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ABSTRACT

This study introduces firm information gain for model discrimination based on Shannon entropy and worst-case
scenario experimental design. Firm information gain is the minimal additional information gained by an
experimental design with respect to existing information. Robust experimental design aims to maximize the firm
information gain by searching for the least number of new pumping wells and observation wells. Robust
experimental design includes a Bayes factor threshold to ensure that new data provide strong evidence for model
discrimination. To maximize the firm information gain, a framework is proposed that combines the parallel-
sequential genetic algorithm (GA) for parallel computing and the nested quadrature rule for efficiently solving
multidimensional integrals. The numerical experiment involves the true model for the purpose of verification.
The results show that using a full covariance matrix is imperative to avoid exaggerating firm information gain.
Collecting new groundwater data is prioritized over exploring additional pumping wells. Maximizing firm in-
formation gain is able to identify the same and true model.

1. Introduction

Groundwater is a crucial source of freshwater throughout the world
for both hydrologic and human systems (Alley et al., 2002; Giordano,
2009; Siebert et al., 2010). Groundwater modeling has been widely used
for decades as essential tools for the planning and management of
groundwater resources (Gleeson et al., 2012; Wada et al., 2010). How-
ever, developing a groundwater model has never been an easy task as
groundwater data is always sparse and uncertainty always exists. Mul-
tiple conceptualizations of a groundwater system are often investigated.
Yet considering too many conceptual models indicates high model
prediction uncertainty and may lose the purpose of model development
(Bredehoeft, 2005; Hgjberg and Refsgaard, 2005). Collecting and
incorporating new data into groundwater models helps advance con-
ceptual understanding and management of groundwater resources
(Kikuchi, 2017) and in turn, reduces the number of models. Neverthe-
less, collecting groundwater data is usually costly, and optimal experi-
mental design techniques are often conducted before data collection to
gain the maximum amount of information given a pre-defined moni-
toring objective.

According to Sun (1994), experimental design in groundwater
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modeling generally falls into two parts: the observation part (e.g., state
variables to be observed, the number and locations of observation wells,
and observation frequency) and the excitation part (e.g., the number and
locations of extraction and injection wells, pumping and injection rates,
and periods of extraction and injection). If the excitation part is pre-
determined and only the observation part is considered, the experi-
mental design is referred to as an observation network design.
Observation network designs have been studied extensively in the
literature. A variety of methodologies have been introduced to design a
groundwater observation network (Kollat et al., 2011; Loaiciga et al.,
1992; Mogheir et al., 2006). Among these methods, physically-based
simulation approaches (Cieniawski et al., 1995; Cleveland and Yeh,
1990; Dhar and Datta, 2007; Hudak and Loaiciga, 1992; McKinney and
Loucks, 1992; Meyer et al., 1994; Reed et al., 2000; Storck et al., 1997)
and information theory (entropy-based method) (Alfonso et al., 2010;
Mogheir et al., 2006; Mogheir and Singh, 2002; Nowak and Guthke,
20165 Poeter and Anderson, 2005) are commonly employed owing to
their flexibility in examining design scenarios and design constraints.
The objectives of observation network designs are usually to: (1)
improve parameter estimation (Altmann-Dieses et al., 2002; Chang
et al., 2005; Cleveland and Yeh, 1990; Herrera and Pinder, 2005; Hsu
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and Yeh, 1989; Sciortino et al., 2002; Siade et al., 2017; Sun and Yeh,
2007; Ushijima and Yeh, 2015), (2) minimize prediction uncertainty
(Chadalavada and Datta, 2008; Janssen et al., 2008; McKinney and
Loucks, 1992; Nowak et al., 2010; Wagner, 1995; Wohling et al., 2016),
(3) detect plumes (Bode et al., 2019; Dhar and Datta, 2007; Dokou and
Pinder, 2009; Kim and Lee, 2007; Leube et al., 2012; Meyer and Brill,
1988; Storck et al., 1997), and (4) to discriminate among candidate
models and identify the most probable model (Kikuchi et al., 2015;
Knopman and Voss, 1988; Pham and Tsai, 2016, 2015; Usunoff et al.,
1992; Yakirevich et al., 2013). Readers are referred to several in-depth
review articles (Hassan, 2003; Kollat et al., 2011; Loaiciga et al.,
1992; Minsker, 2003).

To achieve the objective of model discrimination, observation net-
works aim to provide the most useful information with respect to model
discrimination. Several criteria have been developed for model
discrimination in optimal observation network designs based on the
maximum differences between model predictions (Knopman et al.,
1991; Knopman and Voss, 1988; Nordqvist and Voss, 1996; Usunoff
et al., 1992), the maximum Kullback-Leibler information (Kikuchi et al.,
2015; Nowak and Guthke, 2016; Yakirevich et al., 2013), the maximum
change in entropy (Box and Hill, 1967; Alfonso et al., 2010), and the
maximation of posterior model probability (Pham and Tsai, 2016,
2015). The basic concept underlying all these criteria is to sample the
state variable(s) at spatiotemporal locations (i.e., predicted data) where
the variance among the ensemble of proposed competing model’s pre-
dictions is maximized.

