreover, for any functions f, g on V,, vanishing on K

/;&M )djim (),

- [ Af@g(e)duta).
K

From [9, Theorem 4.2] the Friedrichs extension of the Kigami Laplacian A is the self-adjoint
operator on L?(K, 11) which is the generator of (€, Fy). We still denote this generator by A and
the operator A with domain D(A) is referred to as the Dirichlet Laplacian on K.

The following lemma shows that any u € D(A) is Holder continuous.

and for f € Dy, g € Fo,

Lemma 2.1. There exists a constant C' > 0 such that for every u € D(A) and z,y € K,
[u(z) — u(y)| < Cd(z, y)™ =" || Aull L (k)

where, as above, the parameter dj, = ing is the Hausdorff dimension and the parameter d,, = ﬁ%

1s the so-called walk dimension.

Proof. Let g° be the reproducing kernel of the Dirichlet form (£, Fo), see [9, Theorem 4.1, (ii)].
We have for every y € K, and u in Fy,

go('ay) € Fo, g(go(-’y)7u) = u(y)

For u € Dy, one obtains then
fulz) — ()] = [E6°C. 2).w) — EG°C.3). )|
\/ (o) Buldu(z) ~ [ o) du(:)au(z)

g&b@w) Oz, 9)| |Au(2)ldu(z)-



Using [11l, Theorem 4.1, (GF4)], we have for every z,y,z € K,
19°(z,2) = ¢° (2, 9)| < Cd(z, y)™ .

The result follows easily. O

2.2 Discrete Fractional Gaussian Fields

Let 0 < A" < AJ" < .-« < A be the series of increasing eigenvalues (each being repeated
according to its mult1phclty) of —A,, with zero boundary condition (see Section 3 in [9]). Let
(®")1<i<n,, be the corresponding orthonormal eigenfunctions with respect to the measure fi,

m

defined in (4f). The discrete Riesz kernel on V,,, with parameter s > 0 is defined by

Nm

Gl () =Y A (2)®(y), @,y € Vin. (5)
=1

From this definition it is clear that the matrix (G'(z, y))zyev,, is symmetric and non negative.
It is therefore the covariance matrix of a Gaussian vector.
For f € {(V,,), the discrete fractional Laplacian (—A,,)”* is defined by

Nm
(=Ap) " — Z GT(x,y)f(y) = Y _(A") 0 (= Z M (y (6)
yEVm i=1 yEVm

Note that [[(—=Am) ™ fllL2mpm) < A1) I f L2V, ). Moreover, one has inf,, AT* > 0 from
[9) Lemma 5.2]. Hence the operators (—A,)~% @ L2(Vi, pim) — L*(Vin, ftmm) are uniformly
bounded.

Definition 2.2 (DFGF). Let s > 0. A discrete fractional Gaussian field X" with parameter s
on Vj, is a Gaussian vector indexed by V,, with mean zero and covariance matrix G5 (z,y).

Definition 2.3 (Discrete log-correlated fields). We define the discrete log-correlated Gaussian
field X™ on V,, as the discrete fractional Gaussian field X" with parameter s = see

dp_.
2dy,?
Definition and Remark for further explanation about this terminology.

Remark 2.4. If (W;)i1<i<n,, is a sequence of i.i.d Gaussian random variables with mean zero

and variance one, then

N,
X7'(x) = > (A" 7 (x)Wi, 2 € Vi
=1

is easily seen to be a DFGF with parameter s on V.

For any f € {(V},), we will use the notation

7Zf )X (p

™ pEVim



We then note that for f,g € ¢(V,,)

E(XQ”(f)XQ”(g))=ai2 Y f)9(@EX] ()X ()

™ p,q€Vm
1
= > f0)9(@)GEip,q)
M 5.qEVim
1 1 m
== > 0| > 906 p.0)
m PEVim m q€Vm

= LS i) -An) () 7)

™ pEVim

- ai D (=An) " F () (= Am) " g(p)-

™ pEVim

2.3 Fractional Laplacians and fractional Riesz kernels

The Laplacian A with domain D(A) is the generator of a strongly continuous Markov semigroup
{P,}+>0 on L?(K, i1). This semigroup admits a bicontinuous heat kernel p;(x,y), t > 0, 7,y € K,
with respect to the Hausdorff measure p. It is called the Dirichlet heat kernel on K.

