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Bose-Einstein condensation of excitons, in which excitons condense into a single coherent quantum
state, known as an exciton condensate, enables frictionless energy transfer, but typically occurs under
extreme conditions in highly ordered materials, such as graphene double layers. In contrast, photosynthetic
light-harvesting complexes demonstrate extremely efficient transfer of energy in disordered systems under
ambient conditions. Here, we establish a link between the two phenomena by investigating the potential
for exciton-condensate-like amplification of energy transport in room-temperature light harvesting. Using
a model of the Fenna-Matthews-Olson complex and accounting for intrachromophore electron correlation
explicitly through the addition of multiple sites to the individual chromophores, we observe amplification
of the exciton population in the particle-hole reduced density matrix through an exciton-condensate-like
mechanism. The exciton-condensate-like amplification evolves with the dynamics of exciton transfer, and
the nature of amplification is influenced by intra- and interchromophore entanglement, as well as the
initial excitation model and number of sites per chromophore. Tuning intrachromophore coupling also
increases the rate of exciton transfer with a maximum enhancement of nearly 100%. The research pro-
vides fundamental connections between exciton condensation and exciton transport in light-harvesting
complexes with potential applications for haressing the exciton-condensate-like mechanism to enhance
energy transfer in synthetic systems and create new materials capable of highly efficient energy transfer.
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I. INTRODUCTION

Unlike electrons and holes, excitons—quasiparticles
formed by electron-hole pairing—are bosons. Conse-
quently, excitons can undergo Bose-Einstein-like conden-
sation, a process whereby many excitons condense into a
single quantum state [1-4]. Like other condensation phe-
nomena, exciton condensation leads to superfluidity of the
condensed particles, that is, superfluidity of excitons [5].
Because of the nature of excitons, rather than transfer-
ring charge or mass, superfluidity of excitons results in
superfluid transfer of energy [6]. Despite the inarguable
advantages that such transfer offers to discovering energy-
efficient systems, for many years, exciton condensation has
remained elusive, as experimental realization of this effect
is difficult, partly due to the short lifetimes of excitons.
Excitons generally decay quickly by recombining, causing
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them to release the excitation energy. As such, exciton con-
densation typically requires extremely low temperatures
or high magnetic fields to extend the excitonic lifetime
[7,8], although recent literature has also shown conden-
sation may be possible under more tractable conditions
in bilayer structures [9,10] like bilayer graphene [11-14]
and van der Waals heterostructures [15-20], where spa-
tial separation helps to increase the excitonic lifetime by
preventing recombination. Recent work has also shown
the possibility for the beginnings of exciton condensation
in small-scale molecular and quantum systems [21-25],
suggesting an exciton-condensation-like mechanism could
be possible in a small-scale system like a light-harvesting
complex.

Photosynthetic light-harvesting complexes transfer
energy with extremely high efficiency; thus, understanding
the governing mechanisms in these systems is impor-
tant for identifying general principles for efficient energy
transfer. Such principles can then be applied to create
highly efficient synthetic energy transfer systems. Light-
harvesting complexes transfer energy in the form of exci-
tons created by photoexcitation of an electron. Excitons
are shuttled through a series of chromophores acting like
energy-transferring wires to a reaction center, where the
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energy can be collected for use in biological processes
[26]. The structures and functions of light-harvesting com-
plexes for exciton transfer are established in the literature,
but over the last several decades much attention has been
directed to understanding the role of quantum effects in
exciton transfer. Indeed, there have been numerous studies
probing the roles of dephasing [27—29], strong correlation
[30-32], quantum coherence [33—36], and entanglement
[37-41] in light-harvesting complexes. Both theoretical
and experimental studies have established that quantum
effects are present, and, while some debate remains as to
the nature and role of these effects in the energy transfer
process [36], there is evidence they could have significant
implications for the design of synthetic energy transfer
systems [31,42,43].

Because exciton condensation has thus far been demon-
strated under such different conditions from exciton trans-
fer in light-harvesting complexes (macroscopic materials
at low temperatures, in contrast to microscopic biologi-
cal systems under ambient conditions), the two phenomena
are generally not connected in the literature, even though
both are closely tied to efficient exciton transport. Here,
we connect the two processes and explore energy transfer
and exciton condensation in the Fenna-Matthews-Olson
(FMO) [44-46] complex of green-sulfur bacteria using a
theoretical model that explicitly introduces strong elec-
tron correlation in the form of intrachromophore coupling
[30-32]. Similar to the introduction of strong intrachro-
mophore coupling in Ref. [30], we expand the typical
one-body model used for the FMO complex to a model
with multiple electron sites on each chromophore, creat-
ing additional channels for exciton transfer. The coupling
between the sites on the chromophores can be tuned using
a coupling parameter, which we find influences the rate
of exciton transfer through either constructive or destruc-
tive quantum interference, depending on the amount of
coupling. Additionally, we show that the nature of the
initial excitation state and the number of sites per chro-
mophore have an effect on the rate of exciton transport. In
connection to exciton condensation, the model exhibits a
signature for exciton condensation in the single-excitation
manifold. The signature, which evolves with the dynamics
of exciton transport, results from a combination of inter-
and intrachromophore entanglement and depends on the
initial excitation and number of sites per chromophore.
Initial conditions can be selected that maximize the signa-
ture within the single-excitation manifold for the specified
number of sites per chromophore. The results demon-
strate a link between the enhanced exciton transfer and
the exciton-condensation-like mechanism, which may fur-
ther elucidate efficient energy transfer. Understanding the
possible connections between these two phenomena will
provide insight into the exciton-condensation-like ampli-
fication that could assist in optimizing energy transfer in
other systems.