The worth of new data has been analyzed in various water-related
problems such as prediction uncertainty reduction (Dausman et al.,
2010; Feyen and Gorelick, 2005; Freer et al., 1996; Gates and Kisiel,
1974; Rojas et al., 2010; Sohn and Small, 2000; Tiedeman et al., 2004,
2003; Yokota and Thompson, 2004), model selection (Wohling et al.,
2015), decision making (Ben-Zvi et al., 1988; Davis and Dvoranchik,
1971; James et al., 1996; Reichard and Evans, 1989), and
cost-effectiveness (James and Gorelick, 1994; Neuman et al., 2012;
Norberg and Rosén, 2006; Wagner, 1999). Though optimal observation
network designs have been studied extensively in the past, there is still a
lack of clear understanding of the amount and the worth of new data
required to justify a certain level of model discrimination and identify
the most probable model. Besides, none of these studies could guarantee
identifying the same, most probable model. Moreover, all these studies
only considered the observation part of the experimental design.

In this study, we introduce a robust experimental design for model
discrimination based on the Shannon entropy (Shannon, 1948) and the
worst-case scenario experimental design (Sun and Yeh, 2007). First, we
introduce a “firm information gain” concept and derive a new model
discrimination criterion based on the Shannon entropy and the Bayes
factor. The “firm information” is defined to be the minimum information
guaranteed from an experimental design. The crux of experimental
design based on firm information gain is that the design objective can be
achieved with the least information. As a result, any other experimental
designs under the same experimental conditions will result in higher
information gain and therefore guarantee the same design outcome.
According to Sun and Yeh (2007), an experimental design is considered
"robust" if it accounts for both the excitation part (pumping activities)
and observation part (observation activities) to maximize the firm in-
formation gain. This is achieved through a max-min optimization
problem to improve model discrimination while using the fewest
possible pumping and observation wells. In the context of robust
experimental design, "robust" means that the optimized pumping well
network performs well across all possible observation well networks, as
it performs well even with the worst-case observation well network. We
hypothesize that the same most probable model can be identified from a
pool of competing models by maximizing the firm information gain for a
system (e.g., a set of conceptual groundwater models that differ in
boundary conditions, geological structures, etc.) and satisfying a Bayes
factor threshold. Any other experimental design solutions having
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information (negative Shannon entropy) higher than the firm informa-
tion will result in the same most probable model. Second, we introduce a
parallel computing framework that combines the parallel-sequential GA
(Carroll, 1996) and the nested quadrature rule (Genz and Keister, 1996)
to efficiently solve the time-consuming max—min optimization problem.
Finally, we test the proposed framework and conduct the robust
experimental design on a hypothetical numerical example where nine
competing groundwater models were generated and a robust experi-
mental design is needed to discriminate among the models and identify
the same most probable model. The robust experimental design in this
study is different from that in Box and Hill (1967) and Pham and Tsai
(2016). First, this study considers measurement errors and data corre-
lation in the experimental design. Second, a new model discrimination
criterion is introduced that maximizes firm information gain to obtain
the robust experimental design, instead of finding an upper bound of the
expected information gain (usually referred to the Box-Hill discrimina-
tion function).

2. Methodology
2.1. Shannon entropy and expected information gain

Shannon entropy (Shannon, 1948) provides a measure of the infor-
mation value of a system using probabilities of the occurrence of events
in the system. Consider that a set of m candidate models, M = {M;,M,,...,
M.}, represents the events of the system (e.g., candidate models are
groundwater models that differ in model conceptualizations such as
boundary conditions, geological structures, and parameter structures).
Their posterior model probabilities are Pr(Mi|A°bS) given existing
observation data A°®. The Shannon entropy of the system is
= " Pr(M;|A°™) InPr(M;]A™) 8]

i=1

S(M|A™) =

where lnPr(Mi|A°bS) is the information of the model M;. Negative en-
tropy (-S) represents the average amount of information (I) provided by
all candidate models:

I(M]A®) = —S(M|A™) 2

The least information corresponds to the maximum entropy when all
models have an equal posterior model probability. The maximum in-
formation from the system corresponds to the minimum entropy when
one model has a 100% posterior model probability and other models
have zero posterior model probability.

The main purpose of an experimental design (D) for model
discrimination is to maximize information gain through acquiring new
data such that the most probable model can be identified from a pool of
candidate models of the system. The information gain is defined as
follows:

I =I(M|A}™) — I(M]A®) (3)

where I is the information gain after an experimental design, A}"" € RV
is a vector of N new data, and I(M|A}™) represents the combined in-
formation obtained from both the new and existing data.

New data are unknown and uncertain before sampling. This study
proposes an expected information gain of the new data for the experi-
mental design:

Io = E[I(M|A}Y)] — I(M|A®>) )
where I is the expected information gain and E is the expectation

operator. The expected new information under a probability distribution
function of new data A}®" is
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where Pr(M;|A}™") are the posterior model probabilities given new data
A" and q(A}’") is the averaged probability density function of new
data Ap™ via Bayesian model averaging:

q(AFY) = _Pr(M;|A™)p (AT M) (6)
J=1

where p(A*"|M;) is the probability density function of predicted new
data A7®" using the model M;.

Inserting Egs. (2) and (5) into the Eq. (4), Appendix A shows the
expected information gain as follows:

to= > pe(ia) [ plag i) ORI g @
Py —o0 q(A5™)

The integral in the Eq. (7) is the Kullback-Leibler (KL) divergence
that measures the difference between the BMA weighted probability
distribution q(A}™) and the probability distribution p(A}™|M;). Maxi-
mizing I enhances the “diversity” of probability distributions of each
model’s prediction compared to the BMA weighted probability distri-
bution. The expected information gain is the averaged KL divergence
weighted by Pr(Mi|A°bs). Because the KL divergence is always non-
negative, the expected information gain is always non-negative.