This heat kernel satisfies for some ¢y, 2 € (0, 00),

_dp d(z,y)%\ 7.=1
pelz,y) < et wexp (—02((5)) d” 1> (8)
for every (z,y) € KxK andt € (0,+00). The exact values of ¢1, cz are irrelevant in our analysis.
As above, the parameter dj, = iﬁ—g is the Hausdorff dimension. The parameter d,, = iﬁ—g is called

the walk dimension. The quantity ds = Zdﬂ is often referred to as the spectral dimension. Since

w

dy > 2, one speaks of sub-Gaussian heat kernel upper estimates.
The Dirichlet heat kernel py(z,y) admits a uniformly convergent spectral expansion:

—+00

pe(z,y) =) eV Bi(2)®;5(y) 9)

j=1

where 0 < A\ < Ag < -+ < A\j < --- are the eigenvalues of —A and (®;);>1 C D(A) is an
orthonormal basis of L?(K, i) such that

AD; = —\;B;.

Notice that ®; € D(A) and thus is Holder continuous. It is known from the work of Fukushima
and Shima [J] that the counting function of the eigenvalues:

N(t) = Card{)\; <t}
satisfies
N(t) ~ O(t)tn/dw (10)
when t — +o0o where © is a function bounded away from 0. In particular,
+o0

1

j=1"1

if and only if 5 > 2.



We will consider the following space of test functions

/K <I>n(y)f(y)du(y)' = 0} -

It is clear that if f € S(K), then f € ;5 dom((—A)¥) and thus for every k >0, (—A)*f €
C(K) and is Holder continuous. We also note that from [9, Lemma 4.1(iii)] S(K) C Dy. We
consider then on S(K) the topology defined by the family of norms

1Flle = I(=2)* Fll 2y k20

From [15, Theorem 2], thanks to (11)), S(K) is a Fréchet nuclear space. The dual space of S(K)
(for the latter topology) will be denoted S’(K).

n—-+0o0o

S(K):{fEC’o( ), ¥k >0 lim nf

Definition 2.5 (Fractional Laplacians). Let s > 0. For f € L?(K, ), the fractional Laplacian
(—=A)7% on f is defined as

) = Z 3 [ B0

For f € D((—-A)%) := {f € L*(K,p), chxf A2 ([ @ y)du(y ))2 < oo}, the fractional

Laplacian (—A)® on f is defined as

ZAS / 9) f()du(y).

From the definition, it is clear that (—A)~* : L?(K, u) — L*(K, p) is a bounded operator.
More precisely, one has [[(—=A)7*||p2(x =12 (k) < AL°

Definition 2.6. For a parameter s > 0, we define the fractional Riesz kernel G, by

1 oo
Gs(z,y) = )/0 5 p(z,y)dt, z,ye K, x#y. (12)

I'(s
with I' the gamma function.

Remark 2.7. We note that from the integral is indeed convergent for all values of s > 0
provided that = # y.

We will be interested in the growth size of G5. The following estimates are therefore impor-
tant.

Proposition 2.8.
1. If s € [0,dy/dy), there exists a constant C' > 0 such that for every x,y € K, x # vy,

C

G (x y) — d(l‘ y)dh de

2. If s =dp/dy, there exists a constant C > 0 such that for every x,y € K, x #y

3. If s > dy,/dy,, there exists a constant C > 0 such that for every x,y € K,

Gs(x,y) < C.



Proof. The proof is similar to the proof of [5, Proposition 2.6] (which dealt with the Neumann
fractional Riesz kernels) and thus is omitted for conciseness. O

Lemma 2.9. Let s > 0. For f € S(K), andx € K

(—A)*f(z) = /K Gl 9) f (0)duly). (13)

Proof. We first note that the integral [, Gs(z,y)f(y )du( ) is indeed convergent. Since S(K) C
C(K), it is enough to prove that for every x 6 K [ Gs(x,y)du(y) < +oo which easily follows
from Proposition n 2.8| because ([2) implies that for v < dh

du(y)
/K d(x,y)‘* < +00.

Using then Fubini’s theorem and the definition of G, one gets

1 +o00 .
| Geaswant) = 55 [ e @

From @D, it is seen that

L e s—1 T _(_ =S £
f TR @ = (A @)

and the conclusion follows. O

Remark 2.10. For s > Q‘il—hw, we observe that holds for any f € L?(K, ;) and p ae. z € K.
Indeed, this can been seen from Proposition since it implies that Gs(z,-) € L?(K,u) for
every x € K. We refer to [5, Propositions 2.7 and 2.8] for more details. Moreover, in this case

we also have
+00 1
= Z F(I)](x)(bj(y)
j=1"17
Corollary 2.11. Let s > 0. For f,g € S(K),

| Ay reayodu= [ [ HowGa e pdutalduty).

Proof. From the definition of (—A)~* and the previous lemma
“f(=A)Pgdu = S/ y/<1>'ygyduy
[ =8 ZAQ 1) [ ®5wawdn(y)

=/ F-a)

/ / f(2)9(y)Gas(z, y)du(z)du(y).



2.4 Fractional Gaussian Fields
The next theorem states the existence of the fractional Gaussian fields.

Theorem 2.12. Let s > 0. There exists a centered Gaussian distribution Xs on S8'(K) such
that for f,g € S(K),

E(X.(f)X.(g)) = /K (CA) S F(—A)*gdp.

