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Abstract 62 
 63 
We present an educational unit to teach computational modeling, a vital part of chemical engineering 64 
curricula, through the lens of synthetic biology. Lectures, code, and homework questions provide 65 
conceptual and practical introductions to each computational method involved in the model development 66 
process, along with perspectives on how methods can be iterated upon to arrive at a final model. 67 
Ultimately, this content can be applied broadly to address questions in synthetic biology and classical 68 
chemical engineering. 69 
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INTRODUCTION 76 
 77 

Synthetic biology is an emerging technical discipline that applies engineering concepts to design 78 
living systems to perform novel functions. One strategy for achieving this goal is using standard 79 
biological parts, such as DNA sequences and proteins, which are first characterized and then composed 80 
to create new functions such as genetically-encoded programs.[1] When implemented in a cell or cell-free 81 
system, such genetic programs can, as an example, direct the host to sense environmental or internal 82 
cellular cues, process such inputs, and then respond via regulation of the expression of one or more target 83 
genes. While synthetic biology employs concepts derived from electrical engineering, in which standard 84 
electrical parts are composed to build circuits[2], the origins, open challenges, and potential applications 85 
of synthetic biology are closely aligned with chemical engineering[3]. Specifically, there is a need to 86 
develop systematic, scalable processes for the development, standardization, modularization, and 87 
production of cell-based devices with applications ranging from bio-manufacturing to cell-based 88 
therapies.[3] Synthetic biology has matured towards a true engineering discipline by applying concepts 89 
and practices established in mature technical fields[4], including the incorporation of mathematical 90 



modeling to facilitate understanding and enable prediction[1, 5]. Here we focus on models which employ 91 
ordinary differential equations (ODEs) to describe system dynamics, incorporating fundamental concepts 92 
taught in core chemical engineering subjects including mass balances and reaction kinetics.  93 
 94 

Mathematical modeling is widely used in chemical engineering to understand and predict the 95 
performance of chemical reactions and other complex processes, but new, holistic approaches are needed 96 
to train students in the process of model development.[6] This is a challenging goal, deriving in part from 97 
the diversity of expertise and skills needed to model effectively, with topics including intuition-guided 98 
iteration between model formulation and parameter estimation, investigation of multi-dimensional 99 
design spaces with unconstrained parameters, and effectively comparing experiments to simulations.[5] 100 
In addition, the model development process is often opaque, as many publications incorporating 101 
modeling focus on the final result while omitting description of the process used to arrive at the final 102 
model. As a result, it is often not clear as to how choices made in the development process affect the final 103 
model and how each computational task—such as model formulation, parameter estimation, parameter 104 
identifiability analysis, and model selection—are inter-connected. Extensive prior work provides 105 
strategies for teaching important modeling tasks, such as developing differential equation-based models 106 
to describe systems of interest[7-9], solving differential equations analytically and numerically[9, 10], 107 
utilizing various coding languages to solve differential equations[9] [7, 11, 12], parameter estimation with 108 
respect to experimental data[8], and sensitivity analysis[8]. Most prior work has been designed for use with 109 
MATLAB, a commercially available programing and numerical analysis platform. While each of these 110 
individual tasks is vital to the model development process, there exists a need for educational materials 111 
focused on providing a holistic, conceptual framework of model development and analysis using an 112 
accessible, open-source coding language. Such a framework could provide a theoretical roadmap for the 113 
entire model development process by teaching both the theory behind each computational method[9] in 114 
the process and how methods can be iterated upon to arrive at a final model. 115 
 116 

To address challenges in executing and communicating the model development process and to 117 
lower the barrier to entry for new modelers, we recently published a tutorial describing a systematic 118 
model development workflow for rigorous characterization of genetic programs, called GAMES (a 119 
workflow for the Generation and Analysis of Models for Exploring Synthetic systems).[5] GAMES 120 
provides a conceptual framework for understanding, applying, and linking each computational method 121 
involved in the model development process using example code written in an open-source coding 122 
language, Python, and is therefore well-suited to be expanded to develop an educational unit designed to 123 
teach the entire model development process. Further, GAMES represents a direct application of the 124 
process-oriented thinking that is a key component of the chemical engineering curriculum, thus 125 
complimenting existing undergraduate curriculum in chemical engineering and addressing the need for 126 
teaching synthetic biology to “career chemical engineers” by incorporating synthetic biology concepts 127 
into existing courses.[13] Since GAMES applies concepts taught in core chemical engineering reaction 128 
kinetics courses, the concepts and approaches employed could be used to develop and solve models 129 
describing classical chemical engineering processes as well, which is a vital component of chemical 130 
engineering education.[10] Thus, GAMES can help students to understand and deploy systematic and 131 
reproducible model development for any ODE-based model. 132 
 133 