To solve Eq. (7), we need to know the probability density function
p(AT*"|M;) of predicted new data A*". Considering that new data are
correlated and multivariate Gaussian, the probability density function
P(ADY M) is:

i

N ~ new Tl new
PABYIM) = () F|S [ He 58 5 (a57-a) ®)

where A; are the expected values of new data estimated by the model M;,
$; = = + Z, is the total covariance matrix of new data involving the use
of the model M;, which is the sum of the covariance matrix of the esti-
mated new data (representing parameter and model structure un-
certainties) and the covariance matrix of measurement errors in new
data. This study considers correlated data, which results in a full
covariance matrix.

Appendix B further expands the Eq. (7) with the multivariate
Gaussian distribution as follows:

B m N~ 1 N
o= Pr(M/[A™) {1n[(2n)*7\2[| -3 Espm [1nq(A,";W)}} ©
i=1

Eazevpy, [Ing(AR™)] in the Eq. (9) is the expectation of Inq(A™) under
randomness of A}™ given model M;, which is

g g (857)] = [ p(a5IM)ng (A3 anp” 10)

For one-dimensional integral (i.e., only one new observation is
collected), Gaussian quadrature rules and Monte Carlo methods are
powerful. However, when the new data are in high dimensions and
correlated, these approaches become impractical due to prohibitive
computing costs (rising exponentially with the number of dimensions)
and there is no analytical solution for the Eq. (10) as far as authors’
knowledge. It is noted that the method presented in this study is not
limited to the Gaussian distribution of the predicted new data. The
general form of the expected information gain is in Eq. (7). As soon as
one knows the probability density function p(A7™|M;) Eq. (7) can be
solved. Assuming the Gaussian distribution is for the convenience pur-
pose that the general form of I in Eq. (7) is reduced to a simplifier form
in Egs. (9) and (10).

Genz and Keister (1996) presented a nested quadrature rule to effi-
ciently calculate high-dimensional integrals for the multivariate normal
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distribution with zero means and an identity matrix. Unfortunately, the
integral in Eq. (10) was for multivariate Gaussian with a non-zero mean
and a full covariance matrix. Therefore, this study adopted the Cholesky
decomposition to transform Eamev )y [Ing(AR™)] into a multivariate
normal distribution with zero means and an identity matrix (i.e., the
covariance matrix is an identity matrix in which all the diagonal ele-
ments are ones and all off-diagonal elements are zeros), and used (Genz
and Keister, 1996) approach to calculate Eynewy, [Ing(Ap™)] numerically
as shown in Appendix C.

2.2. Max—min information gain criterion for model discrimination

Consider an experimental design (D) that includes a pumping design
and an observation design to collect new groundwater level data using
the least number of pumping wells and observation wells. The new head
observation locations serve to obtain firm information gain while the
new pumping test locations serve to maximize the firm information gain.
Data from new head observation wells stimulated by new pumping test
locations will serve to discriminate groundwater models such that the
same most probable groundwater model can be identified.

This study adopts the Bayes factor as a model discrimination func-
tion. To achieve the design objective, the max—min optimization
problem to maximize firm information gain is introduced for the robust
experimental design as follows:
maxmin I15(D) 11

Do Da

where D, are the pumping design and D, are the observation design.
Eq. (11) is subject to

(A" My)

min¢ BFy =——~—%,
{ p(AL"[M;)

i:1,2,...,mandi7ék}>y 12)

where minlg (D) is the firm information gain from experimental design,
BFy; is the Bayes factor, which is the likelihood ratio of the most probable
model My (having the highest posterior model probability) against other
models M;, and y is a Bayes factor threshold. p(A}*™" |M;) is the likelihood
that new data are predicted using the model M;. p(A}"|My) is the
highest likelihood among m models. Given pumping locations in an
experimental design D, minl;(D)can be obtained by minimizing I given
new observation data as dependent variables. The maximum of minlg (D)
in Eq. (11) can be solved by solving the maximization optimization
problem where the dependent variables are pumping locations.

Eq. (12) ensures that the same most probable model has sufficient
evidence to be discriminated from all other models. The classification of
Harold Jeffreys (Jeffreys, 1998) presents how strong the new data evi-
dence supports one model over other models. The higher the y value, the
stronger the data evidence that supports one model over the other
competing models. For example, when the Bayes factor is between 5 and
10, the data evidence is classified as substantial. When Bayes factor is
greater than 10, the data evidence is classified as strong (Jeffreys, 1998).

2.3. Total covariance matrix S; for new observation data

The total covariance matrix of new data includes the covariance
matrix of measurement errors in new data and the covariance matrix of
the estimated new data. Random measurement errors are usually
modeled by uncorrelated Gaussian noise with zero means. Therefore,
the covariance matrix of measurement errors in new data can be X, =
621, where 62 is a constant error variance and I is an identity matrix.