II. RESULTS AND DISCUSSION

Electron correlation in photosynthetic light-harvesting
complexes is an important feature of the energy transfer
process. Mazziotti [30] emphasizes this for the FMO com-
plex, showing that electron correlation and entanglement
within the chromophores significantly increases the efli-
ciency of energy transfer by creating additional pathways
or channels for transfer. This idea is represented in Fig. 1,
which shows two sets of interacting intrachromophore
units, each creating a potential path to the reaction cen-
ter. Recent research [31] has reiterated the importance of
intra-unit-cell delocalization to long-range energy trans-
fer, showing that delocalization within unit cells allows
for greater diffusion between states, and thus, faster energy
transfer. Additionally, other recent research [32] demon-
strated that intra-unit-cell coupling could improve energy
transfer by limiting radiative recombination. We con-
sider electron correlation by explicitly building intrachro-
mophore coupling into our model to explore the impacts of
such coupling on energy transfer in the contexts of exciton
populations and entanglement.

Our coupled model is based on a one-body Hamil-
tonian used extensively in the study of FMO exciton
transport dynamics [27-29,39,40,47], with site energies
and interchromophore coupling parameters from the 7 x 7
Hamiltonian matrix of Ref. [27]. We adapt the one-body
model to create a correlated model by introducing addi-
tional degenerate sites to each chromophore that have

(

FIG. 1. Two pathways represented by the two sites of each
chromophore. When & = 0, there is no cross-site interchro-
mophore coupling, as shown. When V > (0, there is coupling,
resulting in quantum interference between the sites of each
chromophore. The waves demonstrate that the quantum interfer-
ence can be either constructive or destructive, with constructive
interference enhancing the energy-transfer efficiency.
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intrachromophore coupling equal to the site energy scaled
by a coupling parameter, V. This creates several equiva-
lent interacting paths for exciton transfer to the reaction
center and is represented pictorially for two sites per chro-
mophore in Fig. 1. In the results presented here, we limit
cross-site coupling to intrachromophore coupling and do
not allow interchromophore cross-site coupling (e.g., site
1 on chromophore 1 is coupled to site 1 on chromophore 2,
but not site 2 on chromophore 2); however, results for the
model with interchromophore cross-site coupling are given
in the Supplemental Material [48]. Additionally, Ref. [47]
demonstrates that, due to quantum redundancy in the FMO
complex, a subsystem of the first three chromophores
transfers excitons to the reaction center more efficiently
than the full seven chromophore system and is sufficient
to characterize the dynamics of the FMO subcomplex. We
therefore use this three chromophore subsystem and note
that the general behavior of the dynamics is equivalent to
using the full seven chromophore complex (see the Sup-
plemental Material [48] for more details). We simulate
the dynamics of exciton transfer by evolving the density
matrix according to the quantum Liouville equation with
a Lindblad operator, following Refs. [15,27,28,30,39,47].
The density matrix is constrained to allow only for single
excitations, meaning that across the whole FMO complex
(consisting of the chromophores and the reaction center)
there is exactly one exciton. This is consistent with the idea
that, in natural systems, photoexcitation events are suffi-
ciently rare that multiexcitation states will not form [49].
Details of the model can be found in Sec. IV.

A. Population dynamics

The one-body model serves as a reference to show the
evolution of the dynamics in the absence of intrachro-
mophore coupling. In Fig. 2(a), the population dynamics
of the one-body model is shown in comparison to those of
the coupled model with ¥ = 0.6 and M = 20, where M is
the number of sites per chromophore. The overall shape
of the dynamics and frequencies of the oscillations are the
same in both the one-body and coupled models. However,
relative to the uncoupled model, the coupled model trans-
fers greater exciton population to the reaction center within
the same period of time and, consequently, the popula-
tions in chromophores 1 and 2 decay more rapidly. The
degree to which the rate of transfer to the reaction cen-
ter changes is influenced not only by the addition of more
sites to the coupled model, but also by the magnitude of
the intrachromophore coupling (¥) and the initial excita-
tion conditions. We examine combinations of these three
possible factors to understand how each influences energy
transfer and exciton condensation in the model.

There are two extreme limits of possible initial exci-
tation conditions: an excitation entangled across all the
sites of chromophore 1—referred to as the entangled exci-
tation—and an excitation localized to a single site on
chromophore 1—veferred to as the localized excitation.
The two initial excitation conditions represent subtly dif-
ferent models, in the sense that, by beginning from an
entangled excitation, each site on chromophore 1 begins
with identical populations, so the model has M identical
interacting pathways for exciton transport, while localizing
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FIG. 2. (a) Population dynamics of the one-body model are shown as pale dashed lines, and population dynamics for the coupled

