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ARTICLE INFO ABSTRACT

MSC: Treecode algorithms efficiently approximate N-body interactions in O(N) or O(NlogN). In
70-08 order to treat general 3D kernels, recent developments employ polynomial interpolation to
70-10

approximate the kernels. The polynomials are a tensor product of 1-dimensional polynomials.

Zg_g: Here, we develop an O(NlogN) tricubic interpolation based treecode method for 3D kernels.
65]-)99 The tricubic interpolation is inherently three-dimensional and as such does not employ a tensor

i product. The form allows for easy evaluation of the derivatives of the kernel, required in
Keywords:

dynamical simulations, which is not the case for the tensor product approach. We develop both

. . a particle-cluster and cluster-particle variants and present results for the Coulomb, screened
N-body interactions . .
Treecode Coulomb and the real space Ewald kernels. We also present results of an MD simulation of a
Tricubic interpolation Lennard-Jones liquid using the tricubic treecode.

Fast summation

1. Introduction
This work concerns the evaluation of sums of the form

N
b) = Y K& Y e m=1,..., M, @
n=1
where {x,,},m = 1,..., M is a set of target particles, {y,},n = 1,..., N is a set of source particles with weights {f,}, and ¢(x) is a
potential (or velocity). The kernel K(x,y) represents the pairwise interaction between a target particle x and a source particle y.
Sums of this type arise in numerous applications in physics, chemistry, fluid dynamics, etc. [1-3], where the kernel may be a scalar
or a tensor and the weights are scalars or vectors. In applications where the target and source particles are the same, the n = m term
is excluded from the sum.

Direct computation of the sum in Eq. (1) requires O(M N), or O(N?) operations for M = N, which is a significant computational
bottleneck when N is large. A standard approach to reducing the computational cost is to partition the sum into a near-
field interaction and a far-field interaction. The near-field interactions are computed exactly and the far-field interactions are
approximated. One method for approximating the far-field is the particle-mesh method [4-6]. Particle-mesh methods interpolate the
particles onto a uniform grid and employ an FFT to compute the sum and thus reduce the O(M N) computational cost to O(M log N).
An alternative approach to approximating the far-field is the tree-based methods [7,8]. Tree-based methods restructure the target
and/or source particles into a hierarchical tree of clusters of particles. The computational cost is reduced by replacing far-field
particle-particle interactions by particle-cluster or cluster-cluster interactions.

The present work is concerned with the latter category of methods. Several variants of treecode algorithms have been developed
to evaluate the sum in Eq. (1) in O(N) [8,9] or O(NlogN) [7]. The early versions of treecode algorithms [7-22] were developed
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for specific kernels and employed analytic expansions specific to each kernel. More recent approaches are able to treat general
kernel functions, for example, the kernel-independent FMM which uses equivalent particle distribution determined by solving
linear systems [23,24], and the black-box FMM which uses polynomial interpolation at Chebyshev points combined with SVD
compression [25]. Recently, two interpolation based treecode algorithms have been developed, one based on barycentric Lagrange
interpolation at Chebyshev points, which is kernel independent [26], and the other based on barycentric Hermite interpolation [27].
Both the barycentric Lagrange and barycentric Hermite interpolation treecodes employ a tensor product of three single variable
polynomials to interpolate the 3D kernels.

In this paper, a treecode algorithm is presented based on tricubic interpolation of the kernel for pairwise interactions. Tricubic
interpolation broadly refers to the method of local approximation of a function defined on a regular grid in three dimensions.
The general approach [28] is to represent the function within a unit cube by a polynomial in the three spatial variables, with the
unknown coefficients determined by requiring the function to have a given value or a given derivative at certain points, usually
the corners of the unit cube. The method is equivalent to a sequential application of three one-dimensional cubic interpolants [28],
but its intrinsically three-dimensional formulation has better computational efficiency especially when the interpolation is used at
multiple points inside each cube element. It is also advantageous when the derivatives of the interpolated function are needed, since
they can be found easily by analytical, rather than numerical, differentiation of the tricubic polynomial.

In the treecode algorithm, the particles are recursively divided into a hierarchical tree of clusters, and the pairwise interactions
are replaced with particle-cluster interactions. An approximation for a far-field particle-cluster interaction is derived based on the
tricubic interpolation of the kernel using the values of the kernel function and its derivatives at the eight corners of the cluster.
The tricubic interpolation approach is chosen for its lower computational complexity and ease of evaluating exact derivatives of
the interpolated kernel when compared to triple one-dimensional cubic interpolation. In addition, the interpolant [28] implemented
here has global C! continuity in approximating the kernel. It however requires up to third order derivatives of the kernel. We present
both a particle-cluster and a cluster-particle variants of the treecode algorithm. In a follow up paper, we investigate the effect of
global smoothness on the accuracy of treecodes.

