
How do Java mutation tools differ?

DOMENICO AMALFITANO,Department of Electrical Engineering and Information Technology (DIETI),

University of Naples Federico II

ANA C. R. PAIVA, Faculty of Engineering of the University of Porto & INESC TEC

ALEXIS INQUEL, ISEN Brest

LUÍS PINTO, Faculty of Engineering of the University of Porto

ANNA RITA FASOLINO, Department of Electrical Engineering and Information Technology (DIETI),

University of Naples Federico II

RENÉ JUST, Computer Science & Engineering, University of Washington

Mutation analysis techniques have been successfully deployed over the last decade, including mutation-based

testing in industrial settings. This success has been possible thanks to the effort spent by both academic and

industrial communities in designing, developing, and comparing mutation tools. While some comparative

studies exist in the literature, several tool aspects have not been taken into account. A more comprehensive

comparison is desirable to enable users to make an informed choice. Such choice of mutation tool may depend

on the specific use case. For instance, Researchers may find the configurability of a tool particularly relevant to

support different studies, while Educatorsmay prefer tools that are easier to install and use. Finally, Practitioners

may require that a tool must integrate with the company’s existing software development environment. This

paper makes four main contributions: (1) it reports on a meta-analysis of existing comparisons of Java mutation

tools; (2) it proposes a comprehensive mutation tool comparison framework encompassing five dimensions

(Version, Deployment, Mutation process, User-centric features, and Mutation operators), each with multiple

attributes; (3) it reports on an application of the proposed framework to eight Java mutation tools, involving

a literature survey, a student survey, and a tool-authors survey; (4) it reports on a survey to researchers,

educators, and practitioners that identifies their key considerations for selecting a mutation tool. Taken

together, this paper proposes a framework that can aid future tool comparisons and shows how the framework

can guide the selection of a suitable mutation tool for a given use case.

CCS Concepts: • Software and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: mutation testing, mutation testing tools analysis, mutation testing tools

comparison

ACM Reference Format:

Domenico Amalfitano, Ana C. R. Paiva, Alexis Inquel, Luís Pinto, Anna Rita Fasolino, and René Just. 2022.

How do Java mutation tools differ?. Communications of the ACM 1, 1 (January 2022), 23 pages. https://doi.org/

10.1145/nnnnnnn.nnnnnnn

Authors’ addresses: Domenico Amalfitano, domenico.amalfitano@unina.it, Department of Electrical Engineering and

Information Technology (DIETI), University of Naples Federico II, Via Claudio, 21, Naples, Italy, 80125; Ana C. R. Paiva,

apaiva@fe.up.pt, Faculty of Engineering of the University of Porto & INESC TEC, Rua Dr. Roberto Frias, s/n, Porto, Portugal,

4200-465; Alexis Inquel, alexis.inquel@isen-ouest.yncrea.fr, ISEN Brest, 20 Rue Cuirassé Bretagne, Brest, France, 29200; Luís

Pinto, up201809188@fe.up.pt, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, s/n, Porto, Portugal,

4200-465; Anna Rita Fasolino, fasolino@unina.it, Department of Electrical Engineering and Information Technology (DIETI),

University of Naples Federico II, Via Claudio, 21, Naples, Italy, 80125; René Just, rjust@cs.washington.edu, Computer Science

& Engineering, University of Washington, Seattle, WA, USA.

2022. /2022/1-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

2 Amalfitano, et al.

1 INTRODUCTION

Back in 2011, Jeff Offutt noted that “The field of mutation analysis has been growing, both in the
number of published papers and the number of active researchers.” [33]. This trend has since continued,
as confirmed by a recent literature survey [36].
Mutation analysis is “the use of well defined rules defined on syntactic descriptions to make

systematic changes to the syntax or to objects developed from the syntax” [33].
Mutation analysis has been successfully used in research for assessing test efficacy and as a

building block for testing and debugging approaches. It systematically generates syntactic variations,
called mutants, of an original program based on a set of mutation operators, which are well defined
program transformation rules. The most common use case of mutation analysis is to assess test
efficacy. In this use case, mutants represent faulty versions of the original program, and the
ratio of detected mutants quantifies a test suite’s efficacy. Empirical evidence supports the use of
systematically generated mutants as a proxy for real faults [2, 5, 19]. Another use case is automated
debugging (e.g., [10, 11]). In this use case, mutants represent variations of a faulty program and
are used either to locate the fault or to iteratively mutate the program until it satisfies a given
specification (e.g., passes a given test suite).

Mutation analysis can be applied at different levels, including design and specification level, unit
level, and integration level. Similarly, it can be applied to both models and programs. For example,
prior work applied mutation analysis at the design level to Finite State Machines, State Charts,
Estelle Specifications, Petri Nets, Network protocols, Security Policies, and Web Services [16].
Mutation-based testing leverages mutation analysis and is a testing approach that uses mutants

as test goals to create or improve a test suite. Mutation-based testing has long been considered
impractical because of the sheer number of mutants that can be generated, even for small programs.
Mutation-based testing is now increasingly adopted in industry, in part due to a shift in perspective,
including the notion of incremental, commit-level mutation, suppression of unproductive mutants,
and the focus on individual mutants as opposed to adequacy w.r.t. mutant detection [3, 37–39].
The software engineering community has devoted great effort to developing mutation tools,

which are available for a variety of programming languages, including Java, Python, Javascript,
C#, Ruby, and PHP [16, 36]. However, existing tools, even for the same programming language,
differ substantially. For example, different tools implement different mutation operators, applied to
source code or byte code, and produce different output artifacts, such as mutated source code and a
mutant-test kill matrix. These differences and their corresponding trade-offs for different use cases
are not always apparent, often due to a lack of documentation and/or empirical evidence. As a
consequence, a researcher, educator, or practitioner may make suboptimal choices or may be forced
to conduct a deeper investigation when choosing the most suitable tool for the use case at hand.

This paper characterizes the empirical studies that analyzed and compared Java mutation tools,
based on a rapid review of the research literature. Additionally, this paper proposes a framework
for comparing mutation tools, considering five dimensions: Tool version; Deployment; Mutation
process; User-centric features; and Mutation operators. Finally, this paper uses the proposed
framework to highlight the similarities and differences of 8 state-of-the-art Java mutation tools.

The rest of the paper is organized as follows. Section 2 describes background material. Section 3
summarizes prior studies that compared Java mutation tools, using a rapid review process. Sec-
tion 4 describes our proposed comparison framework, and Section 5 details an application of this
framework for 8 Java mutation tools. Section 6 details the considerations associated with choosing a
suitable mutation tool for use cases in research, education, and practice. Finally, Section 7 concludes
and outlines directions for future work.

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

How do Java mutation tools differ? 3

Program

(p)

Test suite

(TS)

Generate

mutants

Mutants

(M)

Run TS

Mutation score

Live mutants

Kill matrix

Report

Mutation analysis

Stop

testing?

X

Augment

TS

Does p

pass TS?
Fix p

yes

nono

yes

Fig. 1. Mutation-based testing.

2 BACKGROUND

Figure 1 visualizes a common mutation analysis process and how mutation-based testing is a
specific use case and instantiation of that process. An interested reader can find related process
descriptions in [36] and [16], which are, like ours, an adaptation of Offutt’s and Untch’s original
formulation of mutation analysis [32]. The literature has largely used the terms mutation analysis
and mutation testing interchangeably, but we make the distinction more precise because other
mutation-based approaches and use cases exist (e.g., test suite reduction, fault localization, or
program repair). To avoid ambiguity, we use the terms mutation analysis and mutation-based
testing. Mutation analysis involves two main steps—mutant generation and test suite execution.
Mutation-based testing iteratively applies mutation analysis, until a stopping condition is met, and
involves two additional steps—test suite augmentation and (possibly) program repair.
As an example, consider Figure 2: a mutation analysis, with an original program and a corre-

sponding test suite. First, the analysis generates the three mutants (<1–<3), each by applying a
mutation operator to the return statement of the original program. Next, the analysis executes each
test against each mutant and computes the kill matrix shown in the lower-right corner. A test that
detects a mutant is said to kill that mutant. A mutant that is not killed by any test is referred to as
a live mutant. Finally, the analysis reports on the results, indicating the mutation score, the set of
live mutants, and the kill matrix. While the mutation score is usually defined as the ratio of killed
to all non-equivalent mutants, most tools approximate it and report the number of killed mutants
divided by the total number of generated mutants. The reason for this is that the set of equivalent
mutants is unknown and reasoning about program equivalence is an undecidable problem. Note
that the computation of a complete kill matrix is not required for all use cases. For example, if
the goal is to simply compute the mutation score and the set of live mutants, then C3 need not be
executed against<2 after C2—<2 is already known to be killed at that point. Indeed, a kill matrix is
rarely, if ever, computed in mutation-based testing because it is computationally expensive.

