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In Part I [Appl. Opt. 58, 6067 (2019)], we used a coupled optoelectronic model to optimize a thin-film
CuIn1−ξGaξSe2 (CIGS) solar cell with a graded-bandgap photon-absorbing layer and a periodically corrugated
backreflector. The increase in efficiency due to the periodic corrugation was found to be tiny and that, too, only
for very thin CIGS layers. Also, it was predicted that linear bandgap-grading enhances the efficiency of the CIGS
solar cells. However, a significant improvement in solar cell efficiency was found using a nonlinearly (sinusoidally)
graded-bandgap CIGS photon-absorbing layer. The optoelectronic model comprised two submodels: optical and
electrical. The electrical submodel applied the hybridizable discontinuous Galerkin (HDG) scheme directly to
equations for the drift and diffusion of charge carriers. As our HDG scheme sometimes fails due to negative car-
rier densities arising during the solution process, we devised a new, to the best of our knowledge, computational
scheme using the finite-difference method, which also reduces the overall computational cost of optimization.
An unfortunate normalization error in the electrical submodel in Part I came to light. This normalization error
did not change the overall conclusions reported in Part I; however, some specifics did change. The new algorithm
for the electrical submodel is reported here along with updated numerical results. We re-optimized the solar cells
containing a CIGS photon-absorbing layer with either (i) a homogeneous bandgap, (ii) a linearly graded bandgap,
or (iii) a nonlinearly graded bandgap. Considering the meager increase in efficiency with the periodic corrugation
and additional complexity in the fabrication process, we opted for a flat backreflector. The new algorithm is sig-
nificantly faster than the previous algorithm. Our new results confirm efficiency enhancement of 84% (resp. 63%)
when the thickness of the CIGS layer is 600 nm (resp. 2200 nm), similarly to Part I. A hundredfold concentration of
sunlight can increase the efficiency by an additional 27%. Finally, the currently used 110-nm-thick layer of MgF2
performs almost as well as optimal single- and double-layer antireflection coatings. © 2022 Optica Publishing Group

https://doi.org/10.1364/AO.474920

1. INTRODUCTION

Photovoltaic solar cells (PVSCs) are eco-friendly energy sources
of huge importance during the current climate emergency.
Worldwide, the primary energy consumption was 154,750
terawatt-hour (TWh) in 2020, but PVSCs were used to gen-
erate only 855.7 TWh [1]. The PVSC share must grow from
the current ∼0.55% to about 20% in less than three decades,
as diverse industrial and transportation sectors are electrified
to meet ambitious but necessary decarbonization goals [2,3].
Therefore, increasing the power-conversion efficiency, and
thereby reducing the levelized cost of electricity [4] generated by
PVSC modules, is essential.

Thin-film PVSCs are a promising alternative to wafer-based
crystalline-silicon solar cells with significantly reduced material
consumption and the promise of reduced manufacturing costs.
These types of PVSCs could be employed on many kinds of
exterior and interior surfaces to not only harvest direct as well
as diffuse solar energy but also to recycle electrically generated
light in habitable spaces. The major areas of improvements in
thin-film PVSCs include but are not limited to light-trapping
strategies to harvest more photons [5–8], new semiconduc-
tors with more efficient conversion of photons into charge
carriers [9], bandgap grading of semiconductors [10,11], and
back-surface passivation [12].
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Fig. 1. (a) Schematics of CIGS thin-film solar cell with (a) a
magnesium-fluoride antireflection coating and a periodically corru-
gated backreflector, (b) a magnesium-fluoride antireflection coating
and a flat backreflector, and (c) a double-layer antireflection coating
and a flat backreflector.

In the predecessor paper [13], hereafter referred to as Part
I, we optimized thin-film PVSCs employing CuIn1−ξGaξSe2

(CIGS), a quaternary I-III-VI semiconductor, as the photon-
absorbing and charge-carrier-generating material. The structure
of this solar cell is shown in Fig. 1(a). The bandgap energy in
the p-type CIGS layer of thickness LCIGS ≤ 2200 nm was
taken to be graded in the thickness direction (i.e., parallel to
the z axis). The potential of guided-wave modes (i.e., surface-
plasmon-polariton waves and waveguide modes [14–21])
for the enhancement of optical absorption and, therefore,
the electron-hole-pair (EHP) generation rate was assessed
by incorporating a periodically corrugated molybdenum
(Mo) backreflector with period L x along the x axis, duty cycle
ζ ∈ (0, 1), and height L g . A coupled optoelectronic model
was devised to determine the power-conversion efficiency
denoted by η. It was found that periodic corrugations (with
L x ∈ [300, 800] nm and L g ≤ 100 nm) increased η slightly,
but only for LCIGS ≤ 600 nm. Also, it was predicted that judi-
ciously selected compositional-grading profiles (i.e., ξ as a
function of z) leading to bandgap grading [22] in the CIGS layer
can enhance the efficiency, with nonlinear-bandgap grading
being more effective than linear-bandgap grading.

The optoelectronic model used in Part 1 [13] comprises
two submodels: optical and electrical. The optical submodel is
based on the rigorous coupled-wave approach (RCWA) [23,24],
which simplifies to the standard transfer-matrix approach [25]
for flat backreflectors. The output of the optical submodel is
the EHP generation rate G(z) inside the semiconductor layers
of the solar cell, assuming normal illumination by unpolarized
polychromatic light endowed with the AM1.5G solar spectrum.
Then G(z) is used in the electrical submodel as an input to
the drift-diffusion system to obtain the charge-carrier fluxes
and, hence, the current Jdev generated by the solar cell as well
as the electrical power density P = JdevVext as functions of
the bias voltage Vext under steady-state conditions. In turn,
the Jdev − Vext and the P − Vext curves yield η along with the
short-circuit current density J sc, open-circuit voltage Voc, and
fill factor FF.

As the complexity of the designs being considered by us
increased, optimization became computationally expensive—
because negative charge-carrier densities or overflows were
encountered during the solution of the nonlinear equations aris-
ing from our implementation of the hybridizable discontinuous
Galerkin (HDG) scheme [24,26]. Therefore, we devised a
new solution strategy to implement a special finite-difference

method (FDM) [27] utilizing quasi-Fermi potentials to pro-
vide a more robust electrical submodel and thus speed up the
optimization. During this process, unfortunately, we found a
normalization error in the electrical-submodel code used for
Part I [13]. This normalization error does not change the overall
conclusions reported in Ref. [13]; however, some specifics do
change. Here, we report details of the new and more robust solu-
tion algorithm and updated numerical results. We re-optimized
the CIGS solar cells containing a CIGS photon-absorbing layer
with either (i) a homogeneous bandgap, (ii) a linearly graded
bandgap, or (iii) a nonlinearly graded bandgap.

With L g = 0, as shown in Fig. 1(b), the CIGS solar cell has a
MgF2/AZO/od–ZnO/CdS/CIGS/Al2O3/Mo multilayered
structure. The 110-nm-thick MgF2 layer acts as an antire-
flection coating. Electrons are collected in the 100-nm-thick
aluminum-doped zinc oxide (AZO) layer, while the 80-nm-
thick layer of oxygen-deficient zinc oxide (od-ZnO) and the
70-nm-thick layer of cadmium sulfide (CdS) function as n-type
semiconductors. The photon-absorbing layer of p-type CIGS is
of thickness LCIGS ≤ 2200 nm, Al2O3 is a 50-nm-thick passiva-
tion layer, and the Mo layer serves as both the back-contact and
optical reflector.

