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Photon-mediated interactions within an excited ensemble of emitters can result in Dicke superradiance,
where the emission rate is greatly enhanced, manifesting as a high-intensity burst at short times. The
superradiant burst is most commonly observed in systems with long-range interactions between the
emitters, although the minimal interaction range remains unknown. Here, we put forward a new theoretical
method to bound the maximum emission rate by upper bounding the spectral radius of an auxiliary
Hamiltonian. We harness this tool to prove that for an arbitrary ordered array with only nearest-neighbor
interactions in all dimensions, a superradiant burst is not physically observable. We show that Dicke
superradiance requires minimally the inclusion of next-nearest-neighbor interactions. For exponentially
decaying interactions, the critical coupling is found to be asymptotically independent of the number of
emitters in all dimensions, thereby defining the threshold interaction range where the collective
enhancement balances out the decoherence effects. Our findings provide key physical insights to the
understanding of collective decay in many-body quantum systems, and the designing of superradiant
emission in physical systems for applications such as energy harvesting and quantum sensing.
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Introduction.—Collective spontaneous emission of N
initially inverted atoms with identical all-to-all interactions
mediated by the electromagnetic vacuum results in a burst
of light with intensity scaling as N2 [1–3]. This phenome-
non is commonly referred to as “Dicke superradiance” or
“superradiant burst.” Over the past decades, this many-
body phenomenon has attracted a lot of interest in both
theoretical [4–24] and experimental studies [25,26] using a
multitude of physical platforms such as trapped ions [27],
molecular aggregates [28–31], solid-state emitters [32–36],
cold atoms and molecules [37–40], and superconducting
qubits [41–43], with wide-ranging applications including
the generation of multiphoton states with improved met-
rological properties [18,44–47], energy harvesting [48–50],
ultrabright LEDs [51] and quantum sensing [52,53].
The atoms in Dicke’s original model were assumed to be

confined within a spatial extent smaller than the emission
wavelength λ. Consequently, the atoms become indistin-
guishable with respect to the absorption or emission of
photons, such that their quantum state jj ¼ N=2; mi (with
−N=2 ≤ m ≤ N=2) is permutation invariant. This permu-
tation symmetry greatly reduces the complexity of the
problem, as it constrains the dynamics to N þ 1 states,
instead of exploring the full Hilbert space (which scales as

2N). Recently, there has been substantial research progress
with extended systems where atoms are distributed over a
region larger than λ, thus breaking this symmetry. Of
particular interest are ordered atomic arrays [54,55], in
which the superradiant properties can be greatly affected
by the geometry and dimensionality of the lattice
[16,19,20,22,24,56]. The interactions between the emitters
are typically modeled by long-range dipole-dipole inter-
actions mediated via the electromagnetic vacuum [57,58].
A long-standing fundamental question is the minimal

interaction range required for the occurrence of a super-
radiant burst. Intuitively, superradiance can be thought of as
a competition between (transient) phase synchronization,
which leads to the buildup of atomic correlations, and
decoherence [59]. Both effects stem from the same dis-
sipative interactions [8,22]. Since synchronization of non-
linear classical phase oscillators has been demonstrated
with nearest-neighbor (NN) coupling [60], one may expect
the atomic phases to synchronize for sufficiently strong
NN interactions resulting in a superradiant burst [59].
Moreover, for a fixed interaction range, higher dimension-
ality was reported to result in stronger superradiance due to
long-range order [19,24]. On the flip side, it could also be
argued that for short-range interactions, the buildup of
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correlations is not strong enough to overcome decoherence,
thereby preventing superradiance.
In this Letter, we prove that superradiant burst is

impossible in an arbitrary D-dimensional array with only
nearest-neighbor interactions, for arbitrary times and initial
states. That is, we show that, in all cases, the emission rate
is upper bounded by that of independent emitters, resulting
in no enhancement from collective dynamics. Including
next-nearest-neighbor interactions, we show that a super-
radiant burst can be physically observed for certain values
of the interaction strengths, thereby defining a minimal
interaction range for superradiance. Another question is the
threshold interaction range, which we define to be such that
the critical coupling required for a burst becomes inde-
pendent of the number of emitters, for anyD. We show that
exponentially decaying interactions lie on the threshold
interaction range for which the synchronization of the
dipoles arising from the emission balances the decoherence
effects.
Model.—The dynamics of an undriven ensemble of N

emitters can be described by the Lindblad master equation
(setting ℏ ¼ 1)