The mutation analysis results in Figure 2 show that two out of three mutants are live and that C1
does not kill any mutants. Generally speaking, a test suite that fails to kill most of the mutants is

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

4 Amalfitano, et al.

int add(int x, int y) {

return x + y;

}

C1: assertEquals (0, add(0, 0))

C2: assertEquals (1, add(1, 0))

C3: assertEquals (2, add(2, 0))

int add(int x, int y) {

return x - y;

} <1

int add(int x, int y) {

return x * y;

} <2

int add(int x, int y) {

return x++ + y;

} <3

MutantsProgram

Test suite

Mutation score: 33.3%

Live mutants: <1, <3

Executed mutants: <1, <2, <3

Kill matrix

<1 <2 <3

C1 — — —
C2 — X —
C3 — X —

Potential mutation analysis outputs

Fig. 2. Mutation analysis example.

deficient and should be improved. The core idea of mutation-based testing is to use live mutants as
concrete test goals. In the example in Figure 2, mutant<1 is a live mutant and indicates that the
test suite lacks a test case—one that passes a non-zero argument to the second parameter of the
add method. Mutation-based testing repeats this iterative process of adding tests based on mutants
until a stopping condition is met, e.g., a given mutation score threshold or a fixed test budget.

Not every mutant can be killed. An equivalent mutant is semantically equivalent to the original
program and cannot be killed by any test. Mutant<3 in Figure 2 is an example of an equivalent
mutant. Moreover, not every mutant that can be killed should be killed. Traditionally, killable
mutants were generally deemed desirable because they lead to tests; conversely, equivalent mutants
were generally deemed undesirable. Petrović et al. [39], however, noted that this classification
is unworkable in practice and insufficient to capture the notion of developer productivity. For
example, developers justifiably should not and, in practice, will not write a test for a killable
mutant if that test would be detrimental to the test suite quality, in particular maintainability.
Conversely, equivalent mutants may point to actual program issues, prompting developers to make
meaningful improvements to the code itself. Petrović et al. introduced the notion of productive
mutants. A mutant is productive if the mutant is killable and elicits an effective test, or if the
mutant is equivalent but its analysis and resolution improves code quality. For example, a mutant
that changes the initial capacity of a Java collection (e.g., replacing new ArrayList(20) with
new ArrayList(10)) is unproductive. While such a mutant is theoretically killable by writing a
test that asserts on the collection capacity or expected memory allocations, it is unproductive to do
so because the corresponding test would be brittle and not testing actual functionality. Note that

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

How do Java mutation tools differ? 5

the notion of productive mutants is qualitative: different developers may sometimes reach different
conclusions as to whether a test is effective.

3 RAPID REVIEW OF JAVA MUTATION TOOL COMPARISONS

Based on the knowledge of what previous comparative studies propose, we decided to collect
evidence from the literature to understand (1) how mutation tools were compared and (2) whether
some mutation tools consistently outperform others along multiple dimensions.

We adopted a Rapid Review (RR) [41] process for this purpose. RRs are literature review processes
less formal than Systematic Mappings (SMs) and Systematic Literature Reviews (SLRs), but similarly
they follow a well-structured selection process. Hence, RRs can be further analyzed, replicated, and
improved by other researchers. According to Cartaxo et al. [4], the main goal of a RR is to reduce
the amount of time needed to gather, analyze, interpret, review, and publish evidence that could
benefit practitioners. To achieve this goal, RRs deliberately omit or simplify steps of traditional SLRs
(e.g. limiting literature search, using just one person to screen studies, skipping formal synthesis).
Our RR process relies on the following 4 sequential steps:

(1) Scopus search string definition and application.
(2) Primary studies selection.
(3) Data extraction.
(4) Data analysis and abstraction.

3.1 Scopus search string definition and application

We defined the search string, specifically crafted for the Scopus1 search engine, as follows:

TITLE-ABS-KEY ((“Mutation testing” OR “Mutation analysis” OR “mutation

tool*” OR “mutation testing tool*”) AND (“Empirical study” OR

“Empirical evaluation” OR “empirical analysis” OR “compar* mutation*”

OR “Experimental comparison”)) AND (LIMIT-TO(SUBJAREA, “COMP”))

The key rationale is to search for studies in the area of computer science that present an empirical
evaluation or an experimental comparison of mutation tools. We applied this search string to the
Scopus engine in November 2020, and it returned 187 results.

3.2 Primary studies selection

Our goal was to select primary studies presenting an empirical evaluation for comparing two or
more Java mutation tools. To that end, we divided the 187 search results into 2 sets of 93 and 94
studies. Two of the authors independently analyzed the studies of the two sets. Specifically, each
researcher identified papers that satisfied all of the following four inclusion criteria:

�1 : The study presents an empirical study involving at least two Java mutation tools.
�2 : The study considers Java mutation tools that are publicly accessible and free of charge.
�3 : The study analyzes Java mutation tools that are described in at least one publication.
�4 : The authors of the study are different from the authors of the analyzed mutation tools.

The selection process resulted in 5 primary studies, which are subsequently referred to as S1
[22], S2 [12], S3 [28], S4 [40], and S5 [8].

1https://www.scopus.com/search/form.uri

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

6 Amalfitano, et al.

Table 1. Analyzed mutation tools and study design for each of the five primary studies.

Primary Study

S1 [22] S2 [12] S3 [28] S4 [40] S5 [8]

Compared Mutation Tool

PIT [7] X X X X X

MuJava* [25] X X X X

Major [21], [17] X X X X

Jumble [15] X X X

Javalanche* [42] X X

Jester* [30] X X

Judy [26] X X X

Bacterio* [29] X

Test Case Generation

Manual X X

Automated X

Existing test cases X X

Adopted Metric

Real fault detection X

Mutual killability X X

Disjoint mutation score X

Correlation measures X

Mutation score X X X X

Number of generated mutants X X X X

Number of equivalent mutants X X X

Number of killed mutants X X

Number of generated test cases X X

Execution time X X

Subjects

Real-world project 5 25 6
Simple Java class 12 4 4

*The tool presented limitations when used to mutate real-world projects.

3.3 Data extraction

One of the authors fully read the five primary studies, and extracted sentences to collect evidences
for (1) which Java mutation tools were analyzed and (2) how these tools were compared. These
sentences were stored in a spreadsheet file for analysis.

3.4 Data analysis and abstraction

We adopted a Delphi method, which is commonly used when the problem under analysis can benefit
from collective and subjective judgments or decisions and when group dynamics do not allow
for effective communication (e.g., time differences, distance) [14]. Three of the authors, in weekly
meetings, iteratively analyzed the extracted data, resolved ambiguity, and converged onto the final
abstraction shown in Table 1. Based on a final data analysis, we made three key observations.

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

How do Java mutation tools differ? 7

Observation 1: the five primary studies compared a total of 8 Java mutation tools. Table 1 lists
these tools together with the references that report on how these tools are implemented and how
they are used. As shown in Table 1, PIT is the only tool analyzed in all five studies, followed by
Major and MuJava (four studies), Jumble and Judy (three studies), Jester (two studies), and Bacterio
(one study).

Ensuring that our analysis does not miss other Java mutation tools, we executed an additional
query in the Scopus database, using the following search string:

TITLE-ABS(("mutation tool*" OR "mutation testing tool*") AND java) AND

(LIMIT-TO(SUBJAREA, "COMP"))

This query searches more broadly for Java mutation tools presented in literature. We found three
additional Java-specific mutation tools: HOMAJ [34], Para` [27], and JavaMut [6]. We did not
include these three tools for two main reasons. First, no empirical comparison considered these
tools. Second, these tools are not available. To the best of our knowledge, we can conclude that our
list of mutation tools, reported in Table 1, is representative of the state of the art w.r.t. available
Java mutation tools.

