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4 ABSTRACT: Crosslinking in polymer networks leads to intrinsic structural inhomogeneities that result in brittle materials.
s Replacing fixed covalent crosslinks with mobile ones in mechanically interlocked polymers (MIPs), such as in slide-ring networks
6 (SRNs) in which interlocked crosslinks are formed when polymer chains are threaded through crosslinked rings, can lead to tougher,
7 more robust networks. An alternative class of MIPs is the polycatenane network (PCN), in which the covalent crosslinks are
s replaced with interlocked rings that introduce the unusual catenane’s mobility elements (elongation, rotation, and twisting) as
9 connections between polymer chains. A slide-ring polycatenane network (SR-PCN), with doubly threaded rings embedded as
o crosslinks in a covalent network, combines the mobility features of both the SRNs and PCNs, where the catenated ring crosslinks can
1 slide along the polymer backbone between the two limits of network bonding (covalent and interlocked). This work explores using a
2 metal ion-templated doubly threaded pseudo[3]rotaxane (P3R) crosslinker, combined with a covalent crosslinker and a chain
3 extender, to access such networks. A catalyst-free nitrile-oxide/alkyne cycloaddition polymerization was used to vary the ratio of P3R
4 and covalent crosslinker to yield a series of SR-PCNs that vary in the amount of interlocked crosslinking units. Studies on their
s mechanical properties show that metal ions fix the rings in the network, leading to similar behavior as the covalent PEG gels.
6 Removal of the metal ion frees the rings resulting in a high-frequency transition attributed to the additional relaxation of polymer
7 chains through the catenated rings while also increasing the rate of poroelastic draining at longer timescales.

s l INTRODUCTION

Interpenetrating networks are one class of mechanically 37

19 The mobility and subsequent relaxations of polymer chains
20 between crosslinks in networks often dictate many of the
21 material’s properties, such as modulus, elasticity, creep rate,
22 stress relaxation, and impact mitigation.l_3 However, kinetic
23 limitations during network formation introduce topological
24 defects, such as loops and dangling ends, reducing the number
25 of elastically effective chains and producing a weaker and softer
26 material. In addition, inhomogeneous distributions of covalent
27 crosslinks lead to stress localization and brittle behavior
28 (Figure 1a).””* Over the years, many different approaches have
29 been taken to improve the mechanical behavior and energy
30 dissipation of polymer networks and gels.”>® A structural
31 approach to this is a double-network gel (a class of
3 interpenetrating networks),” which exhibits impressive en-
33 hancements in mechanical properties. It has been shown that
34 the toughening mechanism in such gels relies on the different
35 properties of the two or more networks that are partially
36 interlocked on a molecular scale but not covalently bonded.

—

0

© XXXX American Chemical Society

7 ACS Publications

interlocked polymers (MIPs) ,% which consist of non-covalently 3g
bonded components held together by mechanical bonds. 39
Another class of MIPs is the slide-ring network (SRN), a 40
subset of polyrotaxane® materials where polymer threaded 41
rings are the crosslinking units within the polymer network. 4
One method of accessing SRNs is by covalently crosslinking 43
the rings on polyrotaxanes to form mobile figure-of-eight 44
crosslinks (Figure 1b).”7"° The sliding motion of the rings 45
along the polymer chain allows these mobile crosslinks to 46
adjust during applied loads, which can result in a range of 47
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a) Covalent Polymer b) Slide-Ring <) Poly[2]catenane d) Slide-Ring Polycatenane
Networks Networks (SRNs) Networks (PCNs) Networks (SR-PCNs)

Covalent Crosslinks:
Fixed (No Rings)

Figure-of-Eight Crosslinks:
Singly-Threaded Rings

Catenane Crosslinks:
Interlocked Rings

Ditopic Crosslinks:
Doubly-Threaded Rings

Figure 1. Schematics of covalent and selected MIP networks. (a) Fixed crosslinking in the covalent polymer network leads to an inhomogeneous
distribution of covalent crosslinks (purple), where the shortest chains break under deformation. (b) A SRN comprised figure-of-eight crosslinks
(orange rings) and singly threaded rings (pink) that can slide along polymer chains (arrows) but cannot dethread in the presence of stoppers
(green). (c) A PCN with [2]catenane crosslinks that impart mobility elements, such as elongation, rotation, and twisting (arrows), to the networks.
(d) SR-PCNs consisting of doubly threaded rings (red) embedded into covalent gels. The catenated crosslink, comprising the red ring and the
(highlighted) blue chains in the network, can rotate, twist, and slide along chains (arrows) between covalent crosslinks.

