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Abstract: Modeling coupled natural–human systems (CNHS) to inform comprehensive water resources management policies or describe

hydrological cycles in the Anthropocene has become popular in recent years. To fulfill this need, we developed a semidistributed hydrological

model for coupled natural–human systems, HydroCNHS. HydroCNHS is an open-source Python package supporting four application pro-

gramming interfaces (APIs) that enable users to integrate their human decision models, which can be programmed with the agent-based

modeling concept, into HydroCNHS. Specifically, we designed Dam API, RiverDiv API, Conveying API, and InSitu API to integrate,

respectively, customized man-made infrastructures such as reservoirs, off-stream diversions, transbasin aqueducts, and drainage systems

that abstract human behaviors (e.g., operator and farmer water use decisions). Each of the HydroCNHS APIs has a unique plug-in structure

that respects within-subbasin and inter-subbasin (i.e., river) routing logic for maintaining the water balance. In addition, HydroCNHS uses

a single model configuration file to organize input features for the hydrological model and case-specific human systems models. Also,

HydroCNHS enables model calibration using parallel computing power. We demonstrate the functionalities of the HydroCNHS package

through a case study in the Northwest United States. Given the integrity of the modeling framework, HydroCNHS can benefit water

resources planning and management in various aspects, including uncertainty analysis in CNHS modeling and more complex agent design.
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Introduction

Recently, many studies have explored the coevolution of natural and

human water systems with coupled natural–human systems (CNHS)

modeling approach, e.g., Faust et al. (2017) and Wada et al. (2017),

for a comprehensive evaluation of water resources management pol-

icies (Yang et al. 2020) and near-surface water cycles (Sivapalan and

Blöschl 2015). The coupled modeling approach often consists of a

process-based hydrological model and a human infrastructure model.

Agent-based modeling (ABM) is commonly adopted to describe

heterogeneous human behaviors and their impacts on water systems

that significantly vary at various spatial and temporal scales, e.g., Hu

and Beattie (2019), Lin et al. (2022), and Lin and Yang (2022). Each

agent represents a decision-making unit defined by a set of attributes

and behavior rules. In general, human-made infrastructures such as

reservoirs, diversions, transbasin aqueducts, and drainage systems

can be represented as an agent and coupled with hydrological models

with desired bidirectional information exchange frequency.

However, developing a sophisticated human model is not

always possible for CNHS modeling/modelers owing to the lack

of data or other limitations. For example, when modeling reservoir

releases, modelers can use historical records (e.g., daily time series)

as exogenous inputs or use a decision-making model to endoge-

nously and dynamically simulate water releases. While some

existing hydrological model software, e.g., Arnold et al. (2012)

and Liang et al. (1996), can incorporate human decision units,

the option that allows users to choose among exogenous or endog-

enous human components is often not supported. Knox et al. (2018)

developed a generic network-based multiagent framework to link

natural models and human models, which is one of the earlier ef-

forts to address this gap. Following Knox et al. (2018) and trying to

specifically target the water system, this technical note aims to de-

velop a semidistributed hydrological model for coupled natural–

human systems (hereafter HydroCNHS) that facilitates integrating

hydrologic models with agent-based human system models through

a generalizable coupling procedure with four application program-

ming interfaces (APIs). The four APIs are Dam API, RiverDiv API,

Conveying API, and InSitu API, which have distinct plug-in struc-

tures that respect within-subbasin and inter-subbasin (i.e., river)

routing logic for maintaining the water balance. They can integrate

human models, where heterogeneous human agents can be mod-

eled with different decision-making process complexity and data

intensity (e.g., exogenous input data or endogenous rules) from

a bottom-up viewpoint. Essentially, HydroCNHS is a Python pack-

age simulating natural and human-induced water cycles within one

or multiple watershed systems on a daily scale. The package fea-

tures a single model configuration file to organize input settings for

hydrological models and case-specific human models. In addition,

HydroCNHS supports a parallel calibration module using a genetic

algorithm (GA; Whitley 1994). The package is published with a

GPL-3.0 License to follow the concept of Open Science (NASEM

2021). We demonstrate the functionalities of HydroCNHS in a case
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study with the Tualatin River Basin (TRB) in the Northwest

United States.

