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Many problems in fluid dynamics are effectively modeled as Stokes flows —
slow, viscous flows where the Reynolds number is small. Boundary integral
equations are often used to solve these problems, where the fundamental so-
lutions for the fluid velocity are the Stokeslet and stresslet. One of the main
challenges in evaluating the boundary integrals is that the kernels become sin-
gular on the surface. A regularization method that eliminates the singularities
and reduces the numerical error through correction terms for both the Stokeslet
and stresslet integrals was developed by Tlupova and Beale (J. Comput. Phys.
386 (2019), 568–584). In this work we build on the previously developed
method to introduce a new stresslet regularization that is simpler and results
in higher accuracy when evaluated on the surface. Our regularization replaces
a seventh-degree polynomial that results from an equation with two conditions
and two unknowns with a fifth-degree polynomial that results from an equation
with one condition and one unknown. Numerical experiments demonstrate that
the new regularization retains the same order of convergence as the regular-
ization developed by Tlupova and Beale but shows a decreased magnitude of
the error.

1. Introduction

Many problems in fluid dynamics are modeled as Stokes flows — particle interac-
tions in slow, viscous flows that results in a small Reynolds number. The equations
that describe these flows, the incompressible Stokes equations, are

�r p + 1u = 0, r · u = 0, (1)

where p is the fluid pressure and u is the fluid velocity. The Stokeslet and the

MSC2020: 65B99.
Keywords: Stokes flow, boundary integral equations, regularization.

515

http://msp.org
http://msp.org/involve/
https://doi.org/10.2140/involve.2022.15-3
https://doi.org/10.1016/j.jcp.2019.02.031
https://doi.org/10.1016/j.jcp.2019.02.031


516 J. THOMAS BEALE, CHRISTINA JONES, JILLIAN REALE AND SVETLANA TLUPOVA

stresslet are the primary fundamental solutions for the fluid velocity,

Si j ( y, x) =
�i j

| y � x|
+

(yi � xi )(y j � x j )

| y � x|3
, (2a)

Ti jk( y, x) = �
6(yi � xi )(y j � x j )(yk � xk)

| y � x|5
(2b)

where �i j is the Kronecker delta and i, j, k = 1, 2, 3 are Cartesian coordinates, x is
a source point, and y is a target point. When used in boundary integral methods,
these lead to the single and double layer representations of Stokes flow, respectively,

ui ( y) =
1

8⇡

Z

@�

Si j ( y, x) f j (x) d S(x), (3a)

wi ( y) =
1

8⇡

Z

@�

Ti jk( y, x)q j (x)nk(x) d S(x), (3b)

where nk are the components of the outward unit normal vector to the surface @�

of a bounded domain �. The integral in (3a) is continuous across @�, while the
integral in (3b) is discontinuous and has a jump of ⌥4⇡qi (x0) in the limit from
either the interior or exterior of the domain.

Computing the layer representations (3a)–(3b) requires addressing the singular-
ities that develop as r = |x � y| approaches zero. When evaluating the integrals
near the surface, the kernels are nearly singular and straightforward quadratures fail
to capture them accurately. Tlupova and Beale [2019] introduced regularizations
for the Stokeslet and stresslet that result in high accuracy when evaluating at points
on and off the surface. The method is based on smoothing the kernels using a
regularization parameter � > 0 developed for the Laplace kernels in [Beale 2004;
Beale and Lai 2001], and then applying a simple quadrature of [Wilson 2010;
Beale et al. 2016]. For the nearly singular case, corrections are added to reduce the
regularization error to the O(�3) terms.

When evaluating the integrals on the boundary, e.g., when solving integral
equations, special smoothing functions are designed [Tlupova and Beale 2019]
that achieve O(�5) accuracy without requiring corrections. In addition, these
regularizations do not require that adjustments be made to the grid around the
singularity.