Monte Carlo simulation on model parameters is adopted to calculate
the covariance matrix of the expected values of new data estimated by
model M;:
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where Q is the number of realizations of model parameters ﬁgq) of the
model M;. These parameter realizations are sampled from the posterior
distribution upon history matching for each model. A; is the mean of the
new data simulated by model M;:

A= é >a(p) a4

g=1
The BMA method (Hoeting et al., 1999; Draper, 1995) is used to
calculate the covariance matrix Xof the estimated new data as follows:

m

r-y-¥%

BMA i=1

>+ (AG)-55") (AB) - &) |Pr(ma™)

(15)

where A(B;) is the predicted new data using the model M; and the esti-
mated model parameters ﬁi of the model M;. dew is the BMA mean of the
predicted new data. The total covariance matrix for AF" is S =%+,
= XZpmaA + X

2.4. Model calibration and posterior model probability

The covariance matrix adaptation-evolution strategy (CMA-ES)
(Hansen and Ostermeier, 2001; Hansen et al., 2003) is employed to es-
timate model parameters and to obtain a covariance matrix for the
estimated model parameters. Model parameters are estimated by mini-
mizing the root mean square error (RMSE) between calculated and
observed heads. The CMA-ES is a global-local stochastic derivative-free
algorithm, that was parallelized for time-consuming groundwater model
calibration and uncertainty analysis (Elshall et al., 2013).

Once the estimated parameters and their covariance matrix are ob-
tained by the CMA-ES, the marginal likelihood function is calculated as
follows for existing observation data AObS, which is similar to the Eq. (8):

p(A"bs\M,-) = (271')7N7||Z£ + E,,|7%exp{
_ %(A"hs A () (A - A;)} (16)

where Nj is the number of existing observation data; X is the covariance
matrix of measurement errors; A’; is the simulated observation data

using the model M; with the estimated model parameters ﬁi obtained by
the CMA-ES; and X’; is the covariance matrix of simulated observation
data, which is calculated by the Monte Carlo simulation based on the
estimated model parameters and their covariance matrix obtained by
the CMA-ES. It is important to acknowledge that the covariance matrix
generated by the CMA-ES is merely an estimate. It is crucial to confirm
the accuracy of the covariance matrix obtained through this method.
This can be achieved by running simulations using realizations of model
parameters and verifying that the resulting root mean square errors
(RMSESs) are comparable to those obtained using the estimated model
parameters. The posterior model probability for each groundwater
model is commonly calculated the same as the likelihood given the
assumption that all models have the same prior model probability. Other
than the CMA-ES, the Null-Space Monte Carlo method (Siade et al.,
2017) and the iterative ensemble smoother method (White, 2018) can
also quantify model output uncertainty.

3. Numerical example

This study uses a steady-state groundwater flow condition in a 5-
layer synthetic anisotropic confined aquifer to illustrate the robust
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experimental design based on the firm information gain. The size of the
aquifer is 5 km by 5 km and is discretized into 5 layers, 25 rows, and 25
columns. See Fig. 1. The cell size is 200 m by 200 m with variable
thickness. There are two pumping wells (PWs) screened at layer 1 and
layer 5 and one injection well (IW) screened at layer 3. Fig. 1 shows the
well locations and pump rates. The true constant-head boundary con-
dition of 50 m is assigned to the boundary cells of all layers at the south
boundary. No-flow boundary condition is assigned to the north, east and
west boundaries to allow better variations (higher sensitivities) in
simulated heads upon pumping. Fig. 2a shows the true aquifer structure.
Table 1 lists the true model parameters. The USGS MODFLOW-2005
(Harbaugh, 2005) is adopted to simulate true steady-state ground-
water levels at the 5 existing observation wells in the model domain (see
Fig. 1). Gaussian noises of a zero mean and a standard deviation of 0.1 m
are added to the groundwater level data to simulate measurement
errors.

We pretend that we do not know the true aquifer structure (i.e., the
geometry of the aquifer system and lithology), the true constant-head
boundary value, and the true horizontal hydraulic conductivity.
Three-dimensional geometry views of three aquifer structures are given
in Fig. 2, denoted as Gj, Go, and Gs, respectively. These aquifer struc-
tures were extracted from the real-world case study of the Baton Rouge
aquifer system using three different geostatistical methods (the gener-
alized parameterization, the indicator zonation methods, and the indi-
cator kriging, respectively) (Pham and Tsai, 2016, 2015). Gg is a highly
connected aquifer system following up with G; and Go. The number of
active model cells is 2018, 1566, and 2021 for GP, IZ, and IK, respec-
tively. Three head values 49, 50, and 51 m for the south boundary are
considered and denoted as By, By, and Bs, respectively. The number of
boundary cells at the south boundary for G, Go, and G3 are 30, 25, and
29, respectively. These boundary cells are only in layers from 3 to 5 for
all three aquifer structures. The connections between the south bound-
ary cells and the aquifer are weaker in the IZ structure in comparison to
the GP and IK structures. Combinations of three aquifer structures and
three head boundary values result in nine conceptual groundwater
models.

4. Solving the max-min optimization problem to obtain robust
experimental design

This study solved Egs. (11) and (12) to identify the robust experi-
mental design for model discrimination to identify the most probable
groundwater model. The Bayes factor threshold was set to be 10 such
that the most probable model will be at least strongly discriminated
from the other eight competing models. Decision variables were the
number of new pumping wells and the number of new observation wells.
A pumping rate of 200 m>/day was assigned for all new pumping wells.
Experimental designs were conducted by gradually increasing the
number of pumping wells and the number of observation wells of the
system. The robust experimental design was the one that optimizes Eq.
(11) using the least number of new pumping wells and new observation
wells until Eq. (12) is satisfied.