model with V' = 0.6 and M = 20 are shown as dark solid lines. (b) Percentage increase in population of the reaction center relative to
the uncoupled model after 1000 fs for the entangled initial excitation model (blue) and localized initial excitation model (red) with two
sites per chromophore for varying values of V. Increase in population reaches a maximum for V' = 0.6 at 42.5% for the entangled initial
excitation and 48.2% for the localized initial excitation model, and a minimum for ¥ = 1 at —16.1% for the entangled initial excitation
model and —2.2% for the localized site excitation model. (c) Percentage increase in population in the reaction center relative to the
uncoupled model after 1000 fs as a function of M for the entangled initial excitation (blue) and localized excitation (red). Percentage
increase is fitted to a third-order 1/M fit, which asymptotically approaches 75.5% for the entangled initial excitation and 99.4% for the
localized initial excitation; fits are represented with solid lines.
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the initial excitation on a single site distinguishes one site
such that the M pathways are not necessarily identical. The
entangled excitation represents a case with maximum pos-
sible intrachromophore entanglement, as all sites within
the chromophores are equivalent, but the localized exci-
tation is likely to be more physical, since the populations
on all sites within a given chromophore are unlikely to be
identical, particularly for a disordered material. We present
results with both initial excitation conditions.

To explore the influence of intrachromophore coupling
on the rate of exciton transfer to the reaction center, we
vary the value of the parameter ¥ from 0 to 1 in increments
of 0.2 for the coupled model with M = 2. Figure 2(b)
shows a plot comparing the increase in the reaction center
population relative to the uncoupled model after 1000 fs
for the entangled and localized initial excitations. For both
initial excitation conditions, intrachromophore coupling of
¥V = 0.6 yields the greatest reaction center population, with
enhancement of the reaction center population by 42.5%
and 48.2% for the entangled and localized excitations,
respectively. This indicates that greater intrachromophore
coupling does not necessarily result in more efficient trans-
fer of excitons to the reaction center. In fact, there are
values of V that instead reduce the efficiency of transfer to
the reaction center. Notably, when V' = 1, the population
of the reaction center is reduced relative to the uncoupled
model by 16.2% for the entangled excitation and 2.2%
for the localized excitation. The enhancement or reduction
of the final reaction center population after 1000 fs cor-
responds to changes in the transfer rate over the course
of the simulation. Plots of the rate of transfer of exci-
tons to the reaction center are found in the Supplemental
Material [48].

We hypothesize that the differences in the rates of trans-
fer for different values of V are the result of quantum
interference introduced by intrachromophore coupling.
Increases in the rate of transfer result from constructive
interference, whereas decreases result from destructive
interference. This is supported by evidence of interfer-
ence patterns in populations of different sites on the same
chromophore for localized excitation; for more details,
see the Supplemental Material [48]. For the model with
interchromophore cross-site coupling allowed, or § > 0,
the efficiency of exciton transfer to the reaction center is
reduced, which we also attribute to destructive interference
between sites and chromophores (see the Supplemental
Material [48] for details). As we observe, the most effi-
cient exciton transfer is for ¥ = 0.6 and & = 0. We use
these parameters for the remainder of the results presented
here, unless otherwise specified, although some additional
results are given in the Supplemental Material [48].

We examine the effect of the number of sites per chro-
mophore on exciton transfer for M = 2,4,6, 10, and 20.
Figure 2(c) shows plots of the increase in reaction center
population relative to the uncoupled model after 1000 fs

for both the entangled and localized initial excitations. As
can be seen from Fig. 2(c), for both initial excitation con-
ditions, increasing the number of sites per chromophore
enhances exciton transfer. The population of the reaction
center after 1000 fs increases with M in an approximately
1/M manner, and when the data are fitted to first-, second-,
and third-order 1/M models, the best fit is the third-order
fit for either excitation condition. For the entangled initial
excitation, the resulting third-order equation of fit is

1185 184 614

% increase = 75.5 — e + ek

(1)

demonstrating that, for the entangled excitation, the
increase in the reaction center population relative to
the uncoupled model asymptotically approaches a 75.5
enhancement. The corresponding fit for the localized exci-
tation yields

1158 655 819

% increase = 99.4 — Ve + ek

2)

showing that the increase in population asymptotically
approaches 99.4% enhancement for the localized excita-
tion. Therefore, we can conclude that the enhancement
of transfer of excitons to the reaction center has a finite
increase with the number of sites per chromophore and is
greater with a localized initial excitation.

B. Exciton condensation dynamics

Exciton condensation occurs when excitons (particle-
hole pairs) become entangled and condense to occupy the
same quantum state. The process results in long-range
order—specifically off-diagonal long-range order—in the
system and has a signature in the particle-hole reduced
density matrix (RDM). In an uncorrelated system, the
eigenvalues of the particle-hole RDM have a maximum
bound of one. The entanglement associated with condensa-
tion and off-diagonal long-range order, however, produces
an eigenvalue greater than one, the magnitude of which
is indicative of the extent of long-range order or conden-
sation. In the particle-hole RDM, one eigenvalue greater
than one, corresponding to ground-state-to-ground-state
projection, is always present, but a second large eigen-
value is a signature of exciton condensation [21,50,51].
The first large eigenvalue, which is extraneous with respect
to exciton condensation, can be removed to create a mod-
ified particle-hole RDM, such that, in the modified RDM,
any large eigenvalue is a signature of exciton conden-
sation. We denote this large eigenvalue signature as Ag.
The density matrix of the FMO model represents a sub-
block of the modified particle-hole RDM, corresponding
to possible single-excitation states, which we call the exci-
tation matrix. However, because of the constraints on the
model (i.e., only single-excitation states are possible), the
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signature of exciton condensation is constrained to exist
within a second subblock of the modified particle-hole
RDM, the deexcitation matrix, corresponding to the pos-
sible deexcited states in the single-excitation manifold.
The excitation and deexcitation matrices are related by
the single-excitation constraints, such that the deexcita-
tion matrix can be obtained directly from the excitation
matrix. We use this relationship to obtain the deexcitation
matrix for the FMO model and probe the evolution of the
signature of exciton condensation (Ag) over time.