_ρ ¼ −i
XN
i;j¼1

½Jijσþi σ−j ; ρ� þ
XN
i;j¼1

γijD½σ−i ; σ−j �ρ≡ L½ρ�; ð1Þ

with Jij ¼ J�ji and γij ¼ γ�ji to ensure Hermiticity. The
raising and lowering operators for the jth emitter are
denoted as σþj ≡ jeiihgij and σ−j ≡ jgiiheij which describe
transitions between the ground state jgii and excited state
jeii. The first term contains the coherent Hamiltonian
interactions between the emitters, while the second term
captures processes such as collective and local dissipation
of the emitters via the superoperator D½σ−i ; σ−j �ρ ¼
σ−i ρσ

þ
j − fσþj σ−i ; ρg=2. We assume Jij and γij to be time

independent, such that the superoperator L generates a
dynamical semigroup describing the dynamics of a
Markovian open quantum system.
For a physically valid evolution (i.e., a completely

positive and trace-preserving map), the matrix Γ containing
the elements γij (which we will refer to as the decoherence
matrix) must be positive semidefinite [61–63]. The
decoherence matrix can be diagonalized to yield N decay
rates Γν ≥ 0, with ν ∈ f1;…; Ng and the corresponding
collective jump operators ĉν. The total photon emission rate
of the emitters, integrated over all emission directions, is
defined for any state ρ as

Rρ ≡
XN
ν¼1

Γνhĉ†νĉνi ¼
XN
ν¼1

ΓνTrðĉ†νĉνρÞ: ð2Þ

For independent emitters with γij ¼ γ0δij, the total emis-
sion rate has a maximum of Nγ0 (saturated by the fully

excited state), and RðtÞ≡ RρðtÞ decays exponentially.
However, interactions between the emitters can cause
RðtÞ to increase beyond its initial value. This speedup in
emission is commonly referred to as the superradiant burst,
first discovered by Dicke [1] (see Fig. 1). Throughout this
work, we refer to superradiant burst as the increase in the
total emission rate beyond Nγ0, but the peak intensity need
not scale as N2. In general, characterizing the burst at
arbitrary times can be difficult, hence one typically uses

_Rρ ¼ i
X
ν

h½H; ĉ†νĉν�i −
X
μ;ν

ΓμΓνhĉ†μ½ĉμ; ĉ†ν�ĉν�i ð3Þ

evaluated at the fully excited initial state ρð0Þ, with _Rð0Þ≡
_Rρð0Þ > 0 a sufficient condition for a superradiant burst.
While we consider the burst at t ¼ 0, we will provide
physical justification on why this is sufficient.
Here, we put forward a new (and complementary)

criterion to preclude any possibility of a burst: by a simple
change of basis, one can write Eq. (2) as the expectation
value of an auxiliary spin Hamiltonian

HΓ ¼
XN
j;k¼1

γkjσ
þ
j σ

−
k ; ð4Þ

with Rρ ¼ trðHΓρÞ. The maximum photon emission rate
can thus be calculated by bounding the spectral radius of
the auxiliary spin Hamiltonian. If the upper bound is equal
to or smaller than Nγ0, no burst can occur for all times and

FIG. 1. Dynamics of the photon emission rate RðtÞ for emitter
arrays with only nearest-neighbor interactions of strength γ, nor-
malized by the individual emitter decay rate γ0. For γ=γ0 < γs,
_Rð0Þ < 0 and the photon emission rate decays monotonically
without a superradiant burst (blue). Superradiance occurs for
γ=γ0 > γs (red). The physically valid regime is defined by
0 < γ=γ0 ≤ γp. For nearest-neighbor interactions, γp < γs (with
a finite gap between γp and γs) for any arbitrary emitter array
in all dimensions, rendering Dicke superradiance physically
impossible.
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arbitrary initial states. While finding the largest eigenvalue
of HΓ may be nontrivial, this criterion allows one to
definitively prove the absence of a burst for arbitrary times,
thus going beyond the condition _Rð0Þ≡ _Rρð0Þ > 0.
Furthermore, this approach opens up the possibility of
finding theoretical limits for the emission rate arising
from superradiant dynamics, as we show below and in
Supplemental Material [64].
No superradiance for nearest-neighbor coupling.—Let

