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A B S T R A C T

A substantial fraction of the time that computational modellers dedicate to developing their models is actually
spent trouble-shooting and debugging their code. However, how this process unfolds is seldom spoken about,
maybe because it is hard to articulate as it relies mostly on the mental catalogues we have built with the
experience of past failures. To help newcomers to the field of material modelling, here we attempt to fill this
gap and provide a perspective on how to identify and fix mistakes in computational solid mechanics models.

To this aim, we describe the components that make up such a model and then identify possible sources of
errors. In practice, finding mistakes is often better done by considering the symptoms of what is going wrong.
As a consequence, we provide strategies to narrow down where in the model the problem may be, based on
observation and a catalogue of frequent causes of observed errors. In a final section, we also discuss how
one-time bug-free models can be kept bug-free in view of the fact that computational models are typically
under continual development.

We hope that this collection of approaches and suggestions serves as a ‘‘road map’’ to find and fix mistakes
in computational models, and more importantly, keep the problems solved so that modellers can enjoy the
beauty of material modelling and simulation.

1. Introduction

Scientists often live for those few, short moments where everything
comes together in one table or graph that contains the fruits of weeks of
work. The time between these moments is typically filled with build-
ing things (experiments, measurement devices, software) and endless
sessions of trouble-shooting and debugging.

Yet, we rarely talk about these often frustrating periods in the lives
of scientists, or the lessons we could learn from them. In part, this is
because finding the causes of why what we built is not working is as
much an art as it is a science: A lot of it relies on mental models,
experience we have built from past failures, and recall of mistakes
we have made before and what helped us find them. Nearly everyone
asked, for example, to describe their process of debugging a piece of
software draws a blank: We know how to do it, and some of us are
good at it, but few of us can articulate how precisely we approach the
task.

In this paper, we attempt to provide a perspective of how we go
about deriving, implementing, testing, and debugging material models
for computer simulations of mechanical objects — the things that are
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all necessary to ultimately end up with that one graph or visualisation
that shows that what we came up with matches what our experimental
colleagues have observed!

Computational solid mechanics. The concrete case we will be consid-
ering herein is how to get computational mechanics models right —
and specifically what to do when, as seems to always be the case on
first try, a model does not seem to be right. In our context, a computa-
tional model consists of a mathematical formulation of a mechanical
object’s behaviour, an algorithm to solve the problem (often using
numerical approximations), and a software implementation of this
algorithm. Such computational models have become instrumental for
technological advancement in many fields of science and engineering
as they provide a cost-efficient, safe, and environmentally friendly tool
to explore and improve designs, manufacturing processes, testing set-
ups, and certification procedures in a wide range of applications. They
also provide crucial checks on whether our understanding of a complex
material is consistent with its actual experimental response. Because we
keep coming up with new and more complex materials, there continues
to be a need for the development of new and different models.
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In order to restrict ourselves to a concrete set of computational
models for which we can provide advice, let us specifically turn our at-
tention to situations where material behaviour is formally characterised
by a constitutive relation. This relationship defines the response of the
material (typically its deformation and stress state), to internal and/or
external stimuli (usually the action of forces or applied external fields,
e.g. electrical or magnetic).

What constitutes a ‘‘successful model’’ may actually be debatable.
For our purposes here, modellers will generally agree that a good model
must be built on appropriate assumptions and meet the purpose that
motivated its development. In other words, the material model must
be based on well-founded hypotheses and predict physical, measurable
outcomes to within a reasonable accuracy. At the same time, good
models are as simple as possible and do not rely on parameters that
cannot be physically motivated.

Conversely – and the focus of this paper – we consider a model
‘‘not successful’’ if its computational predictions are either not physi-
cally reasonable or at least do not match what we physically measure
using its ‘‘real-world’’ equivalent. We will then say that the model has
mistakes, bugs, or problems, and that we need to ‘‘fix’’ or ‘‘debug’’ it.

Goals. Defining and implementing such ‘‘successful models’’ is a many-
step process that involves not only (i) defining the constitutive rela-
tions, but then also (ii) deriving the partial differential equations that
govern material response, (iii) posing appropriate boundary and initial
conditions, (iv) implementing this mathematical model in software, (v)
assessing the correctness of the software’s output, and (vi) possibly
additional steps. As mentioned above, a first go-around of these steps
rarely leads to a correct end result: The program’s output will either be
obviously unphysical, or simply not predict physical measurements on
the actual object reasonably accurately. Herein we provide a framework
for how to think through where in this list of steps the problem may
lie.

When talking about finding mistakes, it is often instructive to new-
comers to a field to note that even long-timers spend more time fixing
their mistakes than coming up with the first version. For example, even
good programmers spend more time debugging their codes than writing
them in the first place. As a consequence, we will highlight the mindset
that implementing computational models is a challenge that more than
anything else relies on experience and on having a mental catalogue of
what typically goes wrong. Our ultimate goal is to provide ‘‘road maps’’
one can use to find mistakes in computational models.

Non-goals. When developing software, a substantial time is spent on
finding coding errors that include compiler errors, segmentation faults,
out-of-bounds accesses in arrays, dangling pointers, and similar things.
These are real problems with computational models, but we will not
address them here as they are not specific to computational mechanics
— good introductory books on programming will cover strategies to
deal with these issues, the most important of which is to carefully read
the error message. Instead, we will for the most part assume that the
simulation code for a computational model actually runs without error
messages, but does not produce the expected output for reasons that
are unrelated to simple programming mistakes.

Intended audience. Seasoned professionals have often found useful
ways to check their work. For example, Wilson et al. (2014, 2017)
provide a set of good practices for scientific computing to improve the
productivity and reliability of the software developed. But, as pointed
out above, we rarely talk about ‘‘debugging models’’ in their entirety,
and this contribution is an attempt at addressing this gap. Therefore, we
intend this paper to be most useful to modellers starting as independent
researchers, such as PhD or graduate students who already have a
Masters degree. We hope that it will also be useful for someone moving
into the research system who is programming their own computational
model for the first time.

