N)
)
Check for
updates

ASM: An Adaptive Secure Multicore for Co-located Mutually
Distrusting Processes

ABDUL RASHEED SAHNI, HAMZA OMAR, USMAN ALI, and OMER KHAN, Universty of

Connecticut

With the ever-increasing virtualization of software and hardware, the privacy of user-sensitive data is a fundamental
concern in computation outsourcing. Secure processors enable a trusted execution environment to guarantee
security properties based on the principles of isolation, sealing, and integrity. However, the shared hardware
resources within the microarchitecture are increasingly being used by co-located adversarial software to create
timing-based side-channel attacks. State-of-the-art secure processors implement the strong isolation primitive
to enable non-interference for shared hardware, but suffer from frequent state purging and resource utilization
overheads, leading to degraded performance. This paper proposes ASM, an adaptive secure multicore architecture
that enables a reconfigurable, yet strongly isolated execution environment. For outsourced security-critical
processes, the proposed security kernel and hardware extensions allow either a given process to execute using
all available cores, or co-execute multiple processes on strongly isolated clusters of cores. This spatio-temporal
execution environment is configured based on resource demands of processes, such that the secure processor
mitigates state purging overheads and maximizes hardware resource utilization.

CCS Concepts: « Computer systems organization — Multicore architectures; « Security and privacy — Security
in hardware.

Additional Key Words and Phrases: secure architecture, hardware security, strong isolation

1 INTRODUCTION

In the era of cloud, data-center, and distributed computing, the privacy of user’s code and data in
computation outsourcing is a challenge. Today’s microprocessors enable aggressive hardware virtualization
by means of which multiple clients (users) are provided with separate virtual spaces that temporally
co-execute on the processor. Data encryption, integrity, and attestation mechanisms are being adopted in
commercial processors to provide users with a secure computation outsourcing experience. However, these
mechanisms do not provide sufficient protection against side-channel attacks, since concurrently executing
processes share hardware resources, such as on-chip caches, translation look-aside buffers (TLBs), on-chip
network and off-chip memory. This resource sharing induces hardware interference that is exploited by an
adversarial process to infer confidential information of a given process by monitoring the microarchitecture
state via timing-based side channels [11, 26, 28, 30, 36].

Corresponding Author: Omer Khan.

This research was supported by the National Science Foundation under Grant No. CNS-1929261. This research was also
supported in part by the Semiconductor Research Corporation (SRC).

Authors’ address: Abdul Rasheed Sahni, abdul.rasheed@uconn.edu; Hamza Omar, hamza.omar@uconn.edu; Usman Ali,
usman.ali@uconn.edu; Omer Khan, omer.khan@Quconn.edu, Universty of Connecticut, 371 Fairfield Way, Storrs, Connecticut,
06269 .

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and /or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

XXXX-XXXX/2023/3-ART $15.00

https://doi.org/10.1145/3587480

ACM Trans. Arch. Code Optim.

https://doi.org/10.1145/3587480
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587480&domain=pdf&date_stamp=2023-03-17

2 = A.R. Sahni et.al.

Secure processor technology is an active research area that aims to tackle the threats posed by
software side-channel information leakage. The non-enclave based schemes either protect a given process’
state via scrambled (randomly mapped) address accesses [29, 39], or introduce intrusive hardware
extensions [40, 48, 50] to disallow a process from accessing unaffiliated data. On the other hand, enclave-
based schemes [2, 9, 12, 31, 33, 38] aim to develop non-interference containers that are isolated at
hardware-level from co-executing processes. The state-of-the-art MI6 secure processor [12] deploys enclave-
based model to ensure strong isolation. It implements a trusted security kernel that statically and equally
partitions the large state structures, such as the off-chip memory regions across the processes. However,
all other microarchitecture state is temporally shared, and per-core cache and buffer resources are purged
on each enclave entry and exit. Consequently, MI6 experiences significant performance overheads due to
frequent purge and reload of private data, and imbalanced static allocations of large state structures. MI6-
Optimus [35] dynamically partitions the last-level cache to improve the shared cache utilization. Although
processes with high core-level parallelism benefit from the available multicore resources, processes with
low resource demands suffer from under-utilization. Moreover, all processes incur frequent purge overheads
on each enclave entry/exit.

The Ironhide [38] secure processor avoids purging overheads by creating two strongly isolated clusters
of cores. It enables execution of secure and insecure processes in two strong isolated clusters of cores.
This allows the secure process to interact with system software without incurring costly enclave exits. In
this execution model, processes with high core-level parallelism suffer from performance degradation due
to the distribution of cores into two clusters. However, the secure process achieves high throughput by
avoiding the purging overheads.

The objective of this paper is to enable a secure processor technology that takes advantage of temporal
execution of processes that demand high core-level resources (similar to MI6-Optimus), yet dynamically
enable spatial execution (similar to clusters of cores in Ironhide) for co-location of processes with low
resource demand. We propose adaptive secure multicore ASM that aims to reduce unwanted state purges
between execution of co-located processes, while maximizing core-level parallelism. ASM considers a
baseline multicore processor with many cores interconnected using on-chip networks and a multi-level
cache hierarchy. It enables execution of processes using dynamically configurable single and multiple
cluster modes.

The single cluster mode executes processes in a time-multiplexed manner. However, instead of parti-
tioning the last-level cache among co-located processes, like MI6-Optimus, it implements a parallel purge
operation for all shared cache slices. Even though this flush operation is costly, the benefits arise from
improved data locality during process execution. In multiple cluster mode, ASM dynamically creates
strongly isolated clusters of cores by utilizing hardware based reconfiguration capabilities. Each cluster is
allocated a set of cores that utilize a hardware based address map table to redirect local cache accesses to
those shared cache slices that are within the cluster boundary. This ensures no last-level cache slices get
shared among the clusters. The on-chip network implements a deterministic routing protocol to ensure that
network packets never cross the cluster boundary. The shared cache misses also utilize the hardware-level
address map table to map the respective memory region accesses to memory controllers that are within
the cluster boundary. The DRAM modules are statically isolated across clusters and dedicated memory
controllers are utilized to enable strong isolation. The multiple cluster mode is beneficial for executing
co-located processes when their aggregated thread-level parallelism matches the available core counts in
the system. To ensure strong isolation during mode transition from single-to-multiple or vice versa, ASM
flushes all shared hardware resources.

ASM extends the security kernel in the secure processor to include process-to-mode mapping software
for the co-located processes. The idea is to provide each process with an execution mode that matches its

ACM Trans. Arch. Code Optim.

ASM: Adaptive Secure Multicore = 3

core-level resource demands. The process-to-mode mapping is communicated to the operating system for
mode aware scheduling of processes. The processor hardware independently accesses the mappings for the
scheduled processes from the security kernel. If the operating system violates the mappings determined
by the security kernel, the hardware raises an exception. Otherwise, the hardware executes the scheduled
processes while ensuring strong isolation among them.

The contributions of this work are summarized below:

e ASM proposes an adaptive secure multicore processor that switches between temporal and spatial
execution modes based on process demands. The temporal execution mode is beneficial for appli-
cations with high parallelism, whereas spatial execution improves performance for less resource
intensive applications by executing them in parallel.

e ASM introduces process-to-mode mapping in security kernel to map processes to appropriate
execution mode (single or multiple clusters).

e Conduct security analysis of ASM to verify that execution of co-located processes under ASM single
or multiple cluster mode is secure.

e Conduct scalability study of ASM using large core count multicore processors.

ASM is prototyped on a real Tilera® Tile-Gz72T™ multicore processor, as well as a RISC-V ISA based
multicore simulator. When utilizing the 64-cores in the Tilera processor, ASM with single- and 2-cluster
modes is shown to outperform MI6-Optimus by ~49%, and lronhide by ~11%. However, the performance
benefits diminish when 3-cluster mode is also introduced in the 64-cores processor. To evaluate ASM for
larger core count processors, the multicore simulator is configured to simulate up to 256 cores. At 128
core configuration, ASM with 4-cluster mode gives ~20% improvement over the 2-cluster mode. This
performance scalability of ASM increases to ~30% for 6-cluster mode on 256 cores configuration.

2 THREAT MODEL

This work primarily focuses on enclave-based secure processors due to their continuing commercial
integration and high-end security guarantees [2, 9, 12, 31, 33, 38]. Hence, the threat model assumptions
are adopted from state-of-the-art MI6 [12] secure processor, where all microarchitecture state attacks that
rely on covert and information leakage side-channels are considered. Specifically, a virtualized environment
is considered, where security-critical processes belonging to different users are considered as mutually
distrusting. The operating system (OS) is assumed to be untrusted as well. However, the processor
package (including main memory) and a security kernel are trusted.

Adversarial Capabilities: The adversarial process can co-locate with a victim process on the shared
microarchitecture structures, and conduct timing-based side channel attacks. The adversary is capable of
exploiting both non-transient state (e.g., caches [11, 21, 30, 39]), as well as transient state (e.g., on-chip
network routers [44] and speculative execution units [14, 26, 28]). Moreover, the adversary can monitor
resource scheduling events to infer information via the timing and termination channels [19, 23, 35]. The
main focus is on the software-based side-channel attacks on the microarchitecture state. Thus, adversaries
with physical access to conduct attacks via thermal imaging, electromagnetic, and power based channels
are not considered in this work. Moreover, physical attacks on memory are also not considered as
these exploits are prevented using orthogonal mechanisms, such as memory integrity checking [20] and
ORAM [37]. Attacks by compromised system software, e.g., OS refusing to allocate process resources
are not considered. Lastly, hardware attacks, such as hardware trojans [10] and rowhammer [24] are
considered orthogonal attack vectors.

ACM Trans. Arch. Code Optim.

4 = A.R. Sahni et.al.

3 BACKGROUND AND RELATED WORK

Industry has commercialized efforts to reduce the trusted computing base (TCB) to a secure processor
chip [2, 9, 31, 33]. Intel’s SGX [13, 33] platform maintains on-chip enclaves, which isolate processes
from the untrusted OS via key management, and address partitioning. However, Intel’s SGX and its
successor TDX [5] have been shown to be vulnerable against cache-timing and control flow speculation
attacks [14, 21]. Recent secure processor works [12, 25, 38] extend the idea of enclaves in SGX to alleviate
microarchitecture state attacks. For instance, DAWG [25] utilizes protection (or security) domains to
isolate secure data from malicious insecure applications.