48 interesting mechanical properties that include improved
49 ductility and fracture behavior,'”"® frequency-dependent
50 relaxations,'' ™" isotropic chain deformation during elonga-
s1 tion,"” and suppressed stretch-induced swelling.”® The most
s2 studied class of such materials are cyclodextrin (CD)-based
s3 SRNs, and these materials have been explored in applications
s4 such as vibration- and sound-dampening insulation,”" super-
ss absorbent materials,””> elastic binders for Li-ion battery
s6 anodes,” coatings for anti-fouling applications,””* and a
s7 wide selection of self-healing”®™** and stimuli-responsive
s8 systems.”””>*

59 Polycatenane networks (PCNs),***° polymers that contain
60 interlocked rings, are a less developed class of MIP networks
61 that utilize mechanical bonding between two or more
62 interlocked rings (macrocycles) within the polymer architec-
63 ture.’ The presence of elastically active concatenated rings in
64 elastomers without covalent crosslinks®” provides the basis for
6s an elastic response, suggesting that incorporating cyclic
66 components can influence material properties through the
67 motion of interlocked rings in the network. Figure lc is a
68 schematic of a poly[2]catenane network in which the
69 crosslinking unit is a [2]catenane (two interlocked rings)
70 moiety.”>*® The presence of these [2]catenane crosslinks
71 imbues the networks with increased mobility derived from the
72 elongation, rotation, and twisting (arrows, Figure 1c) of the
73 interlocked rings relative to the same network without the
74 catenane moieties. As with the SRNs, the mobility elements
75 introduced by the nature of the interlocked architecture impact
76 the properties of the network. For example, controlling the
77 mobility of the interlocked crosslinks in the poly[2]catenane
78 networks through metallation/demetallation®® or intercompo-
79 nent hydrogen bonding® leads to mechanically adaptive
80 networks that can reversibly switch between rigid and flexible
81 states. [2]Catenanes can also serve as mechanical protecting
82 groups to divert tensional forces away from mechanically active
83 functional groups in actuating polymers.”®

84 Of course, SRNs and PCNs have very different types of
8s mobility elements. The most apparent difference between the
86 two is the translational motion of the ring along the polymer
87 backbone in the SRNs (the magnitude of which depends on
88 the total length of the polymer chain and the number of rings
89 threaded onto the polymer).”** Conceptually, combining

—
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elements of these two types of networks within a single 9o
crosslink moiety produces a different class of MIP where o
doubly threaded ring crosslinks can slide along the network 9
backbone as well as rotate and twist (i.e., as is depicted in o3
Figure 1d). Furthermore, changing the crosslink topology 94
should influence the coupled network relaxations between ring s
mobility and chain diffusion®” and potentially impact other o
properties such as solvent transport through the network 97
during deformation. 98