As the effects of defects at the CdS/CIGS interface on the
solar-cell performance were found in Part I [13] to be insignifi-
cant, we ignored a 10-nm-thick surface-defect layer between
the CdS and CIGS layers for all results presented here. The
usefulness of the Al2O3 passivation layer between the CIGS
absorber and the Mo back-contact was established in Part I [13]
to improve both J sc and Voc. Hence, the 50-nm-thick Al2O3

layer in Fig. 1(b) was considered for all results presented here
except for validation against experimental results.

One method to improve the efficiency and thereby reduce
the levelized cost of electricity is to use optical concentrators
to increase the intensity of sunlight incident on the solar cell’s
surface. A significant improvement in the efficiency of thin-film
graded-bandgap CIGS solar cells was reported with concen-
trated sunlight in Ref. [28]. The overall conclusions in that work
hold true after the correction of the normalization error in the
electrical-submodel code. However, as the specifics of the data
reported were impacted, here we are also reporting the revised
data on CIGS solar cells with concentrated sunlight.

Another way to improve the efficiency of PVSCs is by using
better antireflection coatings (ARCs) and thereby enhance
photon absorption by reducing reflection loss [8]. In thin-
film CIGS solar cells, a single-layer antireflection coating
(SLARC) of MgF2 is used to reduce the reflection loss as shown
in Fig. 1(b). However, SLARCs can be effective only in narrow
spectral regimes [29,30]. So, multilayer ARCs or graded-index
antireflection structures are required to reduce the reflection
loss over a broad spectral regime [8]. But graded-index antire-
flection structures such as moth-eye and nanowire structures
[31,32] bring additional cost and complexity to the manu-
facturing process. In contrast, multi-layer ARCs are simple to
deposit using techniques such as thermal evaporation, reactive
sputtering, and plasma-enhanced chemical vapor deposition.

The commonly used materials for ARCs are SiO2, ZnS,
TiO2, ZrO2, Si3N4, and Al2O3 [32–34]. One approach can be
to maximize η by confining attention to a selection of specific
materials. Another approach can be to confine attention to a
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specific range of the refractive index and predict the optimal
refractive index for the ARC. The commonly used approach
is the former, but the latter can provide a better ARC as it con-
siders a complete range of possible materials instead of a fixed
few options; we opted for the latter approach. Hence, we opti-
mized the refractive indices and thicknesses of SLARCs and
double-layer antireflection coatings (DLARCs) for CIGS solar
cells containing a CIGS photon-absorbing layer with either
(i) a homogeneous bandgap, (ii) a linearly graded bandgap, or
(iii) a nonlinearly graded bandgap. The structure of this solar
cell is schematically depicted in Fig. 1(c). A relative enhance-
ment of no more than 2% is predicted with an optimal DLARC
compared to the efficiency with a SLARC, indicating that the
simpler option of a SLARC may be economically preferable.

This paper is organized as follows. Section 2 on optoelec-
tronic optimization is divided into five subsections. The
bandgap-grading profiles chosen for the CIGS layer are
presented in Section 2.A, the optical description of and the
calculations for the solar cell are presented in Section 2.B, the
electrical description of the solar cell and the electrical compu-
tations are described in Section 2.C, the new FDM algorithm
for the solution of the drift-diffusion system is described in
Section 2.D, and the optimization technique is mentioned in
Section 2.E for completeness.

Numerical results are presented and discussed in Section 3,
divided into eight subsections. Section 3.A compares the effi-
ciency of the conventional 2200-nm-thick solar cell with a
homogeneous CIGS layer predicted by the model with available
experimental data. Section 3.B provides the optimal results for
solar cells with a homogeneous CIGS layer and Section 3.C for
solar cells with a linearly graded CIGS layer. Optimal results
for solar cells with a nonlinearly graded-bandgap CIGS layer
are discussed in Section 3.D. A detailed study of the optimal
600-nm-thick solar cell is presented in Section 3.E. Section 3.F
provides the optimal results for solar cells illuminated by con-
centrated sunlight, and Section 3.G provides the optimal results
for solar cells with double-layer antireflection coatings. The
computational times needed for one run of the optoelectronic
model, with the electrical submodel using either (i) the HDG
scheme of Part I or (ii) the FDM scheme in the new solution
strategy, are compared in Section 3.H. The paper ends with
concluding remarks in Section 4.

2. OPTOELECTRONIC OPTIMIZATION

As stated earlier, we chose the solar-cell structure depicted
in Fig. 1(b) with LMgF2

= 110 nm, LAZO = 100 nm,
Lod–ZnO = 80 nm, LCdS = 70 nm, LCIGS ∈ [100, 2200] nm,
L a = 50 nm, and Lm = 500 nm.

A. Bandgap Energy in the CIGS Layer

The linearly nonhomogeneous bandgap energy for forward
grading was modeled as

Eg (z)= Eg ,min + A
(
Eg ,max − Eg ,min

) z− (Lw + Lod−ZnO + LCdS)

LCIGS
,

z ∈ [Lw + Lod–ZnO + LCdS, Ld ] ,
(1)

where Eg ,min is the minimum bandgap energy, Eg ,max is the
maximum bandgap energy, A is an amplitude (with A= 0 rep-
resenting a homogeneous CIGS layer), Lw = LMgF2

+ LAZO,
and Ld = Lw + Lod–ZnO + LCdS + LCIGS. The linearly non-
homogeneous bandgap energy for the backward grading was
modeled as

Eg (z)= Eg ,max − A
(
Eg ,max − Eg ,min

) z− (Lw + Lod–ZnO + LCdS)

LCIGS
,

z ∈ [Lw + Lod–ZnO + LCdS, Ld ] .
(2)

The parameter space for optimization of η was fixed as fol-
lows: A ∈ [0, 1], Eg ,min ∈ [0.947, 1.626] eV, and Eg ,max

∈ [0.947, 1.626] eV with the conditionEg ,max ≥ Eg ,min.
The nonlinearly varying bandgap energy was modeled with

the help of sinusoidal functions as

Eg (z)= Eg ,min + A
(
1.626− Eg ,min

)
×

{
1

2

[
sin

(
2πK

z− (Lw + Lod–ZnO + LCdS)

LCIGS
− 2πψ

)
+ 1

]}α
,

z ∈ [Lw + Lod–ZnO + LCdS, Ld ] ,
(3)

where ψ ∈ [0, 1] quantifies a relative phase shift, K is the
number of periods in the CIGS layer, and α > 0 is a shaping
parameter. The parameter space for optimization of η was fixed
as follows: A ∈ [0, 1], Eg ,min ∈ [0.947, 1.626] eV, α ∈ [0, 8],
K ∈ [0, 8], andψ ∈ [0, 1].

B. Optical Description and Calculations

The optical description and calculations remain unchanged as
discussed in Part I [13]. Spectrums of the real and imaginary
parts of the relative permittivity ε(λ0)/ε0 of MgF2 [35], AZO
[36], od-ZnO [37], CdS [38], CIGS [39,40], Al2O3 [41], and
Mo [42] used in our calculations are available in Part I [13] and
Ref. [24], where ε(λ0) is the permittivity as a function of the
free-space wavelengthλ0 and ε0 is the permittivity of free space.