3.1 The MI6 Secure Processor
The MI6 secure processor [12] adopts

Secure MI6 Processor

Traditional

Intel’s SGX enclave execution model, Processing Nodes ;E’"p"“” [core |||[[_core |

. . . xecution
and implements the strong isolation [18]] - s

. e e . Private resources |Pr|vate Cachel |Pr|vate Cachel
security primitive to protect against _,I:":] purged on evers
microarchitecture state attacks. The context switch Sp» Core |[[[core]

.) .) .
clients’ mutually distrusting applica- () @) Private Cache| | | [Private cache]
tions comprising of security-critical and IEERE oy
Ordinary (insecure) processes are Of_ Processes Processes IS_hared LastI-LeveI CacheI(LL_CSIices)l
floaded to their respective processing = Mem. Cntlr @Mem- Cntlr
. Temporally Executing l L | | | | | | I | | |

nodes; where all processes execute in Client Aoplicatling N
a time-sliced fashion and temporally Main Memory (DRAM) Regions
share hardware resources. MI6 imple- Fig. 1. The execution model for secure processes on MI6.

ments strong isolation by: (a) purging the small stateful hardware structures, such as core pipeline buffers,
private caches and TLBs, and memory controller queues on each secure process context switch (or enclave
entry and exit), as shown in figure 1:@ and (b) statically partitioning the large stateful resources, such as
shared last-level cache, shared TLBs, and off-chip memory (DRAM regions) across the processes, shown
as @ in figure 1. In MI6, from a stream of incoming mutually distrusting processes, each context switch
(enclave entry/exit) requires purging of the private micro-architecture state, leading to performance
overheads. These overheads further aggravate as the purged state also needs to be brought back into the
hardware caches/TLBs. Additionally, the static partitioning of last-level cache resources adversely impacts
performance, as each process is allocated with fixed shared cache set(s)/slice(s). Thus, any process in
need of more cache capacity is expected to experience degraded data locality. If multiple secure processes
are scheduled for execution, it is detrimental for performance to statically partition the shared cache
slices to ensure strong isolation.

The MI6-Optimus [35] dynamically distributes the shared cache slices among processes while ensuring
strong isolation. It extends the security kernel to sample MPKI (misses per kilo-instructions) for each
process to decide how many shared cache resources should be allocated for near-optimal performance.
Consequently, it deploys a deterministic and bounded allocation of shared cache among secure processes.
By matching the cache capacity demands of processes, it improves performance over MI6. However, as the
number of co-located processes increases, the dynamic and proportional cache distribution still remains a
performance bottleneck. In addition, the temporal execution of processes in MI6 and MI6-Optimus incur
frequent purging overheads.

3.2 The IRONHIDE Secure Processor

ACM Trans. Arch. Code Optim.

ASM: Adaptive Secure Multicore = 5

| Security Kernel |

1. “Sample” Processes for

resource demands | Compute Pipeline L
2. Update mapping table /_\ i
:r PIDs PIDs Size Bound ! ’ T8 | L1-D ‘ _< T8 | 12
I
I
I
I
I .
I
! i Tuples Execution Router T il
| TLB L2 o " :
: : Nisp Tabie” Tiled Multicore
2122 . tMono Dual list Tri list | -
Processes for |l li
; | St Secure Kernel Metadata || Load Metadata for
co-location PID to Map Table

Fig. 3. ASM architecture interactions between hardware, security kernel and the operating system for a set of co-located
processes.

The Ironhide [38] secure processor enables strong isolation by spatially distributing core-level resources
in a shared memory multicore to support two clusters of cores. Each cluster is provided with spatially
partitioned cores, private and shared caches, TLBs, network-on-chip, memory controller, and DRAM
regions. For co-located processes, Ironhide pins each process threads to their allocated cluster’s cores. For
load balanced execution, it implements a dynamic resource distribution scheme that reconfigures the
size of each cluster while ensuring strong isolation. To ensure isolation, Ironhide purges the core pipeline
and private and shared caches, shown as @ in figure 2. When co-located processes exceed the number
of supported clusters, Ironhide adopts temporal execution among clusters while adjusting the size of
cluster as per incoming process demands. On such scheduling event, it purges the core level resources
(both private and shared) and reconfigures the cluster size for incoming processes, as shown in figure 2.
This spatial co-location of processes improves performance over MI6/ MI6-Optimus in two ways, (1) the
overall number of state purges is reduced due to spatial execution of processes, and (2) the core-level
parallelism is improved due to better hardware resource utilization. However, spatial execution leads to
performance degradation in processes that demand higher core-level parallelism.
This paper makes a key observation that pro-

cessor resources can be better utilized if a method MC, McC,

is enabled that dynamically and securely utilizes

the temporal execution model (MI6-Optimus) for L Secure Cluster| L -
processes with high core-level parallelism, and the I e e e e el
spatial execution model (Ironhide) for low resource |
demanding processes: We propose ASM, an adap- | A @ Resource Purging
tive secure multicore processor that offers mutually +

distrusting secure processes with a dynamic exe- | InSecure Cluster

cution model with improved resource utilization, MC,

. s oo . . Ironhide resource Stream of Secure and
while satisfying strong isolation guarantees.

distribution Insecure Processes

Fig. 2. The execution model of Ironhide.

4 THE ADAPTIVE SECURE MULTICORE (ASM)

The proposed ASM secure processor is illustrated using a representative shared memory tiled multicore
consisting of numerous cores (in-order or out-of-order with speculative execution support). The tiles
are interconnected using on-chip network routers, a per-core private—shared cache hierarchy including

ACM Trans. Arch. Code Optim.

6 = A.R. Sahni et.al.

translation look-aside buffers (TLBs), and multiple memory controllers connected to distributed memory
channel modules (DIMMs). When a core makes local access to its private L1-cache, it results in a cache
and TLB hit or miss. The L1 cache and TLB misses are routed (using the on-chip network) to the shared
last-level cache and TLB based on a homing policy determined using the address mapping. The last-level
cache and TLB are physically distributed, and a TLB slice as well as a L2-cache slice with an integrated
directory for cache coherence is implemented in each tile. The on-chip network routes the miss request to
a dedicated L2 or TLB that results in a hit or miss. A hit retrieves the cache line and returns it to the
requesting core, while a miss request is forwarded to the memory controller that maps the respective
DRAM region. The L2 misses are also routed based on a homing policy determined using the address
mapping. The cache line is retrieved from the DRAM and returned to the requesting L2 cache slice.

During execution of a multi-threaded process, the private resources of a core i.e. compute pipeline,
private caches and TLBs are temporally shared with other processes. Moreover, the on-chip network
routers and wires, as well as memory controller queues are shared as well. To prevent the microarchitecture
state attacks, strong isolation is needed among the co-located mutually distrusting processes. The strong
isolation requires all shared hardware resources to ensure non-interference. The MI6 and MI6-Optimus
achieve temporal strong isolation by purging/flushing all shared hardware, except for large stateful
resources (last-level cache and DRAM) that are partitioned among the co-located processes. On the
other hand, Ironhide achieves spatial isolation by creating strong isolated clusters of cores to co-execute
multiple processes concurrently. When the number of co-located processes exceeds the number of clusters,
Ironhide resorts to purging/flushing of all shared hardware, except the partitioned DRAM regions.

ASM achieves strong isolation by utilizing both temporal and spatial execution of the co-located
processes. The temporal execution mode (termed as single cluster) allocates all hardware resources (except
DRAM regions) to a process, instead of partitioning the shared resources like in MI6-Optimus. The single
cluster mode ensures strong isolation by performing flush/purge on each process invocation. The spatial
execution mode reconfigures the processor into multiple clusters of cores for concurrent execution of
multiple processes, and performs flush/purge to ensure strong isolation on each invocation of processes
for co-execution. The hardware supports secure transitions between the temporal and spatial execution
modes, as well as purging/flushing logic to ensure strong isolation. The spatial execution mode may
implement 2 or more clusters of cores (termed as multiple clusters).

The ASM execution model envisioned in Figure 3 comprises of co-located processes that are first
intercepted by the security kernel. The security kernel is extended with a process-to-execution mode
mapping capability that creates per-process metadata for efficient yet secure execution. It first samples
each process to determine its core-level resource demands. Next, the mapping phase utilizes the sampled
information to map each process for execution under the single- or multi-mode execution. It iteratively
allocates processes to single or multi-cluster list data structures. For example, Figure 3 shows dual-list in
a configuration that supports single- and 2-cluster mode execution under ASM. The security kernel is
part of the TCB; hence the process-to-execution mode mappings are protected from adversarial attacks
on ASM.

The security kernel passes the single and multiple-cluster lists to the operating system (OS) for
scheduling of processes on the processor. Although the OS is outside the TCB, the sharing of this
metadata does not reveal any private information from one process to another. These lists only reveal the
execution mode for each process, and the OS is allowed the freedom to schedule their execution as per
the system level constraints, such as throughput, fairness and quality-of-service. When the OS schedules
a particular mode of execution for a given process or tuple of processes, the hardware loads the metadata
into a per-core map table by directly accessing it from the security kernel. In case of a compromised
OS, the malicious process may modify the metadata in the OS. This inconsistency in metadata between

ACM Trans. Arch. Code Optim.

ASM: Adaptive Secure Multicore = 7

the OS and security kernel’s data structures results in a hardware exception to indicate a potential
compromise by the OS.

The per-core hardware logic is added to enforce single or multi-cluster mode execution of the scheduled
process(es). For single cluster mode execution, all core-level hardware resources are allocated to the
scheduled process. However, multi-cluster mode execution supports the allocation of shared hardware
resources to configure multiple strongly isolated clusters of cores. The size and bounds metadata for each
cluster is read from the hardware map table, and utilized by both L1 and L2 cache/TLB misses. On an
L1 cache/TLB miss, the map table uses the address and size/bound to determine the L2 cache/TLB
within the cluster. Since all previous process execution is purged/flushed for strong isolation, this method
results in allocation of requested data to the prescribed L2/TLB slice within the cluster: Similarly, on a
L2/TLB miss, the map table again uses the address and size/bound to determine the memory controller
allocated to the cluster. To ensure no packet drifts from its allocated cluster of cores, the on-chip networks
implement non-interference routers. The details to ensure strong isolation during multi-cluster mode
execution are described later in this section. When the OS prescribed time slot expires, the security
kernel is invoked to purge/flush all shared hardware resources to ensure strong iselation between mode
transitions. Consequently, the OS is allowed to schedule the next time slot and the execution continues
until all co-located processes complete their assigned tasks.

The next subsections outline the ASM process-to-mode policy that performs mapping of processes
to appropriate execution modes, the architectural details of single and multi-cluster modes and secure
transitions between modes.