us consider a hypercube array of N emitters with arbitrary
dimension D (N ¼ nD). For the case of NN interactions,
γii ≡ γ0 ¼ 1 and γij ¼ γ if emitters i and j are nearest
neighbor (γij ¼ 0 otherwise). The coupling γ ∈ ½0; 1� is
required for the matrix Γ to be positive semidefinite.
Without loss of generality, we have assumed γij to be real
and positive. We prove that for this model, superradiant
burst cannot occur for any t > 0, for any arbitrary initial
state and for any Hamiltonian coupling Jij. To determine
the physically valid regime, we impose the condition that Γ
is positive semidefinite. Notice that the decoherence matrix
can be expressed as Γ ¼ IN þ γA, where IN is the N × N
identity matrix, and A is the adjacency matrix of a n × n
grid graph. Using the fact that the grid graph is the
Cartesian product of D path graphs Pn□ � � �□Pn, it can
be shown that the smallest eigenvalue of Γ is [64]

Γmin ¼ 1 − 2Dγ cos

�
π

N1=D þ 1

�
; ð5Þ

which gives the physically valid regime as γ ≤ γp,

γp ¼
�
2D cos

�
π

N1=D þ 1

��
−1
: ð6Þ

This rate reduces to γp ¼ 1=ð2DÞ in the N → ∞ limit, or
when imposing periodic boundary conditions for a finite N.
This can be regarded as coming from the coordination
number for each emitter, which approaches 2D in the
infinite-array limit. We now state our main result.
Theorem 1.—Let Γ be the decoherence matrix for a

nearest-neighbor interaction model, with γij ¼ δij þ γδhiji,
where γ ∈ ½0; 1�, and δhiji ¼ 1 if the emitters indexed by i
and j are nearest neighbor on the D-dimensional regular
lattice, and 0 otherwise. For γ ≤ ð2DÞ−1, the emission rate
Rρ is maximized by the fully excited state jei⊗N with
Rρ ¼ N.
We provide a sketch of the proof here, while the details

can be found in Supplemental Material [64]. By expressing
HΓ in the product-state basis and using the Gershgorin
circle theorem [75], we can upper bound maxtRðtÞ ≤ N in
the physically valid regime γ < 1=ð2DÞ. This is saturated
by N independent emitters in the fully excited state, with
eigenvalue N. Hence, Theorem 1 implies that superradiant
burst is impossible at all times. To gain a deeper physical

understanding, we evaluate the superradiant regime γ > γs
for the fully excited initial state, characterized by the
transition at _Rð0Þ ¼ 0, for which [64]

γs ¼ ½2Dð1 − N−1=DÞ�−1=2: ð7Þ

For all 2 < N1=D < ∞, it can be shown that γp < γ2s and
therefore γp < γs. Hence, the superradiant regime does not
overlap with the physically valid regime. Generalization to
the hyperrectangle configuration where the number of sites
along each dimension can be different is straightforward,
and the same conclusion is obtained [64]. While our
analysis of the NN model is valid for any initial state,
we consider a fully inverted initial state for the next two
sections: the analysis of next-nearest neighbor and expo-
nentially decaying interactions.
Next-nearest neighbor coupling.—Including the NNN

interactions, we now show that a superradiant burst is
indeed possible. For simplicity, let us consider a 1D ring of
N emitters with periodic boundary conditions. In this
configuration, Γ turns out to be a circulant matrix with
the first column given by ð1; γ1; γ2; 0;…; 0; γ2; γ1ÞT with
0 ≤ fγ1; γ2g ≤ 1. The subsequent columns are simply
cyclic permutations of the first column. Diagonalizing Γ
exactly yields the eigenvalues