Methods

Structure of the HydroCNHS Model

The HydroCNHS Python package is a semidistributed hydrological

model for CNHS that simulates natural and human-induced water

cycles on a daily scale. The subbasin delineation is based on the

agent design and user-desired distributing resolution. Fig. 1 shows

the HydroCNHS model structure (blue box) and user inputs

(yellow box). Three inputs are required: (1) daily climate data (pre-

cipitation and temperature), (2) a model configuration file (.yaml;

setting for the HydroCNHS and ABM modules), and (3) ABM

modules (.py; green box). HydroCNHS APIs handle the logic to

integrate ABM modules.

In the “Initialization” step (Fig. 1), HydroCNHS forms the rout-

ing scheme based on the stream orders associated with outlets

(i.e., routing order of outlets). Then, agent instances/objects are cre-

ated according to user-defined agent classes in ABM modules (.py).

A “class” is a data structure in object-oriented Python defined by

“attributes” and “methods.” Once initialized, each agent is an in-

stance of an assigned agent class. For example, two reservoir agents

can be created by a single reservoir agent class. After that,

HydroCNHS simulates the initial subbasin runoffs independently

using a rainfall-runoff module, for which we provide two options:

(1) the general water loading function (GWLF; Haith and Shoenaker

1987) with nine parameters; and (2) the ABCD model (Thomas

1981) with five parameters. Next, we use the Lohmann routing

model (Lohmann et al. 1998) to trace the runoff from subbasins

through the river channel (i.e., inter-subbasin routing) and the unit

hydrograph parameterization described inWi et al. (2015) to account

for the within-subbasin routing process. A detailed description of the

GWLF, ABCD, and Lohmann routing models is provided as supple-

mental information in Appendix S1. The runoff from each subbasin

is sent to the “Coupling Simulation” step (Fig. 1), and its contribu-

tion to the basin outlet is determined by the three factors: (1) the

simulation period, (2) the routing scheme for routing outlets, and

(3) agents linked to outlets. Forming a routing schemewith four APIs

in HydroCNHS will be further explained in the following sections.

The GA “Calibration” module, powered by the Distributed

Evolutionary Algorithms in Python (DEAP) Python package

(Fortin et al. 2012; De Rainville et al. 2012), facilitates calibrating

the entire CNHS model in a parallel computing mode. We refer our

readers to the HydroCNHS user manual for more details and coding

examples (https://hydrocnhs.readthedocs.io).

Routing Scheme

The routing scheme assigns an order to each routing outlet. The

routing modules are executed in order from upstream to down-

stream basins to ensure that the effects of upstream agent properties

propagate further downstream explicitly. Note that the topographi-

cal network of outlets is predefined in the model configuration file

by users. The routing outlets are where the streamflow information

is required for calibration or agents’ decisions (e.g., reservoir re-

lease rules). The backtracking process automatically generates

the routing scheme starting from the basin outlet (e.g., N1 in

Fig. 2). Moreover, the HydroCNHS supports multibasin simulation

(e.g., N1 and n1 in Fig. 2) for transboundary analysis. The routing

scheme in Fig. 2 is expressed as [N4, N5, R2, R1, N3, N2, N1, n1].

This sequence will be adjusted accordingly if users add specific

“node groups” in the model configuration file. For instance, if

the release rule of the reservoir R2 is influenced by the stream-

flow at N2, we need to acquire streamflow at the location before

making a decision on the release from R2. This sequence can be

refined by assigning a “node group” to N2 and R2 in the model

Fig. 1. (a) HydroCNHS model structure; and (b) three user inputs, including climate data (temperature and precipitation), model configuration file

(.yaml), and ABM modules (·py; green box). User-provided ABM modules will be integrated into HydroCNHS through four APIs.