In view of this target audience, this paper is a collection of ap-
proaches and perspectives that we, the authors, wish we had when

we started in our careers in material modelling. That said, we believe
the guidelines we provide herein are equally applicable to the broader
computational modelling community.

Outline. In Section 2 we will first come up with a concrete list of com-
ponents that go into a computational model. Then, in Section 3 we will
summarise approaches on how to ‘‘debug’’ models that consist of these
components, along with problems we have found often happen in each
step. In Section 4 we will provide strategies towards keeping working
computational models ‘‘bug-free’’ as one continues to expand and build
on them. To conclude, Section 5 provides some final considerations on
the trials and tribulations of debugging, and how it is an integral part
of developing computational models.

2. Components of computational solid mechanics model

It is instructive to start by defining what exactly goes into a com-
putational model of a solid mechanics system. This is because when a
discrepancy arises between the model’s output and what we expected
the output to be (from physical considerations, or because we compare
with actual measurements or a known analytical solution), it provides
us with a road map of things we can individually examine. Conversely,
if we have not considered something part of the model (say, certain
types of boundary conditions) but we have implemented this piece
wrongly or not at all, we may not consider it a source of the problem.

The following is a reasonably comprehensive set of steps one has to
go through to define a complete computational model of a mechanical
object:

1. Identify the purpose of the model. Computational models are
often developed to test scientific hypotheses, whether it is to
elucidate underlying physical mechanisms, to perform in silico
experiments, to better characterise material behaviour, or to
test new design ideas. Alternatively, they may be part of the
validation and certification process in industrial designs. We
must think carefully about the goal of our model, since it will
dictate (or constrain) its theoretical framework and numerical
implementation.

2. Establish the theoretical framework. Starting from first prin-
ciples, we derive the strong form of the governing equations
that describe the solid mechanics problem at hand. Pairing the
result of this process, which can be done entirely with pen and
paper, with a constitutive relationship (material law) leads to a
complete set of differential equations from which we then obtain
the weak form of the governing equations by differentiation.1

3. Set up the pseudo-algorithm. Often overlooked, this step re-
quires translating the theoretical framework into a numerically-
compatible description. To this aim, we must ideate a solution
strategy. The continuous equations previously derived must be
discretised in space (and possibly in time), adequate integration
algorithms must be selected, and all necessary components,
e.g. tangent stiffness matrix and right-hand side vector, should
be identified and clearly defined. The result is a schematic of the
complete algorithm to implement, which gives us a clear idea
of the main elements in our problem and how they relate to
each other. It is often useful to also come up with consistent
notation that can then be used one-for-one in the computer
implementation.

1 It is sometimes possible to use a variational setting to formulate the
problem, e.g. if an energy functional can be defined (Zienkiewicz and Taylor,
2005). Differentiation of this functional then renders the weak form of the
problem, equivalent to starting with the disparate strong form and constitutive
law.
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4. Define the numerical experiment. On the basis of the guid-
ing algorithm, we can devise multiple virtual experimental set-
ups. Each experiment will require the definition of a specific
geometry, boundary and loading conditions, and other model
parameters which must be defined and implemented into the
code.

5. Complete the numerical implementation. We translate the
pseudo-algorithm of our theoretical framework and the set-up
of the numerical experiment(s) into ‘‘real’’ code. For this, we
must choose a programming language and environment, as well
as select adequate libraries and numerical tools (e.g. Anderson
et al., 2021; Arndt et al., 2022; Ferrándiz et al., 2022; Kirk
et al., 2006; Maas et al., 2012; Schöberl, 2014; Scroggs et al.,
2022). Key aspects include, but are not limited to, program-
ming paradigm (e.g., object-oriented), parallel computing func-
tionalities (e.g. Message Passing Interface Forum, 2021; Intel
Corporation, 2022), as well as memory access and management.
Input and output interfaces must also be defined – in particular,
compatibility with visualisation tools (e.g. Ahrens et al., 2005;
Childs et al., 2012; Sullivan and Kaszynski, 2019) – in addition
to other coding considerations like code extensibility.

6. Verify the model. Once the computational model is set up
and running, we must check that it accurately represents our
conceptual description and specifications. In other words, has
the pseudo-algorithm been correctly translated into the code?
And, more importantly, are the code and its post-processing
mechanisms doing what we expect them to do?

7. Validate the model. Validation entails ensuring that the model
is an accurate representation of the real world, within the con-
text of its intended use. We typically use benchmark tests to
compare results with those of similar codes, or with available
experimental data.

The result of all of these steps is a computational solid mechanics
model, whose main parts are: (i) the definition of the geometry, model
parameters, boundary conditions and initial conditions, including user
input data; (ii) the discretised governing equations, including the con-
stitutive model that dictates the material behaviour; (iii) the numerical
algorithm used to solve the problem, whose core component is the
solver; and (iv) the output of results. Once the computational model
is set up and working, we are ready to use the code to explore ideas,
advance the state of the art, answer our scientific queries, and produce
that table or graph to visualise our findings!

3. What could possibly go wrong?

Unfortunately, getting a computational model to work properly is
not generally as easy as the previous section might suggest. Whenever
a model is not successful in the sense outlined in the introduction, it
is important to recall that at least in principle, the problem may be with
any of the steps listed in the previous section. It is not useful to rule out
some steps a priori because it may lead to long debugging sessions of
parts of the model that are not, in fact, wrong.

In order to stress the importance of keeping an open mind about
finding where the bug may be, let us mention a tautological, but
nevertheless useful, observation: When observing that a model is not
successful, we typically (i) assume that we have derived and imple-
mented the model correctly (as is human nature), but (ii) observe that
the output is wrong. These two statements are in obvious conflict: They
cannot both be true.2 Then it is worth noting that because our trust

2 There are situations where we believe that the output is wrong when in
fact it is not. For example, we think that a particular physical set-up should
yield a solution that is left–right symmetric, when that is not actually true
and so observing a non-symmetric solution does not imply that the model is
wrong. However, these cases are relatively rare and we will in the following
assume that the model output is in fact wrong.

in the correct derivation and implementation of the model was apparently

misplaced, we ought to be suspicious about believing that certain parts
of it are correct: A better approach is to assume that any component of
the model is now suspicious and needs to be checked.