To maximize the firm information gain in Eq. (11) (the max—min
optimization problem), this study utilized a parallel-sequential genetic
algorithm (GA) optimization scheme. Given a number of pumping wells
and observation wells, a parallel GA was employed to optimize pumping
locations (the outer loop of the max—min optimization problem); and
under the parallel GA, a sequential GA (the inner loop) was employed to
optimize observation locations. The GA code of Carroll (1996) was
employed to solve the max—min optimization problem and was paral-
lelized to be run in SuperMIC, a supercomputer at Louisiana State Uni-
versity using an embarrassingly parallel technique. A population size of
80 (i.e., used 80 cores) was assigned to the parallel GA and a population
size of five was assigned to the sequential GA (micro-GA). The number of
generations was 50 for the parallel GA and 500 for the sequential GA.
Other default settings were set the same in the GA code.
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Fig. 1. Plan view of the model domain and the existing pumping wells (PW), the injection well (IW), and the observation wells (Obs).

5. Results

5.1. Model calibration, posterior model probability, and entropy of the
current system

Table 2 shows model calibration results, the posterior model prob-
ability, and Bayes factor for each groundwater model. The parallel CMA-
ES estimated horizontal hydraulic conductivity for all layers using the
five “noisy” head observation data. The top five models (G;B1, G1Ba,
G1B3, G3Bg, and G3By) showed comparably small RMSEs. The three
conceptual models with G, aquifer structure resulted in a much larger
RMSE. It indicates that the aquifer structure significantly affected the
model calibration results. The models with the G; and Gs aquifer
structures better represented the aquifer than the Gy aquifer structure.
The top five models had posterior model probabilities greater than 17%.
G3B, model had the highest posterior model probability but did not have
the lowest RMSE because of the impact of the covariance matrix X’; in
Eq. (16). Insufficient observation data used in the model calibration
prevented the true model (G1B2) from having the highest posterior
model probability and outperforming the other models. Nevertheless,
the Bayes factor suggested that the current data did not discriminate
G3By model from the other top-four models.

The entropy of the system was 1.748 nat calculated using Eq. (1) and
the posterior model probabilities in Table 2. The nat (the natural unit of
information) is the natural unit for information entropy. Given a system
of nine models, the entropy of the system is between zero (highest in-
formation) and 2.197 nat (lowest information). Therefore, 1.748 nat
(79.6% of the maximal entropy) of the system was a high value. This
indicates that more data are needed to reduce the entropy (increase
information) of the system and to identify the most probable model.

5.2. Information gain and data correlation evaluation using the current
system

In this section, we intend to study the changes in expected infor-
mation gain I and firm information gain minlg(D) by systematically
adding new observation data before conducting an exhaustive robust
experimental design. No new pumping and injection wells were added.
We only draw new head data out of active cells that are in common in
three aquifer structures (i.e., 1024 possible locations). Additionally, we
investigate the impacts of data correlation on minlg (D).

Fig. 3 shows the spatial distributions of expected information gain I
from drawing one new head data in layers 2 to 5. I was found varied
between 0.723 nat and 1.472 nat. High expected information gain
occurred in the areas near the constant-head boundary and near the
injection well, where heads predicted by the candidate models were
quite different. Drawing one additional head data for either layer 3, 4, or
5 gained higher I than that from layer 2. Data collected from different
locations provided different Ig. Robust experimental designs are needed
to identify optimal locations.

Fig. 4 compares firm information gain minlg(D) calculated by using
an experimental design D (i.e., using the existing pumping and injection
wells, and adding one to five new head data) for both cases of uncor-
related and correlated heads. The result indicates that minlg(D)
increased as the size of new head data increased. Experimental designs
considering uncorrelated new data overestimated minlg(D). The degree
of overestimation increased dramatically with the size of uncorrelated
data. Data correlation significantly impacted on minlg(D); therefore,
this study will only focus on experimental designs utilizing correlated
data in the later sections.

Experimental designs using one to five new head data and the
existing pumping and injection wells were unable to reach the highest
possible information gain I of 1.748 nat. The Bayes factor threshold
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Fig. 2. Aquifer structures generated using: (a) the generalized parameteriza-
tion (Gy), (b) the indicator zonation (Gy), and (c) the indicator kriging (Gs).

Table 1
True model parameter values of the confined aquifer.

Layer Layer 1, 2 Layer 3 Layer 4, 5

1.00x10™* 25
1.00x10° 2.5

Horizontal hydraulic conductivity (m/d) 25
Vertical hydraulic conductivity (m/d) 2.5

Table 2
Root mean square error (RMSE), estimated horizontal hydraulic conductivity,
posterior model probability (Pr), and Bayes factor.