The transfer-matrix method [25] was used to calculate the
electric field phasor E(z, λ0)= E x (z, λ0)ûx everywhere inside
the solar cell as a result of illumination by a monochromatic
plane wave normally incident on the plane z= 0 from the half
space z< 0, where ûx is the unit vector parallel to the x axis. The
electric field phasor of the incident plane wave was taken as

Einc(z, λ0)= E0ûx exp

(
i2π

z
λ0

)
, (4)

where E0 = 4
√

15π V m−1. Standard boundary conditions
were enforced on the planes z= 0 and z= L t = Ld + La + Lm

to match the internal field phasors to the incident, reflected, and
transmitted field phasors, as appropriate.

With the assumption that every absorbed photon excites an
EHP, the EHP generation rate was calculated as

G(z)=
η0

~E 2
0

∫ λ0,max

λ0,min

Im{ε(z, λ0)}|E x (z, λ0)|
2S(λ0)dλ0

(5)
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for z ∈ [Lw, Ld ], where η0 is the intrinsic impedance
of free space, ~ is the reduced Planck constant, S(λ0) is
the AM1.5G solar spectrum [43], λ0,min = 300 nm, and
λ0,max = (1240/Eg ,min) eV nm.

C. Electrical Description and Calculations

The electrical description and theory remain unchanged
from Part I [13]. Under steady-state conditions, the 1D drift-
diffusion system comprises the following three differential
equations:

d
dz

Jn(z)=−qe [G(z)− R(n, p; z)] , (6)

d
dz

J p(z)= qe [G(z)− R(n, p; z)] , (7)

d
dz

[
εdc (z)

d
dz
φ(z)

]
=−

qe

ε0

[
N f (z)+ ND(z)+ p(z)− n(z)

]
.

(8)
These differential equations hold for z ∈ (Lw, Ld ), with
qe = 1.602× 10−19 C as the elementary charge, Jn(z) as the
electron current density, J p(z) as the hole current density,
n(z) as the electron density, p(z) as the hole current density,
R(n, p; z) as the EHP recombination rate, N f (z) as the defect
density (also called trap density), ND(z) as the doping density
that is positive for donors and negative for acceptors,φ(z) as the
d.c. electric potential, and εdc(z) as the d.c. relative permittivity.
The radiative EHP recombination process—depending on
both charge carrier densities and the intrinsic carrier density
ni (z)—was incorporated in the electrical submodel [13]. The
Shockley–Read–Hall EHP recombination process—depending
on n(z), p(z), ni (z), the trap energy level ET , and the minority
carrier lifetime—was incorporated in the electrical submodel
[13] as well.

The current densities are written as

Jn(z)=µnn(z) d
dzEFn (z)

J p(z)=µp p(z) d
dzEF p (z)

}
, z ∈ (Lw, Ld ), (9)

where µn and µp are the electron mobility and hole mobility,
respectively. The electron quasi-Fermi level

EFn (z)= Ec (z)+ kB T ln[n(z)/Nc (z)] (10a)

and the hole quasi-Fermi level

EF p (z)= Ev(z)− kB T ln[p(z)/Nv(z)] (10b)

involve the Boltzmann constant kB = 1.380649× 10−23 J K−1

and the absolute temperature T, with Nc (z) as the density of
states in the conduction band, Nv(z) as the density of states in
the valence band,

Ec (z)= E0 − [qeφ(z)+ χ(z)] (10c)

as the conduction band-edge energy,

Ev(z)= Ec (z)− Eg (z) (10d)

as the valence band-edge energy, E0 as an arbitrary reference
energy level, and χ(z) as the bandgap-dependent electron
affinity.

In contrast to the solution algorithm adopted for Part I,
we used the quasi-Fermi levels EFn and EF p as the unknown
functions to be determined by the FDM, and we computed the
electron and hole densities via Eqs. (10a) and (10b). The use of
the quasi-Fermi levels ensures that n(z)≥ 0 and p(z)≥ 0. See
Ref. [44] for more details.

The Boltzmann approximation yields

Jn(z)=−qeµn(z)
{

n(z)
d
dz

[φ(z)+ φn(z)]−
kB T
qe

d
dz

n(z)
}

(11a)
and

J p(z)=−qeµp(z)
{

p(z)
d
dz

[
φ(z)+ φp(z)

]
+

kB T
qe

d
dz

p(z)
}
,

(11b)
where

φn(z)=
{
χ(z)+ kB T ln

[
Nc (z)

N0

]}
/qe (12a)

and

φp(z)=
{
χ(z)+ Eg (z)− kB T ln

[
Nv(z)

N0

]}
/qe (12b)

are the built-in potentials for electrons and holes due to varia-
tions in the material properties. The baseline number density
N0 is arbitrary because potentials are defined uniquely only up
to a constant.

In order to formulate boundary conditions, ideal ohmic
contacts were assumed for the planes z= Lw and z= Ld , and
the Al2O3 layer was ignored [24].

D. FDM Algorithm

The computational solution process of the drift-diffusion
system in Part I employed the HDG scheme [45,46]. A more
robust algorithm based on the FDM was devised, as stated
earlier.

First the drift-diffusion system is non-dimensionalized by
defining the dimensionless height

z̄=
1

L sf

(
z−

Ld + Lw
2

)
(13)

and dimensionless variables

ᾱ(z̄)=



α(z)/µsf, α ∈
{
µn, µp

}
α(z)/φsf, α ∈

{
φ, φn, φp , Vext

}
α(z)/Esf, α ∈

{
χ, E0,c ,F n ,F p ,g ,i,v

}
α(z)/Nsf, α ∈

{
n, p, ni , N0,c ,D, f ,v

}
α(z)/G sf, α ∈ {G, R}
α(z)/J sf, α ∈

{
Jn, J p

}
, (14)

where

L sf = (Ld − Lw)/2, µsf = (1/2)max
{
µn(z)+µp(z)

}
φsf = kB T/qe , Esf = kB T
Nsf =max

{
N f (z)+ ND(z)

}
, G sf =µsf Nsfφsf/L2

sf

J sf = qe G sf L sf


(15)

are the scale factors. We also define the dimensionless z-directed
d.c. electric field
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Ēdc(z̄)=−λ2(z̄)
d
d z̄
φ̄(z̄) (16)

along with the Poisson function

λ2(z̄)= ε0εdc(z)
kB T

(qe L sf)
2 Nsf

. (17)

After non-dimensionalization, Eqs. (10a)–(10d), (12a), and
(12b) can be manipulated to yield

n̄(z̄)= exp
[
8̄n + ĒFn (z̄)+ φ̄(z̄)+ φ̄n(z̄)

]
(18a)

and

p̄(z̄)= exp
[
8̄p − ĒF p (z̄)− φ̄(z̄)− φ̄p(z̄)

]
, (18b)

where 8̄n = ln N̄0 + Ē0 and 8̄p = ln N̄0 − Ē0 are arbitrary
dimensionless constants. By choosing ĒFn (z̄) and ĒF p (z̄) as
the dependent variables in the new algorithm, in contrast to
the choice of n̄(z̄) and p̄(z̄) as dependent variables in the algo-
rithm used for Part I [13], we avoid the unphysical possibility of
negative carrier densities.

After non-dimensionalization and consistently with the
Boltzmann approximation, Eqs. (6)–(9) and (16) transform
into three coupled sets of two ordinary differential equations for
z̄ ∈ (−1, 1), the two equations in each set being

d
d z̄

g (z̄)= f (z̄) (19a)

and

d
d z̄
w(z̄)=

g (z̄)
u(z̄)

. (19b)

The choices of functions g (z̄), f (z̄), u(z̄), andw(z̄) for each of
the three sets are given in Table 1.