Proof. The space S(K) is a nuclear space. By the Bochner-Minlos theorem in nuclear spaces,
it is enough to prove that the functional

o f > exp (—; / |<—A>-Sf\2du)

which is defined on S(K) is continuous at 0 and positive definite. Since the quadratic form
[ [(=A)75 f[?dp is positive definite on S(K), it follows from Proposition 2.4 in [13] that ¢ is
indeed definite positive. From Definition it is easy to see that there exists a constant C' > 0
such that for every f € S(K),

Jreayssransc [ fa

Since the convergence in S(K) implies the convergence in L2, we conclude that ¢ is indeed
continuous at 0. 0

Definition 2.13 (FGF). Let s > 0. A fractional Gaussian field X, with parameter s on K is
a centered Gaussian field {X(f), f € S(K)} such that for any f,g € S(K),

E(X.(f)X.(g)) = /K (—A) = f(—A)gdp.

Definition 2.14 (Log-correlated field). We define a log-correlated Gaussian field on K as a
fractional Gaussian field X in Definition with the parameter s = ;fi’;.

Remark 2.15. We use the terminology log-correlated field because of the estimate proved in
Proposition on the correlation function G4 for s = 2%0'

In the following of this section, our aim is to establish that the FGF has an L? density if
and only if s > ;ﬁl—’;. We begin with some reminders on Gaussian measures.

Let K be the Borel o-field on K. Given a probability space (€2, F,P), we consider a real-
valued centered Gaussian random measure W : K — L2(Q, F,P) with density yu on K. Such
measure is often referred to as white noise. In other words, W is such that

e W is a measure on (K, K) almost surely;

e For any A € K of finite measure, W (A) is a real-valued Gaussian variable with mean zero
and variance E(W (A)?) = p(A);

e For any sequence of pairwise disjoint measurable sets (A, )nen € K, the random variables
W(Ay), n € N, are independent.

Hence for any f € L*(K, K, ), the stochastic integral W (f) = [, fdW is a well-defined centered
Gaussian random variable. Moreover, the Gaussian measure W gives rise to an isonormal
Gaussian family {W(f), f € L?*(K, )} with the covariance function

E(W ()W (g)) = /K Fadp.

Recall that the Riesz kernel G(z,y) is square integrable for s > %, see Remark We
then introduce the following definition.



Definition 2.16. Let s > 57-. The fractional Brownian field with parameter s is defined as

:/ Gs(xz,y)W(dy), =€ K.
K

From Remark one can equivalently define

+0o0o
= A i)W,
=1

where (W; := W(®;));>1 is an i.i.d. sequence of Gaussian random variables with mean zero and
variance one.

Proposition 2.17. Let s > 2‘2—’;. Then the Gaussian random field defined by

= /Kf(x)Xs(a:)du(x), feS(K),
has the law of a FGF with parameter s. Moreover, if there exists a Gaussian field (Y 4(x))eek

on K with
E < /K f/s(x)Qdu(x)> < 4o

such that the Gaussian random field defined by
= [t @) f e s,

has the law of a FGF with parameter s, then s > ;Th

Proof. Let us assume that s > 5 d . From Fubini’s theorem, for every f € S(K), one has a.s.

/K F(@) X (@) dp(z) = /K f(x) /K Ga(, )W (dy)dps(zr) = /K (—A)™ F ()W (dy).

Thus, [, f ()X o(x)dp(z) is a Gaussian random variable with mean zero and variance

[ 1A @) Pauta).

On the other hand, assume that there exists a Gaussian field (Y (z))zex on K with

E < /K f/s(x)m(x)) < +o0

and such that the Gaussian random field defined by

_ /K F@)Y (@)dp(z), | e S(K),

has the law of a FGF with parameter s. Using spectral decomposition, we have

+00
=D V(@
1=1

10



Notice that the sequence (Y5(®;))i>1 is a sequence of independent Gaussian random variables

with mean zero and variance ()\i_zs)izl. Indeed, we recall that (®;);>1 is an orthonormal basis

in L2(K, ;1) and ®; € S. Then by Definition m
B @V(,)) = (W)™ [ Bl = ()5,

where 6;; is the Kronecker delta. Since E (fK ?s(x)zd,u@)) < +00, we must have
i:.o 71 < 400
2
j=1 )‘js

and therefore s > 2‘2—’;. O

3 Regularity properties of the FGFs

3.1 Sobolev spaces

For any o > 0, we define the Sobolev space H%(K) as the closure of S(K') with respect to the

norm o 9
1 ey = 30 ( / f¢jdu> |

j=1

and the corresponding inner product is

(F 9y = 325 [ 1id [ g
= K K

where we recall that (\;);>1 are the non-decreasing eigenvalues of the Laplacian A on K and
(®;)j>1 are the corresponding orthonormal eigenfunctions. Denote by H~*(K) C S'(K) the
dual space of H*(K) in the distributional sense. Then we have the following lemma.