Γν ¼ 1þ 2γ1 cos

�
2πν

N

�
þ 2γ2 cos

�
4πν

N

�
ð8Þ

for ν ¼ 0;…; N − 1. In the infinite-array limit N → ∞, the
eigenvalues form a continuous band in momentum space
ΓðkÞ ¼ 1þ 2γ1 cosðkÞ þ 2γ2 cosð2kÞ, with the dimension-
less wave vector 0 ≤ k < 2π. At the turning points where
∂kΓ ¼ 0, we have: Γð0Þ¼1þ2ðγ1þγ2Þwhich is always po-
sitive, ΓðπÞ¼1–2ðγ1−γ2Þ and Γðk�Þ¼1−ðγ21þ8γ22Þ=4γ2
where cos k� ¼ −γ1=4γ2. Demanding that ΓðkÞ > 0 thus
produces the physically valid regimes: (I) γ1 − γ2 ≤ 1

2
,

γ1 > 4γ2 and (II) γ21 þ 8γ22 ≤ 4γ2, γ1 ≤ 4γ2, together with
the bounds γ1; γ2 ∈ ½0; 1� (blue regions in Fig. 2). The
superradiant condition can be obtain from _Rð0Þ ¼ 0 as
(III) γ21 þ γ22 > 1=2.
There is an overlap region with the physically valid

regime, as shown by the red shaded region in Fig. 2. For
certain values of γ1, γ2, superradiant burst can occur.
Moreover, the fact that this overlap region requires
γ2 > ð4 − ffiffiffi

2
p Þ=14 ≈ 0.185 is consistent with our previous

conclusion of no superradiance using only NN coupling
(i.e., γ2 ¼ 0). Superradiance is also forbidden by having
only NNN coupling (i.e., γ1 ¼ 0). Results from numerical
simulations of N ¼ 9 emitters are presented in Fig. 3,
which show that the NNN model has a small superradiant
burst compared to the Dicke model, and no superradiance
for NN models. We remark that this superradiance arises
from destructive interference leading to dark decay
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channels with suppressed decay rates Γν ≈ 0 while the
dominant decay channel has a rate that does not scale with
N. This mechanism is generally true for all models with a
sharp interaction cutoff beyond a certain range.
Threshold interaction range for a superradiant burst.—

In many previous works [16,19,20,22,24], Γ is obtained
from a realistic modeling of the atomic interactions
mediated by electromagnetic vacuum using the appropriate
Green’s function. Our goal here, however, is to shed light

on the essential physics of superradiance by considering
analytically tractable models that still exhibit interesting
behaviors. Consider an interaction which decays exponen-
tially with the separation rij between the emitters:
γij ∝ e−κrij , where κ controls the decay of the interaction
strength with emitter separation. We set the diagonal
elements of Γ as 1, and define γ ≡ e−κd with d the emitter
NN separation such that γij ¼ γj  xi−  xjj, where  xi ∈ ZD is the
position vector of the ith lattice site. Physically, this model
describes exponentially decaying interactions between the
atoms. For a sufficiently large N in D dimensions such that
γN ≪ 1, _Rð0Þ is approximately given by the asymptotic
form

_Rð0Þ ∼ N

�
2Dγ2

1 − γ2
− 1þ C

ð− ln γÞD
�

ð9Þ

for some constant C [64]. Interestingly, this suggests that
the critical coupling parameter γs for superradiance is
independent of N as N → ∞ for all dimension, agreeing
with the numerical results shown in Fig. 4. This is in stark
contrast with previous results (primarily using long-range
power-law interactions such as γij ∝ 1=rij), which predict
that the critical emitter separation increases with N in 2D
and 3D arrays [19,24]. Figure 4 also shows that for large N,
γs ∼D−0.793 exhibits a power-law scaling with the spatial
dimension. This is intuitive as the average coupling per
emitter increases with D which in turn lowers the critical
coupling required for superradiance [24]. The N independ-
ence of γs for our short-range exponential model can be
physically interpreted as the threshold interaction range
where the synchronization effects due to collective inter-
actions scales similarly with N as the local decoherence,
such that adding more emitters does not affect the onset of

(a) (b)