We now describe the numerical implementation of the new
algorithm for the electrical submodel. A one-dimensional mesh
{z̄ j }

N
j=0 is defined on the domain �= {z̄| − 1≤ z̄≤ 1} such

that z̄0 =−1 and z̄N = 1. The mesh midpoints we define as
z̄ j+1/2 = 2−1(z̄ j + z̄ j+1). We allow this mesh to be graded,
with mesh size

h j = z̄ j+1 − z̄ j ( j = 0, · · · , N − 1). (20)

Clearly, g (z̄)must be continuous ∀z̄ ∈ (−1, 1). Otherwise, the
right side of Eq. (19a)—i.e., f (z̄)—would involve Dirac delta
functions. Therefore, we choose the approximate numerical
solution such that

(i) g (z̄) is piecewise linear, and
(ii) u(z̄),w(z̄), and f (z̄) are piecewise constant

Table 1. Choice of Variables for the FDM Algorithm

Set No. Unknown Choice

1 w= ĒFn (z̄) u = µ̄n(z̄)n̄(z̄)
g = J̄n(z̄) f =−Ḡ(z̄)+ R̄(n̄, p̄; z̄)

2 w= ĒF p (z̄) u = µ̄p(z̄) p̄(z̄)
g = J̄ p(z̄) f = Ḡ(z̄)− R̄(n̄, p̄; z̄)

3 w= φ̄(z̄) u =−λ2(z̄)
g = Ēdc(z̄) f = n̄(z̄)− p̄(z̄)− N̄ f (z̄)− N̄D(z̄)

in �. We adopt the following notion: g j = g (z̄ j ), u j+1/2 =

u(z̄ j+1/2),w j+1/2 =w(z̄ j+1/2), and f j+1/2 = f (z̄ j+1/2).
We allow φ̄n,p(z̄) and µ̄n,p(z̄) to have jumps across nodes z̄k .

Therefore, at these nodes we weakly enforce the continuity of
the quasi-Fermi potentials[[

ĒF`

]]
z=zk
= Ē+F`(z̄k)− Ē

−

F`
(z̄k)= 0 (`= n, p), (21)

where the superscript+ denotes the limit from above to z̄k , and
the superscript - denotes the limit from below to z̄k . This is done
by deriving an integral representation for the quasi-Fermi poten-
tial ĒF p (similarly for ĒFn ) in the following way.

After defining the Scharfetter–Gummel integrating factor for
holes as

M̄p(z̄)= exp
[
φ̄(z̄)+ φ̄p(z̄)

]
, (22)

we get

M̄p(z̄) J̄ p(z̄)=−µ̄p(z̄)
d
d z̄

{
exp
[
8̄p − ĒF p (z̄)

]}
(23)

from Eq. (11b). In order to formulate the new algorithm, we use
an integral form of Eq. (23), which differs from Eq. (10b) in that
it is written in terms of integrals of the current density J̄ p rather
than the hole density p̄ . After dividing both sides by µ̄p(z̄) and
integrating, the exact quasi-Fermi potential for holes away from
the midpoint of the mesh interval can be represented as

Ē F p (z̄)= 8̄p − ln

{
−

∫ z̄

z̄ j+1/2

M̄p(τ ) J̄ p(τ )

µ̄p(τ )
dτ

+ exp
[
8̄p − ĒF p , j+1/2

]}
(24)

in�. This form of Eq. (23) shows how the quasi-Fermi potential
depends on the current density. We now discretize the right side
of Eq. (24) by imposing the approximation that both M̄p(z̄) and
µ̄(z̄) are constant on each mesh interval while J̄ p(z̄) is piecewise
linear. We apply this integral representation for ĒF p (z̄) on the
intervals [z̄k−1/2, z̄k] and [z̄k, z̄k+1/2] to find Ē+F p ,k and Ē−F p ,k ,
respectively. By our assumptions, the integrand in each expres-
sion is piecewise linear, and we can compute these integrals
without any additional loss of accuracy. After using Eq. (21), the
jump resulting condition for ĒF p (z̄) is

−
M̄p,k−1/2

µ̄p,k−1/2

(
J̄ p,k−1 + 3 J̄ p,k

)
8

hk−1 + exp
(
8̄p − ĒF p ,k−1/2

)
=−

M̄p,k+1/2

µ̄p,k+1/2

(
J̄ p,k+1 + 3 J̄ p,k

)
8

hk + exp
(
8̄p − ĒF p ,k+1/2

)
(25)

at node z̄k . The jump condition for ĒFn (z̄) at node z̄k is enforced
in a similar way. The electric potential φ̄(z̄)does not have jumps.

Now we let

0 j (z̄)=
{

0, z̄ /∈ [z̄ j , z̄ j+1]

1, z̄ ∈ [z̄ j , z̄ j+1]
(26)
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be a test function. Multiplying Eq. (19a) by0 j (z̄) and integrat-
ing over z̄ ∈ [z̄ j , z̄ j+1], we get

g j+1 − g j

h j
= f j+1/2 ( j = 0, · · · , N − 1). (27)

Next we take a piecewise linear test function4 j that vanishes at
z̄=±1 as well as ∀ z̄< z̄ j−1 and ∀ z̄> z̄ j+1, but equals unity at
z̄= z̄ j . We divide Eq. (19b) through by u, multiply by4 j , and
integrate by parts over�. Using the trapezoidal rule for integra-
tion [47] to approximate the resulting integral, we get

g j = H j (u)
(
w j+1/2 −w j−1/2

)
( j = 1, . . . , N − 1) (28)

for j 6= k, where

H j (u)=
2(

h j

u+j
+

h j−1

u−j

) (29)

is the harmonic average of u/h at node z̄ j . We choose to take
u+j = u j+1/2 and u−j = u j−1/2.

At a boundary node where either j = 0 or j = N, we again
use the integral representations of ĒFn (z̄) and ĒF p (z̄) to find
ĒFn ,1/2, ĒF p ,1/2, ĒFn ,N−1/2, and ĒF p ,N−1/2. For example, we
find

J̄ p,1 + 3 J̄ p,0 =−
88̄p µ̄p,1/2

h0 M̄p,1/2

[
exp
(
−ĒF p ,0

)
− exp

(
−ĒF p ,1/2

)]
.

(30)
On the other hand, setting g = J̄ p and j = 0 in Eq. (27) and
adding 4 J̄ p,0/h0 to both sides gives

J̄ p,1 + 3 J̄ p,0 = h0 f1/2 + 4 J̄ p,0. (31)

The previous two expressions together yield

J̄ p,0 =−
28̄p µ̄p,1/2

h0 M̄p,1/2

[
exp
(
−ĒF p ,0

)
− exp

(
−ĒF p ,1/2

)]
−

h0 f1/2

4
.

(32)
In a similar way, we can find expressions for J̄ p,N , J̄n,0, and J̄n,N .