In this paper we introduce a new smoothing function for the stresslet (3b) that
results in higher accuracy in the computation of the stresslet at points on the surface.
We first summarize the method of [Tlupova and Beale 2019] in Section 2. The new
regularization for the stresslet is developed in Section 3. The results of numerical
experiments using the original and new regularizations for three surfaces — a sphere,
an ellipsoid, and a four-atom molecular surface — are presented in Section 4.
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2. Numerical method

We now briefly describe the idea of regularization from [Tlupova and Beale 2019].
We demonstrate the main concepts on the stresslet (3b) as this is the focus of this
paper. The approach for the Stokeslet (3a) is similar; for details we refer the reader
to [Tlupova and Beale 2019]. First, the singularity is reduced in the stresslet through
subtraction, resulting in

wi ( y) =
1

8⇡

Z

@�

Ti jk( y, x)[q j (x) � q j (x0)]nk(x) d S(x) +
1

8⇡
�( y)qi (x0), (4)

where x0 is the boundary point closest to y, and we have applied the well-known
identity (see, for example, [Pozrikidis 1992, Sections 2.1–2.3])

Z

@�

Ti jk( y, x)nk(x) d S(x) = �( y)�i j , (5)

where �( y) = 8⇡, 4⇡, 0 if y is inside, on, and outside the boundary, respectively.
The stresslet is then regularized:

w�( y) = �
3

4⇡

Z

@�

[( y � x) ·eq(x)][( y � x) · n(x)]( y � x)
s3(r/�)

r5 d S(x)

+
1

8⇡
�( y)q(x0), (6)

whereeq(x)=q(x)�q(x0), and s3 is chosen with lim⇢!1 s3(⇢)=1, s3(⇢)= O(⇢5)

for small ⇢, and s3(r/�)/r5 smooth for a fixed parameter � > 0. Once the integrands
are smoothed out, the integrals are discretized using the quadrature method for
closed surfaces introduced in [Wilson 2010] and explained in [Beale et al. 2016]. The
error due to regularization is O(�), and correction terms were derived analytically
in [Tlupova and Beale 2019] to reduce the O(�) and O(�2) terms, resulting in the
final computation accurate to O(�3).

For the case of solving the stresslet at points on the surface, such as when solving
integral equations, a special regularization can be designed to achieve high accuracy
to O(�5) without the need to compute corrections. In [Tlupova and Beale 2019],
such a smoothing function was found by setting

s#
3(r) = s3(r) + ars 0

3(r) + br2s 00

3 (r), (7)

with a and b being constants chosen to make two moments involving s3 equal
to 0. The resulting smoothing function for solving the stresslet on the surface given
in [Tlupova and Beale 2019] is

s#
3(r) = erf(r) �

2
9r(9 + 6r2

� 36r4
+ 8r6)e�r2

/
p

⇡ , (8)

where erf is the error function.
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As discussed in [Tlupova and Beale 2019], the error in the double layer integral
evaluated on the surface using the smoothing (8) is expected to behave as

✏w  C1�
5
+ C2h2 e�c0(�/h)2

, (9)

where h is the grid spacing chosen in coordinate planes for the discretization of
the integrals. The first term is due to regularizing the kernels, and the second term
is due to discretizing the integrals. As such, the accuracy depends critically on
the relationship between � and h. A large enough choice of � is needed to ensure
the regularization error is dominant over the discretization error, so that the total
error approaches O(h5). We generally take �/h to be constant for simplicity, and in
practice �/h = 3 works well to maintain the high order in the regularization error.

3. New regularization

The new regularization we propose increases the accuracy of evaluating the stresslet
on the surface by using a slightly simpler smoothing function in place of (8). As
mentioned earlier, the special smoothing was found in [Tlupova and Beale 2019]
by setting two moment conditions to 0. We have determined, however, that one
condition will suffice. Specifically, in the original derivation in [Tlupova and
Beale 2019], when evaluating at points on the surface we have � = 0, thus making
the condition requiring equation (40b) equals to 0 unnecessary; see below. This
leaves only one moment condition where a similar integral with ⌘7 in place of
⌘5 is equal to 0. This allows us to create the new smoothing function by setting
s#

3(r) = s3(r) + ars 0

3(r), and solving for a.
We start with the original smoothing function from [Tlupova and Beale 2019],

s3(r) = erf(r) � 2r
�2

3r2
+ 1

�
e�r2

/
p

⇡ , (10)

and compute

r s 0

3(r) =
8

3
p

⇡
r5 e�r2

. (11)

The integral moment condition is
Z

1

0
r2(s#

3(r) � 1) dr = 0. (12)

Since
Z

1

0
r2(s3(r) � 1) dr = �

8
3
p

⇡
,

Z
1

0
r2(rs 0

3(r)) dr =
8

p
⇡

, (13)

we can therefore set
s#

3 = s3 +
1
3rs 0

3 (14)
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to satisfy the integral condition (12), which leads to the smoothing function

s#
3(r) = erf(r) �

2
9r(9 + 6r2

� 4r4)e�r2
/
p

⇡ . (15)

Note that the polynomial term in this new function has highest power r5, whereas
the original function in (8) has r7.