4.1 Process-to-Mode Mapping in Security Kernel

4.1.1 Sampling Phase. _ 1 6 1 0.7
=z i = @ Time ——MPKI
The purpose Of sam- %03 = Compute Time MPKI 5 0s === Compute Time 0.6§
pling phase is to obtain £ 4 053
206 06 =
the number of cores re- ¢ 3 Saturation 04%
. @ Saturation Region 033
s Soa 0.4 g
quired by each process & - 5 & ot
. e 2%
for near optimal perfor- 7o, |||||| 5 L 02 |||| 8
mance. There are mul- 2 || [L1LIEI1] |.|.|.|I|.|.I.IIIlllllululnlu o o ““|“|IIIIII|||||||| 0
tiple potential metrics 4 B B 4216 20 24 98 32 26 40 8D AB 52 56 €O b A A B 42 46 70 28 78 32 26 40 ab 4% 52 56 O Eb
to Correlate the perfor— Increasing Core Counts Increasing Core Counts
mance of a process with Fig. 4. Normalized MPKI and Completion time as a function of core count.

the number of allocated cores, e.g. cache hit rate, cycles per instruction (CPI) and last-level cache misses
per kilo instructions (MPKTI). Prior works have shown that MPKI exhibits correlation for performance
scaling as a function of increasing number of cores [8, 35]. In high core count multicore processors, the
last-level cache is logically shared but physically partitioned among all the cores. Therefore, allocating
more cores to a process results in allocation of more shared cache slices, which reduces the cache misses
due to lesser address conflicts. For the workloads evaluated in this paper, MPKI shows a good correlation
between completion time and number of cores allocated to a process. However, more elaborate metrics
may be considered if the underlying workloads do not show good correlations with MPKI. For example,
[27] utilizes a combination of MPKI and CPI to obtain optimal cache partitioning size for processes.
The security kernel in ASM computes the MPKI trend as a function of allocating different number of
cores. First, the security kernel maps process threads to all available cores and executes a representative
input. The hardware performance counters are used to capture the MPKI. This procedure is repeated by
varying the allocation of core counts in a monotonically decreasing manner to obtain the MPKI trend

ACM Trans. Arch. Code Optim.

8 = A.R. Sahni et.al.

curve. As shown in figure 4, the completion time of process directly relates to the normalized shared cache
MPKI. From these curves, it is evident that increasing the number of cores after a certain point does not
improve the completion time or MPKI. This point is called the saturation point. The saturation point is a
characteristic of the workload, e.g., a process with less dependence on the last-level cache saturates early.

To calculate this saturation point, each MPKI curve is scanned by comparing the discrete pairwise
MPKI values from one end of the curve to the other, and compute the respective slope values. As the
slope decreases, the MPKI trend flattens with increasing core counts. This suggests that allocating cores
beyond a saturation point does not yield further performance benefits. A threshold slope value of 0.1
as utilized in prior work [35] determines the per-process saturation point, which is then passed to the
mapping phase. The number of sampling points impacts the accuracy of the MPKI trend ‘curve, and prior
work has shown 64-point MPKI curve as optimal [35]. Therefore, ASM also uses 64-point MPKI curve for
each process.

4.1.2 Mapping Phase. In the mapping phase, processes with high core-level parallelism are scheduled for
execution under single cluster mode. Whereas, processes with combined core-level parallelism supported
by the underlying multicore are scheduled together as a tuple for multi-cluster mode execution. Each
multi-cluster mode tuple also computes the resource distribution for each cluster.

The security kernel performs the mapping phase, where it starts by iteratively creating two process
tuples for 2-cluster mode execution. In each iteration, it performs a search by considering all combinatorial
two-process pairs of unassigned processes. For example, for 8 processes there exist 3Cy = 28 two-process
pairs. For all pairs, it calculates the sum of saturation points obtained in the sampling phase. If there
exists a viable two process tuple that has sum of saturation points less than available cores in the processor
(R), that pair is pushed to dual list data structure with a proportional distribution of cores per cluster.
For a given process, the ratio of the saturation point core count and the total resource needs of both
processes is scaled using R. For n process tuple, the proportional distribution for any P, process is
calculated as follows:

R Sat.pt, (1)

X Sat.pt;

When a two-process tuple is pushed in the dual list, these processes are removed from mapping
during next iterations. Each dual list entry contains the process IDs and their respective cluster size and
boundary metadata. Similar process is followed when underlying hardware supports 3 or more clusters,
where mapping phase generates tri, quad, penta or hexa lists. At the end of the iterative search, the
remaining processes are classified as the ones requiring high core-level parallelism. These process IDs are
pushed in the mono list data structure.

Consider an-example where multicore processor has 64-cores and there are 3 co-located processes, A, B
and C. First, the saturation point of each process is calculated in the sampling phase. Assume that the
saturation points are 18, 15, and 37 respectively. The mapping phase calculates the cumulative saturation
point of all combinations of two-process tuples, such that {A,B}(33), {A,C}(55) and {B,C}(52). The pair
with the highest sum value that fits within the available cores in the system is selected, i.e., {A,C} (55).
This {A,C} tuple resource allocation proportionally distributes the 64 core among them, i.e., A gets 21
and C gets 43 cores. This two-process tuple is pushed into the dual list. Since there is only one process B
remaining after this iteration, it is pushed into the mono list.

Py

4.2 Architectural Support for Single and Multiple Cluster Mode

To illustrate the architectural requirements for the ASM secure processor, consider Figure 5 that shows
a stream of ten co-located processes. Here, two processes map to the mono list, while two tuples of

ACM Trans. Arch. Code Optim.

ASM: Adaptive Secure Multicore = 9

MCJ &C @ R ng @C
Single->Multi:
Flush & Purge
Pid size bound Pid size bound
Mca MC% { Ry | XY NENED % MC;
R, [xy R, [xy
Ry [Xy Ry | Xy
Ry | xy | Pi Ry [Xy Multi=> Multi:
single->single: 16
@ Fllr:]gs;zplzfg: Dual List Quad List Flush & Purge
Mono List
MCy MCy !MC!

© OB

il o

F

Multi->Multi Multi->Multi
Flush & Purge Flush & Purge

Fig. 5. Secure Transitions between ASM Execution Modes.

two-processes map to the dual list and a four process tuple maps to quad list. The representative OS
scheduler first schedules mono list processes, each for a fixed time quantum. It then schedules the dual
list tuples, each for a fixed time quantum and finally executes four process tuple. This schedule repeats
until all processes complete their assigned work.

4.2.1 Single Cluster Mode. ASM single cluster mode temporally executes processes with high core-level
parallelism. In this mode, all per-core resources (compute pipeline, L1-cache, private TLBs) are allocated
to the scheduled process. However, these resources are purged (similar to MI6 [12]) when the executing
process needs to exit. To provide single cluster mode with maximum cache resources, the last-level shared
cache is fully allocated to the scheduled process. Again, to ensure strong isolation, the shared cache is
also purged at each process exit. Since DRAM regions are large stateful resources, single cluster mode
partitions the DRAM regions, similar to MI6 and Sanctum [12, 15]. The shared cache L2 misses are
intercepted by the ASM hardware map table that determines the memory controller that maps the
respective DRAM region. The memory access request is then routed via on-chip network to the respective
memory controller. Therefore, memory controller buffers also need to be flushed when the executing
process exits.

When a single cluster mode process finishes its execution for the allocated time quantum, the next
mono list process is scheduled for execution, shown as @ in Figure 5. ASM requires the processor to
perform single-single transition for strong isolation by performing a purge of all shared hardware resources.
The representative multicore has two types of shared resources:

e Non-persistent resources like load-store buffer queues, memory controller queues and on-chip network
buffers are drained by issuing fence operations. For example, each core issues a MEMORY__FENCE()
operation to drain all queued memory requests.

ACM Trans. Arch. Code Optim.

10 = A.R. Sahni et.al.

e Persistent resources like private and shared caches/TLBs are purged by performing a flush-and-
invalidate operation for each cache line. These flush and invalidate operations are invoked on per
core granularity to clean up the micro-architecture state.

The overhead added to clean-up the execution state of both persistent and non-persistent resources is
termed as flushing overhead.

4.2.2 Multiple Cluster Mode. To spatially execute a multiple process tuple in strongly isolated clusters in
the multiple cluster mode, all the persistent and non-persistent hardware resources must be spatially
distributed. Following steps are performed in ASM to distribute resources:

e Distribution of Per-Core Resources: For strong isolation, core resources are distributed such that
clusters do not overlay with each other. Each cluster is assigned a set of cores, dictated by size
and bound values (cf. Section 4.1.2) in the hardware map table, and all threads of the process are
pinned to cores within the cluster. Doing so allows processes to execute across multiple clusters
with strong isolation.

e Distribution of Shared Cache: The partitioning of the shared cache is unique because each cache
line has a single L2-slice allocated to ensure the cache coherence invariant. Since the shared cache is
logically shared but physically partitioned across the chip, it is distributed such that each cluster
gets to access a dedicated set of shared cache slices. Consequently, all cache lines of a process are
allocated to the cache slices dedicated to the cluster. This is accomplished via the hardware hash
function that uses the memory access request address and cluster boundary from map table to
allocate shared cache slices from within the cluster.

e Isolation of NoC Traffic: For each cluster, the network traffic needs to be routed in a way that
packets from one cluster remain isolated from packets of the other cluster. This isolation can be
achieved either temporally using time division multiplexing [45], or spatially using deterministic
routing protocol that confines each packet source to destination path to never exit its allocated
cluster of cores [38]. For example, X-Y routing in a 2-D mesh can be used along with clusters of
cores confined within X-Y dimension; such that any source to destination of a packet never exits the
cluster. The multiple cluster mode in ASM is evaluated using spatial isolation of the NoC traffic.

e Distribution of Memory Controllers: The memory controllers are distributed across the clusters
to avoid interference in controller queues. This isolation can also be achieved temporally and/or
spatially. In temporal isolation, the memory controllers are shared by clusters using time division
multiplexing [43]. In spatial isolation, the memory controllers are statically partitioned across the
clusters such that they never overlap each other [38]. The multiple cluster mode in ASM is evaluated
using statically partitioned memory controllers.

e Distribution of DRAM: DRAM is partitioned such that each process is allocated a dedicated
region [12, 15]. Processes scheduled to execute in any given cluster map their data to that cluster’s
dedicated DRAM regions, which are inaccessible to the other cluster. The shared cache misses are
routed to the memory controller(s) that map the respective DRAM region(s).

When the second single cluster mode process finishes its execution for the allocated time quantum, the
first dual list tuple is scheduled for execution, shown as @ in Figure 5. ASM requires the processor to
perform single-multi transition. To maintain strong isolation, the persistent and non-persistent shared
hardware resources are purged, incurring the flushing overhead similar to the single-single transition.
Next, the security kernel activates the processor to use multiple cluster mode execution. The threads for
dual list processes are pinned to their respective cores in the allocated cluster. Moreover, all L1/TLB and

ACM Trans. Arch. Code Optim.

ASM: Adaptive Secure Multicore = 11

L2/TLB cache misses are redirected to the hardware map table to perform the multiple cluster mode
specific routing of requests and their replies from the on-chip cache hierarchy.