Of course, a model may consist of many pages of derivations and
thousands or tens of thousands of lines of code. It is not productive to
work through them top to bottom — this would amount to trying to
find the needle in the haystack by removing one hay stalk at a time
until we have found the needle. We need a better strategy that helps us
identify which general component might cause the issue in a first step,
before we look at a smaller scale.

On account of these thoughts, let us below first outline some general
considerations about narrowing down which component a problem
might be located in, followed by discussions about typical problems
in each of the components listed in the previous section.

In practice, ‘‘there is always one more bug’’. In other words, once
we have found a bug, we typically run the program again to find that it
is still wrong — just in a different way. Thus, coming up with ‘‘correct’’
models is an iterative process in which the steps we discuss below will
simply be repeated as often as necessary.

3.1. General considerations about finding issues in computational models

3.1.1. Make it simple!

As humans, we have a tendency to believe in the correctness of our
work. Therefore, we tend to plow forward with implementing large
parts of models before we start to assess their correctness. But this
leaves us vulnerable to then having too many places where a problem
may be lurking — everything we did since we last checked that the
model was correct. As a consequence, the most important piece of
advice towards finding problems is to test and check frequently: If
the goal is to implement a time-dependent elastoviscoplastic model
on complex geometries, start with a static linear-elastic problem in a
cube with simple boundary conditions; then check the correctness of
the model; add the viscosity (or the plasticity); check the correctness
of the resulting model; and so on. Testing every small step is a much
better strategy towards building complex models than writing the entire
model first and only then starting the debugging process. (In Section 4,
we will also outline a few strategies for making sure that parts of the
code that have already been checked remain correct despite continued
development of a computational model.)

A corollary to the above observation is that it is very difficult to
debug complex models. Rather, if the output of that time-dependent
elastoviscoplastic model on a complex geometry looks wrong, simplify
it to a simple geometry, with infinite viscosity and infinite yield stress
(or, better, remove these terms from the implementation). If the result
is still wrong, remove the body force, simplify the boundary conditions,
etc. The goal is to come up with as simple a test case as possible that
illustrates the problem. Having a simple model also helps with being
able to say without ambiguity that the output is wrong. For complex
models, we often have a hunch that something does not look quite
right, but it might be hard to pinpoint what that is; on a box geometry
we can often visually say that the boundary conditions are different
than what we intended to prescribe, or that the displacement points
in the opposite direction of the body force we thought we provided,
and this can offer important clues as to the source of the problem.
Although the proposition of performing model simplification seems at
first thought like a time sink, it often results in time saving when
compared to the ‘‘shoot in the dark’’ approach to fixing the complex
model.
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3.1.2. Build on the work of others
The most consequent extension of trying to keep things simple

is to not actually implement it yourself, but to build codes on the
work of others. For example, nobody should be writing their own
iterative or direct solvers for linear systems any more — there are
excellent software packages, developed for many years by experts in the
area, that have all of this functionality, are portable to many different
platforms, and are optimised to run on problem and machine sizes
far beyond what most of us can access on a regular basis (e.g. The
Trilinos Project Team, 2022; Heroux et al., 2005; Balay et al., 2022b,a;
Davis, 2004; Amestoy et al., 2000). The same can be said for libraries
that provide everything one might ever need for the finite element
discretisation (e.g. Arndt et al., 2022; Maas et al., 2012; Scroggs et al.,
2022; Ferrándiz et al., 2022; Anderson et al., 2021; Schöberl, 2014; Kirk
et al., 2006). These packages have extensive test suites and, while they
do have bugs, one can generally assume that whatever they do is vastly
more likely to be correct than any code one could implement oneself.
Building on others’ work therefore saves enormous amounts of time on
debugging, in addition of course to not having to write corresponding
functionality to begin with.

In practice, it is not uncommon that a finite element solver for a
complex problem, written from scratch, would require 10,000s or even
100,000s of lines of code; when built on state-of-the-art discretisation
and solver libraries, it might require one tenth or even less that amount.
Empirical evidence shows that the time taken to comprehend and in-
corporate third-party libraries to tackle specialised tasks pays dividends
surprisingly quickly when one evaluates problems of appreciable size
and/or complexity.

Finally, one could even reuse complete computational solid mechan-
ics models developed, implemented and validated by other researchers.
Most of us will be happy that others expand on our models — this
is precisely why we make our full codes freely available. Caution is
warranted in such cases, though, because one must dedicate time and
effort to fully understanding the underpinnings of the code in order to
understand whether an existing code is suitable as the basis for one’s
own application.

3.1.3. Employ widely used tools for development and debugging
An extension of the previous section is to build software using

widely used (and typically free!) tools to make development and debug-
ging more efficient. In particular, this includes integrated development
environments (IDEs) such as Eclipse (The Eclipse Foundation, 2022),
Microsoft Visual Studio Code (Microsoft, 2022), Apple’s Xcode (Apple
Inc, 2022), Qt Creator (Qt Group, 2022), or equivalent tools available
for nearly every programming language. IDEs are not just fancy text
editors: They actually understand the software being developed, know
variable names, show tooltips that provide information about function
arguments and the function’s documentation, can refactor code, auto-
matically indent code uniformly, and just make programming quicker
and less error-prone.

IDEs also integrate well with debuggers. In contrast to ‘‘debugging
with printf’’, debuggers allow executing programs one step at a
time, and in the process inspecting the values of variables. Using a
debugger does not only remove the edit-compile-execute cycle that
slows down more manual approaches, it also provides actual insight into
a program’s working — because one can observe the program working
on its data as one steps through the program one line or function call at
a time! For compiled languages, GDB (The GDB Developers, 2022) and
LLDB (The LLDB Team, 2022) have long been the workhorse debuggers,
and both are nicely integrated into the user interfaces of IDEs. That
said, similar tools also exist for other programming languages.

Finally, there are many other widely used tools for different aspects
of development and debugging. For example, Doxygen (van Heesch,
2022) is a widely used tool for the generation of easily searchable
documentation. Profilers and analysis tools such as Valgrind (Val-
grind Developers, 2022) and its supporting tools, Heaptrack (Heap-
track Developers, 2022), Intel VTune (Intel Developer Products, 2022),
LIKWID (Gruber et al., 2022), and Gprof Fenlason (2022) help find
performance or memory problems.