Our core thesis is that teaching a structured, systematic approach to the process of ODE model 134 
development in synthetic biology will enable students to understand key concepts and apply these 135 



concepts to new modeling problems. To this end, we developed an educational unit, consisting of a two-136 
day lecture series and a homework set, focused on an audience of advanced undergraduate and graduate 137 
students. Following implementation of the unit in a computational biology course at Northwestern 138 
University, we identified key areas for improvement for future iterations of the course. Overall, the goals 139 
for this unit are to enable students to: (i) understand key steps and considerations in the model 140 
development process at a conceptual level, rather than relying exclusively on automated model analysis 141 
packages; (ii) practice implementing key methods and interpreting the results; and (iii) gain exposure to 142 
diverse applications of chemical engineering thinking. These outcomes align with those which are known 143 
to positively impact student experiences.[14-16] By mapping core chemical engineering topics to new 144 
application spaces, this tool may be especially useful when biology-focused chemical engineering 145 
curriculum options are limited. This training also seeks to prepare students for future research 146 
opportunities focused on mathematical modeling in synthetic biology. Here, we introduce instructors to 147 
the GAMES workflow and describe strategies for implementing associated pedagogical tools in a core 148 
or elective chemical engineering course. 149 
 150 
 151 
METHODS 152 
 153 
GAMES Conceptual Workflow 154 
 155 

The GAMES workflow describes the model development process as a set of five interconnected 156 
tasks, or modules (Figure 1a). After defining the system of interest, the modeler first initializes the model 157 
development process in Module 0 by identifying a modeling objective, collecting or otherwise obtaining 158 
training data, and formulating a base case model, which represents a series of biological, mechanistic 159 
hypothesis proposed to describe how the system functions. Before estimating the values of the unknown 160 
parameters (which are often kinetic rate constants), the modeler must first evaluate their parameter 161 
estimation method in Module 1 to ensure that it is appropriate for their parameter estimation problem 162 
(defined by the model equations, free parameters, and training data). After ensuring that the parameter 163 
estimation method (PEM) is appropriate, the modeler can then use the PEM to estimate parameters using 164 
training data in Module 2. Next, in Module 3, the modeler determines whether their parameters are well-165 
constrained, or identifiable. If any parameters are unidentifiable, they must be refined via either model 166 
reduction or experimental design. Finally, in Module 4, the modeler compares any competing models 167 
and selects the best option. Different iterations of the modules in the workflow can be used to accomplish 168 
a variety of key modeling goals, such as parameter estimation, model refinement, experimental design, 169 
model reduction, model selection, and model validation (Figure 1b).[5] 170 
 171 
 172 
GAMES Software Package 173 

To support the use of the GAMES, we developed a freely available Python-based software 174 
package and deposited it on GitHub. This software manifests the concepts in each module through 175 
practical implementations of each method. The software package is modular, such that the user must 176 
simply modify only two files to run the workflow for any new system of interest: (1) the .py file, which 177 
includes a problem-specific model class, containing information such as the ODEs, normalization 178 
strategy, and plotting functions; and (2) the .json configuration file, which includes information related 179 
to hyperparameters necessary for each method and defines free parameter values and bounds. The 180 



software package is available on GitHub at https://github.com/leonardlab/GAMES. The specific version 181 
of the GAMES software package necessary for the homework set presented here can be found at 182 
https://github.com/leonardlab/GAMES_education.  183 
 184 

Installation requires the use of various Python tools, including pyenv[17] and Poetry[18], to ensure 185 
that the simulation environment and package dependencies are properly implemented, both of which are 186 
vital for promoting code reproducibility, which is a major problem in computational modeling of 187 
biological systems.[19-21] As installation of software is a vital step in the use of any software package 188 
obtained from GitHub, the installation of GAMES provides a useful opportunity for students to 189 
understand Python environments and to practice execution of installation instructions. We highly 190 
recommend that the instructor and/or teaching assistants for the course familiarize themselves with the 191 
installation protocol before distributing the assignment and that an in-class or office hours session be 192 
dedicated towards troubleshooting any installation roadblocks. 193 
 194 

 195 
 196 
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Figure 1: Overview of the GAMES workflow. (a) GAMES describes the model development process as a 197 
set of 5 interconnected tasks, or modules. The overall modeling workflow is iterative, as represented by 198 
the dotted lines. (b) The modules described in GAMES can be iterated upon in different orders to 199 
accomplish a variety of modeling goals, each of which is important in the development of mathematical 200 
models. Reprinted with permission from Dray KE, Muldoon JJ, Mangan NM, Bagheri N, and Leonard 201 
JN (2022) GAMES: A Dynamic Model Development Workflow for Rigorous Characterization of Synthetic 202 
Genetic Systems. ACS Synth Biol. 11(2):1009-1029. DOI: 10.1021/acssynbio.1c00528. Copyright 2022 203 
American Chemical Society. 204 
 205 
 206 
EDUCATIONAL METHODOLOGY AND MATERIALS 207 
 208 
Overview 209 
 210 