When the second multi-cluster mode tuple is scheduled for execution (® in Figure 5), the processor
must perform a multi-multi transition. To maintain strong isolation, the flushing overhead similar to
the single-single transition is incurred. In addition, the number of cores allocated to each cluster may
require adjustment to accommodate the demands of the incoming tuple. This is achieved by updating
the hardware map table with the new size and boundary values for the clusters. Next, the processor
commences with multi mode execution as described earlier.

When second dual list tuple has executed for its fixed time quantum, the four process tuple is scheduled
to execute. As indicated by @ in figure 5, a multi-multi transition occurs, which includes purge of all
private and shared hardware resources. The hardware map table is updated with new cluster sizes and
boundary values for incoming tuple of four processes, to create four strongly isolated clusters.

When transitioning from multiple to single cluster mode (® in Figure 5), the processor must perform
a multi-single transition. Again, the flushing overhead similar to the single-single cluster transition is
incurred. Next, the processor is transitioned to use the default mechanism that maps all shared hardware
resources to the incoming mono list processes.

4.3 Hardware and Security Kernel Interactions with the OS

The security kernel invokes the operating system to schedule the mono and multi-cluster lists. For
ASM;, the OS must be enhanced to support scheduling of processes and tuples from these lists. On each
scheduling event, the security kernel gets invoked to purge the shared hardware resources, and set mode
specific flags for the hardware. In case of I/O requests, if one of process in tuple switches to idle state,
the other process continues to execute until the next scheduling interval. When a process terminates,
the security kernel removes the process from its respective mono or multi-cluster list. In case of multiple
cluster mode, if one process in a tuple terminates, the security kernel marks that process as inactive.
In this paper, the hardware continues execution with active processes in their clusters, while the other
cluster(s) are idle. When all processes in the tuple complete, the security kernel removes the tuple from
the respective list. Depending on system requirements, different scheduling algorithms (e.g. FCFS, SJF,
MLFQ etc) can be enhanced accordingly to handle I/O and termination scenarios.

5 METHODOLOGY
5.1 Secure Processors on Tilera Tile-Gx

The ASM architecture is prototyped on a real machine, Tilera® Tile-Gz72T™ [46]. The reason for choosing
this specific processor is due to the availability of the necessary hardware primitives to implement strong
isolation methods required for the MI6, Ironhide, and the proposed ASM architectures. Tile-Gx72™ is a
tiled multicore architecture comprising of 72 tiles, where each tile consists of a 64-bit multi-issue core
pipeline, private level-1 (L1) data and instruction caches of 32K B each, private instruction and data
TLBs of 32 entries each, and a 256K B slice of the shared level-2 (1.2) cache (LLC capacity of 18M B). It
comprises 2-D mesh networks with X-Y routing for the on-chip cache coherence and memory controller
traffic.

A customized CentOS Linux distribution runs on Tilera with additional capabilities of Tilera Multicore
Components (TMC) library API. This library includes facilities to form clusters of cores, manage network
traffic across clusters, regulate on-chip and off-chip data access controls, and manage shared cache data
placement. The off-chip memory is accessible using four on-chip 72-bit ECC protected DDR memory

ACM Trans. Arch. Code Optim.

12 = A.R. Sahni et.al.

controllers attached to independent physical memory channels. To model all evaluated secure processors,
64 cores were utilized out of the 72 available cores.

5.1.1 MI6 and MI6-Optimus Secure Processors. In MI6 [12] the co-located processes are executed tempo-
rally. Each process is provided with statically partitioned shared L2 cache slices, and DRAM memory
regions. Therefore, based on the number of co-located processes, the L2 cache and DRAM are partitioned
proportionally. For example, for a two process execution, 32 L2 slices and half of the DRAM regions are
allocated to each process. The L2 cache partitioning is achieved by using the local homing capability
enabled on the Tilera machine [1]. Here, each page in a process is mapped to a specific L2 cache slice using
the tmc_alloc_set_home(&alloc, core_id) API call. This enables an address mapping in hardware
that translates an address based on the core ID of the L2 cache set as the home location.

For MIG, all other shared on-chip hardware resources are purged on each process exit. To purge the
private L1 cache, a dummy buffer of size equal to the cache size is read into each L1 cache. Reading this
buffer removes all secure process’ data from the private L1 cache. A similar purging technique is used for
the TLBs. However, all L1 caches and TLBs are purged on a per-core granularity in parallel. Then, a
memory fence operation (tmc_mem_fence () call) is performed to ensure the propagation of dirty data
to the respective L2 cache slice. Finally, the queues/buffers of all memory controllers are purged using
tmc_mem_fence_node(controller_id) call that writes back all modified data to DRAM. These flush
operations are reported as flushing overheads in the evaluation.

For MI6-Optimus [35], the only difference is in the distribution of L2 slices. MI6-Optimus deploys a
sampling phase in the security kernel to calculate the appropriate number of L2 cache slices per process.
The saturation point of each process is calculated using a 64-point MPKI curve. Then, L2-slices are
proportionally distributed among all co-located processes using equation 1 from Section 4.1.

5.1.2 Ironhide Secure Processor. The Ironhide secure processor executes two processes concurrently using
two strongly isolated clusters of cores [35, 38]. It first invokes the security kernel to determine the schedule
of co-located two-process tuples on the clusters. To model Ironhide on Tilera, the threads of both processes
are pinned to the cores of their assigned clusters via tmc_cpus_set_my_cpu(tid) API calls. Setting the
thread affinity distributes private core-level resources, L1 caches and TLBs among two clusters, whereas
distribution of L2 cache slices requires a specific homing policy. The L2 cache slices are allocated to a
given cluster of cores using the hash-for-home hardware capability in Tilera [1]. Here, the size and bound
of each cluster of cores is used to configure the per-core TLBs. During the virtual to physical address
translation in eachcore, the physical address uses a special hashing feature to determine a user specific tile
for L2 cache homing. On each two-process tuple exit, the cluster size and bound may change for the next
tuple. In addition to purge discussed in Section 5.1.1, all L2 cache slices are flushed and invalidated using
the tmc_mem_flush 12() API call to ensure strong isolation of L2 caches across execution of co-located
process tuples. This purge operation involving flushing of private core level resources, as well as, L2 cache
slices is reported as flushing overhead for Ironhide in section 7.

The L2 cache misses of a cluster are routed to their respective DRAM regions via dedicated memory
controllers. This capability is enabled by using tmc_alloc_set_nodes_interleaved (&alloc, pos)
API calls. Here, pos represents the bit-mask representation of memory controllers to be selected, e.g., pos
= 0b0011 is used to dedicate MCy and MC1 to one cluster, whereas pos = 0b1100 (M Cs and MCjs)
for second cluster. Tile-Gz72™™ implements deterministic X-Y routing with 2-D mesh network topology,
which is used to isolate the network traffic by routing each packet to/from the allocated clusters’ memory
resources.

ACM Trans. Arch. Code Optim.

ASM: Adaptive Secure Multicore = 13

5.1.3 The ASM Secure Processor. For a set of co-located processes, ASM first invokes the security kernel
that performs the sampling for each process (cf. Section 4.1.1). The computed saturation core count for
each process is used in the mapping phase to map processes to their respective execution modes.

The single cluster mode of ASM is modeled in a similar fashion as MI6-Optimus, as described in
Section 5.1.1. However, the single cluster mode does not statically partition the shared L2 cache slices.
Instead, it provides all L2 cache slices to the process under execution, and flush-and-invalidate them by
invoking the tmc_mem_flush_12() API calls in each core. The multiple cluster mode of ASM creates two
strongly isolated clusters of cores to execute two-process tuples, as described in Section 5.1.2. The purge
operations in ASM are identical to Ironhide, with similar flushing cost as Ironhide.

ASM is evaluated separately using four configurations on Tilera. Mono executes all co-located processes
in single-cluster only, irrespective of their resource demands. Dual is identical to the Ironhide secure
processor, i.e. it always run in dual cluster formation, without any adaptive transitions between mono or
dual cluster. ASM-2 Cluster is the proposed adaptive secure processor that maps and executes processes
using both mono and dual cluster formations. ASM-3 Cluster utilizes tri-cluster formation in addition to
the mono and dual clusters. For tri-cluster, 3-process tuples execute spatially in three clusters of cores
that have sum of saturation points less than 64.

5.2 The ASM Secure Processor on Multicore Simulator

To study the scalability of ASM on high core count with multiple clusters, a RISC-V multicore simulator
is used [4]. The simulator uses performance models of MIT’s Graphite simulator [34] for multi-level
cache hierarchy, NoC and memory controller modeling. The RISC-V functional model i.e. Instructions

implementation, register states and MMU in simulator are described using Architecture Description
Language (ADL) [3] models.

‘ Architectural Parameter ‘ Simulator ‘ TILE-Gx72 ‘
Number of Cores up to 256 @ 1 GHz 72 @ 1 Ghz
Compute Pipeline per Core | In-Order, Single-Issue 64-bit VLIW
Memorgy Subsystem
L1-I Cache per core 32 KB, 2-way Assoc. 32 KB, 2-way Assoc., 2 cycles
L1-D Cache per core 32 KB, 2-way Assoc. 32 KB, 2-way Assoc., 2 cycles
L2 Inclusive Cache per core | 256 KB, 4—way Assoc. 256 KB, 4-way Assoc., 10 cycles
2 cycle tag, 4 cycle data

Directory Protocol Invalidation—based MESI | Invalidation—based
DRAM Bandwidth 64 GBps 64 GBps

Electrical 2-D Mesh with XY Routing
Hop Latency 2 cycles (1-router, 1-link)
Contention Model Only link contention

(Infinite input buffers)

Flit Width 64 bits 64 bits

Table 1. Architectural parameters for evaluation

Table 1 shows the architectural parameters of simulator. These parameters are tuned to run 128 and
256 core simulations while matching Tilera architecture specifications. Similar to ASM implementation on
Tilera, the shared cache model and NoC models on simulator are updated to create clusters of cores. The
ASM process-to-mode mapping creates schedule for co-located processes on tri, quad or penta cluster
configuration. The simulator creates multiple clusters as mentioned in section 4.2.2. ASM is evaluated on
simulator using 128 and 256 cores while creating up-to 6 cluster configuration. ASM-4 cluster represents
mono, dual, tri and quad cluster modes, whereas, ASM-6 represents mono, dual, tri, quad, penta and
hexa cluster modes.

ACM Trans. Arch. Code Optim.

14 = A.R. Sahni et.al.

5.3 Security Kernel and OS Scheduler

The security kernel interacts with the processor hardware, and it is invoked at (1) startup time when
co-located processes are scheduled, and (2) on each process/tuple exit when the microarchitecture state
is purged and/or mode transition incurs. The security kernel hands off the process level metadata to
the operating system incurring a few cycles overhead. Moreover, the interactions between security kernel
and the hardware take several processor cycles to update the map table entries. A round-robin scheduler
with fixed time slice execution per process is used for evaluation of all secure processors. An interval
timer is configured to trigger an interrupt every 500ms to schedule processes. This time slice quantum is
empirically determined in this paper. For ASM, all single cluster mode processes are scheduled before the
multiple cluster mode processes.