Observation 2: the empirical studies that compared the mutation tools used different study designs
and measures. More concretely, the studies differ in three main aspects for evaluating the tools: (1)
how the test cases for killing mutants were generated, (2) what evaluation metrics were adopted,
and (3) what Java subjects were selected. We observed three distinct approaches for test case
generation: (1) manually writing test cases, (2) automatically generating test cases, using tools such
as EvoSuite [9] or Randoop [35], and (3) using existing test cases (i.e., using the test cases that are
distributed with the subject application). Further, we observed a total of 10 adopted metrics, 9 of
which evaluate the effectiveness and 1 evaluates the efficiency of the mutation tools. Almost all
of the studies reported on absolute measures such as the mutation score, number of mutants, and
number of test cases. S1, S2, and S3 reported on additional measures:

(1) Real fault detection: measures fault-coupling [19, 31] and whether mutation-adequate test
cases also detect real faults.

(2) Mutual killability: measures to what extent mutation-adequate tests derived from one tool
kill all the non-equivalent mutants of another tool.

(3) Disjoint mutation score: measures how a tool performs compared to a reference mutant set.
(4) Correlation measures: correlates the absolute measures obtained when evaluating each tool

independently.

Only two studies considered the efficiency of the mutation tools. In both cases, the costs of adopt-
ing the mutation tools were evaluated in terms of mutation analysis execution time. The five
primary studies either considered simple Java classes or real-world projects from the Defects4J
benchmark [18].

Observation 3: only 4 of the 8 tools (PIT, Major, Jumble, and Judy), did not present any limitations
when executed on real-world projects. For example, prior studies excluded mutation tools from
parts of their empirical evaluations because of tool limitations (see S1, S2, and S5 for further details).
Given the diversity of study designs and measures, there is no clear evidence that one of the

eight tools consistently outperforms the others—in particular when considering different use cases
(see Section 6). While PIT and Major overall achieve slightly better results in most of the empirical
evaluations, there is insufficient information to compare the tools for different use cases.

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

8 Amalfitano, et al.

Mutation tool

comparison framework

Version

License

Release version

Release year

Deployment

Java version

Build-tool
integration

Testing framework

Mutation

process

Mutation level

Test selection

Mutation oper-
ator selection

Mutant inspection

Kill matrix

Analysis run-
time reduction

Equivalent mutant
prevention

User-centric

features

User interface

Required inputs

Produced outputs

Documentation
quality

Mutation

operators

Data types

Pre-defined
operators

Java-specific

Object orientation

Fig. 3. Framework for comparing mutation tool features. Gray boxes indicate features reported in prior works.

4 MUTATION TOOL COMPARISON FRAMEWORK

The analysis of the selected papers showed that Java mutation tools were compared from the
point of view of the features they offer. To provide a comprehensive, unified representation of the
different ways the Java mutation tools can be qualitative compared according to their features, we
inferred the Mutation tool comparison framework shown in Figure 3. This model describes each tool
along five dimensions, each one with one or more attributes. The gray boxes represent dimensions
or attributes that were already used as comparative parameters in the primary studies we analyzed,
meanwhile the white boxes render the novel dimensions and attributes we introduced to provide
additional details for comparing mutation tools. Overall, we introduced 11 novel attributes for a
total of 21 attributes across 5 dimensions.

4.1 Version

This dimension characterizes the version of the tool and provides some indication about its level of
obsolescence. It has the following 3 attributes:

(1) License: Type of license defining the terms and conditions for using, reproducing, and distribut-
ing the tool. It is a novel attribute and was introduced since we believe that this information
can be useful for both practitioners and researchers who want apply the tool in their work.

(2) Release version: Number of the latest stable version of the tool.
(3) Release year: Date of the latest stable release of the tool.

4.2 Deployment

This dimension typifies the requirements of the execution environment where the mutation tool
can be installed and executed. It has the following 3 attributes:

(1) Java version: the Java version that is compatible with the correct execution of the tool.

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

How do Java mutation tools differ? 9

(2) Build-tool integration: the build tool(s) (i.e., maven and/or ant) needed for deploying and
running the tool.

(3) Testing framework: the testing frameworks that should be installed on the running environ-
ment.

4.3 Mutation process

This dimension describes the features provided by the tool in supporting the execution of mutation-
analysis processes. It has the following 7 attributes:

(1) Mutation level: it represents where the mutation operators are applied, i.e., source code or
byte code.

(2) Test selection: how the tool allows the selection of the tests to be executed.
(3) Mutation operator selection: how the tool enables to select the mutation operators to apply.
(4) Mutant inspection: how the tool aids the inspection of the executed mutation operators.
(5) Kill matrix: it describes the characteristics of the kill matrix, i.e., which tests kill each mutant.
(6) Equivalent mutant prevention: strategies used to help identifying equivalent mutants.
(7) Analysis runtime reduction: strategies applied to reduce the cost of mutation analysis.

4.4 User-centric features

This dimension describes the "pick and use" characteristics of the tool. It has the following 4
attributes:

(1) User interface: the user interface for interacting with the tool.
(2) Required inputs: the artifacts needed as input for launching the tool.
(3) Produced outputs: the artifacts produced by the tool.
(4) Documentation quality: the quality of the online documentation for guiding the tool execution.

4.5 Mutation operators

This dimension expresses the tool’s ability to implement different classes of mutation operators.
Due to the lack, in all the primary studies we analyzed, of a unified approach for describing the
operators actually implemented by each tool, we decided to abstract a set of reference mutation
operator classes according to the official Java documentation2. This dimension has the following 4
attributes to represent classes of mutation operators:

(1) Data types: mutation operators for variables, constants, and literals.
(2) Pre-defined operators: mutation operators for pre-defined operations in Java.
(3) Java-specific: mutation operators for Java-specific language features.
(4) Object orientation: mutation operators for object-oriented language features.

5 FRAMEWORK APPLICATION TO JAVA MUTATION TOOLS

Our goal was to describe the 8 mutation tools according to the proposed framework. To that end,
we first abstracted all the possible values that can be assumed by the framework attributes and then
we outlined the mutation tools according to these values. We used a process that involved three
different surveys for inferring these values: literature and documentation survey, student survey,
and tool-author survey. Table 2 shows, for each framework attribute, which survey(s) we adopted
for inferring its possible values. We used the literature and documentation survey to assess all
attribute values for each tool. Additionally, we used the student and tool-author surveys to (1)
validate and improve the attribute values inferred by the literature and documentation survey and
(2) infer missing information.

2https://docs.oracle.com/en/java/

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

10 Amalfitano, et al.

Table 2. Surveys adopted for recasting the framework

Adopted survey

Literature and
documentation survey

Student
survey

Tool-author
survey

Version

License X X

Release version X X

Release year X X

Deployment

Java version X X

Build-tool integration X X

Testing framework X X

Mutation process

Mutation level X X

Test selection X X

Mutation operator selection X X X

Mutant inspection X X

Kill matrix X X

Equivalent mutant prevention X X

Analysis runtime reduction X X

User-centric features

User interface X X

Required inputs X X X

Produced outputs X X X

Documentation quality X X

Mutation operators

ALL X X

5.1 Literature and documentation survey process

This process was performed in two steps. First, we performed a snowballing procedure [43]. Starting
from the primary studies reported in Table 1, we gathered from the literature additional published
papers describing in detail the selected tools (how they work, how they can be used for mutation
analysis, and how they have been designed and implemented). Additionally, we consulted the tools’
official documentation (user manual, technical report, etc.). Afterwards, we followed a Delphi-type
cycle during which three researchers read the collected documents, classified the tools based on
the framework, and explained their judgment.