The paper is organized as follows. In Section 2, we review the general approach of tricubic interpolation. In Section 3, we
derive an approximation for a particle-cluster interaction based on tricubic interpolation. We also use the simplicity of finding
analytical derivatives of the interpolated kernel to derive an approximation for the derivatives of ¢. We analyze the error in a
far-field approximation with the tricubic interpolant, and present the full particle-cluster treecode algorithm. Section 4 develops
the cluster-particle variant suitable for simulations with disjoint sources and targets where the targets outnumber the sources [29].
Section 5 presents the treecode performance in terms of accuracy and CPU time for several kernels, as well as an MD simulation.
Conclusions and future work are discussed in Section 6.

2. Tricubic interpolation

In tricubic interpolation, a function f is represented locally as a piecewise cubic polynomial of the form

3
fEy= Y auxy, @
i.j. k=0
within a mesh element that is a unit cube 0 < x, y, z < 1, and the 64 coefficients q; jk are determined from given data. An algorithm
to evaluate these coefficients was presented in [28], by using the values of

Sem{y 2L90 O PL 0P 0P 0y @
’ > ox’ 0y’ 9z’ 0x0y’ 0xdz’ dydz 0x0ydz
at the eight corners p, ..., pg of the unit cube, see Fig. 1. First, the unknown coefficients q;;, are ordered into a vector a by defining
X yivdjrick = Dijko i,j,k=0,1,2,3. “4)
Similarly, the function and its derivatives are stacked into a vector b as follows,
S (), 1<i<8,
of .
E(Z’[-s), 9<i<Lle6,
7}
%(p1716), 17<i <24,
7}
a—i(p,,%), 25<i<32,
=10 _
b= ﬁ/(pi—32)a 33 <i <40, €
o’ f ;
m(ﬁi_zm), 41 <i <48,
o’f .
w(pi_%)’ 49 <i <56,
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m(ﬂf_sﬁ), 57<i<64
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Fig. 1. A schematic of the unit cube for the tricubic interpolant.

When the analytical expressions for the derivatives of the function f are unavailable for (5), various techniques such as finite
differences can be used. Evaluating the polynomial in (2) and its derivatives at the eight corners of the cube then leads to a sparse
linear system for the unknown coefficients

Ba =b, 6)
where B is a 64 x 64 invertible matrix with integer elements which can be solved explicitly as
a=B""b. %)

The matrix B~! is sparse and is computed exactly without numerical error [28]. It has exactly 1000 non-zero elements and a
condition number ,(B~!) = 1.345 x 10*. In Section 3 we show that in the treecode algorithm, only multiplication by the transpose
of the inverse (B~!)T is needed, and as this matrix is sparse, the multiplication can be done in-line.

The representation (2) has several advantages as an interpolant. It was shown to be the minimum order necessary to maintain
global C' continuity in the approximated function [28]. Furthermore, the derivatives of the function can be computed analytically,
in contrast with three one-dimensional cubic interpolants, where the derivatives are not easily accessible and finite differences or
other methods are needed to recover the derivatives.

We can define a vector u where

Higivajeron = X'V 25 i j,k=0,1,2,3, ®

and use the definition of « in Eq. (4) to write Eq. (2) as an inner-product

fe,y=ap )

Here and in the rest of the paper, a superscript T will denote a transpose.
2.1. Rectangular meshes of arbitrary size

The representation in (2) can be modified for a rectangular mesh element of arbitrary size and location by shifting and scaling
each variable accordingly,

Flepz) = i ae <x;xx0 )i <J’;yy0>j (Z;zzo)k, 10)

i.j.k=0

where Ax, Ay, Az are the lengths of the element in the three dimensions, and (x, yy, z) is the lower left corner of the element. Note
that in this case, the derivatives in (5) must be appropriately scaled. For example, differentiating (10) in the x variable, we get,

3 ) )
of . i x—xo)ffl Y=Y ’(z—zo)k
Y (x.y.z) = L, . 11
ox 002 i=1§;€=0 R 4y 4z an
Evaluating the function in (10) and the three derivatives at the lower left corner x,, we get
fly =a ) JGw Ay G Of) Aot (12)
Xo — 70000 oxlxg — Ax’ dylxy Ay’ ozlxy Az’

3



H.A. Boateng and S. Tlupova Journal of Computational Mathematics and Data Science 5 (2022) 100068

Fig. 2. Particle-cluster interaction. The target particle is at position x,, and the source particles are at positions y, in cluster C. Cluster C has center y, and
radius r. The particle-cluster distance is R = |x,, —y.|.