3.1.4. Look at the solution
A specific tool that we have almost always found useful in develop-

ing computational models is to use visualisation software to graphically
represent the model’s output.3 That is because, even in cases where the
exact solution is unknown as a function of x, y, z, we often know certain
things the solution must satisfy. For example, if the body’s geometry,
the boundary conditions, and the body forces are all symmetric with
regard to a plane or point, then we know that the solution should also
be symmetric — and if it is not, we know that it is ‘‘wrong’’ even though
we may not know what the ‘‘correct’’ solution is. One can generalise this
approach by asking about other ‘‘invariants’’ the solution has to satisfy
and that we can check even if we do not know the exact solution. For
example, if a time-dependent model is incompressible, we can compute
the volume of the deformed object in each time step and verify that it
remains constant (to within reasonable limits relating to the numerical
scheme). Likewise, if a model lacks dissipation, then the total energy
needs to remain constant. In practice, with enough thought, we can
often come up with many such invariants that when checked can help
build confidence that a solution is correct and can be trusted — or,
conversely, to say unambiguously that it cannot be correct.

Recognise, though, that there are many cases in the world of nonlin-
ear solid mechanics where a feasible-looking solution does not provide
sufficient information to confirm that it is indeed correct in all respects.
For instance, visual information is insufficient to confirm that energy
and angular momentum are conserved on a global scale in dynamic
problems. In problems involving large displacement increments, as is
seen in problems involving snap-through behaviour or other elastic
instabilities, interesting phenomena may occur in the time between
time steps. This may lead one to think that the observed behaviour is
wrong, which is not necessarily the case; rather, the applied numerical
schemes or parameters are insufficient to capture these interesting
effects.

3.1.5. Create known solutions
Once we have checked that all suspected invariants are respected by

our solution, it is time to compare against an exact solution. The issue
is that for most complex and coupled problems, there are no known
analytical solutions. But it turns out that with the right trick, they
are easy to create — a technique called the Method of Manufactured
Solutions (MMS). Rather than describe this method in detail, let us
refer to Roache (2019), Salari and Knupp (2000), Jelinek and Mahaffy
(2007) and NETL Multiphase Flow Science Team (2020). In the end, the
method provides us with an exact solution against which we can check
our numerical solution for closeness and convergence. A second, and
obvious, alternative to the ‘‘gold standard’’ MMS would be to replicate
results already published (and hopefully verified and widely agreed
upon) in the scientific literature.

3.1.6. Talk to someone
There are times when we are just unable to find what the problem

is. In such cases of being truly stuck, it has often turned out to be
surprisingly helpful to simply explain the issue to a colleague. Every
experienced programmer can tell stories of running down the list of
symptoms with a colleague, or showing them what the code does, just
to stop mid-track with the words ‘‘never mind, I know what the problem
is’’. What happens in such situations is that the simple process of
explaining something illuminates misunderstandings, or forces critical
thought about issues previously considered ‘‘obvious’’.

3 There are many software packages that can be used to visualise and
interrogate a solution. The two most widely used codes today are Visit (Childs
et al., 2012) and Paraview (Ahrens et al., 2005), both of which provide ways to
visualise scalar and vector-valued, 1d/2d/3d solutions. They also provide tools
to compute and visualise quantities derived from these solutions. Both software
can be run on small laptops, but can also be used on solutions computed on
thousands of processes with billions of unknowns.
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Fig. 1. An overview of the different components of a computational model, along with possible sources of errors.

3.2. Things that can (and do) go wrong, and how to solve them

Let us then move to exploring what specifically can go wrong. Fig. 1
provides an overview of the components of a computational model
(shown in the central circle), along with possible mistakes one can
make in each of these components (listed into categories, including a
short description in black for each).

We could – in the spirit of finding the needle in the haystack –
simply go through the entire list and question the correctness of our
model in each category. That said, from a practical perspective, it is
often easier to start from an empirical observation of the symptoms of
what is happening, and from there going to which of the components of
a model may be wrong. As a consequence, in the following let us instead
enumerate common symptoms of ‘‘wrongness’’, and for each discuss
what that might imply for the origin of the problem. To complement
this analysis, Fig. 2 provides a schematic of the categories of error
sources (as defined in Fig. 1) that are typically the root causes of each
of these symptoms.

(a) If the code does not compile, or if one receives a run-time error about
invalid memory accesses. As mentioned in Section 1, we do not want to
dwell on these errors herein. A useful starting point is to carefully read
the error message by the compiler, the linker, or the run-time system
of the programming language used; for example, some programming
languages output concise error messages when accessing out-of-bound
array elements whereas others may simply produce a segmentation
fault.

(b) If the linear iterative solver does not converge. Nearly every approach
to solving computational models ultimately results in the need to
solve one or a sequence of linear systems, often very large but sparse
ones. This can either be done using (sparse) direct solvers that use
variations of Gaussian elimination to find the solution of the linear
system (Davis, 2004; Amestoy et al., 2000); or iterative methods such
as Conjugate Gradients (CG), Generalised Minimal Residuals (GMRES),
or any number of other Krylov subspace methods (Saad, 2003; Barrett
et al., 1994). Iterative solvers sometimes do not converge, that is, they
do not find the solution of a linear system even though we allow them
to run for sufficiently many iterations (say, a few hundred or a few
thousand iterations).

Direct solvers are rarely implemented in user code; instead, one
typically uses pre-packaged solvers written by others, and so their

answer can generally be considered correct. As a result, if an iterative
solver does not converge, it is often useful to use a direct solver instead.
If the direct solver also produces an error message, or if it produces a
solution that is not correct, then the problem lies in the linear system
we have given to the solver, and we need to search for mistakes in the
code that builds the system matrix and right hand side, as well as in
the ideas that resulted in this code. A common source of error is the
ill-specification of Dirichlet boundary conditions, leading to a singular
system. Another common problem is choosing a quadrature formula
with too few quadrature points for the given problem and finite element
polynomial degree, again leading to a singular linear system.