The FDM requires the solution of the 3N equations given by
Eqs. (27), (28), and (32) along with the jump conditions exem-
plified by Eq. (25). We define the (N × 1) column vectors

w=
[
w1/2, w3/2, . . . , wN−1/2

]T
, (33)

w ∈ { Ē Fn , Ē F p , φ̄} and the (3N × 1) vector x = [ Ē
T
Fn
,

Ē
T
F p
, φ̄

T
]
T . Using MATLAB version R2021b, we solve the 3N

equations F (x)= 0 using a Newton method and continuation
using selected damped electromagnetic parameters [48]. Once
x has been found, the current densities J̄n(z̄) and J̄ p(z̄) can be
calculated using Eq. (27). Also, n̄(z̄) and p̄(z̄) can be recovered
using Eqs. (18a) and (18b), respectively. Each Newton solution
process terminates when the relative L2 norm of the residual is
less than 10−10. Initially, we set 8̄n = 1 and 8̄p = 1; thereafter,
at each step of the damped Newton method, the constants 8̄n

and 8̄p are updated using the latest values of n̄ and p̄ .
Material data required by the electrical submodel are available

in Part I [13], with the following difference. The defect density
N f reported in Part I [13] had been modeled as a linear function

Fig. 2. Defect density N f as a function of ξ used for the new
algorithm.

of ξ . With the normalization error removed, the nonlinear fit
shown in Fig. 2 had to be used to match the experimental data
adequately. In this figure, N f is independent of ξ ∈ [0, 0.3] but
a quadratic function of ξ ∈ [0.55, 1]. This nonlinear fit was
used for all results reported in Section 3.

Testing was performed comparing the high-order corrected
HDG scheme of Part I with our new FDM scheme for models
and parameters where both solvers converge, in order to ensure
that the latter scheme reproduces results obtained with the
former scheme.

E. Optoelectronic Optimization

Solution of the drift-diffusion system yields the device current
density

Jdev = Jn(z)+ J p(z), (34)

which is independent of z but is a function of Vext. The product
P = JdevVext can then be maximized by varying Vext to obtain
the maximum power that the solar cell can produce and hence
the efficiency η for any particular design. The design of the solar
cell can then be improved using the differential evolution algo-
rithm [49] to determine the design with the highest efficiency as
in Part I [13].

3. NUMERICAL RESULTS AND DISCUSSION

A. Conventional CIGS Solar Cell (Model Validation)

First, we validated our coupled optoelectronic model solved
using the FDM by comparison with extant experimental results
for the conventional MgF2/AZO/od–ZnO/CdS/CIGS/Mo
solar cell containing a 2200-nm-thick homogeneous CIGS
layer and a flat backreflector [50]. Values of J sc, Voc, FF, and η
obtained from our model for ξ = 0 (Eg = 0.947 eV), ξ = 0.25
(Eg = 1.12 eV), and ξ = 1 (Eg = 1.626 eV) are provided in
Table 2, as also are the corresponding experimental data [50,51].
The model predictions are in reasonable agreement with the
experimental data, the differences very likely due to variance
between the optical and electrical properties used in the model
from those realized in practice.

B. Optimal Solar Cell with Homogeneous Bandgap

Next, let us consider the optoelectronic optimization of η
for fixed values of LCIGS for a solar cell with a homogeneous-
bandgap photon-absorbing layer. The parameter space for opti-
mizing η was set to: Eg ,min ∈ [0.947, 1.626] eV. Values of J sc,
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Table 2. Comparison of Jsc, Voc, FF, and η Predicted by the Coupled Optoelectronic Model for a Conventional CIGS
Solar Cell with a Homogeneous CIGS Layer (i.e., A= 0) with Their Experimental Counterparts [50,51]

ξ Eg ,min (eV) J sc (mA cm−2) Voc (mV) FF (%) η (%)

0 0.95 Model 37.79 460 79.32 13.79
Experiment (Ref. [50]) 40.58 491 66 14.5
Experiment (Ref. [50]) 41.10 491 75 15.0

0.25 1.12 Model 33.95 630 82 17.64
Experiment (Ref. [50]) 35.22 692 79 19.50
Experiment (Ref. [51]) 37.8 741 81 22.60

1 1.626 Model 14.78 1030 70 10.66
Experiment (Ref. [50]) 14.88 823 71 9.53
Experiment (Ref. [50]) 18.61 905 75 10.20

Table 3. Predicted Parameters of the Optimal CIGS
Solar Cell with a Specified Value of
LCIGS ∈ [100, 2200] nm, When the CIGS Layer Is
Homogeneous (Eg,min ∈ [0.947, 1.626] eV and A= 0)

LCIGS

(nm)
Eg ,min

(eV)
J sc

(mA cm−2) Voc (mV) FF (%) η (%)

100 1.33 14.55 680 78 7.78
200 1.31 19.53 710 76 10.57
300 1.28 22.99 710 76 12.53
400 1.28 24.16 720 77 13.55
500 1.27 24.92 720 79 14.18
600 1.26 26.09 720 79 14.94
900 1.26 27.35 730 81 16.20
1200 1.25 28.43 730 81 16.96
2200 1.19 31.86 700 82 18.39

Voc, FF, and η corresponding to the optimal design for LCIGS ∈

{100, 200, 300, 400, 500, 600, 900, 1200, 2200} nm are
shown in Table 3. As LCIGS increases from 100 to 2200 nm,
the optimal value of Eg monotonically decreases from 1.33
to 1.19 eV, and the optimal efficiency increases steadily from
7.78% to 18.39%. The highest efficiency predicted is 18.39%,
for a solar cell with a 2200-nm-thick CIGS layer with an optimal
bandgap ofEg = 1.19 eV.

C. Optimal Solar Cell with Linear Bandgap Grading

Next, let us consider the maximization of η as a function of
LCIGS when the CIGS layer has a linearly graded bandgap,
according to either Eq. (1) or Eq (2).

1. ForwardGrading

Equation (1) was used for linearly nonhomogeneous forward
bandgap grading, so thatEg (Lw + Lod–ZnO + LCdS)≤ Eg (Ld )

for A ≥ 0, the bandgap being smaller near the front contact
than near the back contact. The optoelectronic opti-
mization predicts A> 0 for optimal efficiency, contrary
to the prediction in Part I [13] due to the normaliza-
tion error mentioned previously. Values of J sc, Voc, FF,
and η corresponding to the optimal design for LCIGS ∈

{100, 200, 300, 400, 500, 600, 900, 1200, 2200} nm are
shown in Table 4.

For LCIGS = 2200 nm, the optimal η= 24.17% in Table 4,
whereas η= 18.39% in Table 3. This relative enhancement of

Table 4. Predicted Parameters of the Optimal CIGS
Solar Cell with a Specified Value of
LCIGS ∈ [100, 2200] nm, When the CIGS Layer Is Linearly
Nonhomogeneous According to Eq. (1)

LCIGS

(nm)
Eg ,min

(eV)
Eg ,max

(eV) A
J sc

(mA cm−2)
Voc

(mV) FF (%) η (%)

100 0.96 1.52 0.99 14.99 840 82 10.29
200 0.96 1.62 0.98 21.51 910 79 15.55
300 0.96 1.62 0.98 24.49 900 80 17.55
400 0.96 1.62 0.98 27.19 890 80 19.32
500 0.95 1.62 0.99 28.61 880 80 20.17
600 0.95 1.62 0.98 30.02 870 80 21.01
900 0.95 1.62 0.99 32.61 850 81 22.49
1200 0.95 1.62 0.98 34.01 840 81 23.18
2200 0.95 1.62 0.98 36.38 810 82 24.17

31.43% must be attributed to the forward bandgap grading
of the CIGS layer. Concurrently, J sc increases from 31.86 to
36.38 mA cm−2 (14.18% relative increase) and Voc from 700
to 810 mV (15.71% relative increase); however, the fill factor
remains the same. Bandgap grading thus calls for large Eg (z)
in the proximity of the plane z= Ld , which elevates Voc. Also,
in the vicinity of the CdS/CIGS interface, Eg (z) is small and
therefore elevates the EHP generation rate [52]. The overall
trends remain the same as reported in Part I [13].