Consequently, the evaluation of coefficients still follows (7) but the right hand side in (5) is evaluated as

a 9 a 92 af? af? 3
—f,Ay—f,Az—f, AxAy—f,AxAz / ,AyAz / , AxAyAz / },
ax ady dz 0x0y 0x0z dyoz 0x0ydz

St {f, Ax (13)

while the B matrix remains the same.

3. The particle-cluster treecode

We now present the main components of a treecode algorithm based on the tricubic interpolation. First, all source particles are
divided into a hierarchy of clusters, and a target particle interacts with clusters of source particles, rather than individual sources,
as described below.

3.1. A particle-cluster interaction

Consider a target particle x,, = (x,,, ¥, z,,) interacting with source particles y, = (x,,y,.z,) in a source cluster C, as shown in
Fig. 2. The cluster has a radius r, and the particle-cluster distance is R = |x,, — y.|, where y, is the cluster center.
The component of the sum (1) for this interaction is written as

% C) = Y Ky o) 14)

yn€C

If the particle and the cluster are far enough apart (that is % < 0 [7], where 0 < 6 < 1), the sum in (14) is approximated in the

following way. First, the cluster is shifted and scaled to the unit cube [0, 113,
Xp — Xmin Yn — Ymin Zy — %,

= . y= = Zn “min 15
X Ax Y Ay z Az (15)

where Y = (Xmin»> Ymins Zmin) are the minimum x, y, z coordinates of the cluster C, and Ay = (4x, 4y, Az) is the size of the cluster box.
The target point is shifted as well x,, - x,, — yi,- Then the kernel function K(x,,,y) is interpolated in the second (source) variable
using the tricubic formula (2),

m>

3
% O) = Y KX ¥ ® 20 2 ayx' vz, 16)

y,€C Yn,€C i,j,k=0

Since the tricubic coefficients g, do not depend on the individual source particles in the cluster, we switch the order of summation
in (16), and use the definition in (8), to obtain the far-field approximation,

3
P(x,,, C) = 2 aijk Z X[,V/Zkfn»

ijk=0  y,eC

_ . T,C
=a,p, 17
where
Cc —
Hivivajrion = Z Hiviraj+16cSn (18)
y,€C
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are the monomials of the cluster C. The significance of approximation (17) is first, the coefficients «,, depend only on the target
particle x,, and the cluster corners, and second, the cluster monomials u€ are independent of the target particle. We can achieve
further time saving by using (7) to rewrite (17) as

(X, C) & @l u€ = (B7'b,)" u€ = b7 (B~H 4 =p"MC, 19
where
M€ =B )T uC, (20)

are the modified monomials of the cluster C which are also independent of the target particle x,,. These modified monomials are
therefore precomputed and stored for each cluster using (20), since the 64 x 64 matrix (B~!)" is known explicitly. Furthermore, the
matrix multiplication in (20) can be done in-line since the matrix is sparse. These monomials M€ can then be reused for different
targets. Eq. (19) defines the far-field tricubic approximation for the potential at the target position x,, due to all the source particles
y, in cluster C. In summary, the particle-cluster approximation (19) is performed in two steps: first, the 64 elements of b, are
computed using (5), scaling the derivatives as in (13), and second, the dot product of b,, and MC is computed in (19).

The cost of evaluating the particle-cluster interaction using (19) can be estimated as follows. The first step of computing the vector
b,, is roughly 64 function evaluations (the kernel and its derivatives at 8 corner points), and the exact time can vary depending
on the complexity of the kernel function and whether finite differences are used for the derivatives. Once this step is completed,
assembling the velocity through the dot product in (19) is another 64 multiplications. The cost of direct summation in (14) is O(N,),
where N, is the number of particles in the cluster. The approximation process is more efficient than direct summation since the
number of particles in each cluster N, > 64. Summing over all clusters brings the total estimate to O(64 log(N)), or simply O(log(N)),
for each target particle, and the overall algorithm for N targets to O(N log(N)), consistent with other treecodes.