Lemma 3.1. The canonical norm on H~*(K) induced by H*(K) is given by
19 13 -a e : ZA “p(@;)%, V€ H(K).

Proof. The proof is standard, we write it down for the sake of completeness. For every v €
H~%(K) there exists f, € H*(K) such that ¥(g) = (fy, 9) ge(x) for all g € S(K). In particular,
the above inner product gives that for every ®;,j > 1,

B(8;) = (o ®5) o (10) = O /K Fo®jdp.

Note also that by isometry one has ||¢)||g-o(x) = || fy || ge (k). Hence

00 2 00
B0 wser = Wolreciey = 3 A2 ( / fw‘deu) =3 A (@)’
=1 K =1

11



3.2 Sobolev regularity property of the continuous FGFs in the range 0 < s <
dn_
2d.

Proposition 3.2. Let 0 < s < chj’;. Then the FGF X a.s. belongs to H-*(K) for every

o > j— — 2s. More precisely, for every a > S—Z — 2s, the series

h
[e.e]
2N Xu(@y)”
j=1

1S a.S. convergent.

Proof. The random variables X (®;) are independent Gaussian random variables with mean
zero and variance )\]-_28. Since the series

o0

Z )\;a72s

j=1

converges for a 4+ 2s > %, the result follows. O

3.3 Holder regularity property of the continuous FGF's in the range s > Z‘Z—hw

In this section our goal is to study the regularity of the density field (X 4(x)).cx that appeared
in Definition The following first result is almost immediate.

Proposition 3.3. Let s > %;. The Gaussian field (X s(z))eex on K defined in Definition
is such that a.s. X, € H*(K) for every a < 2s — ZZ.

Proof. As remarked before, one has
Xo(m) =) A ®i(x)W;,
i=1

where W; is an i.i.d. sequence of Gaussian random variables with mean zero and variance one.

Therefore,
o0

12 —2571772
1 Xslra ) = D_ AT W7,
j=1
which is a.s. finite if o < 25 — . O
Next, we are interested in the Holder regularity properties of (X,(z))sex. This requires
a deeper analysis and our main analytical ingredients are the following Hoélder regularization
estimates for the operators (—A)~%.

Theorem 3.4.

o Let Z‘il—hw <s<1l-— Q‘il—hw. There exists a constant C > 0 such that for every f € L*(K, u)
and x,y € K,
-5 —s s wfd—h
[(=A)* f(2) = (=A) 7 F(y)| < Cd(w,9)*™ 2 || fll L2 p0)-
dp,

o Let s = 1 — gj=. There exists a constant C' > 0 such that for every f € L*(K,u) and
z,y € K with d(z,y) <1/2,

(=A)7f(2) = (=A)*f(y)| < Cd(w,y)™ " nd(z, y)l[|F]l 2 (s -

12



o Lets >1-— Qz—hw. There exists a constant C > 0 such that for every f € L*(K,u) and

z,y €K,
[(=A) " f(x) = (=A)* f(y)] < Cd(z,y)™ ™ "|| fl| L2 p0)-

The proof of the Theorem is based on the following lemmas. In the first lemma below, we
use a slight modification of an argument due to Barlow in [2, Theorem 3.40], but we include
the proof for the sake of completeness. For A > 0, let Uy = (A — A)~! be the resolvent operator
and let uy(z,y), x,y € K be its kernel.

Lemma 3.5. There exists a constant C' > 0 such that for every x,y,z € K and A >0

ua(@, 2) — ux(y, 2)| < Cd(w, y)b =

and d
/ lux(z, z) —ur(y, 2)|dp(z) < C)\_ﬁd(x,y)dw—dh.
K

Proof. We slightly adapt the proof of Theorem 3.40 in [2]. Let ((X¢)¢>0,(Pz)zer) be the
Brownian motion on K, see [2]. Note that the Dirichlet Laplacian A is (twice) the generator of
the process (X;)¢>0 killed at the boundary Vj. From (3.39) in [2] we have

ux(z,y) = ox(z, y)ur(y,y),
with
q,\(x,y) = Px(Ty < TVO A RA)

where T}, is the hitting time of y, Ty, is the hitting time of V5 and Ry is an independent
exponential random variable with parameter A > 0. As in the proof of Theorem 3.40 in [2] we
have then