5.2 Student survey process

We performed a user study with 46 MSc students in computer science. The user study involved
an exit survey and had three main steps: (1) The first step involved a full, theoretical lecture
(90 minutes) on mutation analysis and mutation-based testing. After this lecture, the students
were divided in groups of 2 or 3 members and assigned a mutation tool. (2) The second step was
designed to provide a hands-on training session for employing a mutation tool, using a simple Java

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

How do Java mutation tools differ? 11

class. During this step, an instructor provided guidance and focused on consolidating the students’
theoretical knowledge, resolving open questions, and addressing any problems reported by the
students. The simple Java class served as a didactic example to bring the students up to speed on
using a mutation tool. (3) The third step aimed at assessing the tools’ characteristics and infer some
attributes by running the tools. After providing sufficient background and preparation, the goal of
this step was to assess to what extent the students were able to install and use a mutation tool for
a more complex Java class, relying on the provided documentation. To avoid bias, we randomly
assigned a new tool to each group of students.
No student had experience with mutation analysis and mutation tools, prior to the lecture

in the first step. The Java class used in the second step was Triangle.java, which contains a
single method with three integer parameters, representing the lengths of a triangle’s sides. This
method’s return value indicates the type of the triangle. At the end of the second step, all students
successfully used the assigned tool and applied the learned concepts related to mutation-based
testing. All tools described in Table 2, except Jester, were used in this step. The main reason is
that Jester requires mutation operators to be provided in a configuration file, which was out of
the scope of this work. Instead of asking students to use Jester, one of the authors installed the
tool and used it to assess its attributes. Consequently, Jester was excluded from the third step.
The third step randomly assigned a new mutation tool to each group and asked them to use
these tools to perform mutation-based testing over three classes from the Defects4J benchmark:
Cli (org.apache.commons.cli.HelpFormatter), Gson (com.google.gson.stream.JsonWriter)
and Lang (org.apache.commons.lang.time.DateUtils). We aimed at using PIT, MuJava, Major,
Jumble, Judy, and Bacterio for the third step, but had to exclude MuJava and Bacterio because we
were unable to run them on the Defects4J classes. MuJava gave errors when trying to generate
mutants. Bacterio was unable to execute the test cases.
The students installed the tools in a predefined environment/configuration: Oracle Virtual

Machine on Ubuntu 20.04, using Java version 1.8 and JUnit 4. After installation, students had to
create mutants for the class defined, perform mutation analysis to determine the number of killed
and live mutants, and perform mutation-based testing to develop additional test cases to kill live
mutants. At the end of the user study, students had to deliver a report and complete an exit survey3

with 9 questions. Each question evaluated a tool characteristic on a scale of 1 to 5 and elicited a
justification for the choice made. The final question allowed providing additional information.

5.3 Tool-author survey process

We implemented a survey4 in Google Forms and send it to the authors to describe their tool
according to the proposed framework. We designed this survey to collect information that was
neither clearly reported in the tool’s online documentation nor directly inferable by using the
tool. As such, the authors’ answers complemented the data extracted from the other surveys. By
analyzing the answers we were able to (1) validate the data extracted in literature survey and (2)
collect additional information we were not able to find elsewhere. In case, discrepancies arose, the
author survey overrode our initial, partial findings. The survey included 7 specific and 4 open-ended
questions. The 7 specific questions had an Other field where the respondents were free to extend
the options we provided as possible answers. Three of the 4 open-ended questions were proposed
to have more information about the Equivalent mutant prevention, Analysis runtime reduction,
Required inputs, and Produced outputs. The Mutation operators implemented by the tools were

3https://forms.gle/V2knNg2eM3CeQvxX9
4https://forms.gle/GX3Ay3dpE6Tdbwop9

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

12 Amalfitano, et al.

inferred by means of the literature and author surveys. The last open-ended question elicited
suggestions and comments about our research.

5.4 Tools description according to the inferred a�ribute values

The data collected through the surveys were merged in a single spreadsheet file and analyzed by
three researchers in weekly meetings where they analyzed and discussed the gathered information.
The attribute values were inferred after unanimous consent was reached. Table 3 shows the values
of the attributes we abstracted and the descriptions of the 8 mutation tools according to them.

5.4.1 Version. As for the License attribute we observed that 6 tools have a type permissive free
software license, i.e. Apache2, GPL, or LGPL. Jester and Bacterio have been considered as freeware
since they provide only an executable .jar file that can be freely used but they do not distribute
the source code. Regarding the Release version, all the tools rely on a version control system, only
Javalance does not provide releases tracking. As for the Release version most of the tools have
not changed for five or more years (MuJava, Jumble, Javalanche, Jester and Judy). PIT, Major and
Bacterio have very recent updates.

5.4.2 Deployment. Regarding the Java version, we observed that PIT, Major, Jumble and Judy
were able to work with no limitations on large scale projects developed in Java 1.8, MuJava and
Bacterio run only on simple Java classes developed in Java 1.8. When executed on real projects,
MuJava presented unhandled exception, whereas the behavior of Bacterio was unreliable, i.e., it
produced different mutants in diverse executions performed on the same code. We were not able
to run Javalanche with Java 1.8 and so, we used Java 1.6. However, even with Java 1.6, students
experienced lots of problems with the installation process and could not generate mutants neither
run test cases. Jester was not used in our experiments so, we do not have practical evidence that it
works on large scale projects. However, it worked with Java 1.8 in small project.

As for the Build-tool integration attribute, we observed that Javalanche and Jester need additional
tools on the running environment. Javalanche requires Ant to compile, assemble, test and run
both the mutation tool and the test cases. Jester relies on Python for running its scripts. All the
remaining tools are self-contained, and some of them, like PIT, Major, and Jumble, exploit optional
additional tools for extra features. PIT supports also several build tools like Maven, Ant, and Gradle.
It can be also installed as Eclipse plugin, like Jumble, and IntelliJ plugin. Major is distributed along
with its own Ant version. As for the Testing framework, all the tools need JUnit for running the test
cases. PIT is the only one supporting also test cases developed in TestNG. Almost all tools support
the automatic execution of test cases developed in JUnit 4, except for Jester and Bacterio that work
only with JUnit 3.

5.4.3 Mutation process. Regarding the Mutation level, 5 out of 8 tools work exclusively at byte
code level, whereas 2 tools, i.e., MuJava and Major, apply mutants on both source code and byte
code level. Only Jester works at source code level.

As for the Test selection, PIT, Major and Javalanche provide an automatic mechanism that selects
test cases to execute based on code coverage. For the other 5 tools, the tester selects manually the
tests to be performed. In Jester and Judy the tester must remove the tests that should not be run
from the folder where they are placed. In Jumble the JUnit tests to run should be listed trough the
command line. MuJava and Bacterio allow to select the tests through the GUI.

Concerning theMutation operator selection, we observed that 6 over 8 tools can be configured for
applying selected mutation operators even if they belong to different classes. Bacterio and Jumble
are less configurable since they are able to execute all the operators belonging to selected classes,
MuJava provides both options.

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

How do Java mutation tools differ? 13

Table 3. Tools described according to Versioning, Deploying, Mutation Process, and User-Centric Features

Mutation tool

PIT MuJava Major Jumble Javalanche Jester * Judy Bacterio

Version

License Apache 2 Apache 2 Apache 2/GPL GPL LGPL Freeware BSD Freeware
Release version 1.5.0 4.0 1.3.5 1.3.0 None 1.3.7 3.0.0 3.0
Release year 2020 2015 2019 2015 2012 2005 2017 2019

Deployment

Java version Java 1.8 Java 1.8 ** Java 1.8 Java 1.8 Java 1.6 ** Java 1.8 ** Java 1.8 Java 1.8 **
Build-tool integration Optional Self-contained Optional Optional Mandatory Mandatory Self-contained Self-contained
Testing framework JUnit 4&TestNG JUnit 4 JUnit 4 JUnit 4 JUnit 4 JUnit 3 JUnit 4 JUnit 3

Mutation process

Mutation level
Byte code X X X X X — X X

Source code — X X — — X — —
Test selection

Automated X — X — X — — —
Manual — X — X — X X —
Manual (GUI) — X — — — — — X

Mutation operator selection
Operators X X X — X X X —
Operator classes — X X X — — — X

Mutant inspection
Over LOC X — X — X X X —
Over Live Mutants LOC — — — X — — — —
Side-by-side — X — — — — — X

Kill matrix
Test method — X X — — — — X

Test class — X X X — — — X

Analysis runtime reduction
Code coverage X X X — — N/A X X

Tests order X X X — — N/A X X

Parallel execution — — X — X N/A X —
Mutant ranking — — X — — N/A — X

Infinite loop prediction X — X — — N/A X —
Limited mutants — — — X — N/A — —

Equivalent mutant prevention Statistical — Code-based Statistical Code-based — — —