In quantum computations, for a given number of qubits,
the W state refers to a quantum superposition of all possible
singly excited pure states, which is represented by

1
JN

where N is the number of qubits. If each qubit is taken
to represent a particle-hole paired two-level system, where
either the bottom level is occupied (|0)) or the top level
is occupied (]1)), a system composed of N qubits can be
viewed as two N-degenerate energy levels, each consisting
of one fermion and two distinct orbitals. In this framework,
then, the W state represents the maximal entanglement of
a single-exciton system, with the theoretically predicted
and computed values of Ag being the maximum possible
value for a certain number of entangled excitons within
a single-excitation manifold. Figure 3(a) shows the sig-
nature of exciton condensation (Ag) for W-state systems
with 3—16 qubits (i.e., 3—16 particles in 632 orbitals) pre-
pared on IBM’s QASM simulator, with Ag being obtained
from postmeasurement analysis, according to the proce-
dure outlined in Ref. [22]. To obtain a large eigenvalue
(Ag > 1), a minimum of three qubits are necessary, for
which Ag & 1.33. The magnitude of the large eigenvalue
then grows with system size, according to 2 —2/N. A
derivation of the 2 — 2/N scaling for the large eigenvalue
is given in Sec. V.

In our model of chromophores, each qubit is analogous
to a single site on a chromophore, such that, if all sites
on a single chromophore are maximally entangled—as in
the entangled initial excitation—this would form a state
similar to a W state on that chromophore. Additionally,
while states can be entangled in a nonmaximal way to
produce a large eigenvalue, the expression 2 — 2/N is a
maximum bound on the value of Ag for a given num-
ber of entangled chromophore sites. As a minimum of
three chromophore sites are necessary to form a con-
densed state, and all the exciton population is contained
in a single chromophore at the initial time step, only the
entangled initial excitation model with M = 4,6, 10, and
20 can theoretically form a condensed state through intra-
chromophore entanglement. However, because there are
three chromophores in the model, after the initial time step,
all models can potentially form a condensed state through

(1100---0) +1010---0) 4 --- +1000---1)), (3)
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FIG. 3. (a) Maximum eigenvalues for maximally entangled

stats of N qubits. (b) Ag dynamics for M = 1,2,4,6,10, and 20
with entangled initial excitation.

interchromophore exciton entanglement or a combination
of intra- and interchromophore exciton entanglement.

The dynamics of the entangled excitation model are
consistent with the bound on Ag for a maximally entan-
gled state. Figure 3(b) shows that, for M > 2, the ini-
tial eigenvalue exactly matches the theoretically predicted
value for the entanglement of the same number of qubits,
e.g., for M = 20, initially Ag = 1.9, and for 20 qubits,
the predicted maximum is Ag = 1.9. Notably, interchro-
mophore exciton entanglement results in large eigenval-
ues, even in the uncoupled, M = 2, and localized excita-
tion cases, where no condensation due to intrachromophore

023002-5



SCHOUTEN, SAGER-SMITH, and MAZZIOTTI

PRX ENERGY 2, 023002 (2023)

(a) (b) (c)
1.61 1,6'H 1.6
1.59 1.59 1.5
1.47 1.47 1.4
<l < o
= 1.3 ~ 13 < 13
1.24 1.24 1.2
1.19 1.14 1.1
1.04 ; T T T 1,0'/\/\—’.‘ T ? T 1.0+ : T T " .
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Time (f8) Time (f5) Time (fs)

FIG. 4. Dynamics of A for the single initial excitation model with V' = 0.6 for(a) M = 2, (b) M = 4, and (c) M = 20. A dynamics

of the uncoupled model is shown in black on each plot.

entanglement is possible at the initial time step. Plots of
the Ag dynamics for M = 2,4, and 20 with a localized
initial excitation are shown in Fig. 4, and a summary of
the maximum peak heights, number of peaks, and coher-
ence times for all values of M are given in Table I (see
the Supplemental Material [48] for additional plots). In
the M = 2 case, the large eigenvalue reaches a maximum
around Ag = 1.4 for both entangled and localized exci-
tations, which is larger than the theoretically predicted
maximum for three entangled chromophores (Ag & 1.33)
possible due to purely interchromophore coupling. Simi-
larly, for M = 4 and M = 6, in the entangled excitation
spectra, larger eigenvalue peaks appear in the spectra after
the initial time step, and the maxima in the localized excita-
tion spectra are of similar magnitude to these peaks. Inter-
estingly, unlike the entangled excitation, where the value
of M is clearly connected to the magnitude of the initial
largest eigenvalue, for the localized excitation, the magni-
tude of the largest eigenvalue peak is independent of the
number of sites. In fact, the largest eigenvalue is attained
for M = 6, where the maximum is Ag = 1.65, and the
maximum eigenvalues are between 1.4 and 1.65 for all val-
ues of M. Consequently—except for the peaks in the initial
time step of the entangled excitation—the large eigenval-
ues in the dynamics must result from a combination of
intra- and interchromophore exciton entanglement.