[ur(@,2) = ua(y, 2)| < Clar(z @)+ aalz,y)d(w, )™~

The first estimate
lux(z, 2) — ur(y, 2)| < Cd(w,y) P

follows easily since gy(z,z) < 1. Using the on-diagonal lower bound for the transition densities
of the Brownian motion ((Xt)t>0, (Pz)zek), see [2 B], we easily obtain

d
| aajautz) < e,
K

which yields the second estimate. O

Lemma 3.6. There exists a constant C > 0 such that for every f € L>(K,u), and t > 0,

s d x7 dw_dh
Pf() - Puf()] < O 3By,
7 2dw

Proof. We have from the previous lemma
[un(@, 2) = ux(y, )| < Cd(w, y)? =

and d
/ lun(z, 2) — ur(y, 2)|du(z) < C)\_ﬁd(xjy)dw*dh.
K

This yields
d
/ [u(, 2) — ua(y, ) [Pdp(z) < CA™aw d(z, y)2 =),
K
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from which we deduce

d
Urf(x) — Unf(y)] < CA™ 2w d(, )™ (| ]| 21 -

This gives that for every ¢ > 0 and A > 0
_dn _
|Pof (@) = Pof ()| < CX" 2w d(, y)® = ||(A = NP fl| 1256 ) (14)
From spectral theory, one has
1 _Aiy
(A =NPifllr2xu <C n +A) e 2 fll 2ok -

From , we deduce then

AL d T,y dw—dp,
|Pif(x) — Pef(y)| < Ce 21lt(l_)dh||fHL2(K7u)'
7 2dw
by choosing A = % O

Proof of Theorem [3.4. We first consider the case QdTh <s<1l-— QdTh. Note that

—s -5 1 e s—
(8)7 @)~ (A < s [ ¢ RS @) - Pt
I'(s) Jo
We then split the integral into two parts:
+oo

+oo s
/ P (2) — Pof (y)|dt = / VP (2) — Pof (y)|dt + / U Pf(x) — Pof(y)\dt,
0 0 )

where & > 0 is a parameter to be chosen later. We first have

) )
/ P f () — Puf(y)ldt < /0 BB ()] + [Pf (o))t

0

5
e
S/O ! A A IZI

+2dw

o
< OO 2w || £l L2k )

For the second integral, we have

+o00 B +o00 B _de, dw—dp,
| ensw - pae < e [T et B R g,
T

d
< 0§¥ ey d(,y) e £l 22k )

Choosing § = d(x,y)% finishes the proof that

[(=28)7"f(z) = (=2)"*f(y)| < Cd(z, y)Sd”*%hllfllm(K,u)-

Next consider the case s = 1— ﬁl—’;. The above method can still be used, but we now estimate
the second integral as follows for § < Qd%

400 AL
/ t~ e tdt < C|In ).
1
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This yields
(=8)7*f(x) = (=) f(y)| < Cd(a,y) "~ md(z, )| f]| 2 (. p

Finally, for the case s > 1 — ﬁ, we just argue as follows

A A)~S < 1 e s=11p, P, d
(~A)*(z) - (~A) f(y)!r()/ P () — Pof(y)]dt
—dp

+oo o z,y
<c/ s AL AP T

s
< Cd(z, y)™ ™" fll 2(x -
O
As a consequence of Theorem we obtain the Hoélder regularization properties of the
Riesz kernels.
Corollary 3.7.

o Let 2‘2—’; <s<1-— 2‘3—’;. There exists a constant C > 0 such that for every x,y € K,

/K(Gs(x,z) — Gy(y, 2))2du(z) < Cd(z, y)*%w—dn,

o lets=1-— QdTh There exists a constant C > 0 such that for every f € L*(K,u) and

x,y € K with d(m y) <1/2,
/ (Gs(@,2) = Gsly, 2))*du(z) < Cd(w, y)* =™ | Ind(w, y)|*.
K

o Lets>1— 2‘2—*;. There exists a constant C > 0 such that for every xz,y € K,

/K(Gs(x’ 2) = Gs(y,2))%du(z) < Cd(w,y)> =)

Proof. Recall that for any f € L?(K, u),
/K(Gs(w, 2) = Gs(y, 2)) f(2)dp(z) = (=A)7*f(z) = (=A) " f(y).

By L? duality, we conclude the results from Theorem

We are now ready for the main results of this section:

Theorem 3.8. Let s > 2‘2—’; and denote Hg = min(sd,, — dh/2,dw

ws(z, 1) = {d(x,y)Hs d(z,y)], s £ 1 — 2

d(z,y) = [Ind(z,y)|*?, s = 1 -

—dp) and

There exists a continuous Gaussian field (X s(z))zex such that a.s.

< +00

lim sup
0=0 0<d(zy)<s ws(z,y)
zyEK

and such that the Gaussian random field defined by
XN = [ f@X@ine). e SR),
has the law of a FGF with parameter s.

15



Proof. Let X,(z) = S Gs(x,y)W (dy), see Definition It follows from Proposition
that {Xs(f), f € S(K)} has the law of FGF with parameter s.