In the derivation of (8) in [Tlupova and Beale 2019], the moment condition (12)
was imposed, as well as the zero moment condition

Z
1

0
(s#

3(r) � 1) dr = 0. (16)

However, for the stresslet integral in the subtracted form (4), the contribution of
this moment to the integral is zero, so that this condition can be omitted. More
generally, for an integral not in the subtracted form, the original version (8) could
be used. We obtain (8) in the manner described for (15), but with s#

3 in the form
s3 + ars 0

3 + br2s 00

3 and a, b chosen to satisfy the two conditions. The situation is
analogous to that for the simpler case of the double layer potential for a harmonic
function; see [Beale 2004, p. 607].

4. Numerical experiments

We performed numerical experiments to test the new regularization using three
surfaces: a unit sphere, an ellipsoid, and a four-atom molecular surface,

�(x1, x2, x3) = x2
1 + x2

2 + x2
3 � 1, (17a)

�(x1, x2, x3) =
x2

1
a2 +

x2
2

b2 +
x2

3
c2 � 1, (17b)

�(x1, x2, x3) =

4X

k=1

exp(�|x � xk |
2/r2) � c. (17c)

For the ellipsoid (17b) we set a = 1, b = 0.6, c = 0.4, and for the molecule
surface (17c), as in [Beale et al. 2016], we use centers x1 = (

p
3/3, 0, �

p
6/12),

x2,3 = (�
p

3/6, ±.5, �
p

6/12), x4 = (0, 0,
p

6/4) and r = .5, c = .6. The numbers
of quadrature points generated to represent each surface for different grid sizes h
are listed in Table 1.

4.1. Sum of single and double layer. One of the advantages of using boundary
integral formulations is that jumps in the physical quantities across interfaces
get incorporated into the integrals naturally. Specifically, the general integral
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h sphere ellipsoid molecule
1
32 17070 6902 9562
1
64 68166 27566 38354
1

128 272718 110250 153399

Table 1. Number of quadrature points for the unit sphere, ellipsoid
(a = 1, b = 0.6, c = 0.4) and the molecular surface from [Beale
et al. 2016].

formulation, expressed as the sum of the single and double layer integrals,

ui ( y) = �
1

8⇡

Z

@�

Si j ( y, x)[ f ] j (x) d S(x)

�
1

8⇡

Z

@�

Ti jk( y, x)[u] j (x)nk(x) d S(x), (18)

has [ f ] = f + � f � = (�+ � ��) · n as the jump in surface force and [u] as the
jump in velocity. Here n is the outward unit normal, and the plus and minus signs
denote the outside and inside of the boundary, respectively. We use the following
solution from [Tlupova and Beale 2019]. On the inside, we assume the velocity is
given by a point force singularity of strength b = (1, 0, 0), placed at y0 = (2, 0, 0).
The solution is given by the Stokeslet velocity

u�

i ( y) =
1

8⇡
Si j b j =

1
8⇡

✓
�i j

r
+

ŷi ŷ j

r3

◆
b j , (19)

and the stress tensor is

��

ik ( y) =
1

8⇡
Ti jkb j = �

6
8⇡

ŷi ŷ j ŷk

r5 b j , (20)

where ŷ = y � y0, r = | ŷ|. We assume this data for the inside of the boundary, and
take the solution to be u+ = 0, �+ = 0 for the outside. The jumps [u] and [ f ] are
evaluated at the quadrature points using these inside and outside values. The exact
solution on the boundary is the average of outside and inside, or half of the formula
for ui in (19).