For the entangled initial excitation, the frequency
and peak positions in all the spectra are the same,

TABLE I. Spectral summary of the localized excitation model
with M = 2,4,6,10, and 20.

Number of sites 2 4 6 10 20
Maximum Ag 141 164 1.65 1.56 1.42
Number of peaks 8 8 15 40 79
Coherence time (fs) 463 483 634 1000 1000

independent of the number of sites or the magnitude of
the peaks—although for M = 10 and M = 20 the peaks
are small compared to the initially large magnitude of Ag.
However, for the localized excitation, the frequency and
coherence time increase with the number of sites. While for
M = 2,4, and 6, the value of Ag decays to one near 463,
483, and 634 fs, respectively; for M = 10and M = 20, the
value of Ag is greater than one at 1000 fs, and we observe
fast narrow peaks in the M = 20 spectrum in Fig. 4(c).
This suggests that the evolution of Ag in both the entangled
and localized excitations is due to an interchromophore
mechanism inherent to the exciton dynamics, although the
individual peaks in Ag result from a combination of inter-
and intrachromophore coupling. By analyzing the popula-
tions of the chromophores for the large eigenvalue mode
(see the Supplemental Material [48] for details), we see
that major peaks occur where the populations of chro-
mophores 1 and 2 are nearly equal. As a result, the peaks
follow approximately the same pattern as the oscillation of
the exciton transfer between chromophores 1 and 2. Addi-
tionally, in the entangled excitation, all sites have identical
populations, such that both inter- and intrachromophore
exciton entanglement play a role in the large eigenvalue.
Even for the localized excitation, although not all sites on
each chromophore have identical populations, the largest
peaks often occur where the populations of several sites are
similar. The intrachromophore interactions due to noniden-
tical site populations are likely the cause of the increased
peak frequency in the localized excitation spectra. How-
ever, for both entangled and localized excitations, the main
dynamics appear to result from a combination of intra-
and interchromophore coupling between chromophores 1
and 2.

One notable feature of the Ag dynamics is the decay
of the large eigenvalue. In all cases, the maximum value
of Ag is reached within the first 100 fs, after which the
eigenvalue gradually decays towards one and has almost
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completely decayed by the region of 400600 fs. Even
in the localized models for M = 10 and M = 20, which
show coherence over the full 1000 fs simulation, the eigen-
value is only marginally greater than one after about 500 fs.
Interestingly, we note that in this region the rate of transfer
to the reaction center also declines (see the Supplemental
Material [48] for more details). Moreover, when dephasing
is eliminated—resulting in a majority of the exciton pop-
ulation remaining trapped between chromophores 1 and
2—the decay of the large eigenvalue is reduced. In fact,
as the populations reach a steady state, with the majority
of the population oscillating between chromophores 1 and
2, the large eigenvalue also reaches a steady state with
a magnitude markedly greater than one. (Plots showing
these results are found in the Supplemental Material [48].)
This is consistent with the fact that chromophores 1 and 2
have the greatest populations in the large eigenvalue and
suggests that the large eigenvalue results primarily from
entanglement of these two chromophores.

The results presented here utilize a coupling parameter
of ¥V = 0.6; however, the trends are applicable to varying

values of V. For the entangled excitation case, the Ag
dynamics are relatively invariant to the value of V. For
the localized excitation, for various V > 0, while some
variation exists in the maximum value of Ag, we still
observe large eigenvalues and spectral shapes similar to
those shown in Fig. 4. Plots of these results are provided
in the Supplemental Material [48]. As with large values
of M, larger values of ¥ increase the peak frequency of
Ag, which likely results from increased intrachromophore
interactions caused by greater coupling between sites on
the same chromophores. We also observe that, as long
as the intrachromophore interaction is nonzero, the intro-
duction of interchromophore (cross-site) coupling, while
reducing the overall exciton transfer efficiency, changes
neither the large eigenvalue nor the general features of the
dynamics (see the Supplemental Material [48] for more
details).

To understand how excitons are transferred by the mode
associated with the large eigenvalue versus the other eigen-
values, we examine the breakdown of the total deexcitation
population into populations associated with the individual
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eigenvalues of the deexcitation matrix. Figure 5 shows
the breakdown of the populations for each chromophore
for both entangled and localized excitations with M = 4.
The lowest level in the plots shows the populations of
the large eigenvalue, and each successive level adds the
populations from the next largest eigenvalue. Both exci-
tation conditions show similar trends in the dynamics of
the deexcitation populations of the large eigenvalue. Inter-
estingly, for chromophores 1 and 2, the populations of the
large eigenvalue oscillate with the same frequency as the
total populations, until the eigenvalue decays (around 500
fs). However, the populations of the large eigenvalue are
out of phase with the total deexcitation populations, while
all other eigenvalues with significant populations are in
phase with the total populations. This is notable because
the population of the large eigenvalue is in phase with the
excitation population transfer rather than the deexcitation
population transfer.