Next we will use the entropy method as in [I], see also [5, Theorem 3.8] to construct an
appropriate continuous modification of X, that we will still denote by X, . Assume first

s#1— 2‘2—’;. We observe that Corollary gives
E((Xs(z) — Xs(y))?) < Od(z,y)* s, Va,y € K.

Consider the pseudo distance ps(z,y) defined by

pul.y) = \JE((R (@) - X.(1))?).

Then ps(z,y) < Cd(z,y)"s. Denote by N,, () the smallest number of ps-balls with radius r < e
that cover K. We set the log-entropy for K by

Hyp,(€) = In(N,, (€)).

According to [Il Theorem 1.3.5], there exist a random variable 1 and a universal constant D

such that for all 7 < 7,
sup | Xo(2) — X4y <D/ Hp, (e)de.
| X s(2) )l o \ e ()

Ps (I,y)ST
z,yeK

Notice that A, (g) = O(¢=%/Hs). Then up to the change of  and D, one has for all § < 7,

CsHs
sup | Xs(z) — Xs(y)| <D V—Inede.
d(x,y) <8 0
z,ye K
Finally, up the the change of constant D, for all § < n small enough, we obtain from integration
by parts that

CoHs
- - 1
sup |Xs(x) — Xs(y)| <D ofs/—1no + de) < 2D§Msv/—1né.
S 1K) = o) (6% v=mmd+ [ o) Nawy;
z,ye K

Thus the proof is concluded.
Consider now the critical case s =1 — Q‘il—hw. By Corollary we have

ps(,y) < d(z,y)™ " Ind(z,y)| =: F(d(z,y)).

Observe that F(t) is increasing on the interval (0,%p) for some small ;. We denote by F~*
the inverse function on the domain (0, F'(tp)). Then for any 0 < € < F(to), one has N, (¢) =
O((F~!(g))~%). Using the same argument as above, there exist a random variable  and
constants C, D > 0 such that for all 6 < min{n, o},

- - CF(3)
sup | Xs(z) — Xs(y)| SD/ V—InF~1(e) de.
d(z,y) <6 0

zyeK

Hence, up to the change of constant D and for all 6 < min{n, ¢y} small enough, we have

S 1X,(z) — X,(y)| < D(F(d)\/— o — /OCF(J) e(v/~In F*l(g))/de) < DF(6)v/—Tno.
i
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The second inequality follows from elementary computations below where we take v = d,, — dp,
and let € be small enough:

— ! 1 _5
(V- FiE) = " E-l(e) F o) F'(F1(e))
1 —£

2/~ F1(e) (F1(e))"(—yIn F1(e) — 1)
_ 1 —€ _0 —1
C 2/~ F1(e) WF(FL(e)) — (F~Y(e))) —InF-1(e) )

Thus we conclude that for s =1 — 2‘2—’;

X(@) - X,(0)
lim  sup

6=0 0<d(ay)<s d(x,y)de=dn(|lnd(z,y)])3/?
z,yeK

< +00.

For s > 1 the above result can substantially be improved.

Proposition 3.9. Let s > 1. There exists a continuous Gaussian field (X ¢(x))per such that

X(@) - X, ()
E sup < 40

z,yeK,x#y d(.%', y)dw_dh
and such that the Gaussian random random field defined by

X.(f) = /K f@Xo(@)du(x), | €S,

has the law of o FGF with parameter s.

Proof. Let s > 1. As above, let (Xs(z))zcx be a continuous Gaussian field on K such that the
Gaussian random random field defined by

X() = [ @)X (@dut@), f e S(E)
has the law of a FGF with parameter s. We have then
Xo(z) =D A ®i(x)Wi,
i=1

where the W;’s form an i.i.d. sequence of Gaussian random variables with mean zero and
variance one. Let a > 1 — -2 such that s — o > 5. Since
2d.w 2dy

+oo
E (I(=2)"Xol2ic,) = Z;)\?(as) < 4o,

we deduce that X, almost surely belongs to the L? domain of (—A)®, i.e.
P (1l (~2)" X, 22, < +00) = 1.
From Theorem one deduces
X, (@) = Xow)| < Codl, )™ 1(=2)" Ko 2,

and the result follows. O
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4 Convergence of the discrete fields to the continuous fields

In this section, our first main goal is to show for s > 0 the convergence in distribution in &'(K)
of the approximations of discrete fractional Gaussian fields on V;,, to the fractional Gaussian
field on the Sierpinski gasket. Our second goal will be to prove convergence in the Sobolev
spaces H*(K).

4.1 Preliminary lemmas

This section collects several lemmas that will later be needed.

Lemma 4.1 ([3, Lemma 1.1]). The sequence of measures {fim}m>0 defined in converges to
the normalized Hausdorff measure p on the Sierpinski gasket K in the weak topology. That is,

m—r0o0

lim /de,um:/de,u, Vf e C(K).