User-centric features

User interface
CLI X X X X X X X —
GUI — X — — — — — X

IDE X X X X — — — —
Required inputs

Byte code X — — X X — X X

Source code X X X — — X — —
Test cases X X X X X X X X

Produced outputs
Mutated source code X X X — — X — X

Mutated byte code — — X — X — X X

Summary report X X X X X X X X

Reduced test suite — — — — — — — X

Documentation quality Good Insufficient Sufficient Sufficient Insufficient Insufficient Insufficient Good

Mutation operators

Data types
Primitives X X X X X — — X

Arrays & classes X X X X X — — —
Pre-defined operators

Assignment X — X X X — X —
Arithmetic X X X X X X X X

Unary X X X X X X X X

Relational X X X X X X X X

Conditional X X X X X — X X

Bit-level X X X X — — X —
Java-specific

Method signature — X X X — X — —
Keywords X — X — — — X —

Object orientation
Inheritance — X — — — — X X

Polymorphism — X — — — — X X

1 * - The tool was not used in Students Survey
2 ** - The tool works on Simple Java Classes

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

14 Amalfitano, et al.

Regarding Mutant inspection, Bacterio and MuJava provide side-by-side windows showing the
original code alongside the mutated versions. However, students were not always able to make
those windows appear in Bacterio. All other tools provide information about the mutation operators
applied to the lines of code (LoC), but Jumble provides this data only for live mutants.
As for the Kill matrix we observed that 4 tools do not render a kill matrix. Jumble provides a

very coarse grained kill matrix showing for each mutation which is the test cases killing it. MuJava,
Major, and Bacterio generate fine grained kill matrices displaying both test cases and test methods
killing mutants.
As for the Analysis runtime reduction we observed that all the tools, implement at least one or

use combinations of them. From the answers we gathered from authors, we were able to infer five
possible values for this attribute. Code coverage indicates strategies that reduce the execution time of
next iterations by prioritizing or excluding the execution of mutation operators on the basis of the
code coverage achieved by a set of tests. Test order refers to mechanisms where the execution order
or the exclusion of the test cases is determined before they are actually launched. Mutant ranking
is a priority based mechanism that is applied to define the execution order of the mutant operators.
Infinite loops prediction is a strategy to predetermine and to exclude the execution of the mutation
operators that may produce infinite loops in the mutated code. In Parallel execution, mutation tools
are executed in two or more JVMs running in parallel. The Limited Mutants mechanism executes
only a limited number of mutants.

Regarding the Equivalent mutant preventionwe observed that only 4 tools implement amechanism
for reducing the generation of equivalent mutants. PIT and Jumble provide a statistical one that
executes operators having low probability to generate equivalent mutants. The code-based approach,
implemented by Major and Javalanche, avoids the generation of equivalent mutants relying on
code knowledge obtained through the AST analysis or by considering the code coverage reached
by the test cases.

5.4.4 User-centric features. Regarding the User interface, we observed that almost all the tools
provide a Command Line Interface (CLI) with exception of Bacterio providing only a Graphical
User Interface (GUI). By default, MuJava comes as a tool that should be used through its GUI, but it
provides muScript that is a CLI allowing direct access to key functionality provided by MuJava.
Moreover, PIT, MuJava, and Jumble distribute plugins to extend well known Java IDEs like Eclipse
or IntelliJ. As for the Required inputs, all the tools need test cases as input. Moreover, 5 tools over
8 require as input the Java byte code of the classes to be mutated, the remaining 3 tools work on
the Java source code. PIT requires both source and byte code. Even if PIT applies mutations to
the compiled code it needs source code for evaluating the code coverage reached by the test cases.
Moreover, PIT is able to launch also test cases implemented in TestNG. Regarding the Produced
outputs, all the tools produce a report summarizing the results of the tool execution. PIT and Major
also produce a code coverage report showing the code executed by the test cases. Likewise, PIT and
Major classify killed mutants, distinguishing between mutants that crash during execution, mutants
that are killed by an assertion, and mutants that time out. Other tools only provide aggregate
metrics such as the number of generated and killed mutants. Moreover, MuJava, Bacterio, Jester,
and Major produce the mutated source code. Bacterio, PIT, Major, Javalanche, and Judy generate
mutated byte code. Whether mutated source code or mutated byte code is preferable depends on
the use case. For instance, generating source code mutants is important for mutation-based testing,
which involves reasoning about the mutated code to develop new tests. In contrast, mutated byte
code may be more efficient and sufficient for performing a mutation analysis for simply measuring
test-suite efficacy. Bacterio also produces a reduced JUnit test suite.

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

How do Java mutation tools differ? 15

As for theDocumentation quality we observed that Bacterio and PIT provideGood documentation.
However, even with good documentation, Bacterio was very difficult to use. The tool did not behave
as described in the documentation and some students were not able to select or to execute the test
cases. Major, and Jumble do not provide a clear (sufficient) documentation and students felt they
would need more information, for instance, to help them with the installation process. MuJava,
Javalanche, Jester and Judy need to improve the documentation provided. It is clearly not enough
(insufficient). MuJava, Javalanche and Jester do not provide enough information to support the
installation process. Judy was difficult to use and more information is needed to interpret final
report. Also, Jester does not provide enough information to understand how the configuration file
may be built/updated.

5.4.5 Mutation operators. In our analysis we identified 12 different types of mutation operators,
corresponding to the 4 attributes reported in the framework:

Data types

(1) Primitives: mutation operators for variables, constants, and literals with a primitive data type.
(2) Arrays & classes: a dual to Primitives for array and class types.

Pre-defined operators

(3) Assignment: mutation operators that introduce, delete, or modify an assignment.
(4) Arithmetic: mutation operators that modify an arithmetic operator or its operands.
(5) Unary: mutation operators that modify a unary operator or its operand.
(6) Relational: mutation operators that modify a relational operator or its operands.
(7) Conditional: mutation operators that modify a conditional operator or its operands.
(8) Bit-level: mutation operators that modify a bit operation (incl. bit shift) or its operands.

Java-specific

(9) Method signature: mutation operators that delete a method call or that modify a method
declaration or method call, e.g., by swapping arguments or formal parameters.

(10) Keywords: mutation operators that introduce, delete, or replace Java keywords such as this,
static, transient, or synchronized.

Object orientation

(11) Inheritance: mutation operators that affect inheritance and dynamic polymorphism, including
insertion and deletion of the keyword super, hidden variables, and overridden methods.

(12) Polymorphism: mutation operators that affect static polymorphism (incl. ad-hoc polymor-
phism), including insertion and deletion of overloaded methods and type-cast operators.

As Table 3 shows, MuJava and Major cover the most mutation types (10 out of 12), followed by
PIT, Jumble, and Judy (each covering 9 out of 12). Jester covers the fewest mutation operator types (4
out of 12). From a different point of view, Arithmetic, Unary, and Relational mutation operators are
implemented by all the tools, followed by Primitive Data Types and Conditional, that are supported
by most of the tools. It is interesting to show that no tool provides mutation operators able to
inject mutations related to the concurrent nature of Java. Also the Inheritance and Polymorphism
mechanism mutation operators have a low support since they are implemented only by 3 tools.

6 CONSIDERATIONS FOR CHOOSING A MUTATION TOOL

We assert that the question of what is the best or most suitable mutation tool has no generic answer
and depends on the concrete use case. Specifically, when researchers, educators, or practitioners
select a mutation tool, their choice is motivated by different considerations.

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

16 Amalfitano, et al.

To better understand what considerations are most important and to what extent our framework
is sufficiently detailed, we created three questionnaires with identical questions for research5, edu-
cation6, and practice7. These questionnaires were anonymous, based on our framework attributes,
and included 21 specific questions plus 1 open-ended question for additional comments. We sent
links to these questionnaires to contacts in academia and industry, whom we also asked to share
them with other colleagues in the mutation analysis and mutation-based testing domain.

We received a total of 47 answers: 24 from researchers, 14 from educators, and 9 from practitioners.
Based on the answers, this section outlines common and use-case-specific considerations. For
simplicity, it refers to “important”, “very important”, and “mandatory” responses collectively as
important considerations. It also shows how the proposed framework can aid in selecting a suitable
tool for research, education, and practice by linking important considerations to attributes in Table 3.