3.2. Approximating the electric field

The use of tricubic interpolation to obtain the far-field approximation (19) for the potential in (14) makes it a simple task to
compute derivatives (or the electric field) as follows. The electric field at target position x,, due to the source cluster C is given by

E, = -V, ¢(x,,C) =V, ¢(x,,C), (21)

since the kernel K is a function of |x — y|. From the tricubic approximation of the potential given in (19), the field is approximated

as

E, =V, ¢(x,,C)~ V, bIM® =b] Vv, M, (22)

since b,, is independent of y,. The derivative of the modified moments with respect to x,, the first coordinate of the source variable
Yn = (> Vs Zp)s 18

ME _ o

ox, 0x,

(B ) = (B2 (€. 23)

The derivative of u€ is computed element-wise as

S (vans) = 5 (B 20 ) = B et ()

" \y,eC yn€C

l' . .
= Ax Z x! lyjzkfn,

y,€C

i ¢
= A M-tk

E 249
Then from (23),
oMC _ 9 B ) _
a—:(B I)T_(”C)z(B I)T”C,I=MC,1. o5
Xn ax,,
Similarly,
9 (€ _J.c o
ay, <”1+i+4j+16k) = e -eioe = # J, o6
and
c _k ¢ _ ck
E (#1+i+4j+16k> - A_z”1+i+4j+16(k—1) =u". @
Hence,
¢ ; .
oM = (BT uC = MC, -
ay,
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and
oM¢
0z,

Then from (22),

- (B—l )TﬂC.k — MC,k. (29)

W c
& bIV, MC,

— aMC -
0x,
c MC,i
= bl M =bl | MC |. (30)
0yn MC,k
oMC€
L 0z

w
The monomials M¢, M€/ and M are precomputed for each cluster in the same routine that precomputes M€ and reused for
different targets.

3.3. Error analysis

Here we estimate the error in using tricubic interpolation (16) to evaluate the sum (14) for a fixed target particle x,, and a source
cluster C. Without loss of generality, we assume the cluster C contains the source particles x,, n =1, ..., N. Let (x, y, z) be the shifted
and scaled coordinates of the source y,, defined in (15). Since |x| < 1, |y| < 1,]z| < 1, we define the largest error as the difference
between approximations using the fourth-degree interpolant and the tricubic. We write the error as follows:

N 4 3
E(x,,, C) = an [ Z a,jkxiyjzk— E a[jkxiyjzk] . (31D

n=1 i.j.k=0 i.j,k=0

After cancellations, (31) becomes

N 4 4
£(x,,,C) = an [ZZ 4ery4zk+22a4jkx4y1z +ZZ a;jyx'y'z ] . (32)
n=1 =0 k=0

Jj=0 k=0 i=0 j=0

Let F = max and A = max |a;;|. Then
1<n<N 1l 05i,j,k£4| ijk]

N

4 4 3 4 3 3
€0, Ol < AF Y} [2 INELEAEDIHEREA DI |x"yfz4|] : (33)
i=0 k=0 Jj=0 k=0 i=0 j=0

Since |x| < 1,|y| £ 1,|z| £ 1, and letting f = AF, we get

1€, O <ﬂ2[22|y |+22|x |+22|z |]

i=0 k=0 j=0 k=0 i=0 j=0

Z

= B ) [251y*] +201x*] + 16]2*]]

n=1

4
Yn = Ymin Xn ~ Xmin 4 Zn ~ Zmin 4
25 +20( ) +16 (2 m)
ﬂnz_% |: < Ay > Ax Az

z

< ﬂn:l [zs(ﬁ)4+zo(ﬁ)4+16(ﬁ)4]
4
= 6lﬂN(AlT)4, (B34

where I = max{|x, — Xpinls |¥n = Yminls 120 — Zminl} < max{A4x, Ay, 4z} and Aw = min{4x, Ay, Az}. Without loss of generality, let
n

2
Ax = max{4x, Ay, Az}. Then, for a rectangular parallelepiped cluster, the radius r = % 1+ (%) + (Az ) and (34) can be written
as