Remark 4.2. Without abuse of notation, for any g € ¢(V,,,), we may write
pGVm Vim
Hence let f,, = f|v,, for f € C(K) in the lemma, one also has lim,, . fVm Smdpm =[5 fdp.
Lemma 4.3 (Convergence of discrete semigroups). For all f € S(K) and t > 0,
A%%§MBM - | 1@Ps@aua),

where fin = flv,.-

Proof. We follow the strategy in [8, Section 3.2.2]. Recall the definition of Laplacian on K in
(3) (see also [9, page 6]), then for any f € Dy.

lim sup |Anfm(p) — Af(p)| =

m—0o0 pEVm

It follows from [12, Theorem 2.1] that for every ¢ > 0

lim sup |P" fun(p) — Pf ()] = 0. (15)

m—0o0 peE Vm

Indeed, the Laplacian on K coincides with the extended limit of the sequence of operators
{An }m>0 defined in [12), page 355]. Write

- Z fm mem / me fmdpim,

™ pEVin

and further
/ I P fndpim = / Jm (P fm — (Pef )m) dppm + / Jm (P f)mdpim.
Vin Vin Vim

Taking the limit m — oo, the first term goes to zero from . On the other hand, Lemma
gives that [|, fo(Pef)mdpm — [i [Pifdp and the proof is complete. O
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Lemma 4.4. For all f € S(K) and s > 0, when m — oo

= 3 b)) = [ F@A)F f@)dn(e), (16)

™ pEVin
where frn = flv,,-

Proof. For s = 0, the result follows immediately from Lemma We now assume s > 0.
Notice that

-2 1 oo 25—1
(=8m) ™ fn = 35 12571 P frndt.

F(?S 0

By Fubini’s theorem, we therefore have

+oo
— Z fm m stm(p) = 1—‘(;5)/0 i — ! Z fm Ptmfm( )

pEVm pGVm

Let us now note that by spectral theory

— Z fm mem( = _)\Mt Z fm

pE‘/nL pe ‘[IIL

Notice that sup,, i > pevi, fm (p)? < +00. Hence we deduce from the dominated convergence
theorem and Lemma [£.3] that

.
R By Ty

pGVm pEVm

_ 1 oo 2s—1 z " .
B F(2s)/0 t /Kf( )P, f(x)dp(x)dt

- / F(@)(= D) f(z)du(x).
K

4.2 Convergence in distribution in S'(K)

We are now in position to prove the following result.
Theorem 4.5. Let s > 0. When m — oo, X" converges to Xs in distribution in S'(K).

Proof. We aim to prove X — X in law in §’(K). Since S(K) is a nuclear space, it suffices to
prove the convergence of the characteristic functional (see for instance [I4, Théoréme 2]). That
is, for every f € S(K), when m — oo

E lexp (i X" (fm))] — E[exp (iXs(f))],

where fp, = f|v,,. It follows from that

. m ]- m S
E [eXp (Z Xs (fm))] = €exp <_2E ((Xs (fm))2)> =€exXp | —z— Z fm m -2 fm(p)
pEV
Similarly, Definition gives that I [exp (iX,(f))] = exp (— f K ~25 fdp). The conclu-
sion therefore follows from Lemma (4.4 O
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4.3 Convergence in distribution in Sobolev spaces

Recall the Sobolev space H® and the dual space H ¢ defined in Section 3.1. In this section, we
aim to prove the convergence of lifted DFGF in the Sobolev space H~ for appropriate o > 0.
Following the scheme in [8], we first lift X7 on V},, to K using Voronoi cells defined by

Cy'={x e K:d(z,p) <d(z,9),Yq € Vin}, pE V.

Equivalently, one has C)" = {z € K : d(,p) < 9~ (m+1y,

Definition 4.6 (DFGF in H ®(K)). Let X™ be the DFGF on V,, as in Definition We
define X, € H~%(K) such that for f € HY(K)

X = 3 X0 ) = X2 (T

" pEVin
where f,,(p) := @ fc;n f(z)du(z) for any p € Vi,.
Our main result in this section is the following theorem.

Theorem 4.7. Let s > 0. The Gaussian fields X" converge in law to X, in the strong topology
of H-*(K) for a > 2dp/dy.

Throughout the section we assume that s > 0. The proof is divided into two parts. We

will first show the tightness of the sequence (X.");,>1 in H~%(K). Thus every sequence has a

convergent subsequence. The second part is to show that the limit is unique.
We first state the following lemma for the sequel use. Let j > 1. Recall that A; is the j-th
eigenvalue of A on K and ®; is the corresponding eigenfunction.