5.4 Benchmarks and Metrics

Seven parallel processes from four different security-critical computing domains are considered. Three
parallel graph algorithms, Single Source Shortest Path (SP), PageRank (PR), and Triangle Counting (TC)
are acquired from the CRONO [6] benchmark suite. They are all executed using a real world California
Road Network graph [16]. A mission planning algorithm, Artificial Bee Colony [47] (AB) is also analyzed,
which is adopted from the advanced driver-assistance system (ADAS). Two machine learning benchmarks,
AlexNet (AN) and Squeeze-Net (SN) are also used. ImageNet [17] is provided as an input to these
benchmarks. Lastly, Advanced Encryption Standard (AE) is considered for analysis due to its importance
in the domain of encryption. We consider all combinations of the aforementioned 7 processes to evaluate
various 2, 3, 4, 5, 6, and 7 co-located processes. For example, two co-located processes results in 'Cy = 21,
and four give 7Cy = 35 combinations. However, we randomly pick a subset of these combinations, and
execute each set of co-located processes with 100 inputs for evaluation.

ASM performance against MI6, MI6-Optimus, and IRONHIDE secure processors is evaluated by
measuring completion time of different co-located processes. The performance metric used for evaluation
is completion time of the co-located processes until each process completes 100 inputs. The completion
time also includes the overhead occurred during the sampling phase and flushing occurring on each
process-level context switch.

6 SECURITY ANALYSIS

In a multicore processor, shared hardware resources such as cache, network-on-chips, and memory
controllers are targeted for timing-based side-channel attacks. For example, cache-based timing attacks
[49][22][30] exploit timing variations due to sharing of cache states within virtually isolated applications.
Similarly, NoC [7][44] and Memory controller [42] shared hardware are carefully contented to create
timing-based covert-communication attacks. This section discusses the implementation of state-of-the-art
Flush+Reload [49] attack on cache, ConNOC [7] on NOC hardware, and Contention attack [42] on
memory controller for Tilera Tile-Gx processor. These attacks are conducted without any strong isolation
implementation and for temporal execution based single cluster mode and spatial execution based multiple
cluster mode. Without protection enabled, all of these attacks show a True Positive (TP) rate of above
90% and a high Discrimination index (DI) value. TP rate and DI quantify the efficacy of timing-variation
attacks [41] [32]. We have conducted a security analysis of ASM processor in single cluster mode, multiple
cluster mode, and transitions between them i.e 1) single-single, 2) single-multi, 3) multi-multi, and 4)
multi-single.

6.1 Timing Attacks on Unprotected Hardware

ACM Trans. Arch. Code Optim.

ASM: Adaptive Secure Multicore = 15

Without any mitigation scheme enabled, the cache,
NoC and memory controller channels in a multi- 1590
core processor are exploited by co-located processes
for timing-based side channels using practical at-
tacks. It is assumed that the attacker can co-locate
data on individual hardware and a combination of
shared hardware resources.

Cache Attack — Spatial & Temporal Execution Model

B without contention with contention DI: 0.97 TP: 100%

B @ ©
o o =)
S =] =]

No. of Samples

N
o
=]

I
0
6.1.1 Cache attack. Shared cache memory signifi- 30 45 60 75 90 105 120 135 150 165 180 195

cantly reduces the memory access time. Data access o o Latency (cycles)) .
. . Fig. 6. Timing variations for cache attack without any miti-

from shared cache memory (i.e. cache-hit) takes :

~10-30 cycles, whereas data access from outside gation.

of cache (i.e. cache-miss) takes ~110-150 cycles, as

observed in Figure 6. This high timing difference of ~120 cycles can be exploited to create a covert-

communication attack or leak secret information. For example, a transmitter application sharing the

cache can control the state of the cache by placing the data or flushing the data. A receiver application

accessing shared data and measuring the time can use this timing information to infer secret information.

A cache-hit is translated to secret bit 1, whereas a cache-miss translates to secret bit 0. Figure 6 shows

timing-variation histogram on unprotected hardware with temporal and spatial execution model with a

TP rate of 100% and high DI value.

6.1.2 NoC attack. NoC shared resources (i.e., links, buffers, crossbars) are shared by all cores and processes.
An adversary can carefully contend on this hardware to create timing variations and consequently
use these timing variations for covert communication or secret information leakage. For example, a
transmitter application can carefully occupy these shared hardware resources and create contention for
other applications. A receiver application sharing these NoCs with a transmitter application, can observe
contention or no-contention situations based on the time to access data over NoC. Fast access over NoC
translates to secret bit 1, whereas slow access over contented NoC hardware translates to secret bit 0.
This NoC contention attack works on unprotected temporal and spatial execution models. In temporal
execution models, pre-occupied shared resources cause timing delays. Contrary, in the spatial execution
model, the scheduling of NoC routing is a primary reason for timing variations. Although NoC has low
timing variations of ~5-7 cycles, the information theory technique of repetition codes [41] are used to
improve the efficacy of the attack. Figure 7 shows timing variation histogram for temporal and spatial
execution model on unprotected NoC hardware with a TP rate of above 90% and high DI value in absence
of any mitigation scheme.

NoC Attack — Temporal Execution Model NoC Attack — Spatial Execution Model

M without contention with contention W without contention with contention
500 1000

DI: 0.78 TP: 95% DI: 0.96 TP: 100%
800

600

400

No. of Samples
No. of Samples

200

0 0 1k
300 315 330 345 360 375 390 405 420 435 450 465 480 495 510 525 540 500 515 530 545 560 575 590 605 620 635 650 665
Latency (cycles) Latency (cycles)

Fig. 7. Timing variations for NoC attack under Spatial/Temporal Execution Model

ACM Trans. Arch. Code Optim.

16 = A.R. Sahni et.al.

Mem Attack — Temporal Execution Model Mem Attack — Spatial Execution Model

M without contention with contention B without contention with contention

300 250
DI: 0.95 TP: 100% DI: 0.78 TP: 96%
250
w » 200
ki <
a 200 =1
£ £ 150
& 150 3
bl <
5 5 100
s 100 s
50 50
0 " 0 i uly
100 120 140 160 180 200 220 240 260 280 300 320 340 360 390 405 420 435 450 465 480 495 510 525 540 555

Latency (cycles) Latency (cycles)

Fig. 8. Timing variations for memory controller attack under Spatial/ Temporal Execution Model

6.1.3 Memory Controller attack. Memory controller queues are shared resources within all processes. An
adversary application can occupy memory controller queues to create contention and timing variations
for other applications. These timing variations are exploited to create information leakage and covert
communication attacks. For example, a transmitter application intentionally occupies shared memory
controller hardware. A receiver application sharing the same memory controller observes the timing
variation of ~5-10 cycles based on the state of memory controller queues. A contented memory controller
results in a slower data access compared to a non-contended one. Fast access (i.e., less time) translates
to secret bit 1, and slow access (i.e., high time) translates to secret bit 0. This process is repeated to
covertly leak secrets. Similar to the NoC attack, information theory concepts of repetition codes are used
to improve the efficacy of the attack. Memory controller attacks are practical for temporal and spatial
execution models on unprotected hardware. Figure 8 shows the timing histogram of memory controller
attack on temporal and spatial execution models with a TP rate of above 90% and high DI value in
absence of any mitigation scheme.

6.2 The ASM Protected Multicore Hardware

When ASM is enabled on multicore hardware, it ensures strong isolation between co-located processes
by flushing shared hardware resources and/or creating strongly isolated clusters of cores. Cache-based
timing attacks exploit timing variations due to the sharing of cache states between virtually isolated
processes. ASM in single cluster executes two processes in temporal execution model and purges cache
state on entry/exit of each process. The purging of cache state results in cache miss for otherwise cache
hit and protects against cache-based timing attacks. Similarly, ASM purges NoC and memory shared
resources (i.e., queues) to protect against NoC and Memory Controller attacks. Whereas, ASM multiple
cluster mode enforces strong isolation by creating clusters and partitioning cache, NoC, and memory
controller hardware. This strong isolation prevents timing-attacks.

Attacks Targeted Single Cluster | Multiple Cluster Transitions
Hardware Mode Mode Single -Single | Single —Multi | Multi — Multi | Multi - Single
Flush+Reload Cache TP:50%, DI:0.01 | TP:50%, DI: 0.01 oo o oot o o o
ConNOC Network-on-Chip TP:50%, DI: -0.02 | TP: 50%, DI: 0.01 b o ot A e S0
Memory-Controller | Memory-Controller TP: 49%, DI: 0.01 TP: 50%, DI: 0.01 Bﬁ:_g%" ™ 3_%? EFI?_%(_)S/; ™ 5_10?

Table 2. TP/DI for cache, network-on-chip, and memory controller attacks with ASM.

The ASM execution model includes four transitions: single-single, single-multi, multi-multi and multi-
single. These transitions are performed by security kernel which ensures the strong isolation by flushing
all shared hardware resources before bringing-in next process/tuple for execution. Table 2 summarizes the
TP rate and DI for cache, NoC, and memory controller hardware attack with ASM protection enabled.

ACM Trans. Arch. Code Optim.

ASM: Adaptive Secure Multicore = 17

Table 2 shows the efficacy of ASM while executing under single cluster mode, multiple cluster mode and
transitions between single and multi cluster modes. A TP rate of ~50% shows that attacks are fully
mitigated, and DI of ~0 confirms negligible timing variations.

7 PERFORMANCE EVALUATION
7.1 Capture the Shared Cache MPKI Trend

[

In a .share.d memory multlcor.e setup, 'sl'lared —ALEXNET —SOZ-NET —ABC
cache is logically shared but physically partitioned. < os sSSP —PR —Tc
. a

Therefore, allocating more cores to a process re- = —AES

: . X 506
sults in allocation of more shared cache slices. A ¢ s
sweep study of shared cache MPKI for various num- g %4 ° &
ber of cores captures the behavior of processes on 2, - 20 —
increasing the allocated shared cache slices. Figure o
9 shows the normalized MPKI values against core 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 €0 64
count for all workloads mentioned in section 5.4. Number of Cores
Using the gradient based approach mentioned in Fig. 9. Benchmark applications MPKI trends

section 4.1.1, the saturation points are calculated
for the workloads. These MPKI curves show that after saturation point, there is negligible variation in
MPKI values on further increasing core count. For example, the performance of ABC saturates at 54
cores, and allocating more cores does not yield further improvements. Therefore, in multiple cluster mode
ASM can execute another process in parallel using the remaining 10 cores. If there is no such process
with saturation point of <10, ASM executes ABC in the single cluster mode.