If a direct solver results in the correct answer, but an iterative
solver does not, then the linear system has been correctly assembled
but is solved incorrectly. Assuming that the implementation of the
solver is correct, the problem must then lie in the choice of the solver
itself or, as is often the case, in the choice of the preconditioner
used to make the problem better behaved. For example, the Conjugate
Gradient method can only deal with symmetric and positive definite
matrices, using symmetric and positive definite preconditioners. It will
typically not converge if either the matrix or the preconditioner are
non-symmetric or indefinite. If matrix and preconditioner are expected
to have these properties, then non-convergence should trigger a search
of the code that assembles them; if they are not expected to have these
properties, one needs to switch to different iterative methods such as
BiCGStab, Minres, or GMRES. Helpful references for those unfamiliar
with the matter are Barrett et al. (1994) and Saad (2003), which
provide guidelines for the choice of an iterative solver.

(c) If the nonlinear solver does not converge. Around the linear solver
sits the nonlinear solver loop: A Newton method, a fixed point (Picard)
iteration, or some variation thereof. The fact that the linear solver
works means that we can solve one nonlinear iteration, but if the
outer iteration does not converge (that is, if the norm of the nonlinear
residual vector does not decrease), then that often means that the inner
solver is solving the wrong problem.

Typically, this is because the system matrix and the right hand side
do not match — for example, in a Newton iteration, the matrix is not
an algorithmically consistent linearisation of the residual (which forms
the right hand side vector). These cases are awkward to debug because,
for complex materials, the Newton matrix often contains a lot of not-
so-nice terms; assessing the correctness of the bilinear form that leads
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Fig. 2. A schematic linking each potential problem (left, corresponding to the sub-sections of Section 3.2) to the possible sources of error (right, described in more detail in Fig. 1).
Typical root causes of the problem are indicated with solid lines, while dashed lines represent not-so-common but also possible causes.

to this matrix frequently takes pages of hand-written derivatives, and
comparing them to what is implemented. A better approach, however,
is to recognise that the Newton matrix is the derivative of the residual
vector, which can often itself be expressed as the derivative of an
energy functional (Zienkiewicz and Taylor, 2005; Miehe et al., 2011;
Miehe, 2011; Mielke, 2011). Humans should not have to implement
this: Taking derivatives is something that can be left to computers,
and automatic (Griewank et al., 1996; Fike and Alonso, 2011; Phipps
and Pawlowski, 2012) or symbolic (Bauer et al., 2002; Čertík et al.,
2013) differentiation libraries are happy to do this work for us. While
this slows down computations, it avoids a common source of bugs.
If one has verified the correctness of an implementation, one can
later replace computer-assisted differentiation with hand-written code
if performance is a concern — but at least at that point, one has a base-
line that is known to be correct. This approach is particularly useful
for highly nonlinear and saddle-point problems (e.g. those arising from
non-convex energy functions), which might naturally include some
instabilities that are indistinguishable from linearisation errors.

There are other possibilities for why nonlinear solvers may not
converge. The most common one is using a Newton method and taking
full steps. Newton’s method is known to converge only when started
close to the solution (Kelley, 2003). If that cannot be guaranteed, one
needs to use line search or another globalisation strategy to ensure
that the method converges (Nocedal and Wright, 2006). Despite their
conceptual simplicity, globalisation methods are often awkward to
implement, especially if taking the smallest number of nonlinear steps is
a concern for performance reasons. It may be easier to rely on external
libraries that provide these, such as the KINSOL package of SUNDI-
ALS (Hindmarsh et al., 2005), the NOX package of Trilinos (Heroux
et al., 2005; The Trilinos Project Team, 2022), or the SNES solvers in
PETSc (Balay et al., 2022b,a).

Finally, if the inner linear solver is an iterative method, its tolerance
might be too loose for the solution of the linearised problem to be a
useful direction for the nonlinear outer loop, and reducing the tolerance
might help. This is specifically the case if the outer iteration solves
for the solution (say, a Picard iteration), rather than for updates (as
typically done with Newton or defect–correct iterations).

(d) If the solution looks or appears wrong. Let us assume that we have
gotten to a point where our code runs without error messages, and
outputs a solution that we can visualise. With a bit of physical insight,
we can often tell whether it looks reasonable or not. For example,
we often know that the solution should be left–right symmetric, or
that given the material parameters and magnitude of forces we expect
that the displacements should be on the order of a few millimetres.
We expect that anisotropic materials will behave differently depend-
ing on the orientation of the loading with respect to the preferred
material direction. We expect that elastoplastic and viscoelastic media
will demonstrate a strong sensitivity to the load magnitude or rate.
If the solution as visualised violates some of these intuitive checks, it
must be wrong. (On the other hand, we can and should not conclude
that just because the solution looks reasonable, it is actually correct.
This must be verified, see below. Furthermore, one should be mindful
of the limitations of the visualisation method itself — for example,
does one expect to see the intuitive continuity of the solution when
hanging nodes are present or when a discontinuous Galerkin method is
applied, and does my visualisation framework understand higher-order
representations of finite element fields?)

The first step to finding where the problem lies is often to carefully
observe in which way exactly the solution is wrong. For example, if we
have provided displacement boundary conditions, does the visualised
solution satisfy the prescribed displacements? If we have prescribed
a downward-pointing body force (e.g. gravity), does the body sag as
expected? We have often found it useful to just write down a list of
things we expect to see, and then to go down this list looking at a
visualisation, either confirming or falsifying each of our predictions.
Spending more time in coming up with more entries of the list of things
we expect to see is often useful in narrowing down the problem. A
similar step can and should be done with other invariants that can be
checked in non-visual ways. Sometimes a parameter sensitivity analysis
– say, determining how the displacement changes as one increases the
size of a body force or boundary traction – aids in this step, as it
assesses the dominant influences on the rendered solution and could
help determine if a confluence of parameters might be problematic.
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There remains the question of what to do if an invariant is not
satisfied. Observation often helps: If the boundary displacement looks
wrong, the boundary conditions may have been implemented wrongly.
If the object is rotated or translated when it should not have been,
it may be that we have not removed the nullspace of the differential
operator. (This typically leads to a singular matrix with zero eigen-
values, but both direct and iterative solvers frequently succeed in
finding a solution of the problem despite this issue.) If the volume is
not preserved in an incompressible model, then the incompressibility
constraint is probably implemented wrongly. Seeing patterns in which
invariants are or are not satisfied also helps narrow down the places
where something could be wrong.