4
6ﬂ (A)4:976ﬂN r

Aw)* (Aw)* ( 1+<%)2+(%)2>4

< ZOINE (1) =

[€(x,, O <

)4 , (35)
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4
where y = WZi and p = % is proportional to the particle density of the cluster. For a cubic cluster, p is exactly the particle
density. For each target particle, the treecode algorithm cycles through the clusters in the tree recursively, and evaluates a particle-
cluster interaction using the approximation in (19) only when the particle and the cluster are well-separated, that is, the acceptance

criterion, typically called the MAGC, is satisfied:
r
— <0, 36
RS (36)

where r is the cluster radius, R is the particle-cluster distance, and 0 is a user-specified parameter. If the MAC is not satisfied, the
children of the cluster are checked, and if the cluster is a leaf (no children), then the particle-cluster interaction is computed directly
by (14). Thus, the error for the tricubic approximation is

|EX,,. O < yp 6% (37)

To provide numerical evidence for the 6 dependence of the error given in (37), we compute the error in the Coulomb potential
d(x,y) = |x+ for a particle-cluster interaction with fixed particle density p. The source cluster is a unit cube centered at (0,0, 0)
containing 1000 uniformly distributed points. The target particle is located at x,, = (2.0 + dx,0,0) with dx =0 : 0.1 : 8. The MAC
parameter 0 = % = Z(T\/ic) A plot of the error vs. 8 is shown in Fig. 3. The plot provides graphical evidence of the §* dependence
of the error.

Fig. 4 is an attempt to provide evidence for the dependence of the error on the particle density. The error is again from a
particle-cluster interaction with the Coulomb potential. In this study, the MAC parameter, 0, is kept constant. The cluster is the unit
cube centered at (0,0, 0) and the target particle is fixed at (2, 0, 0). The source points N € {64, 125,512, 1000,4096}. The points in this
case are uniform grid points in the cube. The plot shows an increase in the error with the density. We note that the coefficients a;
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Fig. 5. Cluster-particle interaction. The source particle is at position y, and the target particles are at positions x,, in cluster C. Cluster C has center x, and
radius r. The particle-cluster distance is R = |y, — x.|.

have an effect on the error as well. They are kernel dependent and are related to the rate of decay of the kernel. Unlike the MAC
parameter and the particle density, our understanding of the effect of the coefficients is mainly heuristic. In Section 5, we provide
numerical results showing the dependence of the error of the full treecode on the MAC parameter and the particle density.

3.4. The particle-cluster algorithm

With the particle-cluster approximation established, our treecode algorithm is similar to other treecodes [20,26]. For complete-
ness, we give an overview of the algorithm with the pseudocode presented in Algorithm 1. First, the particle data (coordinates x
and weights f where weights are either one or three-dimensional) are read from a file. Then, the particles are divided recursively
into clusters to generate a tree structure. The root cluster is the smallest rectangular box that encloses all particles. The root is
bisected in each coordinate direction to create 8 child clusters. The process is repeated for each child cluster, recursively until a
cluster has fewer than N, particles, where N is a user-specified leaf-size parameter. For each cluster, the modified monomials M€,
MCSi, MSJ/, MC*, each of length 64, are computed using Eqgs. (20), (25), (28) and (29). This concludes the precomputation needed
at the start of the algorithm. The algorithm then loops through the target particles. For each target particle, the interaction with all
the source particles is done recursively through the clusters. For a given particle-cluster interaction, if the MAC (36) is satisfied, we
compute the approximations in (19) and (30), where b,, is first evaluated and M€, M¢, M®/ and M are simply looked up from
the precomputation. If the MAC is not met, and the cluster is a leaf, the interaction is evaluated directly using (14). Otherwise, all
children of the cluster are checked.

Algorithm 1 tricubic treecode: particle-cluster

1: input: particle coordinates X,,m=1,...,N, f,,n=1,..., N, parameters 6, N,
2 Set {yn},],\; = {Xm}r}:l:l =N
3: output: potential ¢,,, electric field E,,, m=1,...,N
4: program main
5:  build tree of source particles y,
6: precompute and store MC, MS/, M®/, MCk using (20), (25), (28) and (29), for each cluster
7. form=1,..., N, compute_potential(x,,, root), end for
8: end program
9: subroutine compute_potential(x, C)
10: if MAC (36) is satisfied
11: compute b,, using (5)
12: compute particle-cluster interaction by approximations (19) and (30)
13:  else
14: if C is a leaf, compute particle-cluster interaction by direct sum (14)
15:  else
16: for each child C’ of C, compute_potential(x, C’), end for