Model RMSE  Horizontal hydraulic conductivity =~ Pr Bayes
(m) (m/d) (%) factor
Layer Layer 3 Layer
1,2 4,5
G1B, 0.081  30.05 4.21x10%  45.53 17.72 0.82
G1B, 0.073  22.77 2.54x10°  25.47 18.96 0.48
G1B3 0.095  21.32 3.14x10°  16.77 18.75 2.74
GB; 0.900 4768 2.88x107"  64.52 1.71x10""  1.62x10'?
GyB, 1.110 1252 2.50x1070  32.95 4.26x1071°  2.44x10'3
GBs 1.331  755.8 2.17x1070  22.25 6.21x10°  3.01x10'
G3B, 0.086  24.37 3.25x10%  38.31 17.14 1.07
G3B, 0.081  20.28 2.65x10°  21.04 20.49 1.00
G3Bs3 0.154  19.09 5.58x10°  13.93 6.94 66.10

(Eq. (12)) was also not satisfied (the Bayes factor values will be pre-
sented in Section 5.5). The experimental designs using one to five new
head data showed that new pumping wells are needed.
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5.3. Information gain using one new well

Detailed maximum firm information gain was illustrated by the case
of searching for one optimal pumping location and one optimal obser-
vation location. Although there are 1024 possible locations (model cells)
available for installing new pumping and observation wells, only 256
locations (every other model cell) were considered for potential pump-
ing locations to ensure the experimental design remains tractable. The
potential pumping locations were indexed from 1 to 256. The potential
head observation locations are indexed from 1 to 1024.

Fig. 5(a) shows the firm information gain minlg(D)given by each of
the 256 potential pumping well locations. For each new pumping
location, 1024 alternatives of new observation wells were investigated
and the observation location that resulted in minlg(D)was recorded. The
result showed that minlg(D)were varied from 0.532 nat to 0.684 nat.
Not much changes in minlg(D)were detected if placing a new pumping
well in layer 1, layer 2, layer 4, or layer 5. However, large changes in
minlg(D) were found if placing a new pumping well in layer 3. The
maximum change of minlg (D) was found to be 0.684 nat, occurring at
pumping location index 141 in layer 3, which is denoted as circle A in
Fig. 5(a) and (c). The horizontal coordinates of the optimal pumping
location are (x = 4300 m, y = 3100 m).

Given the optimal pumping location, Fig. 5(b) shows the expected
information gain I for each of the 1024 potential observation locations.
The result showed thatlswere varied from 0.684 nat to 1.110 nat.
Drawing a new head data from layer 3 (low conductivity) generally
provided higher I than other layers. Some observation locations in
layers 4 and 5 also provided higher I¢. The firm information gain of
0.684 nat was obtained at the observation location index 548 in layer 3
and denoted at circle B in Fig. 5(b) and (d). The horizontal coordinates of
the optimal observation location are also (x = 500 m, y = 2100 m). The
result verified that all experimental designs using one new head obser-
vation and one new pumping well (at pumping location index 141 in
layer 3) resulted in higher I; than 0.684 nat. Similar to Section 5.2,
experimental designs using one new pumping well and one new head
data were unable to reach the highest possible information gain I of
1.748 nat and failed to meet the Bayes factor threshold. Two or more
pumping wells are needed to achieve the design objective.

5.4. Data worth of adding new pumping wells versus new observation
wells

Adding more pumping wells or adding more observation wells
showed different maximize firm information gain maxminlg(D)as illus-
trated in Fig. 6. Red circles show maxminlg(D) by increasing the number
of new pumping wells up to five while keeping the number of new
observation wells to be one. Yellow squares show maxminlg(D)by
increasing the number of new observation wells up to five while keeping
the number of new pumping wells to be one. Given the same number of
new wells (e.g., one new pumping well or one new observation well),
adding new observation wells always resulted in higher maxminlg(D)
than adding new pumping wells. Fig. 6 suggested that experimental
designs should emphasize new head data collection before exploring
new pumping wells. We acknowledge that this observation may vary
depending on the specific case. In this numerical example, where the
model domain is relatively small, the addition of a single pumping well
can potentially influence the entire model domain. Therefore, incorpo-
rating additional observation wells would be a more effective strategy
than adding more pumping wells.

5.5. Robust experimental designs

Fig. 7 shows whether the first rank model can or cannot be
discriminated from others, considering only adding up to five new head
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data. BFy2 is the Bayes factor of the first rank model to the second rank
model, BFy3 is the Bayes factor of the first rank model to the third rank
model, and so forth. The model rank is determined by the likelihood
after new data are acquired. The rank may change for different
scenarios.

Fig. 7(a) presents the Bayes factors for the status quo (no new
pumping well and no new head data). The result showed that adding a
new head data discriminated the first rank model from the last three
models. By adding two new head data, the first rank model was
discriminated from the last two models. Adding up to five new head data
only discriminated the first rank model from the last five models.
Experimental designs using up to 5 new observations and the current
system were unable to discriminate the most probable model from the
other eight competing models.

If one new pumping well was added, Fig. 7(b) showed that adding a
new head data discriminated the first rank model from six other models.
Adding two new head data discriminated the first rank model from five
other models. The results also indicate that increasing new head data
increased the maximum firm information gain (see Fig. 6b), but might
not increase the number of models to be discriminated against. Similar
to Fig. 7(a), experimental designs using one new pumping well and up to
five new observations were unable to discriminate the most probable
model from the other eight competing models.

If two new pumping wells were added, the same most probable
model can be identified by using two to five new head data as shown in
Fig. 7(c), where the first rank model dominated all other models. The
most probable model was the G1B, model, which was the true model.

The robust experimental design found that two new pumping wells and
two new head observation wells sufficed with firm information gain of
1.707 nat and reduce the entropy of the system to 0.041 nat. The min-
imum Bayes factor of 152.98 exceeded the selected threshold of 10.
Given the optimal locations of the two pumping wells, we verified all
possible locations of two new head observation wells produced entropy
of the system less than 0.041 nat. All identified most probable models,
which met the Bayes factor threshold, were the G1By model, the true
model. This verification indicates that the same most probable model
can be consistently identified regardless of sample locations.