6.1 Common considerations

It is desirable to select a mutation tool that is actively maintained and evolving. This increases the
chances of using a state-of-the-art approach and timely resolving questions and issues. Another
consideration is compatibility of a mutation tool, in particular w.r.t. supported testing frameworks
and language features. A major challenge for comparing mutation tools is the lack of standardized
descriptions and labels for supported mutation operators. Mutation tools may name the same
mutation operator differently, they may use the same name for related yet distinct mutation
operators, or they may apply the same mutation operator in different scopes. Consider Table 4,
which demonstrates this challenge. Specifically, this table shows what mutants each of three
mutation tools generate for the statement return x+10;. To produce this table, we applied three
tools, MuJava, Major, and Jester (enabling all mutation operators they support) to the return
statement. MuJava applied 15 mutation operators, Major 6, and Jester just 1. Moreover, MuJava and
Major name related mutation operators differently, and Jester does not name them at all. Finally,
efficiency is a general concern, but specific requirements may differ between use cases.

Based on the responses to our questionnaires, we observed the following. Out of 47 respondents:

• 35 consider active tool maintenance (Release year and Release version) important;
• 34 consider support for recent Testing frameworks important;
• 32 consider support for recent Java versions important.

PIT and Major satisfy all three considerations. Javalanche, Jester, and Bacterio are compatible
with older versions of Java or JUnit. A related, cross-sectional concern is whether a tool works on
sufficiently complex code (in Table 3, two asterisks next to the Java version indicate that a tool does
not). The tools working on real projects are PIT, Major, Jumble, and Judy.

Furthermore, 44 out of 47 respondents consider a tool’s capability for Mutant inspection important.
In particular, out of 47 respondents:

• 39 consider mutated source code an important tool output (Produced outputs);
• 35 prefer source code as the input to the tool (Required inputs);
• 35 prefer mutations to be applied at the source-code level (Mutation level).

The tools fulfilling these requirements are MuJava, Major, and Jester. An interesting observation
is that 38 out of 47 respondents do not consider mutated byte code an important tool output (i.e.,
“not important” or “do not care”). Additionally, 24 out of 47 respondents prefer a side-by-side
visualization of the mutated and original code; MuJava and Bacterio are the only tools supporting
this functionality.

5https://forms.gle/Vi56rip3FJrTKRJf9
6https://forms.gle/otUq72EbHkpDzUccA
7https://forms.gle/jKVt5RkreDzFcmdr6

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

How do Java mutation tools differ? 17

Table 4. Mutant operators applied by MuJava, Major and Jester to statement return x+10.

MuJava Major Jester

AORB

x + 10 → x * 10
x + 10 → x / 10
x + 10 → x % 10
x + 10 → x - 10
AOIU

x → -x
AOIS

x → ++x
x → –x
x → x++
x → x–
LOI

x → ∼ x
SDL

return x + 10; → return 0;
VDL

x + 10 → 10
ODL

x + 10 → x
x + 10 → 10
CDL

x + 10 → x

LVR

10 → 0
10 → -10
AOR

x + 10 → x % 10
x + 10 → x * 10
x + 10 → x - 10
x + 10 → x / 10

return x+10; → return x+20;

Finally, 45 out of 47 respondents rate a comprehensiveDocumentation quality as important, which is
something that most tools lack. Only PIT and Bacterio provide a good documentation. Additionally,
39 out of 47 consider a standardized description of the supported Mutation operators important.

6.2 Research

Selecting a mutation tool for research purposes requires some unique considerations. For example,
foundational research exploring the effectiveness of individual mutation operators and mutant
selection strategies (e.g., [13, 20, 24, 44]), requires a high degree of configurability for selecting
mutation operators. Furthermore, studying subsumption relationships and redundancy [1, 23]
requires the computation of a complete kill matrix.

From the answers to our questionnaires, we observed the following. Out of 24 researchers:

• 22 consider a detailed summary report (Produced outputs) important;
• 19 consider producing a Kill matrix important;
• 18 prefer a high degree of configurability for Mutation operator selection.

Tools satisfying these requirements are MuJava, Major, and Bacterio. The most configurable tools
are MuJava and Major, which support the selection of individual and classes of mutation operators.
Finally, a response to the open-ended question supports the notion of different use cases, sug-

gesting that a complete kill matrix should be computed during “execution in research mode”.

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

18 Amalfitano, et al.

6.3 Education

The selection of a mutation tool for educational purposes is less constrained by having access to a
highly-configurable tool that implements state-of-the-art approaches or achieves a high degree
of developer productivity. Likewise, the goal for this use case is not for students to overcome the
difficulties of the installation process and a steep learning curve, but rather to learn important
concepts related to mutation-based testing and understand its challenges and benefits. Therefore,
the ease of installation and use and the existence of supporting documentation are relevant concerns.
Another relevant aspect is the presentation and interpretability of the produced artifacts. For

example, a tool may only produce a summary of the generated mutants but no mutated source
code for inspection. Likewise, a tool may provide information about why a mutant was (not) killed,
whereas others may require additional tooling. As a result, a self-contained tool that works on
small examples may be preferable to tools that work at scale but need to be fully integrated into a
developer’s workflow. Similarly, a GUI may be preferable to a command-line interface.
Based on the responses to our questionnaires, all educators prefer free/open-source tools, and

many identify ease of installation as an important consideration. Additionally, out of 14 educators:

• 12 consider IDE integration, a tool-specific GUI, or both an important type of User interface;
• 9 prefer a side-by-side comparison of mutated and original code for Mutant inspection;
• 9 consider producing a Kill matrix important.

Javalanche, Jester, and Judy do not provide any type of GUI, and MuJava and Bacterio are the only
tools that provide a side-by-side comparison. MuJava, Major, and Bacterio support the computation
of a complete kill matrix.

6.4 Practice

Adopting a mutation tool in practice usually requires its integration with the existing development
environment. For example, some tools only work with certain testing frameworks and Java versions.
Another important aspect is ease of interpretation—that is, quickly understanding how a mutant was
generated and how it can be killed. This is particularly important for developers if mutants serve
as test goals. Likewise, suppressing unproductive mutants and preventing equivalent mutants are
important to maximize developer productivity. Another consideration is the mutation level—that is,
whether a tool mutates the source or byte code. While these details are often not clearly described
in a tool’s documentation, they are important when reasoning about mutant interpretability and
workflow integration.

Based on the responses to our questionnaires, we observed the following. Out of 9 practitioners,

• 8 consider Analysis runtime reduction techniques important;
• 6 consider Equivalent mutant prevention techniques important;
• 6 consider integration into a development environment (Build-tool integration) important.

PIT, Major, Jumble, and Javalanche include techniques for the first two aspects, and PIT, Major,
and Javalanche are the most suitable tools for integration—these can be integrated with traditional
CI/CD environments such that they can be run from scripts.

Unlike in other use cases, 5 out of 9 practitioners prefer tools that support automated Test selection

and coarse-grained Mutation operator selection. Major is the only tool that fulfills both requirements.

6.5 Discussion

To provide an aggregated view and contrast the answers between use cases (research, education,
and practice), Tables 5–7 summarize the expressed importance of, and preferences for, individual
aspects of mutation tools. All three tables highlight percentages above 70% (↑) and below 30% (↓) to
draw attention to the most important aspects as well as conflicts between use cases.

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

How do Java mutation tools differ? 19

Table 5. Importance of tool aspects when considering a mutation tool. All questionnaire responses are grouped
into important vs. not important, and the table shows the percentage of responses that fall into the first
group (see text for details). The numbers in parentheses give the total number of responses for each use case.
Percentages above 70% and below 30% are highlighted.

Aspect Research (24) Education (14) Practice (9)

Comprehensive documentation 96% ↑ 100% ↑ 89% ↑

Support for recent JUnit version 71% ↑ 71% ↑ 78% ↑

Details about applied mutation operators 100% ↑ 100% ↑ 67% –

Detailed summary report 92% ↑ 100% ↑ 56% –

Mutated source code as output 83% ↑ 93% ↑ 67% –

Updated recently 75% ↑ 64% – 89% ↑

Standardized mutation operator descriptions 96% ↑ 86% ↑ 44% –

Support for recent Java version 67% – 64% – 78% ↑

Kill matrix as output 79% ↑ 64% – 44% –

Build-tool integration 58% – 57% – 67% –

Equivalent mutant prevention 67% – 43% – 67% –

Run-time reduction techniques 54% – 29% ↓ 89% ↑

Reduced test suite as output 42% – 21% ↓ 44% –

Mutated byte code as output 21% ↓ 14% ↓ 22% ↓

Table 6. Preference for type of user interface (multiple-choice question) when considering a mutation tool.
Three questionnaire responses did not indicate a preference and are excluded; the numbers in parentheses give
the number of retained responses for each use case. Percentages above 70% and below 30% are highlighted.