That said, it is also possible that the original model formulation may
have had mistakes, and in that case one might have to go back many
steps in the loop in Fig. 1 — certainly a daunting though fortunately
not too common case. When the issue seems to be in the definition
of a (new) constitutive equation, it is often helpful to conscientiously
review the physical principles (and assumptions) behind the material
model. In this way, one can challenge the choice of internal variables
selected (not only the variable in itself, but also its form — should it
be a relative value instead of an absolute one, or a rate of change,
or something else?). Even the general framework used to develop the
material model might not be the most adequate. The approach in
the literature that has the most momentum might still have room for
improvement. As an example, the volumetric-isochoric split might not
be physically adequate to model the fibre component of anisotropic
fibre-reinforced composite materials, even if it is a standard approach
in the field (Sansour, 2008). If the problem with the material model
persists after examining its theoretical foundation, the bug may be in
the implementation itself. In line with Sections 3.1.2 and 3.1.5, one
could try using an alternative (simpler) version of the same constitutive
model to pinpoint the origin of the problem. For instance, replacing
a principal-stretch based formulation for an equivalent one based on
strains can help isolate a problem with the eigenvector calculation.
For mixed methods (or coupled problems in general), additional points
to consider include whether the residual has been expressed correctly,
whether the discretisation satisfies the Ladyzhenskaya–Babuška–Brezzi
(LBB) conditions (Hughes, 2000), and whether the history-dependent
variables are evolving in an appropriate manner. One should pay
particular attention to the residual as it is this quantity that we seek
to reduce, with zero as an indicator of the equilibrium solution — an
incorrect residual defines an incorrect equilibrium point.

In addition to the physics of the problem, one should also consider
the role of the numerical algorithms on the computed solution. The nu-
merical integration (quadrature) scheme and order is typically chosen
such as to integrate a mass matrix exactly. An inappropriate selection
of the integration order for the discretised differential equation or the
polynomial order for the finite element basis functions may render
incorrect results; a well-known manifestation of this would be volu-
metric locking in near-incompressible media or shear locking in thin,
bending dominated structures. The time step size (or, for quasi-static
problems, load step size) should also be chosen appropriately when the
increment in the applied load is large, particularly in the case of highly
nonlinear or rate- or history-dependent materials. An uncommon but
still conceivable issue with numerical algorithms is that they assume
‘‘perfect’’ conditions, which might not be mirrored in the ‘‘real-life’’
equivalent we are trying to reproduce. To illustrate this, consider a thin
cylindrical tube subjected to a compressive load. The tube will buckle
and the folding pattern may be predicted to be perfectly axisymmetric.
In reality, there are both geometric and material imperfections that will
break this symmetry. In such cases, we can either implement a numer-
ical solution to the numerical problem (e.g. perturb the load), or avoid
the issue altogether through changes in the modelling conditions to
better reflect the ‘‘real-life’’ conditions (e.g. introduce minor deviations
in the geometry and/or material characteristics).

In general, one must always be aware that simplifying assumptions
(be they those made consciously, or those that are implicitly applied
through the choices made in the formulation and implementation
stages) might have unintended consequences, and should therefore
be reviewed with more than a hint of scepticism. If they are not
thoroughly analysed before implementation, then not too infrequently
are limitations of the formulation and/or numerical framework the
root cause of incorrect solutions. The possibility that these might need
further assessment should also not be dismissed too easily, as each
method undoubtedly has some drawbacks or consequences that need
to be factored in. On the rare occasion, the source of error might even
be traced back to the theoretical foundation upon which the method of
assessing the correctness of the solution is built. No generalities can be
made here, but as a concrete example two of the authors of this paper
had to track down the reason for a deficiency of dissipation in a poro-
viscoelastic model, only to find that it was transferred to a fundamental,
but secondary, dissipation term that had been neglected.

(e) If the solution does not converge with mesh refinement. Once we have
satisfied ourselves that the solution at least looks reasonable, it is time
to verify that it actually is. This is best done by using a known solution,
either because we have a simple-enough test case for which the solution
can be derived analytically, or using the Method of Manufactured
Solutions (Roache, 2019; Salari and Knupp, 2000; Jelinek and Mahaffy,
2007; NETL Multiphase Flow Science Team, 2020). If we know the
exact solution (which we will denote by u = u(x) or u = u(x, t) though
concrete applications may of course use different symbols), we can
compute the error in the numerical approximation uℎ through a norm
such as the L2 norm, ‖u − uℎ‖L2

=
[
∫ |u(x) − uℎ(x)|2 dx

]1∕2
.

A correctly chosen and implemented numerical scheme should of
course yield numerical approximations uℎ that converge towards u as
the mesh is refined (and, if time dependent, as the time step size is
reduced). In other words, we want that uℎ → u, or equivalently that
‖u − uℎ‖ → 0. If that is not the case, then either the computed or the
exact solution is wrong.

Such cases are fortunately rare if the solution has passed the tests of
the previous sub-section. If it does happen, it is often useful to output
and visualise the error, e = u − uℎ. Doing so then reveals how the exact
and computed solution differ: Is the error large at the boundary? Then
the boundary conditions are probably wrongly implemented. Does the
error show a checkerboard mode? Then the choice of finite element
may be questionable. If there is no pattern to the error, it may be that
you are using the Method of Manufactured Solutions (see above) and
have made mistakes in deriving the (often complicated) right hand side
or boundary value functions — in other words, you are solving the
problem correctly, just for the wrong right hand side. As before, it is
often useful to let some symbolic algebra program (e.g. Bauer et al.,
2002; Meurer et al., 2017; Maplesoft, a division of Waterloo Maple
Inc., 2019; Wolfram Research, Inc., 2022) compute these right hand
side functions, rather than doing it by hand on a piece of paper.