6. Discussion

The presence of head data correlation, attributable to several factors
like spatiotemporal location, model domain size, boundary conditions,
and model parameterizations, showed significant impacts on firm in-
formation gain minlg(D) and should be considered in experimental de-
signs. This is because the most probable model tends to receive
overwhelming posterior model probability (close to 100%) when the
data size is large, and the data are assumed uncorrelated. This finding is
consistent with Lu et al. (2013) that suggests accounting for the corre-
lation of model data errors in the covariance matrix to avoid deriving
unrealistic posterior model probabilities. For this study, it poses a
serious concern that exaggerated minlg(D) by assuming data uncorre-
lated may eventually fail the experimental designs due to low infor-
mation gain in actual data collection.

To gain maximum firm information, this study found that the best
locations to draw new pumping wells are in low hydraulic conductivity
zones (i.e., layer 3 in this case study, see Fig. 5a and 5c¢) and the best
locations to draw new observation wells are the areas that are far from
the pumping wells (See Fig. 5d). This is because pumping in these areas
tends to generate high variation in groundwater levels (in these low
conductivity zones) and thereafter, provides higher expected informa-
tion gain (in comparison with pumping in high conductivity zones).
Therefore, this numerical example suggests drawing new pumping wells
in the low conductivity zone and observe at a “far-enough distance”
from the pumping wells to obtain firm information for model discrimi-
nation and identification. It is noted that different aquifer settings (e.g.,
boundary conditions) will result in different design outcomes.

Groundwater systems are highly heterogeneous and nonlinear.
Different locations of pumping wells and observation wells yield
different information given a design objective. Determining the best
pumping and observation locations is an important step before any field
data collection as pumping tests are costly and time-consuming.
Considering only the observation part (e.g., adding new observation
wells) was not a good strategy for this case study potentially because
many new observation locations might yield similar information (i.e.,
did not help to increase firm information gain). Simultaneously ac-
counting for both the observation part and the excitation part (e.g.,
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adding new pumping wells) was found a more efficient way to obtain
new additional information. The robust experimental design was suc-
ceeded in determining the optimal locations to draw new pumping wells
and measure groundwater levels to achieve the design objective using
the least number of wells. After the robust experimental design was
succeeded, all other designs (using the same number of wells such as 2
pumping wells and two observation wells) identified the same most
probable groundwater model which differs from the author’s previous
model discrimination criterion based on posterior model probability
(Pham and Tsai, 2016,2015) where the most probable model was varied
by design alternatives. It is important to recognize that drilling a new
pumping well is generally more expensive than drilling a new obser-
vation well, and groundwater managers are not typically interested in
drilling a new pumping well solely for model discrimination purposes.
Consequently, in a real-world application, it is more feasible to apply the
method to the existing pumping network and concentrate on drilling
new observation wells only.

The nested quadrature rule (Genz and Keister, 1996) was found an
efficient approach to calculate high-dimensional integrals such as
Ejueny, [Ing(AR™)] for deriving the expected information gain Ig in this
study. Using 5 nodes and searching for one new observation at a time
(the dimension of AL is one), calculating Earev )y, [Ing(AL™)] required

nine samples of A;™. Calculating Eanev )y, [Ing(AR™)] required sample
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Fig. 7. Solutions (circles) of experimental designs that have Bayes factor (BF)
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sizes of 37, 93, 201, and 401 when the dimension A}*™ increased from 2
to 5. The computation time dramatically increased with A} dimension.
Yet, the number of samples required was small in comparison with the
traditional Monte Carlo simulation approaches that usually require
thousands of samples.

Solving the max-min programming problem to maximize the firm
information gain was extremely time-consuming even with the hypo-
thetical case study where a single model run was less than one minute.
For example, using the parallel GA to search for two new pumping wells,
the computation time for solving the max—min programming problem
was 6.68, 7.86, 8.87, 11.5, and 16.4 h for A" size tobe 1, 2, 3, 4, and 5
using 80 cores. Computing time grew substantially by just increasing a
few new observation data. The most time-consuming part came from
Eanevy, Ing(AR™)] calculations. Combining the parallel-sequential GA
and the nested quadrature rule efficiently solved the time-consuming
max—min optimization problem.

The presented methodology assumed that the probability distribu-
tion function of observable states (i.e., groundwater level) given a
realization of model events follows a multivariate Gaussian distribution.
This assumption may not hold for the nonlinear groundwater problem
(e.g., the reactive transport model Shi et al., 2014)) and may have an
impact on the results of the robust experimental design. However,
assuming the multivariate Gaussian allows transferring the complicated,
multiple integrals of Eq. (7) into an easier form of Egs. (9) and ((10).
These equations can accurately and efficiently be solved by utilizing the
Cholesky decomposition and the nested quadrature rule. This Gaussian
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assumption can be resolved by using Monte Carlo approaches such as the
DREAM package (Vrugt, 2016) however, this approach requires high
computational cost (e.g., requires thousands of sample sizes) and is not
suitable for solving the max—min optimization program, even with the
hypothetical numerical example in this study.