Fig. 2. Generic example of HydroCNHS coupling APIs and water

system description. Note that agents R1, R2, D1, C1, C2, and I1 are

programmed in ABM modules (·py) and integrated into HydroCNHS

through APIs.
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configuration file. After that, the output routing scheme will be

automatically updated in the HydroCNHS as [N4, R1, N5, N2,

R2, N3, N1, n1].

Coupling APIs

APIs, herein, are the communication interface between Hy-

droCNHS and user-defined ABM modules. The four APIs in

the HydroCNHS (Fig. 2) are (1) Dam API, (2) RiverDiv API,

(3) Conveying API, and (4) InSitu API. Dam API is designed

for integrating in-stream agents like reservoirs (e.g., R1 and R2

in Fig. 2) that could significantly alter the streamflow regime.

Agents with Dam API will be considered as pseudo–routing outlets

(no routing is needed) involved in the routing scheme. Namely,

streamflow is directly defined by agents’ water release decisions.

RiverDiv API is created for agents that divert water from rivers and

may have return flows to other outlets, e.g., diversion agent D1

diverts water from N3 and return water to N1 in Fig. 2. This API

ensures the diverted outlet is routed before agents’ diversions. At

the outlet receiving return flow, the subbasin runoff and returned

flow are combined and enter the within-subbasin routing process,

since return flows often have no explicit return locations. Convey-

ing API is designed to transfer water to another outlet from a

routing outlet where the routing process has already been executed.

The transferred water has no within-subbasin routing (no within-

subbasin delay like runoff). Therefore, they are routed separately

from the subbasin’s runoffs. If an agent wants to convey water from

the downstream outlet to the upstream outlet (e.g., pump stations),

the water will be delivered with delays (e.g., C2 diverts water from

N3 first and delivers it to S2 at a later time step). InSitu API is

developed for agents that directly affect runoffs via “within subba-

sin activities” (e.g., I1 in Fig. 2). For example, those runoff changes

may come from land-use changes due to urbanization or exploiting

groundwater through wells. Such adjustments will be made before

any routing process at each time step.

We mathematically formalize the coupled model simulation

with these four APIs at each time step. Eq. (1) shows all runoff

components within a subbasin before routing

F 0
s ¼ Fs þ

X

g∈AgtIðsÞ

Euþg þ
X

g∈AgtIðsÞ

Eu−g

þ
X

g∈AgtRðsÞ

Reþg ; for all s ∈ fsubbasinsg ð1Þ

where Fs and F
0
s = initial and updated runoff in subbasin s, respec-

tively; Eu = runoff changes with symbols of plus (gain) and minus

(loss) for InSitu agents AgtIðsÞ activated at outlet s; AgtRðsÞ =

RiverDiv agents activated at outlet s; and Re = return flow.

The node-to-node routing is simulated using Eqs. (2) and (3).

Eq. (2) represents the streamflow replacement by in-stream agents

like reservoirs

Qg ¼ freleaseðgÞ; for all g ∈ fagents usingDamAPIg ð2Þ

where Qg = streamflow expressed as a function freleaseð·Þ, taking
the Dam agent g as inputs. Eq. (3) computes all other routing proc-

esses and streamflow changes resulting from conveying flow and

diversions

Qr ¼
X

s∈Fu;u∈UðrÞ

froutðF
0
sÞ þ fIroutðF

0
rÞ þ

X

a∈AðrÞ

fRroutðF
0
aÞ þ

X

g∈AgtCðrÞ

fRroutðC
þ
g Þ þ

X

g∈AgtCðrÞ

C−

g

þ
X

g∈AgtRðrÞ

D−

g ; for all r ∈ frouting outletsg \ fagents usingDamAPIg ð3Þ

where Qr = routed streamflow at routing outlet r; froutð·Þ = the

Lohmann routing function; fIroutð·Þ and fRroutð·Þ = routing functions

considering only within-subbasin routing and inter-subbasin

(i.e., river) routing, respectively; UðrÞ = upstream outlets contrib-

uting to the streamflow at r; AðrÞ = routing outlets with assigned

streamflow time series for which within-subbasin routing is not re-

quired; AgtCðrÞ and AgtRðrÞ = Conveying agents and RiverDiv

agents activated at routing outlet r, respectively; C = conveying

water; and D = diversion. The plus and minus signs indicate flow

changes due to adjustments. Each agent has a priority input for the

simulation order in case conflicts occur (e.g., diversions at an outlet

by multiple agents). Also, HydroCNHS supports the institution fea-

ture in which multiple agents share a decision-making instance/

object allowing them to make decisions together. For example,

R1 and D1 in Fig. 2 coordinate on the release and diversion

decisions.