This sampling phase is part of security kernel, such that whenever a process is created, ASM has to bear
this one-time penalty to calculate the saturation point by invoking security kernel. Later in evaluation, it
is shown that for long running processes, sampling phase does not add considerable overhead.

7.2 Various Secure Processes versus ASM-2 Cluster on 64-Core Tilera

Figure 10 shows completion times of 25 selected combinations of 2, 3, 4, 5 and 6 processes. These
combinations are assigned ID based on number of co-located processes. Figure 10 also shows the ASM
mappings generated by using the mapping phase. If cumulative saturation point of all the processes in a
tuple is < total resources, then ASM maps that tuple into multiple cluster mode, i.e., 4-cluster mode is
created for 4 co-located processes. If cumulative saturation point is > total core count, then an iterative
search is performed, as mentioned in section 4.1.2. A single process in braces identifies a single cluster
mode process; while multiple processes in braces represent multiple cluster mode tuple of processes. The
last column shows the mapping of processes for the Ironhide processor, where X represents an idle cluster
of cores. Figure 11a shows normalized geometric means of completion time for 2, 3, 4, 5 and 6 co-located
processes. Total number of flushes observed in different secure processor setups are reported in figure 11b.
Figure 10 shows that MI6-Optimus performs ~10% better than MI6 due to proportional distribution of
L2-cache slices versus static partitioning. However, with increased number of co-located processes, the
proportional distribution of L2-slices allocates small chunks of the shared cache to each process that
results in increased compute time due to capacity misses.

Ironhide executes 2-process tuples in two clusters of cores to reduce the overall number of flushes (shown
in 11b). However, the flushing overheads reported in figure 10 are similar to MI16-Optimus because flushing
cost of lronhide is higher than MI6-Optimus due to additional purging of shared L2-cache. With increased
number of co-located processes, Ironhide performs better than MI6-Optimus. However, due to its 2-cluster

ACM Trans. Arch. Code Optim.

18 = A.R. Sahni et.al.

500
= 450 EmMI6 ® Mi6-Optimus M Ironhide ASM-2 Clusters = Flushing Overheads ® Sampling Overheads
& 400) f_‘ "
v 350 =
£ ¥ _
i= 300 = _ = = B | i -
< 250 — ¥ — - I = | - — y
% 200 g . [I o 8] i M ['R -
° 150 - - - = = - - 1 ‘
£ 100 — i - o i I
8 s0 i - i B Wi il
o —
QD QS O 9O 9O & & O 0V 0 O & O XV O 9 9V & O O >
> PP AP AP PP AT PPIIFT ST O
A A I I P
B A af o Co-located Processes % R A R f & & o
ASM-2 Ironhide ASM-2 Ironhide ASM-2 Cluster Ironhide ASM-2 Ironhide AShL2 Ironhide
Cluster Cluster Cluster Cluster
4a | (TGPRL{AE- | {SN-PR,{AE-
2a | {AB},{sP} {sP-x}, 3a | {TCL{AE-SN} | {AE-SN},{TC-X} SN} Tc 55 | (PRL{AE-SN], | {SN-PR},{AE-
{AB-X} (TCANLAE AEANIATC {TC-AN} ANL{TC-X} {PR},{AB}, " | {SN-PR},{AE-
. 3b | {SPL{AE-TC} | {AE-SPL{TC-X} || 4y, ~ANJAE- -ANJATC)) 1| 6a | {AE-SN}, AB{TC-
26 | (AN N} {AN-X}, PR} PR} cp | {ABLIAE-SN}, | {AE-AB),{AN . XLAN-X]

{SN-X} 3¢ | {ANL{AE-SN} | {AE-AN},{SN-X} {TC-AN} TChLISN-X}

{SN-AB}{TC- | {TC-AB},{AN-

2c | (SNLPR) | (SNPRI |39 [(spyreany | reseriana || AN} XNXE || s (Pﬂzﬁfmm (?;)m(;? P
)] {SP-ABL{TC- | {AE-SP},{TC- . : iy AN-
2d | SN-AE} | SN-AEY || 3¢ | (AB},{AN}(AE} | {AE-ABL{AN-X} || 4d AE} AB] o | SPHAELAB) [AESPLTC || 6P {(‘;Em ;\;3()5(:”)‘(}

, {TC-AN} AB},{AN -X}

2e | {TC-AE AE-TC X1 {AB-
el f bt) 3f | {AN},{SP},{AB} (AN();)P’f:;a X se | {AN-SNL{PR- | {SN-PR),{AN- {SN-PR},{AN-

SP} X},{SP-X} se | {ANLISNL{PR X} {5P- {PRL{AB}, | {SN-PR}L,{TC-

af | (SP-ABLITC- | (TC:SP{AN- }, {SP},{AB} XL{AB-X} 6c | {SP}L{SN}, SP},{AN-

AN} X},{AB-X} {TC-AN} X},{AB-X}

Fig. 10. Completion time comparison of co-located processes under the MI6, MI6-Optimus, Ironhide and ASM
architectures.

E 1 = Mono = Dual D

= E R

< 0.8 ASM-2 Cluster ® ASM-3 Cluster B MI6-Optimus
o2+ «» 600 -

° 2 M Ironhide
206 | 5 500 | = ASM-2 Cluster
; b

o

© 04

e

8

= 0.2

@

£

s O

z

Co-located Processes 2 3 4 5 6

(a) ASM variants relative to Mi6-Optimus on Tilera pro- Co-located Processes

cessor. (b) Fig.Flush count for various secure processor setups.

Fig. 11. ASM variants and flush counts on Tilera

only execution, it suffers from performance degradation for processes with high core-level parallelism. For
example, in figure 10, tuple IDs 2a, 3e, 4e show that Ironhide is at-par or worse than MI6-Optimus, due to
higher flushing cost and under utilization of resources as compared to MI6-Optimus. ASM-2 cluster enables
an adaptive execution model via single and 2-cluster modes. Processes with high core-level parallelism
(high saturation points) are executed in single cluster mode to fully utilize all available cores. On the
other hand, processes with relatively low saturation points are combined to execute in 2-cluster mode,
improving performance by better utilizing the available cores and reducing the overall number of purges.
All secure processor setup except MI6 incur sampling overhead for capturing the MPKI trend, but it is a
one-time cost with low overhead incurring at each process creation.

ACM Trans. Arch. Code Optim.

ASM: Adaptive Secure Multicore = 19

For 2 co-located processes, ASM-2 cluster benefits from single-cluster mode execution for 2a, 2b, 2c
where it executes both processes with all available cores. Thus, improving their competition time which
in turn decreases the number of flushes by consuming less time slices. For tuples 2d and 2e, ASM-2 cluster
executes in 2-cluster mode where it matches the performance of Ironhide. For 3 processes, ASM-2 cluster
benefits from its transitions between single and 2-cluster modes, such that for tuples 3a to 3d it executes
two processes in 2-cluster mode and one process in single-cluster mode. The processes that are combined
to run in 2-cluster mode are shown in table under figure 10. The multiple cluster mode execution reduces
the number of flushes for less resource intensive processes, and single-cluster mode improves completion
time of processes with high core-level parallelism. For 4 processes, ASM-2 cluster either matches Ironhide
or out-performs it when there are resource intensive processes. Similarly, for 5 and 6 processes, due to
better resource utilization via transitions between single and 2-cluster modes, ASM-2 cluster improves the
completion time of tuples and also reduces the number of flushes. Figure 11b shows that as the number
of co-located processes is increased, the difference in number of flushes for Ironhide and ASM-2 cluster is
continuously increasing. Overall, ASM-2 cluster shows ~58%, ~49%, and ~11% improvement over MI6,
MI6-Optimus, and Ironhide by better utilizing the available core-level resources.

To further evaluate the benefits of ASM, a tri-cluster mode is added. Here, one cluster is provided
with 2 dedicated memory controllers, whereas the remaining two clusters utilize one memory controller
each. Five out of 25 tuples take advantage of the tri-cluster mode to exploit the exposed parallelism. The
geometric mean performance gains presented in figure 11a show that ASM with 3-clusters either performs
at-par or gives slight benefit over ASM-2 cluster. We postulate that as the number of cores are increased
in the processor, ASM-3 cluster will become more effective.

7.2.1 Case Study of All Co-located Processes. A detailed evaluation of all 7 co-located processes is shown
in Figure 12 using a single input for each process. The sampling phase performed by the security kernel
is omitted since it is a common overhead in each evaluated secure processor setup. The security kernel
first purges the secure processor, and invokes the operating system to schedule processes with 500 ms
time slice.

The partitioning of L2-slices
in MI6-Optimus results in small

chunks of shared cache being allo- O:f(‘ilns'l_us I - | I | I-l | I-I |
cated to each process. This signifi- WFlushing ~SP ®AB ©AN SN mPR mTC mAE
cantly impacts performance due to i

y Imp P Ironhide = AN-X B AB-TC ™ SP-AE m SN-PR

capacity misses resulting in more

compute time. High compute time o315 custer I - I‘. I I
0 0.5

PR M AB SP AN-TC SN-AE

means more time slices are con-
sumed to complete the process, 1 15 2 25 3 35 4 45 5 55
which results in a high number of Timeline (sec)
purges. However, each flushing cost Fig. 12. Execution breakdown for all co-located processes.
in MI6-Optimus is less than Ironhide and ASM-2 cluster because it does not require L2-cache purging.
Ironhide combines the AB-TC, SP-AE and SN-PR to form 2-process tuples for execution in 2 clusters,
which also helps reduce the number of flushes. Both AB and SP have high core-level parallelism and
high saturation points, i.e., 54 and 60 respectively. Their resource demands are not met when they are
executed with TC and AE, thus resulting in over-utilization of cores which impacts performance. Ironhide
also executes AN with its saturation point cores in one cluster, while the other cluster remains idle. This
results in under-utilization of the available cores. ASM-2 cluster resolves this over- and under-utilization

ACM Trans. Arch. Code Optim.

20 = A.R. Sahni et.al.

of hardware by combining AN with TC, and executing AB and SP in single cluster modes. This results
in a 14% performance improvement in ASM-2 cluster relative to Ironhide.

7.2.2 Time Slice Selection. So far, the evaluation is presented with a time slice (T") setting of 500ms.
However, this parameter impacts performance since for high time slice values the processor may incur
load imbalance, and for small values the context switch and associated flushing overheads may overwhelm
performance. Figure 13a shows the geometric mean completion time results for a range of time slice
values using selected combinations of 2, 3, 4, 5 and 6 processes. ASM-2 cluster and Mono-only (worst
case scenario with always single-cluster) both incur higher flushing overheads when time slice parameter
decreases. This is expected since the addition of context switches requires flushing of private-shared
resources to ensure strong isolation. The 1500ms incurs a handful of context switches, resulting in best
performance, while 100ms incurs 14 switches on average. The 500ms time slice shows best performance
and this value is at par with modern operating systems, thus it is chosen as the default.