For chromophore 3, the population in the large eigen-
value is relatively small until the large eigenvalue decays,
at which point the population increases significantly. This
is consistent with the idea that the large eigenvalue pri-
marily results from entanglement between sites on chro-
mophores 1 and 2 decaying as the population is passed
to the reaction center and supports the hypothesis that the
entanglement associated with the large eigenvalue helps to
facilitate transfer of excitons between chromophores 1 and
2. The deexcitation populations of chromophore 3 are also
proportional to the rate of transfer of deexcitation popu-
lation to the reaction center, which is the inverse of the
rate of exciton transfer to the reaction center. Therefore,
we observe a decrease in exciton transfer from the large
eigenvalue (indicated by an increase in deexcitation trans-
fer) after the decay of the large eigenvalue. This behavior is
unique to this eigenvalue, as other eigenvalues either have
little contribution to the total rate of deexcitation transfer
or do not exhibit an increase in deexcitation transfer.

III. CONCLUSIONS

Our results reveal the potential for enhanced energy
transfer in photosynthetic light-harvesting complexes
through a microscopic exciton-condensation-like mecha-
nism. We show that in the correlated model of the FMO
complex there is a large eigenvalue signature of exci-
ton condensation that evolves with the population transfer
dynamics. In the single-excitation manifold, exciton con-
densation in the macroscopic sense is not possible; how-
ever, the signature we observe indicates the beginnings
of long-range order associated with local condensation or
entanglement of excitons, which leads to macroscopic con-
densation in larger systems. Local condensation of this
type is consistent with the perspective of collective phe-
nomena that form emergent condensate states [52,53], and
in the single-excitation manifold, there is a microscopic

case of the emergent phenomenon. Thus, while in small
systems like light-harvesting complexes the exciton entan-
glement indicated by the large eigenvalue may lack some
of the properties associated with macroscopic exciton
condensation, it is likely to retain many of the advan-
tages, including efficient energy transfer. This is evident in
our results, where—with the appropriate tuning of model
parameters, including the number of sites per chromophore
and intrachromophore coupling—we show that exciton
transfer can be enhanced by nearly 100% relative to a one-
body model through the limited exciton-condensation-like
mechanism. Moreover, even under conditions where the
model parameters are less than ideally tuned, the exciton-
condensate-like mechanism and enhancement of exciton
transfer are still possible. Although this mechanism does
not appear to inherently increase exciton transport, in a
carefully tuned system, it creates the potential for signif-
icant amplification of energy transfer.

Because amplification of energy transfer through an
exciton-condensation-like mechanism is possible in a
noisy room-temperature process like photosynthesis, such
a mechanism can potentially be harnessed to enhance
energy transfer in other similar systems or conditions.
The parameters of the model represent meaningful prop-
erties with relevance to physical systems. The intra-
chromophore coupling is comparable to w-7 interactions
within molecules, like the porphyrin ring chromophores
in FMO. The beginnings of exciton condensation have
been computed in van der Waals stacks of benzene and
finite analogs of the graphene bilayer [23,24]. The large
range of values of intrachromophore coupling over which
we observe the exciton-condensate-like mechanism in
the FMO model suggests a broad range of appropri-
ate couplings for which real materials may exhibit an
exciton-condensate-like mechanism. Furthermore, when
coupling is allowed between nonidentical sites on dif-
ferent chromophores, the exciton-condensate-like mech-
anism still occurs; this has important implications for
the possibility of the mechanism in disordered materi-
als. Although the model resembles an ideal case of a
light-harvesting complex, the robustness of the exciton-
condensate-like mechanism to variations in the coupling
parameters suggests its potential applicability to the opti-
mization of real materials with respect to energy transfer
efficiency.

By linking exciton condensation to the transfer of
energy in light-harvesting complexes, we observe a pat-
tern for understanding the principles of efficient energy
transfer. These principles can be applied to designing
synthetic materials that utilize the same type of limited
exciton-condensation-like mechanism. Whereas the vision
of superfluid energy transfer through macroscopic exciton
condensation remains difficult to realize under reasonable
conditions, the mechanism of limited exciton condensation
may be used to develop materials that are able to transfer
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energy with extremely high efficiency under conditions
conducive to wide applicability.

IV. METHODS

A. Signature of exciton condensation

Exciton condensation results from entanglement of
particle-hole pairs (excitons). The entanglement of exci-
tons is exhibited as long-range order—specifically, off-
diagonal long-range order—in the particle-hole RDM:

2GY, = (ylalaalarly), (4)

where &:.f and a; are fermion creation and annihilation oper-
ators, and |¢) is the wave function. In an uncorrelated
fermion density matrix, like the particle-hole RDM, the
eigenvalues of the matrix are bound by a maximum value
of one. However, in a highly correlated system, such as
one exhibiting exciton condensation, the associated long-
range order results in a large eigenvalue (greater than one).
A large eigenvalue in the particle-hole RDM is therefore
a signature of exciton condensation, and the magnitude
of the eigenvalue describes the extent of condensation, as
it corresponds to the occupation of the condensed state
[21,50,51].

Even in the absence of correlation, the particle-hole
RDM always contains one large eigenvalue, corresponding
to ground-state-to-ground-state projection, that is extrane-
ous with respect to exciton condensation. The first large
eigenvalue of the particle-hole RDM, not related to exci-
ton condensation, can be removed from the particle-hole
RDM using a modified particle-hole RDM, zf?’k'fl:

270 24 Ayl
w1 = Ggy— D Dy, %)

where IDJE is the one-particle RDM. Once the extrane-
ous large eigenvalue is removed, any eigenvalue greater
than one in the modified particle-hole matrix is a signature
for exciton condensation. The eigenvalues of the modified
particle-hole RDM are calculated as

ZGU(' = JL,"U,‘. (6}

We use the large eigenvalue signature of the particle-hole
RDM to characterize exciton condensation in a model sys-
tem of the light-harvesting complex and make connections
to energy transfer.