Lemma 4.8. For any j > 1, we have
dn/(2dy
19511 oo ac iy < CXGH B0,

Proof. We use spectral theory (as in the proof of [4, Lemma 3.4]). Notice that P,®; = e*/\jt@j.
Using the Cauchy-Schwartz inequality and , we obtain for p-a.e. z € K,

1/2
) . —dy, /(2dw) ).
|, (2)] = e P & (2)| < N </K Pty (m,y)2du(y)) < Oty /) Asto,
In particular, taking tg = /\j_1 leads to

|®j(z)| < C)\?h/(zdw), p-ae. ¢ € K.

Proposition 4.9. The sequence (X.")y>1 is tight in H-“(K) for any o > 2dy/d,,.
Proof. We will first prove that for any € > 0, there exists R = R(g) > 0 such that for all m > 0
P(IX o) > R) <& (17)

Note that by Chebyshev’s inequality,

PUIX 3y > B) < SEIX 30 x)-

=]
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From Lemma we can write E(|| X ["[|%,_. K))

- —a (yT 2 - - m( (& 2
E(Z&- (X7(2)) ) =Y AE (X(@5)m)?) -
j=1 j=1
Noticing that from [9, Lemma 5.2] one has inf,, A]* > 0, then applying @ gives
E ((Xsm(((i)J) ) a Z 28(1) ( ) ()‘T)_25||(i)j||%2(Vm,um)'
PEVm

Observe that by Lemma one has

0, dp/dw
||(I>]||%,2 Vm #m) = 2||<I> ||Loo KN) S C)\]h/ .

Besides, Weyl’s eigenvalue asymptotics yields that A\; ~ j4w/dn  Hence

£ (I X1 K))<CZA“+dh/d <oyt

7j=1

The above series is bounded if 1 — % < —1, i.e., a > 2dy/d,. Hence (|17)) holds.
Now fix & > 2d},/dy,. Then (17} holds for any o/ € (2dy/dy, ) and any e > 0. Equivalently,
there exists I > 0 such that

P(XMW) <e

where B_, (0, R) denotes the closed ball with radius R and center 0 in H~*. To conclude the
proof, it suffices to show that B_,/(0, R) is compact in H~®. Indeed, this can be seen from
Rellich’s theorem, i.e., the embedding H* — H” is compact for 8 < «, see the proof of [7,
Theorem 3.15].

O

Proposition 4.10. For any f € S(K), one has X."(f) — Xs(f) as m — oo.

Proof. Recall that X."(f) = X™(f,,). Since fractional Gaussian fields are centered, it suffices

to show that as m — oo,
E((X7(0)°) = [ f-8)rdn

We will use similar proof as [8 Proposition 4.5] for which Lemma is a crucial ingredient.
First observe that by , one has

E((X;”(f)f) E((Xm(fm ) —me m) 2 i ()-

™ pEVim

Hence it remains to prove that

= D) Ene) — [ F2) pdn

™ pEVim

Recall the convergence with the notation in Remark ie., for fn, = flv,,,

S =) 2 i, — / ENE
Vin K
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We thus need to show that

Fon(=B) 2 F i, — / I EN T A )
Vi

Vin

Indeed, the triangular inequality and Cauchy-Schwarz inequality yield

/ Fnl=Bn) i~ [ fm<—Am>28fmdum‘
T _ —2s R —2s 7
s/m\(fm fon) (—Am) fm\dum+/v P =)™ o — Fo)| it

m

SH}m - meLQ(Vm,um) H(_Am)728meL2(Vm,um) + H}lm”LQ(Vm,Mm) H(_Am)i%(fm - }.m)HLQ(Vm,um) .

One has then H ZSmeL2 Vo) < ()\T)*25||fm\|L2(Vm7Hm) and
H(_Am)ilg(fm B HL2(M )y = ()\m> Zstm - meLZ(um)'
Note that from Lemma | fimll? T2 (Vi i) — |f H2 . Recall also inf,, AT* > 0. It remains

to show that || f, — meL?(Vm,um) — 0. By Lemma

1 fin = FonllZ2 v o) = — Z | (D) = Fin ()

™ pEVim

DY (f P —f(w)!dﬂ(w))

pGV
< 0272 eI | A F|[T1 e -

| A

Now combining the above estimates and letting m — oo, we conclude the desired result. O

Proof of Theorem [[.7 Since (X.")m>1 is tight in H=%(K) for any a > 2d;,/d,, it is enough to
show that every convergent subsequence (X, *)g>1 converges in law to X in H~%(K), that is,
X.™(f) — Xs(f) as k — oo for all f € HY(K).

Indeed, let f € H*(K), then there exists a sequence (f;);>1 € S such that f; — f in H*(K)
and thus (fi)m, — fmk as i — oo. Therefore ka(fl) and X,(f;) converge to X.*(f) and
X,(f) respectively as i goes to infinity. Recall also X, ™ (f;) — X(fi) as k — oc. The triangle
inequality thus concludes our proof.

O
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