2. BackwardGrading

Equation (2) was used for linearly forward bandgap grading
so that Eg (Lw + Lod–ZnO + LCdS)≥ Eg (Ld ) for A ≥ 0.
Optoelectronic optimization yielded A= 0. Thus, Table 3
holds for forward bandgap grading of the CIGS layer, again in
contrast to Part I [13], no doubt as a result of the normalization
error in the electrical-submodel code.

D. Optimal Solar Cell with Nonlinear Bandgap
Grading

Next, let us consider the optoelectronic optimization of η for
fixed values of LCIGS for a solar cell with a nonhomogeneous
CIGS layer graded according to Eq. (3). Values of η optimized
for fixed LCIGS are shown in Table 5. Values of Eg ,min, A, α, K ,
ψ , J sc, Voc, and FF for each optimal design are also shown in this
table.
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Table 5. Predicted Parameters of the Optimal CIGS Solar Cell with a Specified Value of LCIGS ∈ [100, 2200] nm, When
the CIGS Layer Is Nonlinearly Graded According to Eq. (3)

LCIGS (nm) Eg ,min (eV) A α K ψ J sc (mA cm−2) Voc (mV) FF (%) η (%)

100 1.07 1.0 8 0.60 0.36 17.10 950 87 14.10
200 1.07 1.0 8 0.60 0.36 23.74 970 87 19.98
300 1.07 1.0 8 0.60 0.36 27.49 980 86 23.28
400 1.07 1.0 8 0.60 0.36 30.06 990 86 25.45
500 1.07 1.0 8 0.60 0.36 32.01 990 85 27.04
600 1.07 1.0 8 0.60 0.36 32.78 990 85 27.56
900 1.07 1.0 8 0.60 0.36 35.36 1000 83 29.32
1200 1.07 1.0 8 0.60 0.36 36.36 1000 82 29.74
2000 1.07 1.0 8 0.60 0.36 37.84 990 80 30.03
2200 1.07 1.0 8 0.60 0.36 38.02 980 80 29.98

The highest optimal η= 30.03% in Table 5 was obtained
with the 2000-nm-thick CIGS layer, a relative enhancement
of 63.29% with respect to η= 18.39% with the homogeneous
CIGS layer in Table 3. The short-circuit current density
increases from 31.86 mA cm−2 by 18.76% to 37.84 mA cm−2,
and the open-circuit voltage increases from 700 mV by 41.42%
to 990 mV, but the fill factor reduces to 82% from 80%.

The overall trend is the higher efficiency with nonlin-
ear grading of CIGS photon-absorbing layer compared to
either homogeneous bandgap (Section 3.B) or linearly graded
bandgap (Section 3.C). In general, this trend remains the same
as reported in Part I [13].

E. Detailed Study of Optimal Solar Cells with
600-nm-Ultrathin CIGS Layer

The highest efficiency reported in Tables 3–5 is 30.03%. This
is for the CIGS solar cell with a nonlinearly graded-bandgap
2000-nm-thick CIGS layer. However, we are interested in
ultrathin CIGS layers to reduce the material and processing
costs, keeping in mind the scarcity of indium. According to a
cost analysis published by the US National Renewable Energy
Laboratory [53], 25% of the module cost is only due to the
CIGS layer. Reducing the thickness of this layer by two-thirds
will possibly reduce the overall cost by as much as 8%. The
solar cell with the nonlinearly graded-bandgap CIGS layer
of 600 nm thickness has efficiency η= 27.56%, which is sig-
nificantly more than the efficiency of the conventional CIGS
solar cell with a 2200-nm-thick homogeneous CIGS layer [51].
Therefore, as in Part I [13], a detailed study of the solar cell with
the 600-nm-thick graded-bandgap/nonhomogeneous CIGS
absorber layer is reported next.

1. Forward LinearlyGraded-BandgapCIGSLayer

The design and performance parameters of the optimal CIGS
solar cell with a 600-nm-thick linearly graded-bandgap CIGS
layer are provided in Table 4. Spatial profiles of Eg (z) and
χ(z) delivered by optoelectronic optimization are provided in
Figs. 3(a) and 3(b), respectively. Spatial profiles of Ec (z), Ev(z),
and the intrinsic energy Ei (z) are presented in Fig. 3(c). The
spatial variations of Ev and Ei are similar to that of Eg , as also in
Part I [13]. Figure 3(d) presents the spatial profiles of n(z), p(z),
and ni (z) under the equilibrium condition. The intrinsic carrier

Fig. 3. (a) Spatial profiles of (a) Eg ; (b) χ ; (c) Ec (z), Ev(z), and
Ei (z); (d) n(z), p(z), and ni (z); and (e) G(z) and R(n, p; z) in the
od-ZnO/CdS/CIGS region of the optimal CIGS solar cell with a
600-nm-thick linearly graded-bandgap CIGS layer. (f ) Plots of Jdev

and P versus Vext for the same solar cell.

density varies linearly with ξ , such that it is small where Eg is
large and vice versa.

Spatial profiles of G(z) and R(n, p; z) are given in
Fig. 3(e). The generation rate is higher near the front face
z= Lw + Lod–ZnO + LCdS and slightly lower in the middle
of the CIGS layer, but the recombination rate drops sharply
near the back face of that layer. The Jdev−Vext characteris-
tics of the solar cell are shown in Fig. 3(f ). From this figure,
Jdev = 28.76 mA cm−2, Vext = 731 mV, FF= 80%, and
η= 21.01% for the best performance.

2. NonlinearlyGraded-BandgapCIGSLayer

The parameters of the optimal CIGS solar cell with a 600-nm-
thick nonlinearly graded-bandgap CIGS layer are provided in
Table 5. Spatial profiles of Eg (z) and χ(z) delivered by opto-
electronic optimization are provided in Figs. 4(a) and 4(b),
respectively, and those of Ec (z), Ev(z), and Ei (z) in Fig. 4(c).
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Fig. 4. (a) Spatial profiles of (a) Eg ; (b) χ ; (c) Ec (z), Ev(z), and
Ei (z); (d) n(z), p(z), and ni (z); and (e) G(z) and R(n, p; z) in the
od-ZnO/CdS/CIGS region of the optimal CIGS solar cell with a
600-nm-thick nonlinearly graded bandgap CIGS layer. (f ) Plots of Jdev

and P versus Vext for the same solar cell.

The spatial variations of Ev and Ei are similar to that of Eg and
provide the conditions to enhance the EHP generation rate,
and bandgap grading provides the condition of large Eg (z)
in the proximity of the plane z= Ld , which elevates Voc [52],
these characteristics being the same as reported in Part I [13].
Figure 4(d) presents the graphs of n(z), p(z), and ni (z) under
the equilibrium condition. The intrinsic carrier density varies
according to the bandgap variation such that it is small whereEg

is large and vice versa, just as in Part I [13].
Spatial profiles of G(z) and R(n, p; z) are given in Fig. 4(e).

The magnitude of Eg (z) is large in the proximity of the back
plane z= Ld , which elevates Voc. The regions in which Eg (z)
is small are of substantial thickness, these regions being respon-
sible for elevating the EHP generation rate [52]. The nonlinear
grading close to the back plane z= Ld [shown in Fig. 4(a)] adds
a drift field to reduce the back-surface EHP recombination
rate, supplementing the role of the Al2O3 passivation layer.
Furthermore, the spatial profile of the EHP recombination rate
follows that of the defect density Nf. These trends are the same as
in Part I [13].

