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Abstract

We present an educational unit to teach computational modeling, a vital part of chemical engineering
curricula, through the lens of synthetic biology. Lectures, code, and homework questions provide
conceptual and practical introductions to each computational method involved in the model development
process, along with perspectives on how methods can be iterated upon to arrive at a final model.
Ultimately, this content can be applied broadly to address questions in synthetic biology and classical
chemical engineering.

Keywords

Bioengineering, Computational Tools, Kinetics

INTRODUCTION

Synthetic biology is an emerging technical discipline that applies engineering concepts to design
living systems to perform novel functions. One strategy for achieving this goal is using standard
biological parts, such as DNA sequences and proteins, which are first characterized and then composed
to create new functions such as genetically-encoded programs.[!! When implemented in a cell or cell-free
system, such genetic programs can, as an example, direct the host to sense environmental or internal
cellular cues, process such inputs, and then respond via regulation of the expression of one or more target
genes. While synthetic biology employs concepts derived from electrical engineering, in which standard
electrical parts are composed to build circuits!?], the origins, open challenges, and potential applications
of synthetic biology are closely aligned with chemical engineering®®l. Specifically, there is a need to
develop systematic, scalable processes for the development, standardization, modularization, and
production of cell-based devices with applications ranging from bio-manufacturing to cell-based
therapies.l’ Synthetic biology has matured towards a true engineering discipline by applying concepts
and practices established in mature technical fields*), including the incorporation of mathematical
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modeling to facilitate understanding and enable prediction!!- . Here we focus on models which employ
ordinary differential equations (ODESs) to describe system dynamics, incorporating fundamental concepts
taught in core chemical engineering subjects including mass balances and reaction kinetics.

Mathematical modeling is widely used in chemical engineering to understand and predict the
performance of chemical reactions and other complex processes, but new, holistic approaches are needed
to train students in the process of model development.!! This is a challenging goal, deriving in part from
the diversity of expertise and skills needed to model effectively, with topics including intuition-guided
iteration between model formulation and parameter estimation, investigation of multi-dimensional
design spaces with unconstrained parameters, and effectively comparing experiments to simulations.!
In addition, the model development process is often opaque, as many publications incorporating
modeling focus on the final result while omitting description of the process used to arrive at the final
model. As aresult, it is often not clear as to how choices made in the development process affect the final
model and how each computational task—such as model formulation, parameter estimation, parameter
identifiability analysis, and model selection—are inter-connected. Extensive prior work provides
strategies for teaching important modeling tasks, such as developing differential equation-based models
to describe systems of interest’?), solving differential equations analytically and numerically® %],
utilizing various coding languages to solve differential equations(®! [7> - 121" parameter estimation with
respect to experimental datal®], and sensitivity analysis!®l. Most prior work has been designed for use with
MATLAB, a commercially available programing and numerical analysis platform. While each of these
individual tasks is vital to the model development process, there exists a need for educational materials
focused on providing a holistic, conceptual framework of model development and analysis using an
accessible, open-source coding language. Such a framework could provide a theoretical roadmap for the
entire model development process by teaching both the theory behind each computational method® in
the process and how methods can be iterated upon to arrive at a final model.

To address challenges in executing and communicating the model development process and to
lower the barrier to entry for new modelers, we recently published a tutorial describing a systematic
model development workflow for rigorous characterization of genetic programs, called GAMES (a
workflow for the Generation and Analysis of Models for Exploring Synthetic systems).’] GAMES
provides a conceptual framework for understanding, applying, and linking each computational method
involved in the model development process using example code written in an open-source coding
language, Python, and is therefore well-suited to be expanded to develop an educational unit designed to
teach the entire model development process. Further, GAMES represents a direct application of the
process-oriented thinking that is a key component of the chemical engineering curriculum, thus
complimenting existing undergraduate curriculum in chemical engineering and addressing the need for
teaching synthetic biology to “career chemical engineers” by incorporating synthetic biology concepts
into existing courses.!'3] Since GAMES applies concepts taught in core chemical engineering reaction
kinetics courses, the concepts and approaches employed could be used to develop and solve models
describing classical chemical engineering processes as well, which is a vital component of chemical
engineering education.l'”) Thus, GAMES can help students to understand and deploy systematic and
reproducible model development for any ODE-based model.