The educational unit is structured to address overall learning objectives through an interconnected 211 
two-day lecture series and homework set. The overarching goal of the educational unit is to introduce 212 
model development concepts and to increase familiarity with modeling synthetic biological systems 213 
using both conceptual and experiential pedagogical materials. A key choice made in defining learning 214 
objectives was to focus on practicing interpretation and analysis of results in each step of the workflow, 215 
rather than on writing code or implementing computational methods. The unit was implemented in the 216 
spring 2022 iteration of the course “Computational Biology: Design and Analysis of Living Systems” at 217 
Northwestern University. Students in this course comprised 13 undergraduate and PhD students in both 218 
the Chemical Engineering and Integrated Biological Sciences departments. Incoming students were 219 
expected to have basic proficiency in Python (or some related programming language), along with a 220 
general knowledge of mass balances and reaction kinetics (which were introduced earlier in this course), 221 
such that students could understand how the ODEs in the GAMES tutorial were formulated from first 222 
principles. The amount of coding expertise required to complete the homework set is, by design, minimal. 223 
Instead, the assignment focuses on prompting thoughtful interpretation of GAMES-generated results. 224 
Similarly, the course instructor and/or teaching assistant should have sufficient proficiency in Python to 225 
facilitate resolution of difficulties with executing and modifying code, but de novo writing in Python is 226 
not required. 227 
 228 
Lecture Series 229 
 230 

The lectures provide a conceptual introduction to each module of the GAMES workflow[5], using 231 
the same proof-of-principle example and topical sequence as the tutorial, to demonstrate each milestone 232 
in the process. The lectures were presented as two consecutive 50 minute class meetings. The lecture 233 
slides are freely available for download at Zenodo[22]. Both lectures were held in-person with a Zoom 234 
option and were recorded. Learning objectives were provided at the beginning of each day (Table 1). 235 
The first lecture focused on introducing each module of GAMES in a linear, idealized manner such that 236 
iterations between modules was unnecessary. As model development is rarely linear in practice, the 237 
second lecture leveraged the students’ basic understanding of each module to elaborate the workflow to 238 
a more realistic, nonlinear form that incorporates the practically unavoidable iteration between modules. 239 
In the second lecture, additional practical information not included in the tutorial was presented. This 240 
information included a discussion of cross-validation methods for model validation along with a series 241 



of lessons learned from applying GAMES to complex biological systems beyond the example presented 242 
in the tutorial.  243 

 244 
TABLE 1. 

Learning objectives for the GAMES lecture series 
Day 1 Day 2 
Understand general challenges for developing models 
in synthetic biology 

Analyze parameter profile likelihood results (PPL) and 
understand how results can motivate refinement of parameter 
identifiability 

List the key steps in model development according to 
the GAMES workflow 

Compare scenarios using model reduction or experimental 
design to refine parameter identifiability 

Understand the importance of defining a modeling 
objective at the outset of a modeling quest 

Define metrics for comparing competing models 

Understand the importance of evaluating a parameter 
estimation method before interpreting parameter 
estimation results 

Explain various nonlinear iterations between modules that 
may be necessary in practice 

Explain the base case parameter estimation method 
used in the GAMES workflow 

Understand challenges with applying the model development 
workflow to more complex synthetic biological systems 

Understand the concept of parameter identifiability 
and why it is important for model development and 
analysis 

 

 245 
 246 
Homework Set 247 
 248 

The homework set guides students through hands-on participation in the model development 249 
process by introducing a new example designed to be explored using the GAMES code. Students were 250 
given one week to complete the homework set, with extensions available if necessary. Learning 251 
objectives were provided alongside each homework problem. Homework solutions are omitted from this 252 
manuscript, but solutions are available to educators upon request via e-mail to the corresponding author. 253 
Two, 1-hour office hour blocks with the course TA were offered to help students with this set. 254 
Asynchronous help was available via the course Slack workspace. This version of the homework set has 255 
been updated to use an improved, refactored version of the GAMES code and is therefore slightly 256 
different than the homework set used in the spring 2022 implementation of our educational unit. The 257 
differences relate only to the computational implementation of the GAMES workflow; all learning 258 
objectives and conceptual framings remain the same. The text of the homework set is included in 259 
Supplementary Information[22]. The topics of each question are as follows: 260 

 261 
1. Introduction to GAMES  262 
2. Model formulation, normalization, and parameter estimation 263 
3. Evaluation of parameter estimation method 264 



4. Iteration between model development and parameter estimation 265 
5. Parameter identifiability analysis and refinement 266 