MIP networks that only contain doubly threaded rings are 99
less explored as synthetic access to such materials is not well 100
developed."" Early studies of SRNs with doubly threaded 101
rotaxane moieties as the crosslinker leveraged y-CD as the ring,
but the cavity size of CDs and the solvent interactions that
drive complex formation limit the variety of polymers available
as the threading component.”™* Previous attempts with
template-directed assembly of doubly threaded rings have
shown that low-quality gels form when the rings remain bound
to the chain and ring dethreading limits practical utility. Rather
than inserting a stopper after polymerization to prevent
dethreading, this work shows doubly threaded rings are 110
maintained in a network by incorporating a tetrafunctional 111
pseudo[3]rotaxane (P3R) crosslinker into the synthesis of a 112
crosslinked PEG-based network. A key aspect here is that a 113
percolating covalent network is maintained to prevent/limit 114
dethreading, and a goal of this work was to examine if the 115
replacement of a small percentage (<30%) of the covalent 116
crosslinks with interlocked crosslinks influences the mechanical 117
properties of these networks. Such networks, called here slide- 118
ring polycatenane networks (SR-PCNs, Figure 1d), were 119
targeted by copolymerizing varying amounts of a tetrafunc- 120
tional P3R with a tetrafunctional PEG-based crosslinker and an 121
appropriate ditopic monomer. The result is a gel with large 122
catenated crosslinks, where one ring component is the doubly 123
threaded ring, and the other ring components are formed by 124
the polymer network (blue chains in Figure 1d). The 125
incorporation of these interlocked moieties into a covalent 126
network introduces a new frequency-dependent relaxation into 127
the PEG gel, while also drastically increasing the rate of 12s
129

102
103
104
105
106
107
108
109

poroelastic draining.
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130 l RESULTS AND DISCUSSION

131 Synthesis of SR-PCNs. In targeting the SR-PCNs, a
132 doubly threaded pseudo[3]rotaxane (P3R) moiety that is
133 stable under the network reaction conditions is required. Metal
134 ion templating is a common route to interlocked molecules,
135 and many different ligands and metal ion combinations have
136 been used to form interlocked compounds under different
137 reaction conditions.*>™*’ Recently, the terdentate 2,6-bis(N-
138 alkyl-benzimidazolyl)pyridine (Bip)**** ligand and its deriva-
139 tives have been used to build doubly threaded mechanically
140 interlocked compounds, such as p01y|:n:|catenanesso*52 and
141 [3]rotaxanes.>® Building on this prior work, the Bip-containing
142 ditopic macrocycle 1 and bis-alkyne thread component 2 were
143 synthesized from their corresponding bis-phenolic Bip
144 derivatives*** via Williamson ether synthesis (Schemes S1
145 and S2). The ditopic macrocycle incorporates two Bip ligands
146 joined by rigid naphthalene linkers that prevent both ligands in
147 the ring from binding to the same Zn** ion.>® As such, the
148 most thermodynamically favorable way for these ligands to
149 form 2:1 Bip/metal complexes is by forming the doubly
150 threaded P3R complex [1:2,:Zn(II),, Figure 2a]. A solution of
151 Zn(NTHf,), is titrated into a 2:1 mixture of the ditopic
152 macrocycle 1 and bis-alkyne thread 2 and monitored via "H-
153 NMR to achieve the stoichiometry required for the P3R
154 formation (Scheme S3 and Figure S1). The template-directed
155 assembly of the desired P3R complex (with no observable
156 pseudo[2]rotaxane) was confirmed by the downfield shift of
157 the aromatic Bip protons on 1 and 2 in the NMR spectrum
158 after adding 2 equiv of Zn** (Figure S2).

159 With the P3R complex as a suitable doubly threaded
160 crosslinking moiety, the next step was to find reaction
161 conditions that minimized its dethreading during network
162 formation while maximizing the incorporation of macrocycle 1
163 into the network. The catalyst-free nitrile-oxide/alkyne
164 click™™>® reaction was chosen as the network-forming reaction
165 because it should allow access to the SR-PCN gels by simply
166 mixing the components in solution. This click reaction has
167 been shown by Takata to be useful in the synthesis of low-
168 molecular-weight rotaxanes,””*’ main-chain poly[2]rotaxanes,
169 and poly[3]rotaxanes.”’ Reaction of the tetra-alkyne end-
170 capped 4-arm poly(ethylene glycol) (4-arm PEG-alkyne) (4,
171 M, = 5 kg mol™") and the difunctional nitrile-oxide
172 monomer® 3 yields the covalent gel 596 with a high gel
173 fraction (GF, determined gravimetrically, eq S1)** of >96%
174 (number subscript refers to the GF of the covalent gel)

=

—
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confirming the overall suitability of the nitrile-oxide/alkyne
click reaction. A series of SR-PCNs that vary in the amount of
catenane crosslinks was accessed by reacting the difunctional
nitrile-oxide monomer 3 with different ratios of the P3R
crosslinker [1:2,:Zn(II),] and 4 (keeping the [nitrile-oxide]/
[alkyne] ratio 1:1) (Figure 2a).