The Jdev − Vext characteristics of the solar cell are shown
in Fig. 4(f ). From this figure, Jdev = 31.18 mA cm−2,
Vext = 884 mV, FF= 85%, and η= 27.56% for the best
performance.

F. Illumination by Concentrated Sunlight

Large gains in efficiency can arise because bandgap grading
can provide a way to capture solar photons in a wider spectral
regime, which is also the principle exploited in multi-junction
III-V solar cells. Moreover, bandgap grading offers the addi-
tional benefits of a higher open-circuit voltage and reduced
parasitic impedances, without the additional circuitry needed

(a) (b)

(c) (d)

Fig. 5. Plots of (a) J sc, (b) Voc, (c) η, and (d) FF of the optimal
thin-film solar cell with a nonlinearly graded-bandgap CIGS layer of
2200 nm thickness as functions of c sun.

for multi-junction solar cells [54]. Hence, sunlight concentra-
tion combined with bandgap grading of thin-film solar cells may
offer a cost-effective alternative to III-V multi-junction solar
cells.

Sunlight concentration can be achieved using optical
light collectors, such as lenses or mirrors [55]. The sunlight-
concentration factor is defined as the number c sun of suns,
the single-sun spectrum S(λ0) being replaced by c sunS(λ0)

in Eq. (5). Since the thickness of thin-film solar cells is on the
order of a few micrometers, c sun ∈ [1, 100] was restricted to be
of medium magnitude in order to avoid detrimental heating
effects [28].

1. Optimal SolarCell

Next, we examined the performance of the optimal solar cell
with a nonlinearly graded-bandgap CIGS layer of 2200 nm
thickness (with parameters provided in the last row of Table 5),
when exposed to concentrated sunlight. Plots of J sc, Voc, η,
and FF of the optimal solar cell as functions of the sunlight-
concentration factor c sun ∈ [1, 100] are shown in Fig. 5. The
maximum value of η predicted is 38.18% with c sun = 100.
The 100-sun efficiency is 127.35% of the one-sun effi-
ciency (29.98%). The 100-sun values of J sc, Voc, and FF are
3802 mA cm−2, 1150 mV, and 87%, respectively.

The linear relationship of J sc with c sun is evident in Fig. 5(a).
In contrast, Voc, η, and FF in Figs. 5(b)–5(d) evince a two-phase
trend: as c sun increases from 1 to 100, each of these three param-
eters increases linearly: at a high rate in the first phase, but at
a much slower rate in the second phase. The same trends had
been reported earlier [28], which however had suffered from a
normalization error in the electrical-submodel code.

The Jdev − Vext and P−Vext characteristics of the optimal
CIGS thin-film solar cell are shown in Fig. 6 for c sun = 100. The
maximum output power Pmax delivered is 38.18 mW cm−2 for
c sun = 100. Of course, the ratio Pmax/c sun increases by 27.35%
with hundredfold sunlight concentration, as is expected
from the increase of η by the same factor. From this figure,
Jdev = 3671 mA cm−2, Vext = 1040 mV, FF= 87%, and
η= 38.18% for the best performance.
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Fig. 6. Plots of Jdev and P vs. Vext of the optimal thin-film solar cell
with a nonlinearly graded-bandgap CIGS layer of 2200 nm thickness
when c sun = 100.

2. Effect of SunlightConcentration on
Generation/RecombinationProcesses

We also examined the spatial profiles of the c sun-sun EHP gen-
eration rate G c sun(z) and the c sun-sun EHP recombination rate
Rc sun(n, p; z) in order to determine which portions of the semi-
conductor region are responsible for efficiency enhancement
from sunlight concentration. We also determined the values of
the net generation rate

γc sun =

∫ Lw

Ld

G c sun(z)dz (35a)

and the net recombination rate

ρc sun =

∫ Lw

Ld

Rc sun(n, p; z)dz. (35b)

The EHP generation rates G100(z) and 100G1(z) are
plotted in Fig. 7(a) as functions of z in the semiconductor
region of the optimal thin-film solar cell with a nonlinearly
graded-bandgap CIGS layer of 2200 nm thickness. The plots
show that G100(z)= 100G1(z), as expected from the lin-
earity of the optical submodel. Not surprisingly, therefore,
γ100 = 100γ1 = 2.43× 1026 cm−2 s−1.

Both R100(n, p; z) and 100R1(n, p; z) are plotted as func-
tions of z in the semiconductor regions of the same solar cell in
Fig. 7(b). Clearly, R100(n, p; z) 6= 100R1(n, p; z). Indeed,
R100(n, p; z) < 100R1(n, p; z) in most of the CIGS layer,
but the per-sun recombination rate near the two faces of that
layer is affected very little by sunlight concentration. In con-
sequence of 100R1(n, p; z) exceeding R100(n, p; z) in most
of the CIGS layer, 100ρ1 = 5.295× 1024 cm−2 s−1 is about
1% higher than ρ100 = 5.257× 1024 cm−2 s−1, which shows
that the reduced per-sun recombination rate is a significant
reason for the efficiency enhancement in the CIGS solar cell on
exposure to concentrated sunlight. Another reason includes the

Fig. 7. Spatial profiles of (a) the EHP generation rate and (b) the
EHP recombination rate in the semiconductor region of the optimal
solar cell with a nonlinearly graded-bandgap CIGS layer of 2200 nm
thickness, for the one-sun and 100-sun illumination conditions.

improvement of Voc due to higher J sc, as it is proportional to
ln(1+ J sc/Jdark) for ideal photodiodes, where Jdark is the dark
current density; see Eq. (1.6) of Ref. [56].

G. CIGS Solar Cell with Optimal SLARC/DLARC

The structure for CIGS solar cell with a DLARC is shown in
Fig. 1(c). We optimized the refractive indices (n1 and n2) and
thicknesses (LARC1 and LARC2) of a DLARC for optimal solar
cells containing a CIGS photon-absorbing layer with

(i) homogeneous bandgap and 2200 nm thickness,
(ii) linearly graded bandgap and 2200 nm thickness, or

(iii) nonlinearly graded bandgap and 2000 nm thickness.

The optimal parameters for the bandgap in the CIGS layer
are available in Tables 3–5. Both n1 and n2 were taken to be
real-valued and independent ofλ0.

1. Optimal SLARC

First, we considered optimizing a SLARC by setting LARC2 = 0.
The parameter space for optimizing η was chosen as
LARC1 ∈ [0, 1000] nm and n1 ∈ [1, 2.2]. Scatter plots of
the optimization results projected onto the n1−η and LARC1−η

planes are provided in Figs. S1–S3 of Supplement 1. Optimal
combinations of the values of the parameters n1 and LARC1 are
recorded in Table 6, along with the corresponding values of J sc,
Voc, FF, andη.

The maximum efficiency predicted with the optimal homo-
geneous CIGS layer is 18.39%, and the optimal SLARC
parameters are n1 = 1.40 and LARC1 = 106 nm. These param-
eters are very close to that of the 110-nm-thick MgF2 ARC
chosen for all previous calculations in this paper (as well
as in Part I). The corresponding values of J sc, Voc, and FF
are very close to that of the 110-nm-thick MgF2 ARC. The
maximum efficiency predicted with the optimal linearly graded-
bandgap CIGS layer is 24.11%, and the optimal parameters are
n1 = 1.40 and LARC1 = 106 nm. Again, these parameters are
very close to that of the 110-nm-thick MgF2 ARC, which how-
ever does reduce J sc but enhances both FF and η ever so slightly
compared to the optimal SLARC. The maximum efficiency
predicted with the optimal nonlinearly graded-bandgap CIGS
layer is 30.02%, and the optimal parameters are n1 = 1.40 and
LARC1 = 106 nm. The 110-nm-thick MgF2 ARC enhances
J sc and η but reduces both Voc and FF slightly compared to the
optimal SLARC.