 267 
 268 
IMPLEMENTATION AND OPPORTUNITIES FOR IMPROVEMENT 269 
 270 

Students who participated in our educational unit gained increased interest and understanding of 271 
the model development process in synthetic biology. A core part of the curriculum of the course in which 272 
this unit was implemented is guiding students through the process of proposing, reviewing, revising, and 273 
executing an independent research project using methods and approaches introduced in this course. Some 274 
students chose to incorporate ODE modeling via the GAMES framework, suggesting that our educational 275 
unit provided students with the desire and ability to apply the concepts presented here to new problems 276 
of interest. This material was successfully employed by both undergraduate and graduate students with 277 
varying levels of computational and biological experience, suggesting that the educational unit could be 278 
implemented for a range of different academic levels and proficiencies. While we implemented this unit 279 
in a computational biology course, the unit could be implemented as part of the traditional chemical 280 
engineering curriculum in a reaction kinetics class to expose students to computational modeling, 281 
synthetic biology, and Python.  282 
 283 

Through this initial offering, we identified several areas for improvement for the next iteration of 284 
this education unit based on our own experience as course instructors (a formal evaluation of student 285 
learning outcomes is planned for future offerings of this course). Students would likely benefit from 286 
having more time to complete the homework assignment; two weeks would be a better timescale to 287 
enable deeper engagement with several new and sophisticated topics. This recommendation is based 288 
upon the general observation that students were more comfortable describing the general use of novel 289 
concepts (e.g., parameter profile likelihood) than in applying these methods to interpret specific model 290 
development scenarios. We see this as an opportunity to help students achieve deeper levels of learning 291 
(i.e., moving from Understanding to Analyzing and Interpreting in the Revised Bloom’s Taxonomy[23]). 292 
It would perhaps be useful to spread the GAMES lecture series content across three days to ensure more 293 
time to present and probe understanding of core concepts introduced in this unit. Based on the questions 294 
asked in office hours, we recommend a live demonstration of the code to prepare students to complete 295 
the homework set. This could be completed either on the last day of lectures or interspersed throughout 296 
the lecture series as each module is introduced. We suggest including a general introduction/refresher on 297 
ODE model formulation focused on converting a biological hypothesis to a testable mathematical 298 
implementation based on ODEs—this topic is not covered in the GAMES tutorial but is a central part of 299 
the model development process. Depending on the course, such an introduction may already be included 300 
in the curriculum. Otherwise, existing resources may help serve this role.[24, 25] 301 
 302 
 303 
DIVERSITY, EQUITY, AND INCLUSION CONSIDERATIONS 304 
 305 

A key shared goal of writing the GAMES tutorial[5] and disseminating the educational materials 306 
described here is to increase student access to the training and resources required to lead cutting-edge 307 
research involving computational modeling in general, and particularly in synthetic biology. We 308 
anticipate that these resources could make such training more accessible at institutions that currently 309 



provide limited opportunities in computational biological modeling or synthetic biology. Since synthetic 310 
biology curricula are most commonly implemented at large research institutions in the USA and the 311 
EU[13], this unit could help to overcome current limitations on access to such training for students who 312 
do not attend these institutions. Implementing this educational unit may also increase student awareness 313 
and interest in synthetic biology as an application of chemical engineering. We employed the freely 314 
available Python language and disseminated these tools for free to reduce financial barriers that reduce 315 
equity. Finally, the approaches embodied in these educational materials are designed to engage students 316 
with a diversity of learning styles and to follow inclusive teaching best practices.[26-28] Key choices 317 
include using visual and audio presentation of step-by-step examples, communication of specific learning 318 
objectives, integration of written self-directed instruction, distribution of slides to students in advance of 319 
lectures, and recording of presented material for future reference. Overall, we hope that these resources 320 
will help educators to engage a broader swath of students who might be interested in computational 321 
biology and synthetic biology. 322 
 323 
 324 
CONCLUSIONS 325 
 326 

Here, we present an educational unit focused on teaching systematic, reproducible model 327 
development through the lens of synthetic biology. As a result of the unit, we anticipate that students will 328 
become more aware of, interested in, and comfortable with synthetic biology, computational modeling, 329 
and the intersection between the two. We expect that students will be able to apply the general skills and 330 
concepts learned here to other parts of the chemical engineering curricula, including reaction kinetics, 331 
process modeling, and engineering design courses. A key innovation of this educational unit vis-à-vis  332 
prior work is the focus on providing a holistic, conceptual framework for the model development process. 333 
Such a focus on process is vital in chemical engineering education and for building technical literacy as 334 
to how modeling supports a variety of applications. As the field of chemical engineering evolves to keep 335 
apace of new challenges and needs facing society[29, 30], this educational unit exemplifies the opportunity 336 
to integrate new and exciting applications, such as synthetic biology and computational modeling, into 337 
the chemical engineering curriculum. 338 
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