A two-step, one-pot reaction was utilized to access the SR-
PCNs (Figure 2a and Scheme S4). The P3R crosslinker
[1:2,:Zn(II),] was initially reacted with a large excess of a
difunctional nitrile-oxide monomer 3 for 4 h (the total amount
of 3 is kept constant regardless of P3R crosslinker content)

186 before sufficient 4-arm PEG-alkyne crosslinker (4) was added
187 to balance the stoichiometric ratio between alkyne and nitrile-
1ss oxide. The resulting SR-PCNs (6y,y) were prepared with
189 varying amounts of P3R crosslinker, where X and Y are the
190 molar percentage of 4 and 1:2,:Zn(II), crosslinkers used in
191 the network synthesis, respectively. The gels were washed by
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Figure 2. (a) Two-step reaction of tetra-alkyne pseudo[3]rotaxane
crosslinker 1:2,:Zn(II), (Y = 0-30 mol %) with nitrile-oxide
monomer 3 and a 4-arm PEG-alkyne 4 (X = 100—Y mol %) to yield
the metallated gels (6y/yy) with varying amounts of fixed and
metallated ring crosslinks. (b) Treating 6y/yy with a dilute solution of
base (tetrabutylammonium hydroxide, TBAOH) removes Zn®* ions
from the network, causing an observable change in color under visible
and 365 nm UV light (6g9,20p and 6gg/29p pictured, S mm scale bar).

heating in chloroform (~S mL/mg of dry sample) for 4 h to 192
remove any low-molecular-weight components. After washing, 193
the metallated SR-PCNs (65x,yy) (Figure 2b) have a light 194
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Figure 3. (a) Schematic of a covalent gel (Sgp) and demetallated SR-PCNs (6y,yp) with an increasing number of doubly threaded rings (Y = 0—30
mol %). (b) The average number (moles) of macrocycle (MC) in the metallated (Xyc mer diamonds; 6gq;10m green, 65o/20m blue, 679/30m dark red),
and demetallated (Xyicgemey SQUATes; Ggo/1op light green, 6gq/5p light blue, and 6,9/30p pink) soluble fractions determined from 'H NMR
experiments and eq S3. The total number of MC in the soluble fraction (Xyc 1) is plotted in red (circles). (c) The percent of MC crosslinks in
the network, calculated from eq S7, plotted against the percent of total crosslinker in the feed that is P3R (100 X [1:2,:Zn(II),]/([1:2,:Zn(II),] +
[4])) content. The ideal percent of MC crosslinks (solid red line), assuming 100% incorporation based on the crosslinker feed ratio, is plotted for

comparison.

195 yellow color, and exhibit a yellow fluorescence under 365 nm
196 UV light originating from the Bip/ Zn** complexes51 and
197 qualitatively confirms the successful incorporation of the P3R
198 crosslinker into the network. Base treatment of the metallated
199 SR-PCNss, utilizing a dilute solution of tetrabutylammonium
200 hydroxide (TBAOH), is accompanied by a shift in the UV—vis
201 spectra (Figure S3) and a change in the color of the material
202 under visible and UV light (Figure 2b). The demetallated gels
203 (6x/yp) were washed repeatedly to ensure the complete
204 extraction of metal salts and any soluble fractions (including

p=t

208 rings) not connected to the network structure.