FIG. 3. Differential emission rate ΔR ¼ RðtÞ=Rð0Þ − 1 against time (in units of emitter lifetime), for N ¼ 9 emitters. ΔR > 0
indicates superradiance. (a) Dynamical behavior of ΔR for the Dicke model (red), Next-nearest neighbor 1D ring (NNN, orange),
nearest-neighbor 1D ring (NN, blue), and nearest-neighbor 2D square (NN, green) [see labels in (b)]. The coupling parameters are
chosen to maximize gð2Þð0Þ. (b) Short-time behavior obtained by zooming into the gray region of (a). Only the Dicke and the next-
nearest neighbor models exhibit superradiance. The curve for the Dicke model is scaled down by a factor of 10 for visualization
purposes.

FIG. 2. Region of superradiant burst in the γ2-γ1 plane. The
physically valid (superradiant) regime is contained within the
blue (red) boundary lines, with the conditions stated in the main
text. Blue shaded region: physically valid, but not superradiant.
Regions I, II, and III are defined in the main text. Red shaded
region: physically valid with superradiant burst. Gray shaded
region: unphysical regime. The red shaded region requires a
minimum of γ2 ≈ 0.185. All shaded regions here are obtained
from numerical calculations for N ¼ 100, which agree very well
with the analytical results obtained in the infinite-array limit.
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the superradiant regime. For even shorter-range interactions
such as the NN model, the local decoherence dominates,
which prevents superradiance. Longer-range models such
as power-law interactions favor synchronization and thus
enhance superradiance as N increases.
Scaling of the peak emission rate with number of

emitters.—Equation (4) shows that the problem of calcu-
lating the emission rate is equivalent to finding the average
energy of a state under the HamiltonianHΓ. This enables us
to find upper bounds on the scaling of the peak emission
rate with N, for arbitrary geometries and types of inter-
actions. As we have shown before in Theorem 1, the
maximum emission rate for arbitrary NN models is Nγ0.
For 1D arrays with an exponentially decaying interaction,
the upper bound on the emission rate is found to scale as
OðNÞ for γ < 1 [64]. This bound increases to OðN logNÞ
for 1D arrays with a power-law interaction of the form 1=r
[64]. This latter scaling is consistent with the numerical
results obtained in the literature which, in contrast to our
bound, have only been obtained for relatively small systems
and under certain approximations [20,22,24]. While find-
ing exact bounds may be exponentially hard, one could in
principle upper-bound other models, as well as tighten the
currently obtained bounds.
Discussion.—In this Letter, we addressed the fundamen-

tal problem of the minimal interaction range required for
superradiance. Crucially, we proved that nearest-neighbor
interactions cannot induce emitter correlations faster that
the decoherence, resulting in the impossibility of super-
radiance. As shown, the minimal interaction range is
therefore next-nearest neighbor, and longer-range inter-
actions generally lead to stronger superradiance. We also
found that the short-range exponential interaction marks the
threshold interaction range in all dimensions where the
emitter correlations and local decoherence scale similarly

with the number of emitters such that the critical coupling
required for superradiant burst becomes independent of
the number of emitters, in stark contrast with previous
conclusions using longer-range power-law interactions. We
stress that, apart from the nearest-neighbor model, our
classification of a superradiant burst is, strictly speaking,
only valid at short times up toO½ðγ0tÞ2� [if  Rð0Þ < 0 which
is true for the models considered here [64] ], where the
dynamics of the fully excited emitters do not depend on the
Hamiltonian. This can be physically justified for later times
using second-order mean field theory [64].
The techniques used in this work have broader applica-

tions in determining the theoretical bounds for the emission
rate of different models, thereby exposing the ultimate
limitations of superradiance beyond the NNmodel. Beyond
providing fundamental insights to the physics of super-
radiance, our results can also motivate the design of atomic
lattices in engineered baths such as nanophotonic crystals
with engineered interactions or superconducting resonator
arrays for qubits. Moreover, hypercube geometries should
be within reach of state-of-the-art quantum simulators,
given the recent advances in generating arbitrary networks
in cavity [76] and circuit [77] quantum electrodynamics
platforms.
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