17: end subroutine

4. The cluster-particle treecode

Here we describe an alternative treecode method for computing the sum in (1), based on partitioning the set of target particles
{x,,} into an octree and applying a near-field approximation [29]. Fig. 5 shows a cluster-particle interaction between targets x,, in
a target cluster C and a source particle y,. The target cluster and the source particle are well-separated if /R < 6, in which case
the algorithm approximates the potential and electric field at the targets by a near-field tricubic interpolation.
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Suppose for the cluster C, {y,} is the “interaction list”, that is, the set of source particles well-separated from C. We shift these
particles as before y, — y, — X;,, where X ;. = (Xin> Ymin» Zmin) are the minimum x, y, z coordinates of the cluster C. The cluster is
shifted and scaled to the unit cube similar to (15). Then the kernel is interpolated in the target variable, and the cluster-particle
interaction can be evaluated as

¢(Xm,yx) = Z IC(xm’yS)fx’

{ys}
X, =X N (Y, = v\ /2, =z Nk
a.. ( m mm) m min ( m mm) f
ijk Ax Ay Az 5

2
2 Z aijkxiyjzkfs- (38)

{ys} i,
{ys}iJj.k=0

M

Q

0

[
Il

The tricubic coefficients a;;, depend on the corners of the target cluster and the source particles in the interaction list, but do not
depend on the individual particles in the target cluster C. As such, we can re-arrange the summation and use Egs. (4) and (8) to

rewrite the approximation as,

3
¢(Xm’ys)z Z xiyizkzaijkfs

3
x'y ZF Ap{pindi
¢, 1+i+4j+16k
{ys}

i,j,k=0 {ys} i.j,k=0
= a Hy (39)
where from Eq. (7),
ac,]+i+4j+]6k = Z a[jk fs = Z(Bilbs)[jk fs = <B71 Z bS fx),,k’ (40)
{vs) {v,) {¥s) o
and
@ =B"Y b/, (41)

{ys}

are the modified tricubic coefficients of the cluster C. Eq. (39) defines the near-field tricubic approximation for the potential at the
target position x,, € C due to the source particles in the interaction list of C, {y,}.

We see that the particle-cluster approximation in (17) and the cluster-particle approximation in (39) are both of the polynomial
form given in (9). For the particle-cluster approximation, the coefficient vector a,, and the monomial vector u¢ depend on the
target and source particles respectively. This is reversed in cluster-particle where the coefficient vector @, depends on the sources
and the monomial vector u,, depends on the targets.

4.1. Approximating the electric field

Computing the near-field approximation for the derivatives of the potential is straightforward. From (38), we note that

3 . 3
J ik ox' 1 . i=1.j_k
—¢(x,,,C) & a.,yzF— = — a,. ix1y Zk, (42)
ox, " i,/,zk:() ik 0x,, Ax i,/';:O ik
1
= Eazﬂm,i’ (43)
where
3
My = z ixt =y zk, 44
=
Similarly
9 1
Ed)(xm’ O = A_ya" My j» (45)
9 ~ Lol 46
gqb(xm,c) N o Mo (46)
m
with
3
Hpj = Z jxlymlzk, (47)
i.j, k=0
and
3
Hoi = Z kx'y/ 2kt (48)
=
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The electric field at target position x,, in cluster C due to the source particles in the interaction list {y,} is given by

Bmi
Ax

ﬂm,j

4 (49)

E, =-Vy, 0 ¥,) = —aCT
ﬂm,k
Az

The cluster-particle treecode algorithm is described in Algorithm 2. First, the target particles are hierarchically reordered into
a tree following the same procedure described in the particle-cluster algorithm. The rest of the algorithm is done in two stages.
Stage 1 loops through the source particles and performs the interaction of each source particle y, with the clusters in the tree. If
a source particle y, and a cluster are well-separated, that means that y, is in the interaction list of that particular cluster and the
algorithm updates the near-field modified tricubic coefficients in (41) for the cluster. Otherwise the source particle interacts with
the children of the cluster unless the cluster is a leaf in which case the cluster-particle interaction is computed by direct sum. Stage 2
completes the evaluation of the near-field approximation by descending the tree and evaluating (39) and (49) for all target particles
that interacted with source particles by approximation in stage 1.

The tree of targets has O(log N) levels. In both stage 1 and stage 2, the code descends through the tree. In stage 1, the code
loops through the log N levels for each of the N source particles to evaluate (41), thus the operation count is O(N log N). In stage
2 the code evaluates (39) and (49) for each of the N target sites at each of the log N levels resulting in a cost of O(N log N). Thus
the cluster-particle treecode also has an overall cost of O(N log N).