206 Controlling the monomer composition in this reaction
207 provided a series of SR-PCNs (69q/10) 650/20) 2a0d 659/30) With
208 an increasing number of doubly threaded rings (Y = 0—30 mol
209 %; Figure 3a). '"H NMR studies were (see the Supporting
210 Information for experimental details) used to determine the
211 amount of macrocycle (MC) retained in the network by
212 measuring the number (moles) of MC in the demetallated
213 soluble fractions (Figures S4 and SS). Perhaps not surprisingly,
214 the total amount of free macrocycle 1 obtained in the soluble
215 fraction, Xy,c (mol) calculated from eq S3, increases with the
216 amount of P3R crosslinker used in the synthesis (Figure 3b,
217 red circles). However, importantly for this study, the percent of
218 MC (1) crosslinks that remain in the SR-PCN (calculated

from eq S7) increases with the increase in fraction of P3R 219
crosslinker used in the polymerization (Figure 3c). 220

The successful incorporation of the rings is further 221
confirmed by thermal gravimetric analysis (TGA) studies of 222
the dry demetallated SR-PCNs, which show an increase in the 223
residual mass as the amount of macrocycle 1 is increased in the 224
synthesis (Figure S6), consistent with the increased incorpo- 225
ration of more aromatic rings in these networks. Furthermore, 226
differential scanning calorimetry (DSC) thermograms of both 227
the metallated and demetallated (dry) SR-PCNs reveal a 228
reduction in the PEG crystallinity as the relative amount of 4- 229
arm PEG-alkyne crosslinker is reduced with the addition of 230
more P3R crosslinker (Table S3). While these data confirm the 231
incorporation of the rings into the network it is not able to 232
confirm that all the rings are doubly threaded. It is certainly 233
possible that a small percentage of these rings are singly 234
threaded, especially in gels synthesized with a higher amount of 235
P3R. 236

It is important to note that the introduction of the P3R 237
crosslinker into the synthesis results in a drop in the overall 233
SR-PCN gel fraction (GF, wt %, eq S1) based on the weight of 239
the (dry) demetallated SR-PCN after washing and the original 240
weight of the (dry) metallated SR-PCN after gelation (Figure 241
S8, squares). Therefore, in addition to the covalent gel So4 242
(with a GF of 96%) two covalent networks (Sgp) were 243
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prepared at different reaction times which resulted in gel
fractions of 86% (546, 24 h) and 74% (5,4, 12 h) to provide
GFs similar to 6x/yy and 6x,yp for better comparison (Figure
S8, purple circles). Swelling studies show that the average
weight-based swelling ratios for 6y,yy and 6y (eq $10)** in
N-methyl-2-pyrrolidone (NMP) are relatively similar to the
covalent control S,, (Figure S10). Therefore, all gels were
swollen to approximately the same extent over 24 h before
mechanical testing.

Relationship between Macrocycle Content and SR-
PCN Mechanical Properties. With a series of SR-PCNs in
hand, the next goal was to explore the influence of the ring
crosslinks on the gels’ mechanical properties. The metallated
gels were included in this investigation to determine if
replacing a covalent crosslink with a ring crosslink influences
the material properties while in the bound state, and to help
separate and aid the comparison of the demetallated SR-PCNs
to covalent controls. To this end, compressive stress relaxation
experiments were carried out on the NMP swollen SR-PCNs
(690,100 6307200 20d 659/30n) and the two covalent networks
with comparable GF (Sg¢ and 5-,). The long relaxation time of
the swollen covalent gels, measured under compression,
generally corresponds to the poroelastic relaxation of the
solvent draining from the network.””®” The rate of this
draining is related to the viscosity of the fluid and the average
mesh size of the network, defined as the linear distance
between two adjacent crosslinks.”*®” Generally, in a system
with fixed crosslinks, there is a distribution of mesh sizes that
dictates fluid draining, and the corresponding distribution of
relaxation times can be described with a stretched exponential
function (eq 1)7°

E(t)/E, = exp(—(t/7)") 6y

where E(t) is the modulus at time ¢, E, is the initial modulus at
time zero, E(t = 0)/E, = 1 after normalization, 7 is the
relaxation time, and §§ (0 < §# < 1) is the stretching parameter
that captures a distribution in relaxation time (Table S4). In
both the covalent controls Sgg and metallated SR-PCNs 6y/yy,
the stretched exponential fits well (dashed lines, Figure 4a),
indicating that a single relaxation distribution governs the
poroelastic relaxation process in these gels. By normalizing the
relaxation time (taken when E(t) = 1/e) of the catenated gels
to covalent controls of equivalent GF (Figure S11), it is
possible to estimate the contribution of the MC content to this
relaxation time. Incorporating the metallated ring crosslinks
substantially decreases the relaxation time relative to the
equivalent covalent gel of similar GF, increasing solvent
draining.