Case Study: Tualatin River Basin

We selected the TRB as a study area (Fig. 3) to demonstrate the four

APIs in HydroCNHS. The TRB, located in northwest Oregon,

United States, with a drainage area of 1,844.07 km2, is covered by

densely populated areas (20%), agricultural area (30%), and forests

(50%) (Tualatin River Watershed Council 2021). Its agriculture

heavily relies on the irrigation scheme accounting for high seasonal

rainfall variability, because rainfall in the area concentrates during

the winter season (November–February). The Spring Hill Pumping

Plant is the largest diversion facility in the TRB for supporting the

Tualatin Valley Irrigation District (TVID;DivAgt), where the Hagg

reservoir (ResAgt) is the primary water source. During the summer

period, water is transferred from the Barney reservoir (outside of

the TRB) through a transbasin aqueduct (PipeAgt) to augment the

low flow for ecosystem conservation.

We modeled seven TRB subbasins (in HydroCNHS) and three

agents (in an externally programmed TRB_ABM module). The

seven outlets of subbasins are denoted TRTR, HaggIn, DLLO,

TRGC, DAIRY, RCTV, and WSLO (Fig. 3). The three agents

are PipeAgt, ResAgt, and DivAgt, integrated through Conveying,

Dam, and RiverDiv APIs, respectively (Fig. 3). PipeAgt (i.e., a

water manager) assigns conveying water to TRTR with observed

median monthly values (Bonn 2020). ResAgt (i.e., a reservoir

operator) determines reservoir releases with generic operational

rules, where target storages and target releases are adopted for

flood control (October–May) and storage control (June–September)

periods. DivAgt (i.e., a group of farmers) diverts water from TRGC

with monthly diversion-request decisions at the beginning of

each month and has return flow to WSLO. The diversion-request

© ASCE 06022005-3 J. Water Resour. Plann. Manage.
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decisions from June to September are governed by linear functions,

where the observed monthly precipitation is the predictor. Minor

diversions in other months are filled with historical mean values.

Details of this TRB_ABM module and agents’ decision rules are

provided in Appendix S2.

We tested the simulation from 1981 to 2013, for which the cli-

mate data were obtained from Livneh et al. (2015). We aggregated

the 1/16-degree climate grids for each subbasin and agent. The

HydroCNHS GA module conducts the calibration (1981–2005)

with Kling-Gupta efficiency (KGE; Gupta et al. 2009) as a target

performance metric. We compared two models, Mgwlf and Mabcd, in

which the same ABM model was coupled with two rainfall-runoff

modules, GWLF and ABCD, respectively. Detailed calibration set-

tings, including calibration objective and data sources, are provided

in Appendix S3. In addition, we ran a scenario with fixed diversion

behavior of DivAgt using a monthly mean (i.e., a conventional

method to handle human decisions exogenously) to compare with

endogenous adaptive behavioral rules. Such differences in human

behavior assumptions may lead to distinct modeling outcomes and

impact the exploratory analysis of changing environments. To dem-

onstrate the usage of InSitu API, we ran runoff-changing scenarios

with the calibrated Mgwlf model to test how the changes in upstream

runoff affect the streamflow at the basin outlet. One possible

cause of runoff changes is urbanization. Therefore, we modeled

runoff changes by adding two agents, DrainAgt1 at DAIRY and

DrainAgt2 at RCTV, and assumed a linear growth of the urbanized

area in DAIRY and RCTV subbasins from 5% to 50%, where such

urbanization is assumed to increase unit runoff by 75% according

to a local study (Gwenzi and Nyamadzawo 2014).