Thus, the 110-nm-thick MgF2 ARC performs almost as well
as the optimal SLARC for the optimal CIGS solar cell, regardless
of the type of bandgap grading.

2. Optimal DLARC

Finally, we considered optimizing DLARCs in the fol-
lowing parameter space: LARC1 ∈ [0, 1000] nm, LARC2 ∈

[0, 1000] nm, n1 ∈ [1, 2.2], and n2 ∈ [1, 2.2]. Scatter plots
of the optimization results projected onto the n1−η, n2−η,
LARC1−η, and LARC2−η planes are provided in Figs. S4–S6
of Supplement 1. Optimal combinations of the values of the
parameters n1, n2, LARC1, and LARC2 are provided in Table 6,
along with the corresponding values of J sc, Voc, FF, andη.

https://doi.org/10.6084/m9.figshare.21347688
https://doi.org/10.6084/m9.figshare.21347688
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Table 6. Predicted Optimal Parameters for SLARCs and DLARCs

Bandgap LARC1 or J sc Relative Change
Grading ARC Type LMgF2

(nm) LARC2 (nm) n1 or nMgF2
n2 (mA cm−2) Voc (mV) FF (%) η (%) in η (%)

Homogeneous MgF2 110 – 1.38± 0.01 – 31.86 700 82 18.39
SLARC 106 – 1.40 – 31.50 700 83 18.39 0
DLARC 120 76 1.28 1.74 32.05 700 83 18.71 +1.74

Linear MgF2 110 – 1.38± 0.01 – 36.38 810 82 24.17
SLARC 106 – 1.40 – 36.59 810 81 24.11 −0.25
DLARC 120 76 1.28 1.74 37.20 810 81 24.54 +1.78

Nonlinear MgF2 110 – 1.38± 0.01 – 38.02 980 80 29.98
SLARC 106 – 1.40 – 37.83 990 80 30.02 +0.13
DLARC 120 76 1.28 1.74 38.47 990 80 30.57 +1.83

The maximum efficiency predicted with the optimal homo-
geneous CIGS layer is 18.71%, and the optimal DLARC
parameters are n1 = 1.28, n2 = 1.74, LARC1 = 120 nm, and
LARC2 = 76 nm. Compared to the 110-nm-thick MgF2 ARC
and the optimal SLARC, the relative increase in efficiency is
just 1.74%. The same DLARC is optimal for the optimal solar
cells with graded-bandgap CIGS photon-absorbing layers of
either type, the relative increase in efficiency being about 1.8%
compared to the 110-nm-thick MgF2 ARC and the optimal
SLARC.

We conclude that, whereas an optimal DLARC can increase
the efficiency in comparison to an optimal SLARC, the increase
will be very small and not worth the extra expense of depositing
a second layer. Furthermore, the currently used 110-nm-thick
MgF2 layer performs almost as well as an optimal SLARC.

H. Computation Time

The optical-submodel code is the same for the solution algo-
rithm of Part I as for the new solution algorithm, but the
electrical-submodel codes in the two algorithms are different.
The electrical-submodel code takes the bulk of computation
time for one run of the optoelectronic model. In order to
determine the change in computation time for one run with
the previous algorithm (after removing the normalization
error) and the new algorithm, we focused our attention on
the optimal solar cell with the CIGS photon-absorbing layer
of 600 nm thickness with (i) a homogeneous bandgap, (ii) a
linearly graded bandgap, or (iii) a nonlinearly graded bandgap.
The bandgap-grading parameters are provided in Tables 3–5.
All computations for this comparison were performed on an
NVIDIA Tesla K80 GPU with dual E5-2680 processors (24
total cores but access to 4 cores) and 256-GB RAM.

The three critical factors for the accuracy of the HDG scheme
are the degree Pdeg of the interpolating polynomials, the length
of each element dz = z j+1 − z j , ∀j ∈ [0, N − 1], and the
degree Ideg of quadrature integration. These were set equal to
5, 2 nm, and 10, respectively, as per error saturation criteria
stated in Refs. [45,46]. For the FDM-based algorithm, we set
dz = 1 nm.

The computation times for one run are presented in Table 7.
The new algorithm is about 10 times faster than the previous
algorithm for the chosen solar cells. However, the HDG scheme
uses high-order interpolating polynomials and has better accu-
racy than the FDM. The superiority of the new algorithm over

Table 7. Computation Times for One Run of the
Optoelectronic Model, when the Electrical Submodel Is
Implemented with the HDG-Based Algorithm of Part I
[13] and the New FDM-Based Algorithm

a

Bandgap
Grading

Previous
Algorithm (s)

New Algorithm
(s) Ratio

Homogeneous 1668 196 8.51
Linear 2813 276 10.19
Nonlinear 3398 287 11.83

aThe solar cell’s CIGS layer is 600 nm thick with bandgap-grading parame-
ters provided in Tables 3–5.

the previous one in terms of computational cost definitely also
varies with the bandgap-grading complexity and the number N
of discretization steps. A detailed study in this regard is beyond
the scope of this paper.

Parenthetically, let us note that the HDG code approximates
the particle densities directly, whereas the FDM approximates
the quasi-Fermi potentials. An HDG method based on quasi-
Fermi potentials would remove the issue of negative carrier
densities and would be more directly comparable to the FDM.

4. CONCLUDING REMARKS

We presented a new algorithm based on the FDM to solve the
1D drift-diffusion system and thus improve the computa-
tional robustness and reduce the overall computational cost
of optoelectronic optimization of thin-film CIGS solar cells
with a graded-bandgap CIGS photon-absorbing layer and a
flat backreflector. In doing so, we also removed a normalization
error affecting the numerical results reported in Part I [13]. The
CIGS layer has either (i) a homogeneous bandgap, or (ii) a lin-
early graded bandgap, or (iii) a nonlinearly graded bandgap. In
addition, we revised the data on these solar cells illuminated by
concentrated sunlight. Furthermore, we optimized the refrac-
tive indices and thicknesses of SLARCs and DLARCs for these
solar cells.

Our new algorithm for the electrical submodel confirmed
that optimal bandgap grading enhances the power-conversion
efficiency by as much as 84% when the CIGS layer is 600 nm
thick and 63% when the CIGS layer is 2200 nm thick. These
efficiency enhancements are very similar to those reported in
Part I, though specifics on the short-circuit current density and
the open-circuit voltage were affected by the normalization
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error. Bandgap grading provides the condition of large Eg (z)
in the proximity of the plane z= Ld (which elevates Voc), and
there are regions in which Eg (z) is small (which elevates the
EHP generation rate); both of these characteristics are similar
to those reported in Part I. Furthermore, a relative increase of
efficiency by an additional 27% is possible if the sunlight were
to be concentrated a hundredfold. A relative enhancement of no
more than 2% is predicted with an optimal DLARC compared
to the efficiency with an optimal SLARC, indicating that the
simpler option of a SLARC may be economically preferable.
The currently used 110-nm-thick layer of MgF2 serves very
well to reduce reflection losses, performing almost as well as
an optimal SLARC. Finally, the new algorithm is significantly
faster than the previous algorithm, and it is therefore preferable
for rapid optoelectronic optimization.
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