After demetallating these three SR-PCNs with base to yield
690/100) 080/20p) and 659,30p, there is a substantial decrease in
the long relaxation time of the gels, with a decrease of about an
order of magnitude for the gels with the highest MC content
(Figure 4b,c). The relaxation times of the SR-PCNs, when
normalized by the relaxation time of a covalent gel with
equivalent GF (Figure S11), are much smaller than one,
indicating there are other contributions to the decrease in
relaxation time beyond GF. A possible explanation for this
effect is that the incorporation of the mobile crosslinks results
in an adaptable mesh size as the rings can slide to
accommodate the stress on the network, facilitating faster
flow of the solvent. Another indication of the ring crosslink
mobility in the network is the failure of a single stretched
exponential to fully capture the poroelastic relaxation time.
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Figure 4. (a) Overlay of the normalized stress relaxation moduli,
E(t)/E,, for the metallated SR-PCNs (69,10p green, 6go/20m blue, and
60/30m red) swollen in NMP (including the covalent controls: Sgq
dark purple and S,, light purple). (b) E(t)/E, overlay for the
demetallated SR-PCNs (649/10p light green, 6g9/5p light blue, and
6,0/30p pink), highlighting the failure of the stretched exponential (eq
1, dashed lines) to capture the changes in the relaxation behavior. The
dashed line at E(t) = 1/e determined the relaxation time, 7 (s). (c)
Comparison of 7 (on a log scale) for all gels (bars) shows a significant
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Figure 4. continued

decrease in estimated 7 for 6y,yy, irrespective of the decrease in GF
(symbols, calculated from eq S1).

While a single stretched exponential function can capture a
single relaxation event with a distribution of times, the dynamic
nature of the mesh size distributions and the mobility of the
rings themselves likely impact the poroelastic relaxation times,
suggesting convolution of relaxation phenomena in the
network. Previous quasi-elastic’’ and inelastic’” neutron
scattering studies on CD-SRNs suggest that when the rings
are well dispersed, the timescale for ring sliding is slow and on
the order of the poroelastic relaxation seen in this system. An
additive model (eq S11) might be expected to fit if the
measurement of these relaxations do not interact, usually when
the relaxation timescale is significantly different. Using this
model, leaving the relaxation times unbound and the stretching
parameters bound between 0 and 1, gives a better fit to the
experimental data; however, it still fails to accurately capture
the behavior of the curve (Figure S12). If the relaxation events
interact (e.g., through energy transfer), then a product model
could better capture the relaxation times.”> The simplest way
to model this interaction would be the product of the two
exponential decays from the same initial stress (eq S12). This
fit was performed with the same parameter bounds as the
additive model (Figure S12) but also failed to capture the
stress relaxation of the of PC-SRNs. The interaction of ring
sliding with poroelastic draining is clearly more complex than
these three simple models can account for.

To further probe the properties of these SR-PCNs, small-
amplitude oscillatory compression (SAOC) studies were
performed to explore the frequency-dependent mechanical
response as well as the faster relaxation process. Figure 5
summarizes the frequency dependence of the storage modulus
E’ and tan 0 of metallated and demetallated SR-PCNs swollen
in NMP (loss modulus E” is provided in Figure S13). The
storage moduli of the covalent control and metallated samples
display minimal frequency dependence above 1 rad/s. While
below this frequency, a typical poroelastic behavior is observed
wherein the modulus decreases with the frequency because of
solvent draining from the network”* (Figure Sa).