2 1.6
- 18 B Mono ' ASM-2 Cluster © Flushing Overheads “w 14 H Mono ASM-2 Cluster Flushing Overhead
o 16 e
[
€14 E 1.2
=
e 12 5 1
2 1 £ 08 v m
=038 =% 4
3 06 m
£ 056 § o4 w
Soa o 0.

0.2 0.2
0 0 A
100 200 300 500 1000 1500 0.05 0.1 0.15 0.2
Time Slice (ms) Saturation Point Threshold
(a) ASM with various Time Slices. (b) ASM with various saturation thresholds.

Fig. 13. Sensitivity Studies on Tilera

7.2.3 Sensitivity to Saturation Point Selection. The saturation point from a per-process MPKI trend is
captured by scanning the trend from the end to the point where the absolute slope value reaches or
becomes greater than a defined threshold. The evaluation has so far considered the saturation point
selection threshold value of 0.1. Figure 13b shows the impact of varying threshold values. The higher
saturation points select higher core counts for processes to operate at. This reduces the number of multi-
cluster mode tuples, thus not allowing the system to take advantage of this mode for better parallelism
across two processes. Therefore, higher than 0.1 threshold value decreases performance. It is also observed
that a lower threshold value selects lower than optimal core counts for a process, resulting in too many
2-cluster mode tuples. This also adversely affects performance, since single-cluster mode execution is
better for processes that have higher core-level parallelism. Therefore, lower than 0.1 threshold also
decreases performance.

7.3 The ASM Secure Processors with 128 and 256 Cores

The scalability of ASM at higher core counts is evaluated on the multicore simulator with 128 and
256 cores. Figures 14 and 15 represent the completion times and ASM mappings for various co-located
processes on the 128 and 256 cores simulated multicores. The co-located processes shown in these figures
are same as mentioned in section 7.2.. These simulations deploy ASM variants with up to 2, 4 and
6 clusters, i.e., ASM-4 cluster can execute in mono, dual, tri and quad cluster formation based on
schedule generated by mapping phase, whereas ASM-6 cluster can execute up to penta and hexa cluster
configurations. Both figures 14 and 15 do not show 2 co-located processes, because there is no variation in
completion times as compared to figure 10. This is because 2 co-located processes either get scheduled to

ACM Trans. Arch. Code Optim.

ASM: Adaptive Secure Multicore =

S 250 B ASM-2 Cluster & ASM-4 Cluster M ASM-6 Cluster Flushing Overheads B Sampling Overheads —
[
)
‘o 200
£
= 150
c
kel
5 100
a
£ 50
o
)
0
o
ASM-2 Cluster | ASM-4/6 Cluster Co-located Processes
4a | {TC-PR},{AE-SN} | {TC-PR-AE-SN} ASM-2 Cluster ASM-4/6 Cluster ASM-2 Cluster | ASM-4/6 Cluster
4b | {TC-AN},{AE-PR} | {TC-AN-AE-PR} 5a | {PR},{AE-SN},{TC-AN} | {PR-AE-TC-AN},{SN} oo | PRABLIAESN), | (AETCPRAN)
4c | {SN-AB},{TC-AN} | {TC-AN-SN},{AB} 5b | {AB},{AE-SN},{TC-AN} | {AB},{AE-SN-TC-AN} {TC-AN} {SN-AB}
4d | {SP-AB},{TC-AE} | {SP-TC-AE},{AB} 5c | {PR},{SP},{SN},{TC-AN} | {PR-SN-AN},{SP-TC} 6b (SP-/(&B),(AE;SN}, {SP-AB}, (A;E-SN«
TC-AN TC-AN
4e | {AN-SN},{PR-SP} | {AN-SN-PR},{SP 5d | {SP},{AE},{AB},{TC-AN} | {SP-TC},{AE-AB-AN
{AN-SN},{PR-5P} | { 1isP} {SP}{AE},{ABL{TC-AN} | {SP-TCL{ } N A
4f | {SP-AB},{TC-AN} | {SP-TC-AN},{AB} Se | {AN},{SN},{PR},{SP},{AB} | {AN-SN-PR},{SP-AB} ¢ {TC-AN} TC-AN}
Fig. 14. Completion time comparisons of ASM 2, 4 and 6 clusters variants on 128 core processor.
300
'5250 1ASM-2 Cluster & ASM-4 Cluster = ASM-6 Cluster Flushing Overheads = M Sampling Overheads
Q _ —
) —
2 200 B = — ' i
= | r #
c 150 B
kel F— — ‘ ' ‘_
T 100 it , — ' ' ‘ i
S S "I ,‘I ‘ i i‘- ‘I ,‘I ﬂ‘- ‘
o
(o]
, aim ‘h- j‘- RE 0, 'hu = m yim
o o o (o o Q Q Q Q Q o Q> Q>
& & °s:"’ R & & & & o & & & & &
Co-located Processes
ASM-4 Cluster | ASM-6 Cluster
4a | {TC-PR}{AE-SN} | {TC-PR-AE-SN} ASM-4 Cluster ASM-6 Cluster ASM-2 Cluster | ASM-6 Cluster
4b | {TC-AN},{AE-PR} | {TC-AN-AE-PR} 5a {PR},{AE-SN-TC-AN} {AE-TC-AN-SN-PR} 6a | {PR-AB-AE-SN}, | {AE-TC-AN-SN-
4c | {SN-AB},{TC-AN} | {TC-AN-SN-AB} 5b | {AB},{AE-SN-TC-AN} {AE-TC-AN-SN-AB} {TC-AN} PR-AB}
4d | {SP-AB},{TC-AE} | {AE-TC-SP-AB} 5c | {SP}{PR-SN-TC-AN} | {TC-AN-SN-PR-SP} 6b | {SP-AB-AE-SN}, | {AE-TC-AN-SN-
y {TC-AN} SP-AB}
R - _SN-PR-! 5 -AB-TC-, -TC-AN-SP-,
4e | {AN-SN},{PR-SP} | {AN-SN-PR-SP} {SP},{AE-AB-TC-AN} {AE-TC-AN-SP-AB} 6c | PRSN-ABSPL | TTCANSNPR
4f | {SP-AB},{TC-AN} | {TC-AN-SP-AB} 5e | {AN-SN-PR-SP},{AB} | {AN-SN-PR-SP-AB} {TC-AN} SP-AB}

Fig. 15. Completion time

comparisons of ASM 2, 4 and 6 clusters variants on 256 core processor.

mono or dual cluster modes that are supported by all variants of ASM. Both 128 and 256 cores simulated
multicores schedule all combinations of 3 co-located processes on 3 isolated clusters and execute them in
parallel, which results in similar execution times. To magnify the scalability of ASM on higher core count,
4 or more co-located processes are shown in figures 14 and 15.

Both ASM-4 and ASM-6 cluster variants always outperform ASM-2 cluster configuration on 128 and
256 core processors, due to parallel execution of more processes in multiple clusters. Supporting more
clusters results in increased overhead during the mapping phase, where the security kernel performs an
iterative search on more number of clusters to find the best mode for each tuple. But this overhead is
compensated by the parallel execution of multiple processes. Figure 14 shows that formation of tri and
quad clusters for ASM-4 and ASM-6 results in more parallel execution. But more clusters (i.e., penta or
hexa) are not possible on 128 cores processor, because there are no 5 or 6 process tuples with cumulative

ACM Trans. Arch. Code Optim.

22 = A.R. Sahni et.al.

saturation point <128. Therefore, ASM-6 cluster does not show any further improvement over ASM-4
cluster. The overall performance improvement for ASM-4 over ASM-2 on 128 cores is ~20%.

On increasing the total number of cores to 256, the ASM mappings on figure 15 show that 5 and
6 co-located processes are mapped to 5- and 6- cluster modes. This is possible because the total core
count is always higher than the cumulative saturation point of processes for all the tuples. For 256 core
processor, ASM-4 and ASM-6 cluster variants observe a performance improvement of ~20% and ~30%
over ASM-2 cluster, respectively. This shows that ASM architecture is highly scalable for high core count
processors, where more clusters can be supported.

8 CONCLUSION

Computation outsourcing has raised concerns regarding the privacy of users’ sensitive data. Researchers
have explored the use of secure processors, where multiple mutually distrusting processes are co-located
for secure computations. MI6 secure processor implements strong isolation of shared hardware resources
to protect against timing-based software side-channel attacks. However, it causes performance degradation
for co-located processes due to frequent purging overheads and inadequate resource partitioning among
processes. Ironhide secure processor resolves the unnecessary purging by improving the overall utilization
of core-level resources in a multicore processor. However, processes with high core level parallelism
perform sub-optimally on Ironhide due to its resource partitioning. ASM is an adaptive secure multicore
architecture with demand-aware execution environment for mutually distrusting processes. ASM ensures
privacy by creating single or multiple strongly isolated clusters on multicore processor. ASM shows
performance improvement over all prior secure processor architectures.

REFERENCES

[1] [n.d.]. Programming the Tile-gx processor. http://www.mellanox.com/repository/solutions/tile-scm/docs/UG505-
Programming-Tilegx- Processor.pdf.

[2] 2009. ARM Security Technology Building a Secure System using TrustZone Technology. ARM white paper.

[3] 2013. FreescaleADL: An Industrial-Strength Architectural Description Language For Programmable Cores. http:
/ /opensource.freescale.com/fsl-oss-projects/.

[4] 2017. QUARQ: A Novel General Purpose Multicore Architecture for Cognitive Computing. https://khan.engr.uconn.
edu/pubs/quarg-techconl17.pdf.
[5] 2021. Intel® Trust Domain Extensions (Intel® TDX). https://www.intel.com/content/www/us/en/developer/articles/

technical/intel-trust-domain-extensions.html

[6] Masab Ahmad, Farrukh Hijaz, Qingchuan Shi, and Omer Khan. 2015. CRONO: A Benchmark Suite for Multithreaded
Graph Algorithms Executing on Futuristic Multicores. In IISWC.

[7] Usman Ali and Omer Khan: 2021. ConNOC: A practical timing channel attack on network-on-chip hardware in a
multicore processor. In IEEE International Symposium on Hardware Oriented Security and Trust (HOST).

[8] Marco Alves, Henrique Freitas, and Philippe Navaux. 2009. Investigation of Shared L2 Cache on Many-Core Processors.
1-10.

[9] AMD. 2019. AMD Secure Encrypted Virtualization (SEV). (2019). https://developer.amd.com/sev/

[10] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan. 2014. Hardware Trojan Attacks: Threat Analysis and
Countermeasures. Proc. IEEE 102, 8 (Aug 2014), 1229-1247. https://doi.org/10.1109/JPROC.2014.2334493

[11] Joseph Bonneau and Ilya Mironov. [n.d.]. Cache-Collision Timing Attacks Against AES. In CHES 2006, Louis Goubin
and Mitsuru Matsui (Eds.).