B. FMO model

We define the FMO complex through its density matri-
ces, its model Hamiltonian, and its environmental channels
in Secs. IVB2, IVB 1, and IV B3, respectively. In par-
ticular, we show that, when the dynamics is restricted to
the single-excitation manifold, the particle-hole reduced

density matrix, 2@, has an excitation subblock and a deex-
citation subblock, with any potential exciton condensa-
tion occurring within the deexcitation subblock. Moreover,
we generalize the FMO model to support multiple sites
on each chromophore, the correlation of which can be
controlled to enhance transport.

1. Model Hamiltonian

Exciton transfer in the FMO complex has been the sub-
ject of extensive theoretical study using model Hamiltoni-
ans [27-29,39,40,47], specifically, the one-body Hamilto-
nian:

A1 At oa At A At oA
H= 5 Z mesa;f,mam + Z Uj,ta:&las,_lal_la,#h (7
s,m st

which models each exciton as a single-electron excita-
tion. In the Hamiltonian, s and # represent the sites of the
chromophores, m is the energy level (either +1 or —1)
within the chromophore, and &I,m (@sm) creates (annihi-
lates) an electron of energy level m on site s. The one-body
Hamiltonian is so called because it contains only one-body
interactions. While this one-body Hamiltonian accurately
captures the transport of excitons in the FMO complex,
it fails to account for strong correlation between electrons
on the same chromophore. Prior research accounts for this
by using a Lipkin model [30] or adding coupling terms
[31,32], which can introduce additional sites on the indi-
vidual chromophores to help account for this correlation.
We develop a coupled model Hamiltonian to explicitly
introduce strong electron correlation by expanding the one-
body model to have additional sites on each chromophore
and include intra- and interchromophore coupling terms.
The Hamiltonian for this model is defined as

~ 1
_ ~ -
H= 3 E mesdy ,, s mp
smp

+ (1 =8) Y Ul ) pas108]_y 0415
s#Etp

1
Z N
+ =V Esas,mpas,—m,qai,mﬂa&—mq‘-?
&m.p.q

+E Y Uyl 8,108 ) a1 (8)
s#Lp#q

where, following the one-body Hamiltonian, s and ¢ are
chromophore sites, p and g represent the sites within the
chromophore, and m is the energy level. The V term rep-
resents coupling between sites on the same chromophore
and & represents coupling between sites on different chro-
mophores. The one-body Hamiltonian site energy and
interchromophore coupling values are obtained from the
7 x 7 Hamiltonian of Ref. [27].
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The addition of sites to the chromophores creates mul-
tiple paths for exciton transfer. When ¥ =10 and & = 0,
the paths are completely isolated, and excitons cannot be
transferred between the paths. In essence, this results in M
(where M is the number of sites per chromophore) one-
body models, which can only transfer through multiple
paths if the initial excited state is entangled between all
sites on the same chromophore. For this case, all the paths
would transfer equivalent fractions of the population pro-
portional to 1/M. If the initial excitation were localized
to a single site, exciton population would instead be con-
strained to a single pathway and function identically to the
one-body model. When V > 0, there is intrachromophore
coupling between the pathways, scaled by the value of V.
This results in transfer of exciton population between path-
ways via intrachromophore population exchange, even in
the case where the initial excitation is localized to a single
site on a single chromophore. In Fig. 1, intrachromophore
coupling is represented as wave patterns between different
sites of the same chromophore, indicating that either con-
structive and destructive interference can result from such
coupling. For values of § = 0, the transfer of exciton popu-
lation between chromophores is isolated such that each site
on a specified chromophore can only transfer to the cor-
responding site on the other chromophores, i.e., site 1 on
chromophore 1 is only coupled to site 1 on chromophores
2 and 3, and site 2 on chromophore 1 is coupled to site 2
on chromophores 2 and 3, thus allowing interchromophore
coupling only within, but not between, pathways. When
& > 0, exchange of population between chromophores is
balanced by the £ and 1 — & terms of the Hamiltonian to
also allow transfer between the paths via interchromophore
cross-site coupling, i.e., site 1 on chromophore 1 is cou-
pled to all sites on chromophores 2 and 3. We find that, for
values of £ > 0, transfer of excitons to the reaction center
is much less efficient, because interchromophore cross-site
coupling between pathways opens additional channels for
destructive interference, which reduces the overall exci-
ton transfer in the model. Consequently, we focus on the
coupled model with § = 0. However, we observe a large
eigenvalue in all cases where there is potential for inter-
action between sites on a chromophore (e.g., entangled
starting excitation or £ # 0 or 1). Results for both pop-
ulation and Ag dynamics with & # 0 are given in the
Supplemental Material [48].

Although we express Eqs. (7) and (8) in the electron
basis, which represents each chromophore as an electron
in a two-level orbital, where an exciton is created by exci-
tation of an electron from the lower level of the orbital
to the upper level, both Hamiltonians can be equivalently
expressed in an exciton basis, where each chromophore
or chromophore site is represented by a single orbital of
a specific energy that may be occupied by an exciton.
A pictorial representation demonstrating the two equiv-
alent bases is given in the Supplemental Material [48].