Algorithm 2 tricubic treecode: cluster-particle

: input: particle coordinates x,,, m=1,...,N, f,, n=1,..., N, parameters 6, N,
N N
: Set {yn}n:1 = {X'V'}mzl
: output: potential ¢,,, electric field E,,, m=1,...,N
: program main
build tree of target particles x,,
for n=1,..., N, compute_cp_stagel(root, y,), end for
compute_cp_stage2(root)
: end program
: subroutine compute_cp_stagel(C, y)
if MAC (36) is satisfied
update modified tricubic coefficients a, using (41)
else if C is a leaf
compute cluster-particle interaction by direct summation
else
for each child C’ of C, compute_cp_stagel(C’, y), end for
: end subroutine
: subroutine compute_cp_stage2(C)
if C interacted with a source particle by tricubic approximation in stage 1
for each target x,, in C, compute the full approximation in (39) and (49), end for
for each child C’ of C, compute_cp_stage2(C’), end for
: end subroutine

O PN O U A WN -

T I I R R i e
He 9w e NI hH DD

5. Numerical results
5.1. Implementation details
The algorithms are written in double precision C++ using the Clang compiler frontend with the -O2 optimization. The source

code is available online in a Github repository [30]. The tests presented here were performed on a Dell PowerEdge R940xa Linux
box with 2.1 GHz Intel Xeon Gold processors.

5.2. Efficiency of the treecode algorithms

This section presents results for the particle-cluster and cluster-particle treecode approximations of the potential and electric
field for systems of size N € {10% 8 x 10*,64 x 10*}. where the particles are randomly distributed in a cube of dimension
[-5,51x[-5,5]%[0,10] and the weights f, € (—1,1). The maximum number of particles in a leaf of the tree is set to N, = 1000 and
the MAC parameter # = 0.3 : 0.1 : 0.8.

10



H.A. Boateng and S. Tlupova Journal of Computational Mathematics and Data Science 5 (2022) 100068
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Fig. 6. Accuracy and CPU time in N for the three kernels. N: number of particles, 2 MAC parameter. Fixed length of cube, L = 10.

Let r = |x —y| and k = 1. We test the two treecode algorithms on three kernels common in physical applications; the Coulomb
kernel

Kxy) = 1, (50)
the screened Coulomb kernel

Ky =S, 51)
and the kernel of the real-space component of the Ewald sum

Kx.y) = erfcr(lcr). (52)

For each kernel, we approximate ¢ in (1) and the electric field V¢ using Egs. (19) and (30) for the particle-cluster treecode and
Egs. (39) and (49) for the cluster-particle treecode. We compute the relative error, in #2-norm, in the approximation of the potential,
Error(¢), given by

< d : 2 /% d 2\1/2
Error(@) = ( Y o) - x|/ X o ) (53)
m=1 m=1
as well as in the approximation of the electric field, Error(V¢), defined as

I/2, 54)

N N
Error(Ve) = ( . [V9/ ) - Vo' x| / 3 [V, )
m=1 m=1
where ¢¢, V¢? are the exact potential and electric field computed by direct summation, ¢/, V¢' are the treecode approximations.
Figs. 6 and 7 show the results of the treecode approximations for a system with varying density and constant density respectively.
In Fig. 6, the particles are randomly distributed in a cube of dimension [-5,5]x [-5,5] X [0, 10]. With N € {10%,8x 10%,64 x 10*},
the particle density p € {10,80,640}. The top row is a plot of the error in the potential against N. The middle row is a plot of the
error in the electric field against N and the bottom row is a plot of the CPU time against the N. The plots are for both particle-cluster
and cluster-particle and for all three kernels. Both algorithms have the same qualitative behavior for all three kernels. For a fixed
MAC parameter 6, Egs. (35) and (37) predict that the error increases with p or with N for a fixed length L. We see this increase
in error as N increases for all the kernels for both algorithms. As expected, for fixed N, the error decreases with decreasing 6. The
plot of CPU time against N shows the O(N log N) behavior of both algorithms compared with the O(N?) behavior of direct sum.

11
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Fig. 7. Accuracy and CPU time vs. N for the three kernels. N: number of particles, : MAC parameter. Fixed particle density, p = 10.

For Fig. 7, the particles are randomly distributed in the cube [-L, L]>. With N € {10%,8x10*, 64x 10*}, the length L € {10,20,40}
in order to maintain a constant density of p = 10. As expected from Egs. (35) and (37), the error in the potential (top row) and the
electric field (middle row) are near constant with N with constant density as expected. Again, both algorithms exhibit very similar
behavior for all our test parameters.