We define the error at a single point as e(x) = |ucomputed(x) � uexact(x)|, where
| · | is the vector’s Euclidean norm. We then measure either the max or the
L2 norm of this error over the evaluation points. The L2 norm is defined as
kek2 =

� P
x e2(x)/n

�1/2, where n is the number of evaluation points. Figures 1
and 2 compare the errors for the three surfaces using the original regularization (8)
and the new regularization (15). Figure 1 shows the errors using the larger regu-
larization �/h = 3, and Figure 2 shows the errors using the smaller regularization
�/h = 1, as the grid size h is refined. Following the error estimate in (9), when the
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Figure 1. Errors at quadrature points for three surfaces, using
the sum of single and double layer integrals, with regularization
parameter � = 3h.
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Figure 2. Errors at quadrature points for three surfaces, using
the sum of single and double layer integrals, with regularization
parameter � = h.

regularization parameter is chosen large enough, such as �/h = 3, the regularization
error is larger than the discretization error, and the overall error is estimated at O(h5).
This is observed with the sphere and the molecular surfaces. The thin ellipsoid
does not fit the estimate as well due to the larger curvature and varied spacing,
expected to improve with grid refinement. The new regularization function (15)
gives smaller errors in all three cases, most dramatically in the case of the ellipsoid.
More precisely, we observe an improvement by approximately a factor of 2 for the
sphere, about a factor of 6 for the ellipsoid, and about a factor of 5 for the molecule.
For the smaller regularization parameter �/h = 1, observed convergence is O(h)

and the new regularization does not make a notable difference, so this regularization
regime is not recommended in practice.
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original regularization new regularization
h kehk1 kehk2 kehk1 kehk2

1
16 6.93 · 10�3 1.85 · 10�3 1.69 · 10�3 4.77 · 10�4

1
32 6.86 · 10�4 1.20 · 10�4 2.03 · 10�4 3.74 · 10�5

1
64 5.50 · 10�5 7.97 · 10�6 1.81 · 10�5 2.55 · 10�6

Table 2. Flow due to an interface for the ellipsoid with a = 1,
b = 0.6, c = 0.4, where the single layer integral is computed using
h =

1
256 , with grid size h, and max and L2 norms of the error

defined in (24). The regularization parameter � = 3h.

4.2. Flow due to an interface with different viscosities. Here we revisit another
example from [Tlupova and Beale 2019] of an interface between two fluids with
different viscosities, and an integral equation must be solved to find the interface
velocity. The interface undergoes a discontinuity in the surface force [ f ], while the
velocity across the interface is continuous [Pozrikidis 1992]. The integral equation
for the interface velocity is given by

(� + 1)ui (x0) = �
1

4⇡µ0

Z

@�

Si j (x0, x)[ f ] j (x) d S(x)

+
� � 1
4⇡

Z

@�

Ti jk(x0, x)u j (x)nk(x) d S(x) (21)

for x0 2 @�, where µ0, µ1 are the external and internal fluid viscosities and � =

µ1/µ0. The discontinuity in the surface force is given by [ f ] = 2� H n � rS� ,
where � is the surface tension, H is the mean curvature, and n is the outward unit
normal [Pozrikidis 1992]. In our numerical tests, we set µ0 = 1, µ1 = 2, and
� = 1 + x2

1 . We solve the integral equation using successive evaluations; i.e.,

(� + 1)uN
i (x0) = �

1
4⇡µ0

Z

@�

Si j (x0, x)[ f ] j (x) d S(x)

+
� � 1
4⇡

Z

@�

Ti jk(x0, x)uN�1
j (x)nk(x) d S(x) (22)

for N = 1, 2, . . . , and u0 = 0. We stop these iterations when the iteration error,
defined as

eN
:= max

x0
|uN

� uN�1
|, (23)

is below a prescribed tolerance, and | · | is the vector’s Euclidean norm. Since the
exact solution is not known, we check the convergence rates empirically by defining

eh(x) = uh(x) � uh/2(x) (24)
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and taking either the max or the L2 norm of this error over the surface points given
by h, the larger of the two grid sizes used. These errors are shown in Table 2 for the
ellipsoid a =1, b =0.6, c =0.4, with � =3h. It takes about N =12 iterations for the
iteration error (23) to reach below 10�10. To minimize the error coming from evalu-
ating the single layer integral with the surface tension density (the nonhomogeneous
term in (22)), we compute the single layer integral with increased resolution before
solving the integral equation (22). Specifically, we solved the integral equation (22)
for each of the values of h, but in each case computed the Stokeslet integral at the
needed points using the finer grid h =

1
256 . Table 2 compares the new regularization

with the original one, and shows an improvement when using the new function.

5. Conclusions

We have introduced a new regularization function for evaluating the double layer
potential (stresslet integral) in Stokes flows at points on the surface with high accu-
racy. The new function only requires one moment condition and has a lower degree
polynomial as a result. Numerical tests demonstrate that the new regularization
retains the same order of convergence as the regularization developed in prior work
but shows a decreased magnitude of the error.
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