Our core thesis is that teaching a structured, systematic approach to the process of ODE model
development in synthetic biology will enable students to understand key concepts and apply these



136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

concepts to new modeling problems. To this end, we developed an educational unit, consisting of a two-
day lecture series and a homework set, focused on an audience of advanced undergraduate and graduate
students. Following implementation of the unit in a computational biology course at Northwestern
University, we identified key areas for improvement for future iterations of the course. Overall, the goals
for this unit are to enable students to: (i) understand key steps and considerations in the model
development process at a conceptual level, rather than relying exclusively on automated model analysis
packages; (i1) practice implementing key methods and interpreting the results; and (iii) gain exposure to
diverse applications of chemical engineering thinking. These outcomes align with those which are known
to positively impact student experiences.['*!% By mapping core chemical engineering topics to new
application spaces, this tool may be especially useful when biology-focused chemical engineering
curriculum options are limited. This training also seeks to prepare students for future research
opportunities focused on mathematical modeling in synthetic biology. Here, we introduce instructors to
the GAMES workflow and describe strategies for implementing associated pedagogical tools in a core
or elective chemical engineering course.

METHODS
GAMES Conceptual Workflow

The GAMES workflow describes the model development process as a set of five interconnected
tasks, or modules (Figure 1a). After defining the system of interest, the modeler first initializes the model
development process in Module 0 by identifying a modeling objective, collecting or otherwise obtaining
training data, and formulating a base case model, which represents a series of biological, mechanistic
hypothesis proposed to describe how the system functions. Before estimating the values of the unknown
parameters (which are often kinetic rate constants), the modeler must first evaluate their parameter
estimation method in Module 1 to ensure that it is appropriate for their parameter estimation problem
(defined by the model equations, free parameters, and training data). After ensuring that the parameter
estimation method (PEM) is appropriate, the modeler can then use the PEM to estimate parameters using
training data in Module 2. Next, in Module 3, the modeler determines whether their parameters are well-
constrained, or identifiable. If any parameters are unidentifiable, they must be refined via either model
reduction or experimental design. Finally, in Module 4, the modeler compares any competing models
and selects the best option. Different iterations of the modules in the workflow can be used to accomplish
a variety of key modeling goals, such as parameter estimation, model refinement, experimental design,
model reduction, model selection, and model validation (Figure 1b).5!

GAMES Software Package

To support the use of the GAMES, we developed a freely available Python-based software
package and deposited it on GitHub. This software manifests the concepts in each module through
practical implementations of each method. The software package is modular, such that the user must
simply modify only two files to run the workflow for any new system of interest: (1) the .py file, which
includes a problem-specific model class, containing information such as the ODEs, normalization
strategy, and plotting functions; and (2) the .json configuration file, which includes information related
to hyperparameters necessary for each method and defines free parameter values and bounds. The
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software package is available on GitHub at https://github.com/leonardlab/GAMES. The specific version
of the GAMES software package necessary for the homework set presented here can be found at
https://github.com/leonardlab/GAMES _education.

Installation requires the use of various Python tools, including pyenv!'”! and Poetry!!®], to ensure
that the simulation environment and package dependencies are properly implemented, both of which are
vital for promoting code reproducibility, which is a major problem in computational modeling of
biological systems.['>-2!] As installation of software is a vital step in the use of any software package
obtained from GitHub, the installation of GAMES provides a useful opportunity for students to
understand Python environments and to practice execution of installation instructions. We highly
recommend that the instructor and/or teaching assistants for the course familiarize themselves with the
installation protocol before distributing the assignment and that an in-class or office hours session be
dedicated towards troubleshooting any installation roadblocks.

a -
) Overall modeling workflow
START
Formulate parameter parameters Assess Compare FINISH
model and estimation —)» | withtraining | —J» parameter candidate —
collect data method data identifiability models
'
1
1
b)
Modeling goals
[Z] Unknown
Parameter estimation Model reduction
Ii] Model structure Propose reduced model [Z] Model structure
0 -> -> IIITraining data m Training data
V [ZlParameters 0 -> -> —-> 6 Parameters
Model refinement Experimental design
Propose updated model Model structure Collect additional training data m Model structure
[] Training data — = Training data
> >
0 \/ [Z] Parameters 0 -> U g -> 6 [7] Parameters
Model selection Model validation

~0-0-0 - 0-0-0-0-0
0 9 o [7] Model structure [7] Model structure
'\V_/ [{] Training data W Training data

[Z] Parameters Propose updated model to improve Parameters

U Repeat for agreement with test data

competing models


https://github.com/leonardlab/GAMES
https://github.com/leonardlab/GAMES_education

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

Figure 1: Overview of the GAMES workflow. (a) GAMES describes the model development process as a
set of 5 interconnected tasks, or modules. The overall modeling workflow is iterative, as represented by
the dotted lines. (b) The modules described in GAMES can be iterated upon in different orders to
accomplish a variety of modeling goals, each of which is important in the development of mathematical
models. Reprinted with permission from Dray KE, Muldoon JJ, Mangan NM, Bagheri N, and Leonard
JN (2022) GAMES: A Dynamic Model Development Workflow for Rigorous Characterization of Synthetic
Genetic Systems. ACS Synth Biol. 11(2):1009-1029. DOI: 10.1021/acssynbio.1c00528. Copyright 2022
American Chemical Society.