Demetallation resulted in an additional higher-frequency
relaxation observed as an increase in the storage modulus with
frequency (Figure Sb) and peak in the tan § (Figures Sc and
S14). Using the frequency at the peak intensity of the tan §, a
characteristic relaxation time of 50 and 16 ms was estimated
for the 64g,,0p and 6gy,59p, respectively. While the peak of the
tan ¢ for the 6,9,30p is beyond the limits of the instrument, the
onset of a relaxation is observed at the higher frequencies and
suggests this sample would continue the trend of a decreasing
characteristic relaxation time. Rationalized as a change in
network mobility, this faster relaxation occurs as mobile ring
crosslinks replace the covalent crosslinks. Interestingly, as this
ring relaxation is traversed from low to high frequencies, the
sliding appears to become restrained and behaves similarly to
an entrapped entanglement resulting in a higher concentration
of elastically effective chains in the network and a higher
modulus than the covalent control of similar GF.”® Similar to
the stress relaxation studies, as the ring content increases, a
number of complex catenated structures can form and
contribute to the relaxation behavior in convoluted ways.
However, the data suggest that the slower relaxation is likely
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Figure 5. Small-amplitude oscillatory compression (SAOC) fre-
quency sweeps for (a) covalent (Sg, dark purple; S,,, light purple),
metallated (diamonds) SR-PCNs (6g9/10p, green; 6go/0m blue;
65030 red), and (b) demetallated (squares) SR-PCNs (6o9,10p,
light green; 64¢,50p, light blue; and 6,,30p, pink) swollen in NMP. (c)
Tan 6 vs angular frequency for covalent and demetallated NMP gels.
Samples were preloaded with 0.025 N to ensure uniform contact
between the sample and plates. Frequency sweeps were performed
from 1000 to 0.01 rad/s with a strain amplitude of 1%.
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364 related to ring diffusion along the chain, while the faster
365 relaxation is related to the reptation-like diffusion of the chain
366 through the ring.'>”"’® Harnessing the variety of relaxations
367 available in SR-PCNs could prove valuable in a range of
368 advanced applications, such as impact mitigation.

360 l CONCLUSIONS

370 Catalyst-free NOAC polymerization of a tetra-alkyne
371 pseudo[3]rotaxane and a tetra-alkyne covalent crosslinker
372 with a difunctional nitrile-oxide monomer can be used to
373 synthesize SR-PCNs with varying amounts of interlocked and
374 covalent crosslinks. Incorporating metallated ring crosslinks
375 into a PEG gel hastens the slow poroelastic relaxation behavior
376 seen in the stress relaxation studies. At higher strain rates, the
377 metallated gel behaves similarly to the covalent controls,
378 indicating that the metallated rings act as fixed crosslinks at fast
379 timescales. Demetallation frees the catenated rings to move in
380 the system providing new avenues of mechanical relaxation
381 showing similar behavior to a glass transition in the storage
382 modulus and tan O, while the time for poroelastic draining
383 rapidly decreases. Copolymerization of doubly threaded
384 pseudo[3]rotaxanes and covalent crosslinkers offers a simple
385 way to include complex catenane moieties into a network
386 structure and provides a versatile platform for deeper
387 investigations of the structure—property relationships [such
3ss as the effect of (i) molecular weight between crosslinks, (ii)
389 sterics of thread component, (iii) ring size, (iv) nature of the
390 solvent, (v) (partial) remetallation of the gels, and (vi)
391 addition of different metal ions, to name few] in these SR-
392 PCNE.
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Bl ABBREVIATIONS 461
SRN slide-ring network 462
MIpP mechanically interlocked polymer 463
PCN polycatenane network 464
SR-PCN slide-ring polycatenane network 465
P3R pseudo[3]rotaxane 466
PEG poly(ethylene glycol) 467
CD cyclodextrin 468
NOAC  nitrile-oxide/alkyne cycloaddition 469
GF gel fraction 470
NMP  N-methyl-2-pyrrolidone 471
SAOC  small-amplitude oscillatory compression 473
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