5.3. Molecular dynamics simulation of liquid Argon (Ar)

To further investigate the accuracy of the algorithms, we performed a molecular dynamics (MD) simulation of liquid Argon. The

interactions of Argon atoms are governed by the Lennard-Jones potential energy

vor-al(2)"- Y]

r r

We implemented the particle-cluster treecode in the MD simulation software package DL_POLY Classic [31] to approximate the
Lennard-Jones potential energy and the forces —Vy/(r). The Lennard-Jones potential well-depth parameter ¢ = 0.9661 kJ/mol and
the distance at which there is zero potential energy o = 3.405 A. We simulated a system of N = 100 Argon atoms in a cubic box of
length 17.4 A, with periodic boundary conditions, at 85 °K and with timestep 1 fs. The system was equilibrated for 5000 MD steps
using an Evans thermostat [31] after which the thermostat was turned off and statistics were taken over 20 000 additional MD steps.

We run four different simulations. In one simulation, the atomic interactions were computed using direct summation with no
cutoffs, or a treecode with 0 ~ 0. In the other three simulations, the atomic interactions were computed with the particle-cluster
treecode with 6 € {0.3,0.5,0.7} and the maximum number of particles in a leaf N, = 4. In all the simulations, we computed the
radial distributions functions g(r) [32] every 10 steps averaged over all the particles and over 2000 steps. We also computed the
velocity Cy (1) and force-force Cr(t) autocorrelation functions [32] with velocities and forces which were stored at each 5th step.
The correlation functions were also averaged over all the atoms.

In Fig. 8 we compare the radial distribution functions g(r) of the direct summation to the treecode for the three MAC values
0 € {0.3,0.5,0.7}. The radial distribution function is a structural property that provides a measure of the arrangement of atoms in
the liquid. The radial distribution function is not very sensitive to accuracy differences, thus all the three treecode simulation results
match very well with the direct sum results.

Figs. 9 and 10 are the velocity-velocity and force-force autocorrelation functions respectively. These are dynamical quantities
and are more sensitive to accuracy differences. Comparisons of the correlation functions provide a measure of the similarity of
the dynamics of the MD simulations using the treecodes to that of the direct sum. Although all three treecodes are qualitatively
similar to the direct sum results, the treecode with § = 0.3 provides the best overall quantitative match as expected. Treecode

12
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algorithms are typically used to approximate long-range kernels. The Lennard-Jones potential, however, is a short-range kernel.
The simulation results show that the treecode can provide efficient approximations for a short-range kernel as well. This suggests
that in MD simulations with both short-range and long-range potentials, such as in electrostatic systems with both Lennard-Jones
and Coulomb potentials, a treecode can be used to provide simultaneously approximation of both potentials in order to achieve
better computational speed, instead of the standard approach of computing the short-range and long-range interactions separately.

6. Conclusions

This paper developed two treecode methods, particle-cluster and cluster-particle, based on a tricubic interpolation method in
three dimensions. The kernel representing pairwise particle interactions is interpolated by a cubic polynomial in three dimensions
in a way that is computationally efficient and allows straightforward approximations of the derivatives of the interpolated kernel.

An error analysis was provided that shows that the decay rate of the error in the approximation of an interaction between a
particle and a cluster is quartic in the MAC, 6. A numerical evidence for quartic decay of the error was also provided.

We performed numerical tests on the Coulomb, screened Coulomb and real space Ewald sum kernels. The numerical tests
demonstrated the typical O(N log N) scaling of the treecode for both versions of the treecode. Additionally, the numerical tests
showed, as expected, that particle-cluster and cluster-particle have similar numerical efficiency when the targets and sources in the
treecode algorithm are the same.

We also provided an application of the particle-cluster treecode in a molecular dynamics simulation of liquid Ar. The simulation
results provided evidence that the treecode is able to reproduce both structural and dynamical properties of a chemical system, even
for the short-range Lennard-Jones kernel.

The algorithms presented here used analytical derivatives of the kernels. One extension of the work is to develop a kernel
independent extension of the algorithms which uses numerical derivatives for the kernels. The tricubic interpolation employed in
the treecodes guarantees global C! continuity. In a follow up paper, we study the effect of smoothness on the accuracy of treecode
methods. Higher smoothness can only be achieved through the use of higher order interpolating polynomials, such as a triquintic.
Future extensions of this work will develop and implement higher order interpolations to achieve higher global smoothness.
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