EDUCATIONAL METHODOLOGY AND MATERIALS
Overview

The educational unit is structured to address overall learning objectives through an interconnected
two-day lecture series and homework set. The overarching goal of the educational unit is to introduce
model development concepts and to increase familiarity with modeling synthetic biological systems
using both conceptual and experiential pedagogical materials. A key choice made in defining learning
objectives was to focus on practicing interpretation and analysis of results in each step of the workflow,
rather than on writing code or implementing computational methods. The unit was implemented in the
spring 2022 iteration of the course “Computational Biology: Design and Analysis of Living Systems” at
Northwestern University. Students in this course comprised 13 undergraduate and PhD students in both
the Chemical Engineering and Integrated Biological Sciences departments. Incoming students were
expected to have basic proficiency in Python (or some related programming language), along with a
general knowledge of mass balances and reaction kinetics (which were introduced earlier in this course),
such that students could understand how the ODEs in the GAMES tutorial were formulated from first
principles. The amount of coding expertise required to complete the homework set is, by design, minimal.
Instead, the assignment focuses on prompting thoughtful interpretation of GAMES-generated results.
Similarly, the course instructor and/or teaching assistant should have sufficient proficiency in Python to
facilitate resolution of difficulties with executing and modifying code, but de novo writing in Python is
not required.

Lecture Series

The lectures provide a conceptual introduction to each module of the GAMES workflow!®), using
the same proof-of-principle example and topical sequence as the tutorial, to demonstrate each milestone
in the process. The lectures were presented as two consecutive 50 minute class meetings. The lecture
slides are freely available for download at Zenodo!??. Both lectures were held in-person with a Zoom
option and were recorded. Learning objectives were provided at the beginning of each day (Table 1).
The first lecture focused on introducing each module of GAMES in a linear, idealized manner such that
iterations between modules was unnecessary. As model development is rarely linear in practice, the
second lecture leveraged the students’ basic understanding of each module to elaborate the workflow to
a more realistic, nonlinear form that incorporates the practically unavoidable iteration between modules.
In the second lecture, additional practical information not included in the tutorial was presented. This
information included a discussion of cross-validation methods for model validation along with a series
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of lessons learned from applying GAMES to complex biological systems beyond the example presented
in the tutorial.

TABLE 1.
Learning objectives for the GAMES lecture series

Day 1

Day 2

Understand general challenges for developing models
in synthetic biology

Analyze parameter profile likelihood results (PPL) and
understand how results can motivate refinement of parameter
identifiability

List the key steps in model development according to
the GAMES workflow

Compare scenarios using model reduction or experimental
design to refine parameter identifiability

Understand the importance of defining a modeling
objective at the outset of a modeling quest

Define metrics for comparing competing models

Understand the importance of evaluating a parameter
estimation method before interpreting parameter
estimation results

Explain various nonlinear iterations between modules that
may be necessary in practice

Explain the base case parameter estimation method
used in the GAMES workflow

Understand challenges with applying the model development
workflow to more complex synthetic biological systems

Understand the concept of parameter identifiability
and why it is important for model development and
analysis

Homework Set

The homework set guides students through hands-on participation in the model development
process by introducing a new example designed to be explored using the GAMES code. Students were
given one week to complete the homework set, with extensions available if necessary. Learning
objectives were provided alongside each homework problem. Homework solutions are omitted from this
manuscript, but solutions are available to educators upon request via e-mail to the corresponding author.
Two, 1-hour office hour blocks with the course TA were offered to help students with this set.
Asynchronous help was available via the course Slack workspace. This version of the homework set has
been updated to use an improved, refactored version of the GAMES code and is therefore slightly
different than the homework set used in the spring 2022 implementation of our educational unit. The
differences relate only to the computational implementation of the GAMES workflow; all learning
objectives and conceptual framings remain the same. The text of the homework set is included in
Supplementary Information!>?!. The topics of each question are as follows:

1. Introduction to GAMES
2. Model formulation, normalization, and parameter estimation
3. Evaluation of parameter estimation method
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4. Tteration between model development and parameter estimation
5. Parameter identifiability analysis and refinement

IMPLEMENTATION AND OPPORTUNITIES FOR IMPROVEMENT

Students who participated in our educational unit gained increased interest and understanding of
the model development process in synthetic biology. A core part of the curriculum of the course in which
this unit was implemented is guiding students through the process of proposing, reviewing, revising, and
executing an independent research project using methods and approaches introduced in this course. Some
students chose to incorporate ODE modeling via the GAMES framework, suggesting that our educational
unit provided students with the desire and ability to apply the concepts presented here to new problems
of interest. This material was successfully employed by both undergraduate and graduate students with
varying levels of computational and biological experience, suggesting that the educational unit could be
implemented for a range of different academic levels and proficiencies. While we implemented this unit
in a computational biology course, the unit could be implemented as part of the traditional chemical
engineering curriculum in a reaction kinetics class to expose students to computational modeling,
synthetic biology, and Python.

Through this initial offering, we identified several areas for improvement for the next iteration of
this education unit based on our own experience as course instructors (a formal evaluation of student
learning outcomes is planned for future offerings of this course). Students would likely benefit from
having more time to complete the homework assignment; two weeks would be a better timescale to
enable deeper engagement with several new and sophisticated topics. This recommendation is based
upon the general observation that students were more comfortable describing the general use of novel
concepts (e.g., parameter profile likelihood) than in applying these methods to interpret specific model
development scenarios. We see this as an opportunity to help students achieve deeper levels of learning
(i.e., moving from Understanding to Analyzing and Interpreting in the Revised Bloom’s Taxonomy!?3}).
It would perhaps be useful to spread the GAMES lecture series content across three days to ensure more
time to present and probe understanding of core concepts introduced in this unit. Based on the questions
asked in office hours, we recommend a live demonstration of the code to prepare students to complete
the homework set. This could be completed either on the last day of lectures or interspersed throughout
the lecture series as each module is introduced. We suggest including a general introduction/refresher on
ODE model formulation focused on converting a biological hypothesis to a testable mathematical
implementation based on ODEs—this topic is not covered in the GAMES tutorial but is a central part of
the model development process. Depending on the course, such an introduction may already be included
in the curriculum. Otherwise, existing resources may help serve this role.?* 23]

DIVERSITY, EQUITY, AND INCLUSION CONSIDERATIONS

A key shared goal of writing the GAMES tutorial’® and disseminating the educational materials
described here is to increase student access to the training and resources required to lead cutting-edge
research involving computational modeling in general, and particularly in synthetic biology. We
anticipate that these resources could make such training more accessible at institutions that currently
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provide limited opportunities in computational biological modeling or synthetic biology. Since synthetic
biology curricula are most commonly implemented at large research institutions in the USA and the
EU!3], this unit could help to overcome current limitations on access to such training for students who
do not attend these institutions. Implementing this educational unit may also increase student awareness
and interest in synthetic biology as an application of chemical engineering. We employed the freely
available Python language and disseminated these tools for free to reduce financial barriers that reduce
equity. Finally, the approaches embodied in these educational materials are designed to engage students
with a diversity of learning styles and to follow inclusive teaching best practices.[*6-28] Key choices
include using visual and audio presentation of step-by-step examples, communication of specific learning
objectives, integration of written self-directed instruction, distribution of slides to students in advance of
lectures, and recording of presented material for future reference. Overall, we hope that these resources
will help educators to engage a broader swath of students who might be interested in computational
biology and synthetic biology.

CONCLUSIONS

Here, we present an educational unit focused on teaching systematic, reproducible model
development through the lens of synthetic biology. As a result of the unit, we anticipate that students will
become more aware of, interested in, and comfortable with synthetic biology, computational modeling,
and the intersection between the two. We expect that students will be able to apply the general skills and
concepts learned here to other parts of the chemical engineering curricula, including reaction kinetics,
process modeling, and engineering design courses. A key innovation of this educational unit vis-a-vis
prior work is the focus on providing a holistic, conceptual framework for the model development process.
Such a focus on process is vital in chemical engineering education and for building technical literacy as
to how modeling supports a variety of applications. As the field of chemical engineering evolves to keep
apace of new challenges and needs facing society!?-3%, this educational unit exemplifies the opportunity
to integrate new and exciting applications, such as synthetic biology and computational modeling, into
the chemical engineering curriculum.
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