We also constrain our model to allow only for single
excitations.

2. Density matrices

The FMO complex consists of three subcomplexes, each
consisting of seven (or eight) chromophores [44,46], which
transfer energy in the form of excitons to a reaction center.
The properties of the FMO complex can be modeled for
a single subcomplex in an exciton basis by representing
each chromophore as a one-level orbital, which is either
empty or occupied by an exciton. An N x N density matrix
(where N is the number of chromophores multiplied by M)
representing this system can be described by

D = (y|6]6,¥), (9)

where 6, (6,) is the creation (annihilation) operator of one
exciton on chromophore s, and ¢ is the wave function
of the FMO model system. This can also be equivalently
expressed in the electron basis. In the electron basis, the
density matrix is

D = (ylal_,az41a!  ag119), (10)

where Ei:,_l (as_1) creates (destroys) an electron in the

lower level of chromophore s, and &I‘ +1 (@g41) creates

(destroys) an electron in the upper level of chromophore s.
Using the electron basis, we can easily connect the
exciton density matrix to the particle-hole RDM, which
is a two-body matrix. Due to the equivalency of the
exciton and electron bases, the density matrix, D, is a
subblock of the modified particle-hole RDM [Eq. (5)],
specifically an N x N subblock of the excited states pos-
sible in the single-excitation manifold; we therefore refer
to D as the excitation density matrix. Because our model
allows only for single excitations, there is a constraint
on the modified particle-hole density matrix that restricts
the long-range order corresponding to exciton condensa-
tion existing entirely within a second N x N subblock of
the modified particle-hole matrix. This N x N subblock
corresponds to the possible deexcited states; we therefore
refer to this as the deexcitation density matrix, G. The
deexcitation density matrix is written as follows:

G = (vlal, 8,18 _a,411v). (11)

If the modified particle-hole RDM has a large eigen-
value, the deexcitation density matrix has an identical
large eigenvalue, signifying the long-range order associ-
ated with exciton condensation. This allows us to bypass
calculation of the complete modified particle-hole matrix
and instead calculate only the excitation and deexcitation
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density matrices. The excitation and deexcitation density
matrices are related by

fori=j,
fori#j,

Gy =11~ D (12)
where i and j are the indices of the matrix. Concep-
tually, this relationship indicates that the populations of
the excited and deexcited electrons in a specific chro-
mophore must sum to one, but the coupling between
chromophores is equivalent whether in the excitation or
deexcitation representation. This means that the excitation
matrix has a trace of 1—because only a single excitation
is allowed—while the deexcitation matrix has a trace of
N — 1. The relationship makes it possible to obtain the
deexcitation density matrix directly from the calculated
excitation density matrix.

3. Dynamics and environmental effects

The environmental effects and dynamics of exciton
transport are calculated using the quantum Liouville
equation with a Lindblad operator:

ED = _%[ﬁr,,o] + L(D), (13)

dt

where D is the excitation density matrix, and Eq. (13)
models the behavior of the density matrix over time. The
Lindblad operator, L(D), is defined to account for dephas-
ing, dissipation, and transfer to the reaction center (RC) as
follows:

L(D) = Lyepn(D) + Laiss(D) + Lpc(D),  (14)
with
Loepn(D) = @y 2(KIDIK)|K) (K| — {Ik)(KI, D}, (15)
p
Las(D) = B ijz<k|D|k>|g)<g| — {Ik)(kl,D},  (16)
(17)

Lrc(D) =2y ) _(@|D|w)ls)(s| — y{lw){w], D},

where |g) is the ground state of the Hamiltonian, |k) is
the excited state, |s) is the reaction center, and |w) is the
first excited state of the specified site of chromophore 3.
«, B, and y are rate parameters chosen to be 1.52 x 104,
7.26 x 107>, and 1.21 x 10~® atomic units, respectively.
The Lindblad operator and the values of the parame-
ters follow previous studies with both one-body [27] and
correlated [30] models.

C. Derivation of largest eigenvalue A; for W state

Consider the expectation value of the particle-hole
RDM:

A = ng; (ZGE:) 8kr (18)
ikl
=) gy (Vlalaalad)g; ), (19)
ikl
= (V128" |v), (20)
where
g=) gyaa. (21)
i
Let the wave function be the W state of N qubits:
1
[¥) = — (|100---0) 4+ 1010---0) 4...). (22)

VN

The eigenvalue of the particle-hole RDM is maximized
by selecting the eigenoperator &' to represent a phase-
coherent superposition of all single-particle excitations to
maximize constructive interference:

N
1
At At A
g =— E 514505 (23)
N s=1 !

where a:,o (as,1) creates (destroys) a particle in the lower
(upper) level of qubit s. The expectation values of the
individual elements are
N-1
- ifs=t
W|a! gag1a] alv) = | N ’
( |S‘(}s, t1 r.| ) % ifS;":f.

(24)

Therefore, the maximum eigenvalue A7, of the W state is

N
1 s ot
A= AW Y @l al V),

(25)
s,t=1
—INN—_I NN —1 : 26
-3 [v(5F) v (g)] o
2
=2-—. (27)

In the limit that N approaches infinity, the largest eigen-
value is 2.

Data will be made available upon reasonable request.
Code will be made available on a public Github repository
upon publication.
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