The robust experimental design may not guarantee a global optimal
solution when the search dimension increases (e.g., greater than five)
because solving the nonlinear and non-convex max—min problem is
challenging and the computation time increases exponentially with the
increase in search dimension. To increase the global search capability in
finding the global optimal solution, one can increase the population size
in the GA. However, this will significantly increase the computation
time. Therefore, we limited our search dimensions to less than five (i.e.,
less than five new wells) to avoid potential numerical issues in the nu-
merical calculation of Ejpewy[Ing(Ap™)] and make our optimization
problem trackable. The computational burden of the robust experi-
mental design may be reduced by using surrogate modeling approaches
(also known as reduced-order model) where a complex model is
replaced with an approximate, but computationally-efficient model
(Ushijima and Yeh, 2013; Asher et al., 2015; Jefferson et al., 2015; Yin
and Tsai, 2020).

For the numerical example in this study, the true model was added to
a pool of 9 competing models for verification purposes. When the true
model was removed from the robust experimental design presented in
Section 5.5, the minimum Bayes factor decreased to 44.73, which was
almost 3.42 times less than when the true model was included. Conse-
quently, the most probable model became G1B3. It is worth noting that a
true model is typically unknown, and including it does not reflect a
realistic scenario. However, whether or not the true model is included
has no impact on the methodology, but it could affect the optimal lo-
cations for pumping and observation wells and the number of wells used
in the robust experimental design. If a model that is close to the true
model is included among the competing models, there is a higher like-
lihood of obtaining a robust experimental design with lower costs (i.e.,
using fewer pumping and observation wells).

While achieving the minimum Bayes factor of 10 was possible in the
numerical example, expensive experimental designs may be resulted for
real-world applications. It is analyst’s discretion in setting the Bayes
factor to achieve a certain level of model discrimination (Jeffreys,
1998).

7. Conclusions

Incorporating the concept of firm information gain (nominally, the
minimum expected information gain) in the robust experimental design
reveals the minimum information required while acquiring new data to
identify the most probable model. This is a robust approach and places
the experimental design in the context of information theory. The Bayes
factor threshold of 10 in the robust experimental design ensures that
new data provides strong evidence to discriminate the most probable
model from other candidate models.

Considering a full covariance matrix of data substantially affects the
calculation of firm information gain. The full covariance matrix in this
study is comprehensive, which accounts for measurement errors and
errors from model conceptualization and model parameters. The
Bayesian model averaging method and the Monte Carlo approach are
suitable to quantify covariances due to conceptual uncertainty and
parametric uncertainty, respectively. Neglecting covariances between
data tends to exaggerate true firm information gain and results in un-
realistic Bayes factor values.

Maximizing the firm information gain in the robust experimental
design is a unique choice and results in more direct solutions than those
from maximizing the value of the Box-Hill discrimination function (an
upper bound of the expected information gain). However, calculating
the firm information gain is not straightforward. This study found that
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the Genz-Keister (Genz and Keister, 1996) method can efficiently
calculate the multi-dimensional integral in the expected information
gain when data size is small. This study also found that the
parallel-sequential genetic algorithm scheme is an efficient scheme to
maximize the firm information gain, which is posed as a max—min
programming problem.

Through the numerical groundwater example, this study found that
(1) maximum firm information gain grows faster with the size of new
head data than with the number of new pumping wells. In other words,
this study suggests that experimental designs should emphasize new
head data collection before exploring new pumping wells for this spe-
cific numerical example; and (2) the same most probable groundwater
model could be identified as long as solutions of experimental designs
result in higher than firm information gain and satisfy a Bayes factor
threshold.

Future research should focus on evaluating the impacts of Gaussian
assumption on the robust experimental design and comparing the
informatics metric proposed in this study with available metrics pre-
sented in the introduction section.
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The expected information gain I in the Eq. (4) can be further expanded as:
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Appendix B: Expected information gain for correlated Multivariate-Gaussian data

The expected information gain is
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where tr is the trace of a square matrix and I is the identity matrix.
The second integral in (B1) is
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Appendix C: Calculate Ejrewy;, [Ing(AF™)]

The correlated new data A" are transformed into uncorrelated random variables, x by the Cholesky decomposition since the covariance matrices
s, are positive definite and symmetric. Let S = L-LT and AT =L;x + A;, where L; is a lower triangular matrix with real and positive diagonal entries.
The random variables x have zero means and an identity matrix for the covariance matrix. A" obtained through x include measurement errors. The
probability density function p(AJ™|M;) in terms of x is
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The transformation from dA}™ to dx needs the Jacobian, which is the determinant of Li:dA™ = abs(|L;|)dx, where abs(|L;|) is the absolute value of
the determinant of L;. Since positive diagonal entries in L;, it becomes A" = |L;|dx. Therefore,

00

Exgem (g (85)] = [
1

:/ (27) F|Li| e ¥ Ing(x)|L;|dx

o0

p(AG"[M;)Ing(A5™)dAT™

0

Wiz
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(C3)

The nested quadrature rule for N-dimensional numerical integration (Genz and Keister, 1996) is:

R

EA{')CW\M,' [lnq(AnDew)] = Z In [q(xr.h ---7xr,N)} Wry
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(e

where N is the number of dimensions of Af™, r =1, ..., R where R is the number of nodes after removing duplicates (Heiss and Winschel, 2008), and x;,
N is a set of nodes and w; is a set of weights. Sampling X1, ..., X, from a sparse grid we get AJ™.
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