Results

We compare KGEs between two calibrated models (Mgwlf and

Mabcd) in Table 1 and Fig. S1. The two values in parentheses are

KGEs for calibration (1981–2005) and validation (2006–2013)

periods, respectively. Both models can capture streamflow dy-

namics and agent behaviors (i.e., reservoir releases and water

diversions) on a monthly scale. Mgwlf has better performance in

general because the GWLF model uses nine parameters for each

subbasin compared with the five-parameter ABCD model. One ad-

vantage of endogenous behavioral rules is that they can capture the

dynamic interactions between natural and human systems and more

realistically present the variances of two systems under the chang-

ing environment. For example, Fig. 4(a) shows the difference in the

annual outputs’ variance between Mgwlf with the calibrated endog-

enous diversion behavioral rules ðMgwlf;endogÞ and Mgwlf with fixed

diversion ðMgwlf;fixedÞ. Mgwlf;endog has a larger variance in DivAgt’s

diversion, reflecting that DivAgt (and farmers) can adjust water di-

version according to the weather forecast. Such adaptive diversion

Table 1. KGE comparison for the calibration and validation results of two models

Model ResAgt DLLO DivAgt WSLO

Monthly observed data Reservoir releases Streamflow Diversion Streamflow

Mgwlf (0.783, 0.811) (0.916, 0.865) (0.917, 0.898) (0.958, 0.894)

Mabcd (0.776, 0.893) (0.905, 0.889) (0.905, 0.885) (0.777, 0.836)

Note: calibration 1981–2005, validation 2006–2013, on a monthly scale.

Fig. 3. The Tualatin River Basin system. PipeAgt, ResAgt, and DivAgt are transbasin aqueduct, Hagg reservoir, and TVID agents, respectively.

DrainAgt1 and DrainAgt2 are two drainage system agents for the runoff-changing scenario.
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behaviors counteract the streamflow at the downstream, leading to

lower streamflow variance at WSLO [Fig. 4(a)] compared with

Mgwlf;fixed. Mgwlf;endog may help exploratory analysis in which

the environment gradually changes and static behavioral rules

(e.g., Mgwlf;fixed) are no longer appropriate. To demonstrate the last

API (i.e., InSitu API), Fig. 4(b) shows the gradual annual stream-

flow increment (gaps between two lines) at WSLO resulting from

the runoff changes at DAIRY and RCTV subbasins.

Conclusions

This technical note presents a semidistributed hydrological model

for coupled natural–human systems, HydroCNHS, an open-source

Python package. We demonstrate the functionalities of Hydro-

CNHS through a case study in the Tualatin River Basin, Northwest

United States, where we coupled a trans-basin aqueduct, a reser-

voir, an irrigation diversion, and two drainage system agents ac-

counting for runoff changes with four coupling APIs linked to

two different rainfall-runoff models, GWLF and ABCD. The KGE

comparison results indicate that coupled models could capture

monthly streamflow, irrigation diversion, and reservoir release pat-

terns. We also show that the model with an endogenous diversion

behavioral rule better reflects the interaction between natural and

human systems and may facilitate exploratory analysis. Also, the

results of the runoff-changing scenario show the capability of

HydroCNHS in modeling the effects of gradual environmental

changes on streamflow. With coding language integrity, flexibility

in designing agents, and parallel computing ability, HydroCNHS

can potentially benefit future studies in CNHS such as uncertainty

analysis or coupling of agent designs that are more diverse (e.g., hy-

dropower plants and cooling plants) and complex (e.g., interactions

among agents and hydrological environment).

Data Availability Statement

All data, models, and code generated or used during the study

appear in the published article. The HydroCNHS Python package

was developed under Python 3.8. The code, user manual, and TRB

example (including input data) can be downloaded at https://github

.com/philip928lin/HydroCNHS. The weather data originated from

Livneh et al. (2015). The streamflow and Hagg reservoir were ob-

tained from the US Bureau of Reclamation Hydromet platform

(https://www.usbr.gov/pn/hydromet/tuatea.html) and Bonn (2020).

Detailed station information is provided in Table S1.
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