User interface Research (22) Education (14) Practice (8)

Command-line interface (CLI) 68% – 21% ↓ 88% ↑

Graphical user interface (GUI) 32% – 50% – 12% ↓

Third-party IDE integration (IDE) 45% – 79% ↑ 88% ↑

Table 7. Preference for the underlined choice when considering a mutation tool. Responses that did not
indicate a preference for a given choice are excluded; the given percentages and corresponding fractions in
parentheses are for retained responses. Percentages above 70% and below 30% are highlighted.

Choice Research (24) Education (14) Practice (9)

Mutation level: source code vs. byte code 95% (18/19) ↑ 92% (11/12) ↑ 100% (6/6) ↑

Input to the tool: source code vs. byte code 100% (20/20) ↑ 100% (9/ 9) ↑ 75% (6/8) ↑

License: free/open-source vs. commercial 100% (21/21) ↑ 100% (14/14) ↑ 75% (3/4) ↑

Mutant inspection: lines of code vs. side-by-side 42% (8/19) – 31% (4/13) – 56% (5/9) –

Test selection: automated vs. manual 32% (6/19) – 40% (4/10) – 56% (5/9) –

Mutation operator selection: individual vs. groups 78% (14/18) ↑ 75% (9/12) ↑ 29% (2/7) ↓

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

20 Amalfitano, et al.

Table 5 lists the most and least important aspects for each use case. This table groups all
responses for each aspect into two categories: (1) important (grouping “important”, “very important”,
and “mandatory” together) and (2) not important (grouping “not important” and “do not care”
together). The table reports on the percentage of responses that fall into the first category. While a
comprehensive documentation and support for a recent JUnit version is important for all use cases,
the importance of many other aspects varies by use case. For example, a detailed summary report
and a standardized description of mutation operators are important for research (96%) and education
(86%), but not in practice (44%). Likewise, a selected tool being updated recently is important for
research (75%) and in practice (89%), but to a lesser extent for education (64%). Moreover, some
aspects are mostly important for a single use case. For example, support for recent Java versions is
important in practice (78%), and producing a kill matrix is important for research (79%). Regarding
the least important aspects, outputting mutated byte code is not important for any use case, and
outputting a reduced test suite is not important for education. The importance of run-time reduction
techniques shows a conflict: while it is not important for education, it is important for practice.

Table 6 shows the preferred type of user interface for each use case. This was the only multiple-
choice question in the three questionnaires, and it included a “do not care” option. Two responses
to the research questionnaire and one response to the practice questionnaire did not indicate a
preference; we excluded these responses. The responses show that IDE integration is a preference
for education (79%) and in practice (88%). In contrast, a command-line interface is not a preference
for education (21%), but again a preference in practice (88%). While a command-line interface is
also preferred for research (68%), the differences among the three options are not as striking for
this use case. A (dedicated) graphical user interface is not a preference for any use case.
Table 7 summarizes the expressed preferences for one of two implementation choices for each

use case. As before, we excluded “do not care” responses on a per-choice basis. For example, five
responses to the research questionnaire, two responses to the education questionnaire, and three
responses to the practice questionnaire did not express a preference for the choice of mutation
level. This is important context: the table reports on the percentage and fraction of responses that
do prefer the underlined choice, calculated over the number of responses that indeed expressed an
opinion. For all three use cases, there is a strong preference for mutating source code, as opposed
to byte code, as well as providing source code as the input to the mutation tool. Similarly, there is
a preference for tools being free/open-source, though only 44% (4/9) of responses to the practice
questionnaire expressed an opinion on this. The preference for selecting individual mutation
operators (e.g., mutating a+b to a-b) as opposed to groups of mutation operators (e.g., mutating all
arithmetic operators) shows a conflict: individual mutation operators are preferred for research
(78%) and education (75%), but not in practice (29%). Preferences for mutant inspection and test
selection show a similar conflict, but the differences are not as pronounced.

Overall, the responses to the three questionnaires show that there is consensus among the three
use cases about the importance of many aspects of mutation tools. However, the responses also
highlight some conflicts. These results, together with the summary of the surveyed tools’ features
(Table 3) allow researchers, educators, and practitioners to select a suitable mutation tool, based
on a ranking of aspects that are most important to them. These results also allow developers of
mutation tools to make informed decisions about what features to implement and how to improve
their tools, based on their target audience.

7 CONCLUSIONS

This paper presents the results of a meta-analysis of existing comparisons of Java mutation tools,
following a Rapid Review (RR) literature process. First, it proposes a comprehensive mutation tool
comparison framework encompassing five dimensions, each with multiple attributes. Second, it

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

How do Java mutation tools differ? 21

reports on an application of the proposed framework to 8 state-of-the-art Java mutation tools, based
on a literature survey, a tool-author survey, and a student survey. Finally, the paper reports on a
survey of researchers, educators, and practitioners to understand which of the tool characteristics
are most important for choosing a mutation tool for a particular use case. The responses indicate
common as well as use-case-specific considerations, and the paper shows how the proposed
framework can be used to identify the most suitable mutation tool for a given use case.

The findings of this paper can inform future work. First, some framework dimensions warrant a
deeper analysis. For example, standardized mutation operator descriptions require a deeper analysis
of the actual definition and implementation of the tools’ mutation operators. Likewise, the outputs
and summaries produced by the mutation tools may benefit from a finer-grained classification.
Second, understanding whether and how mutation tools deal with specific classes of mutants (e.g.,
mutants that fail assertions, mutants that cause memory errors, mutants that time out, etc.), and how
important these classifications are for different use cases is another avenue for future work. Third,
it could be of interest to conduct follow-up surveys of researchers, educators, and practitioners to
better understand their rationales behind the expressed preferences for tool characteristics. Finally,
applying the proposed framework and process to describe mutation tools for other programming
languages, such as C/C++, JavaScript, and Python would be valuable.

8 ACKNOWLEDGMENTS

This work is supported in part by National Science Foundation grant CCF-1942055.

REFERENCES

[1] Paul Ammann, Marcio Eduardo Delamaro, and Jeff Offutt. 2014. Establishing theoretical minimal sets of mutants. In

Proceedings of the International Conference on Software Testing, Verification and Validation. 21–30.

[2] James H Andrews, Lionel C Briand, and Yvan Labiche. 2005. Is mutation an appropriate tool for testing experiments?.

In Proceedings of the 27th international conference on Software engineering. 402–411.

[3] Moritz Beller, Chu-PanWong, Johannes Bader, Andrew Scott, Mateusz Machalica, Satish Chandra, and Erik Meijer. 2021.

What It Would Take to Use Mutation Testing in Industry—A Study at Facebook. In 2021 IEEE/ACM 43rd International

Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). 268–277. https://doi.org/10.1109/ICSE-

SEIP52600.2021.00036

[4] Bruno Cartaxo, Gustavo Pinto, Baldoíno Fonseca, Márcio Ribeiro, Pedro Pinheiro, Maria Teresa Baldassarre, and

Sérgio Soares. 2019. Software Engineering Research Community Viewpoints on Rapid Reviews. In 2019 ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement (ESEM). 1–12. https://doi.org/10.1109/

ESEM.2019.8870144

[5] Yiqun T. Chen, Rahul Gopinath, Anita Tadakamalla, Michael D. Ernst, Reid Holmes, Gordon Fraser, Paul Ammann,

and René Just. 2020. Revisiting the Relationship Between Fault Detection, Test Adequacy Criteria, and Test Set Size. In

Proceedings of the International Conference on Automated Software Engineering (ASE).