(f) If the solution does not converge at the right order. Having established
that the solution converges, the last remaining question is whether it
does so at the correct order. In many – though not all – cases using
the finite element method, for example, a numerical approximation
uℎ computed using piecewise polynomials of degree p will yield a
solution in which the error decays like ‖u − uℎ‖L2

≤ Cℎp+1: reducing
the mesh size ℎ by a factor of two (e.g. by uniformly refining each
cell of the triangulation) reduces the error by a factor of 2p+1, at least
asymptotically as we keep refining the mesh.

If this is not the case, then we have either chosen an inappropriate
discretisation, or the discretisation has not been correctly implemented.
The former is a mathematical question for which we cannot give
general guidance (at least for complex, coupled systems); the latter can
often be avoided by not writing computational codes from scratch but
by building on discretisation libraries such as the ones mentioned in
Section 3.1.2.
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Another possible reason for lack of convergence at the right order
is if one uses an iterative method for the solution of linear systems,
but the tolerance with which these systems are solved (i.e. at which
the method terminates iterations) is chosen too large. In such cases,
the overall error is dominated by the linear solver error rather than the
discretisation error, and reducing the tolerance results in recovery of
the correct error order. The same can obviously happen if a nonlinear
system is not solved to sufficiently small residuals.

(g) If the solution is not the same in serial and parallel. Debugging
parallel programs is an art in itself, and many numerical libraries
include algorithms that make parallel programming easy, safe, and
deterministic. For instance, they might incorporate frameworks that
help to write distributed programs and methods to synchronise data
between parallel processes, and often leverage linear solvers that work
in a parallel environment. We will therefore assume that the reader is
using such a framework and is not writing raw parallel processing code
themselves.

With that in mind, when augmenting a serial program to run in
parallel, one primarily needs to ask oneself if the required computations
are being done on the right process, and if the correct data is being
transferred to other processes at the correct time. In typical finite
element programs, the assembly process can mostly be performed with
each cell’s work being done completely independently of another until
such time that locally assembled contributions are distributed to a
global matrix. If the distribution of the linear system is not synchro-
nised correctly then the parallel linear solver will have an inconsistent
view of the global matrix on each process. Post-solve, the distributed
solution vector needs to be correctly communicated to each process
such that the solution uℎ(x) =

∑
i Ni(x)ui on each (local) finite element

can be correctly reconstructed using the correct solution coefficients
(or degree-of-freedom values) ui and the vectorial basis functions Ni.
Failure to do so might result in visualisation artefacts in the best case,
or divergence of the numerical method in the worst case.

As before, if the solver produces a solution, careful visual inspection
often helps understand where a problem may be. If, for example,
there are artefacts at the boundaries of subdomains owned by different
processors, there is likely a problem in pre-solve assembly — or maybe
the post-processing routines also need to be adapted for the parallel
setting to ensure that every processor knows that part of the distributed
data necessary to create visualisation files. A general rule in debugging
parallel programs is to also follow Section 3.1.1: Make it simple, for
example by testing whether a program that produces wrong results with
100 million unknowns on 256 processors also produces wrong results
with 200,000 unknowns on 2 processors. The latter will generally be
much easier to debug.

4. Keeping problems solved

Rarely do we develop a computational model, debug it, apply it
to a concrete situation, appreciate the fact that its predictions match
physical measurements, and then put the model onto a shelf (or switch
the file permissions to ‘‘read-only’’ as it may be). Rather, a successful
model typically serves as the starting point for another model in which
we change some of the physical conditions that describe a situation or
modify the material’s constitutive relations.

In practice, making these modifications will then lead to a model
that, in all likelihood, will again be wrong on first attempt. To debug
it, we could again assume that everything is suspect as mentioned in
Section 3. But we have built on something that worked before, could
we not simply assume that the problem must be in what is new? The
answer is not generally : In modifying the previous model, we probably
changed parts of the code (or the formulation) and thereby may have
broken the previous model. This is unsatisfying because it means that
we cannot trust any part of the model. On the other hand, there are
some strategies that allow us to deal with the situation in a more
efficient way, and we will discuss these in the current section.

4.1. Incremental development: Test frequently, use version control

In keeping with the recommendations of Section 3.1.1, the best
way to avoid getting into a situation where everything is suspect is to
make incremental changes, check that the output of a previous test
is unchanged and still correct, and then commit the current state of
the project to a version control system such as Git (Git Project, 2022;
Chacon and Straub, 2014). Using version control has many advantages.
For the current purpose, it includes being able to exactly see what
has changed since the last commit (and consequently the last time the
model was checked), vastly reducing the places where one might have
to look for newly introduced bugs. It also allows rolling back to the
last committed state where we knew that the solution was correct if
we really cannot find what the problem is — and then starting the
development of the current feature from scratch.

Another advantage of version control is that we can be unafraid of
drastic changes. For example, as explained in Section 3.1.1, it is difficult
to debug complex models. If we suspect that the implementation of
the boundary conditions are the problem, would it not be nice to
just remove the body force, the nonlinear loop, the coupling to other
variables, the time loop, replace the complex mesh by a much simpler
one, and just strip the code to its bare minimum that could illustrate
just the handling of boundary conditions? If a code is not under version
control, this is a slightly scary proposition because we have to rely
on our own diligence in keeping track of the state of the code. With
version control, we can just hack away at the code, find the bug in the
minimised version, and try a fix; if it works, we just save the few lines of
changes, tell the version control system to revert to the last committed
state, and re-apply the few changes we found to fix the problem.

Using version control systems has been found so useful that there is
really no excuse any more today to not use one — switch yesterday! It
will be time well spent, and will afford you the freedom to experiment
without the fear of permanent consequences.

4.1.1. Use a test suite
Incremental development as suggested above is only easy if check-

ing the continuing correctness of a code is easy. It is not if check-
ing involves tedious manual work, changes to the code (for example
commenting in the right hand side of a manufactured solution, and
commenting out the ‘‘real’’ one), and comparison by hand/eye whether
the solution continues to be correct.

A better design uses automated checks. For whole applications, a
common approach is to drive the code through external input files that
describe right hand sides, boundary conditions, formulations, and what
output quantities should be computed. Automated testing frameworks
can then compare the results of a simulation with a given input file
against known-to-be-correct answers for this input file. Incremental
development must then be done in a way so that past input files
continue to be valid, and new development implements features that
are then tested by new input files that are added to the test suite. While
this may seem like a lot of work, it is not in practice — as shown, using
concrete examples, in Turcksin et al. (2015).

Test suites can be written from scratch but in the spirit of Sec-
tion 3.1.2, we would be remiss if we advocated for this approach.
Instead, let us refer to gtest (Google, 2022), ctest (Kitware, 2022), and
catch2 (Catch Org, 2022): all widely used libraries that make many
aspects of automatic and frequent testing much simpler.

4.1.2. Incorporate benchmark problems into tests
As useful as it is to develop a test suite that runs checks on one’s

own metrics, evaluating the output of programs against benchmarks
from the established literature really helps to solidify that one’s work
is correct and remains so. There are an abundance of simple and well
understood benchmark problems that have been studied to the ends
of the earth, and it is natural (and good practice) to incorporate at
least some of them into a test suite for a scientific code. Many relevant
papers in each field about numerical methods use such benchmarks,
and replicating these in your own work is a good starting point.
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4.1.3. Combine testing with refactoring
Incremental development, the use of version control, frequent test-

ing, and the use of an automated test suite combine well with one of
the most useful techniques for working on existing codes: Refactoring
— that is, the continuous reshaping of a code base to make it fit for
new features, to make it easier to find and fix bugs, or to just improve
the overall quality of code. An excellent description of refactoring and
concrete refactoring steps can be found in Fowler (2018). Refactoring
only works well if one has a sufficiently broad test suite so that one
can be sure that a small change to the code base is correct if all tests in
the test suite succeed, and if that test suite can be run frequently and
automatically.

As discussed in Fowler (2018), refactoring code should also be used
as an opportunity to extend the test suite. A common way to do this is
to write ‘‘unit tests’’ as a first step of a refactoring session.

4.2. Define and enforce a quality standard

By defining a quality standard that we would want to adhere to,
we are essentially writing a contract for ourselves to prevent ourselves
from employing poor practices, poor judgement, and minimising the
oversight of issues that might arise during the development process.
Although this might seem somewhat obvious, we have probably all
been guilty of cutting corners somewhere during the scientific process,
perhaps to the detriment of the current and future work’s outcome.
For example, honest thought will suggest that rushing to implement
something to a timeline without checking its correctness (or even
worse: knowingly ignoring errors emitted when a code is tested in
debug mode) is likely going to lead to more work downstream in the
best of cases — and to wrong results in a publication in the worst of
cases. Having a semi-rigorous approach to viewing work quality would
navigate one away from such scenarios.

One way to deal with the pressures of development is to map out
and plan what one envisions to be the remainder of the project, early
on in each project’s life. In doing so, a rough timeline for the work
can be established and from that one would be able to identify and
set a pragmatic set of quality targets that one strives to maintain.
These could be related to the implementation (e.g., adding checks
as debugging aids, improving code quality and reducing redundancy,
only accepting code that has been independently tested or verified),
adding unit tests (e.g., aimed at validating constitutive laws, finite
element formulations, etc.), implementing new technologies to assist
in the development process (e.g., switching to version control, using
continuous integration tools), or simply even actively learning new
skills, or improving existing ones, to increase the quality of the next
piece of work that is to be done. Planning also helps prevent one from
repeating old mistakes, as one could clearly identify an upcoming pitfall
and apply remediation strategies before work has begun. Hitting quality
targets would naturally maintain the momentum of improving existing
(and future) code quality while considering the following interesting
feature to tackle next.

In the end, holding oneself to high quality standards is also an
important part of our own professional ethics. For example, the Code of
Ethics for Engineers by the National Society of Professional Engineers
states both ‘‘Engineers shall not complete, sign, or seal plans and/or
specifications that are not in conformity with applicable engineering
standards. If the client or employer insists on such unprofessional
conduct, they shall notify the proper authorities and withdraw from
further service on the project’’. (Section III.2.b) and ‘‘Engineers shall
accept personal responsibility for their professional activities’’ (Section
III.8., National Society of Professional Engineers, 2022). Having pride
in one’s own work also requires being able to honestly answer ‘‘yes’’
when asked if one is sure that a computed solution is correct. As a
consequence, if a code cannot be completed and sufficiently tested by
a deadline, then results must clearly be marked as preliminary, or the
paper or proposal needs to be delayed to the next deadline.

5. Conclusions

Developing software for the purpose of computational engineer-
ing inevitably means spending a lot of time and effort determining
the source of issues with mathematical formulations, as well as their
numerical implementation in the form of generic computer code (a
framework) and specific simulation configurations. Debugging any of
these aspects is a difficult process, as is being able to find a foothold
from which to establish the source of non-programmatic errors. In the
end, these are both skills that need to be learned and practised; having a
companion who has gone through this process many times over provide
some insights into where to start and what to look for can greatly
accelerate the process of learning.

In this paper we have provided just that: having summarised the
components of the typical solid mechanics model, we have listed com-
mon categories of errors and elucidated as to why they appear in
the first place. We have then given clear – albeit non-exhaustive –
recommendations on how to identify which category the reader’s issue
might be associated with and some general guidance as to how to
start the process of correcting said issue. We then conclude with some
suggestions as to how the reader can ensure that their simulation
framework remains reliable, and how they can improve their process
of future development.

As a final comment, we wish to reaffirm the reader that developing
numerical software is indeed challenging. Being patient and allowing
yourself time to work through problems of the nature presented in this
paper is a crucial element of success. The process of problem solving
in this arena will get easier over time as you become exposed to more
issues, be they in your own work and field of expertise, or someone
else’s. With experience comes a shift in the balance of where you spend
your time during development. This will ultimately end in you having
more fun and a greater opportunity to experience that unique sense of
satisfaction of a successful implementation, and explore and enjoy the
beauty and insights that computational physics simulations provide our
curious minds!
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