[6] P. Chevalley. 2001. Applying mutation analysis for object-oriented programs using a reflective approach. In Proceedings

Eighth Asia-Pacific Software Engineering Conference. 267–270. https://doi.org/10.1109/APSEC.2001.991487

[7] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and Anthony Ventresque. 2016. PIT: A Practical

Mutation Testing Tool for Java (Demo). In Proceedings of the 25th International Symposium on Software Testing and

Analysis (Saarbrücken, Germany) (ISSTA 2016). ACM, New York, NY, USA, 449–452.

[8] Mickaël Delahaye and Lydie du Bousquet. 2015. Selecting a software engineering tool: lessons learnt from mutation

analysis. Software: Practice and Experience 45, 7 (2015), 875–891.

[9] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation for object-oriented software. In

Proceedings of the Symposium on the Foundations of Software Engineering. 416–419.

[10] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2017. Automatic software repair: A survey. IEEE Transactions

on Software Engineering 45, 1 (2017), 34–67.

[11] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program repair via bytecodemutation. In Proceedings

of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. 19–30.

[12] Rahul Gopinath, Iftekhar Ahmed, Mohammad Amin Alipour, Carlos Jensen, and Alex Groce. 2017. Does Choice of

Mutation Tool Matter? Software Quality Journal 25, 3 (Sept. 2017), 871–920.

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

22 Amalfitano, et al.

[13] Rahul Gopinath, Mohammad Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce. 2016. On the limits of

mutation reduction strategies. In Proceedings of the International Conference on Software Engineering (ICSE). 511–522.

[14] Megan M. Grime and George Wright. 2016. Delphi Method. American Cancer Society, 1–6. https://doi.org/10.1002/

9781118445112.stat07879 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat07879

[15] Sean Irvine, Tin Pavlinic, Len Trigg, John Cleary, Stuart Inglis, and Mark Utting. 2007. Jumble Java Byte Code to

Measure the Effectiveness of Unit Tests. Proceedings - Testing: Academic and Industrial Conference Practice and Research

Techniques, TAIC PART-Mutation 2007 (09 2007).

[16] Y. Jia and M. Harman. 2011. An Analysis and Survey of the Development of Mutation Testing. IEEE Transactions on

Software Engineering 37, 5 (Sep. 2011), 649–678.

[17] René Just. 2014. The Major mutation framework: Efficient and scalable mutation analysis for Java. In Proceedings of the

International Symposium on Software Testing and Analysis (ISSTA). San Jose, CA, USA, 433–436.

[18] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of existing faults to enable controlled

testing studies for Java programs. In Proceedings of the International Symposium on Software Testing and Analysis

(ISSTA). 437–440.

[19] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and Gordon Fraser. 2014. Are mutants a

valid substitute for real faults in software testing?. In Proceedings of the Symposium on the Foundations of Software

Engineering (FSE). Hong Kong, 654–665.

[20] René Just, Bob Kurtz, and Paul Ammann. 2017. Inferring Mutant Utility from Program Context. In Proceedings of the

International Symposium on Software Testing and Analysis (ISSTA). 284–294.

[21] René Just, Franz Schweiggert, and Gregory M. Kapfhammer. 2011. MAJOR: An efficient and extensible tool for mutation

analysis in a Java compiler. In Proceedings of the International Conference on Automated Software Engineering (ASE).

612–615.

[22] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, Nicos Malevris, and Yves Le Traon. 2018.

How Effective Are Mutation Testing Tools? An Empirical Analysis of Java Mutation Testing Tools with Manual

Analysis and Real Faults. Empirical Softw. Engg. 23, 4 (Aug. 2018), 2426–2463.

[23] Bob Kurtz, Paul Ammann, Marcio E Delamaro, Jeff Offutt, and Lin Deng. 2014. Mutant subsumption graphs. In

Proceedings of the International Conference on Software Testing, Verification and Validation Workshops. 176–185.

[24] Bob Kurtz, Paul Ammann, Jeff Offutt, Marcio E. Delamaro, Mariet Kurtz, and Nida Gökce. 2016. Analyzing the validity

of selective mutation with dominator mutants. In Proceedings of the International Symposium on the Foundations of

Software Engineering (FSE).

[25] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. 2005. MuJava: an automated class mutation system. Software Testing,

Verification and Reliability 15, 2 (2005), 97–133.

[26] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Jozala. 2014. Overcoming the Equivalent Mutant

Problem: A Systematic Literature Review and a Comparative Experiment of Second Order Mutation. IEEE Trans. Softw.

Eng. 40, 1 (Jan. 2014), 23–42.

[27] PratyushaMadiraju and Akbar Siami Namin. 2011. Paraµ – A Partial and Higher-OrderMutation Tool with Concurrency

Operators. In 2011 IEEE Fourth International Conference on Software Testing, Verification and Validation Workshops.

351–356. https://doi.org/10.1109/ICSTW.2011.34

[28] András Márki and Birgitta Lindström. 2017. Mutation Tools for Java. In Proceedings of the Symposium on Applied

Computing (Marrakech, Morocco) (SAC ’17). ACM, New York, NY, USA, 1364–1415.

[29] P. R. Mateo and M. P. Usaola. 2012. Bacterio: Java mutation testing tool: A framework to evaluate quality of tests cases.

In 2012 28th IEEE International Conference on Software Maintenance (ICSM). 646–649.

[30] Ivan Moore. 2001. Jester - a JUnit test tester.

[31] A Jefferson Offutt. 1992. Investigations of the software testing coupling effect. ACMTransactions on Software Engineering

and Methodology (TOSEM) 1, 1 (1992), 5–20.

[32] A. Jefferson Offutt and Roland H. Untch. 2001. Mutation 2000: Uniting the Orthogonal. Springer US, Boston, MA, 34–44.

[33] Jeff Offutt. 2011. A mutation carol: Past, present and future. Information and Software Technology 53, 10 (2011), 1098 –

1107. Special Section on Mutation Testing.

[34] Elmahdi Omar, Sudipto Ghosh, and Darrell Whitley. 2014. HOMAJ: A Tool for Higher Order Mutation Testing in AspectJ

and Java. In 2014 IEEE Seventh International Conference on Software Testing, Verification and Validation Workshops.

165–170. https://doi.org/10.1109/ICSTW.2014.19

[35] Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball. 2007. Feedback-directed random test generation.

In Proceedings of the International Conference on Software Engineering (ICSE). 75–84.

[36] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman. 2019. Chapter Six - Mutation

Testing Advances: An Analysis and Survey. Advances in Computers, Vol. 112. Elsevier, 275 – 378.

[37] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Does mutation testing improve testing practices?.

In Proceedings of the International Conference on Software Engineering (ICSE). 910–921.

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

How do Java mutation tools differ? 23

[38] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Practical Mutation Testing at Scale: A view

from Google. IEEE Transactions on Software Engineering (2021).

[39] Goran Petrović, Marko Ivanković, Bob Kurtz, Paul Ammann, and René Just. 2018. An Industrial Application of Mutation

Testing: Lessons, Challenges, and Research Directions. In Proceedings of the International Workshop on Mutation Analysis

(Mutation). 47–53.

[40] S. Rani, B. Suri, and S. K. Khatri. 2015. Experimental comparison of automated mutation testing tools for java. In

2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future

Directions). 1–6.

[41] Emily Reynen, Reid Robson, John Ivory, Jeremiah Hwee, Sharon E. Straus, Ba’ Pham, and Andrea C. Tricco. 2018. A

retrospective comparison of systematic reviews with same-topic rapid reviews. Journal of Clinical Epidemiology 96

(2018), 23 – 34.

[42] David Schuler and Andreas Zeller. 2009. Javalanche: Efficient Mutation Testing for Java. In Proceedings of the 7th Joint

Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of

Software Engineering (Amsterdam, The Netherlands) (ESEC/FSE ’09). ACM, New York, NY, USA, 297–298.

[43] Claes Wohlin. 2014. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software

Engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering

(London, England, United Kingdom) (EASE ’14). Association for Computing Machinery, New York, NY, USA, Article 38,

10 pages. https://doi.org/10.1145/2601248.2601268

[44] Lingming Zhang, Milos Gligoric, Darko Marinov, and Sarfraz Khurshid. 2013. Operator-based and random mutant

selection: Better together. In Proceedings of the International Conference on Automated Software Engineering (ASE).

92–102.

Communications of the ACM, Vol. 1, No. 1, Article . Publication date: January 2022.