[12] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Arvind, and Srinivas Devadas. 2019. MI6: Secure
Enclaves in a Speculative Out-of-Order Processor. In IEEE/ACM MICRO. 42-56.

[13] Somnath Chakrabarti, Matthew Hoekstra, Dmitrii Kuvaiskii, and Mona Vij. 2019. Scaling Intel® Software Guard
Extensions Applications with Intel® SGX Card. In Proceedings of the 8th International Workshop on Hardware and
Architectural Support for Security and Privacy (Phoenix, AZ, USA) (HASP ’19). Association for Computing Machinery,
New York, NY, USA, Article Article 6, 9 pages. https://doi.org/10.1145/3337167.3337173

ACM Trans. Arch. Code Optim.

http://www.mellanox.com/repository/solutions/tile-scm/docs/UG505-Programming-Tilegx-Processor.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG505-Programming-Tilegx-Processor.pdf
http://opensource.freescale.com/fsl-oss-projects/
http://opensource.freescale.com/fsl-oss-projects/
https://khan.engr.uconn.edu/pubs/quarq-techcon17.pdf
https://khan.engr.uconn.edu/pubs/quarq-techcon17.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://developer.amd.com/sev/
https://doi.org/10.1109/JPROC.2014.2334493
https://doi.org/10.1145/3337167.3337173

(14]

(15]

[16]
(17]

(18]

(19]
20]
(21]
(22]
(23]

(24]

(25]

(26]

27]

(28]

29]
(30]
(31]

(32]

(33]
(34]
(35]

(36]

ASM: Adaptive Secure Multicore = 23

Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yingian Zhang, Zhigiang Lin, and Ten H. Lai. 2018. SgxPectre Attacks:
Stealing Intel Secrets from SGX Enclaves via Speculative Execution. arXiv e-prints, Article arXiv:1802.09085 (Feb
2018), arXiv:1802.09085 pages. arXiv:cs.CR/1802.09085

Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal Hardware Extensions for Strong Software
Isolation. In USENIX.

Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson (Eds.). 2009. The Shortest Path Problem.

J. Deng, W. Dong, R. Socher, L. J. Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database.
In IEEE CVPR.

Andrew Ferraiuolo, Mark Zhao, Andrew C. Myers, and G. Edward Suh. 2018. HyperFlow: A Processor Architecture
for Nonmalleable, Timing-Safe Information Flow Security. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (Toronto, Canada) (CCS ’18). ACM, New York, NY, USA, 1583-1600.
https://doi.org/10.1145/3243734.3243743

C. W. Fletcher, L. Ren, X. Yu, M. Van Dijk, O. Khan, and S. Devadas. 2014. Suppressing the Oblivious RAM timing
channel while making information leakage and program efficiency trade-offs. In IEEE HPCA.

B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas. [n.d.]. Caches and hash trees for efficient memory
integrity verification. In HPCA’13.

Johannes Gotzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Miiller. 2017. Cache Attacks on Intel SGX. In FuroSec.

Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016. Flush+Flush: A Fast and Stealthy
Cache Attack. In Detection of Intrusions and Malware, and Vulnerability Assessment, Juan Caballero, Urko Zurutuza,
and Ricardo J. Rodriguez (Eds.). Springer International Publishing, Cham, 279-299.

Syed Kamran Haider and Marten van Dijk. [n.d.]. Revisiting Definitional Foundations of ORAM for Secure Processors.
([n.d.]). http://arxiv.org/abs/1706.03852.

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu. 2014. Flipping bits in
memory without accessing them: An experimental study of DRAM disturbance errors. In 2014 ACM/IEEE j1st
International Symposium on Computer Architecture (ISCA). 361-372. https://doi.org/10.1109/ISCA.2014.6853210
V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer. 2018. DAWG: A Defense Against Cache Timing
Attacks in Speculative Execution Processors. In IEEE/ACM MICRO.

Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative
Execution. In IEEE Sé€P.

Xing Lin and Rajeev Balasubramonian. 2011. Refining the utility metric for utility-based cache partitioning. Proc.
WDDD (2011).

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard,
Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In USENIX.

F. Liu, H. Wu, K. Mai, and R. B. Lee. 2016. Newcache: Secure Cache Architecture Thwarting Cache Side-Channel
Attacks. IEEE Micro (2016).

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-Level Cache Side-Channel Attacks
Are Practical (IEEE S&P). 605-622. https://doi.org/10.1109/SP.2015.43

Tarjei Mandt, Mathew Solnik, and David Wang. 2016. Demystifying the secure enclave processor. Black Hat Las Vegas
(2016).

Yehia Massoud, Jamil Kawa, Don MacMillen, and Jacob White. 2001. Modeling and Analysis of Differential Signaling
for Minimizing Inductive Cross-Talk. In Proceedings of the 38th Annual Design Automation Conference (Las Vegas,
Nevada, USA) (DAC ’01). Association for Computing Machinery, New York, NY, USA, 804-809. https://doi.org/10.
1145/378239.379070

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi, Vedvyas Shanbhogue, and Uday R
Savagaonkar. 2013. Innovative instructions and software model for isolated execution.. In HASP@ ISCA. 10.

Jason E. Miller, Harshad Kasture, George Kurian, Charles Gruenwald, Nathan Beckmann, Christopher Celio, Jonathan
Eastep, and Anant Agarwal. 2010. Graphite: A distributed parallel simulator for multicores. In HPCA. 1-12.

H. Omar, B. D’Agostino, and O. Khan. 2020. OPTIMUS: A Security-Centric Dynamic Hardware Partitioning Scheme
for Processors that Prevent Microarchitecture State Attacks. IEEE Trans. Comput. (2020), 1-1.

H. Omar, H. Dogan, B. Kahne, and O. Khan. 2018. Multicore Resource Isolation for Deterministic, Resilient and
Secure Concurrent Execution of Safety-Critical Applications. IEEE Computer Architecture Letters 17, 2 (July 2018),
230-234. https://doi.org/10.1109/LCA.2018.2874216

ACM Trans. Arch. Code Optim.

https://arxiv.org/abs/cs.CR/1802.09085
https://doi.org/10.1145/3243734.3243743
http://arxiv.org/abs/1706.03852
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1145/378239.379070
https://doi.org/10.1145/378239.379070
https://doi.org/10.1109/LCA.2018.2874216

24 = A.R. Sahni et.al.

[37] H. Omar, S. K. Haider, L. Ren, M. van Dijk, and O. Khan. 2018. Breaking the Oblivious-Ram Bandwidth Wall. In
IEEE ICCD.

[38] H. Omar and O. Khan. 2020. IRONHIDE: A Secure Multicore that Efficiently Mitigates Microarchitecture State Attacks
for Interactive Applications. In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 111-122.

[39] Moinuddin K. Qureshi. 2019. New Attacks and Defense for Encrypted-address Cache (ACM ISCA ’19). 360-371.

[40] Gururaj Saileshwar and Moinuddin K. Qureshi. 2019. CleanupSpec: An "Undo" Approach to Safe Speculation. In
IEEE/ACM MICRO. 73-86. https://doi.org/10.1145/3352460.3358314

[41] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery, Josep Torrellas, and Christopher W. Fletcher.
2019. MicroScope: Enabling Microarchitectural Replay Attacks. In Proceedings of the 46th International Symposium
on Computer Architecture (Phoenix, Arizona) (ISCA ’19). Association for Computing Machinery, New York, NY, USA,
318-331. https://doi.org/10.1145/3307650.3322228

[42] Yao Wang, Andrew Ferraiuolo, and Edward Suh. 2014. Timing Channel Protection for Memory Controllers. In
Proceedings of the International Conference on High-Performance Computer Architecture (HPCA ’14).

[43] Y. Wang, A. Ferraiuolo, and G. E. Suh. 2014. Timing channel protection for a shared memory controller. In
2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA). 225-236. https:
//doi.org/10.1109/HPCA.2014.6835934

[44] Y. Wang and G. E. Suh. 2012. Efficient Timing Channel Protection for On-Chip Networks. In 2012 IEEE/ACM Sizth
International Symposium on Networks-on-Chip. 142-151. https://doi.org/10.1109/NOCS.2012.24

[45] Hassan M. G. Wassel, Ying Gao, Jason K. Oberg, Ted Huffmire, Ryan Kastner, Frederic T. Chong, and Timothy
Sherwood. 2013. SurfNoC: A Low Latency and Provably Non-interfering Approach to Secure Networks-on-chip.
SIGARCH Comput. Archit. News 41, 3 (June 2013), 583-594. https://doi.org/10.1145/2508148.2485972

[46] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C. C. Miao, J. F. Brown III, and A.
Agarwal. 2007. On-Chip Interconnection Architecture of the Tile Processor. IEEE Micro (2007).

[47] Yu Xue, Jiongming Jiang, Binping Zhao, and Tinghuai Ma. 2018. A self-adaptive artificial bee colony algorithm for
global optimization. Soft Computing (2018).

[48] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and J. Torrellas. 2018. InvisiSpec: Making Speculative
Execution Invisible in the Cache Hierarchy. MICRO (2018).

[49] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In 23rd USENIX Security Symposium (USENIX Security 14). USENIX Association, San Diego, CA, 719-732.
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

[50] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and Christopher W. Fletcher. 2019.
Speculative Taint Tracking (STT): A Comprehensive Protection for Speculatively Accessed Data. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (Columbus, OH, USA) (MICRO ’52).
Association for Computing Machinery, New York, NY, USA, 954-968. https://doi.org/10.1145/3352460.3358274

ACM Trans. Arch. Code Optim.

https://doi.org/10.1145/3352460.3358314
https://doi.org/10.1145/3307650.3322228
https://doi.org/10.1109/HPCA.2014.6835934
https://doi.org/10.1109/HPCA.2014.6835934
https://doi.org/10.1109/NOCS.2012.24
https://doi.org/10.1145/2508148.2485972
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://doi.org/10.1145/3352460.3358274

	Abstract
	1 Introduction
	2 Threat Model
	3 Background and Related Work
	3.1 The MI6 Secure Processor
	3.2 The IRONHIDE Secure Processor

	4 The Adaptive Secure Multicore (ASM)
	4.1 Process-to-Mode Mapping in Security Kernel
	4.2 Architectural Support for Single and Multiple Cluster Mode
	4.3 Hardware and Security Kernel Interactions with the OS

	5 Methodology
	5.1 Secure Processors on Tilera Tile-Gx
	5.2 The ASM Secure Processor on Multicore Simulator
	5.3 Security Kernel and OS Scheduler
	5.4 Benchmarks and Metrics

	6 Security Analysis
	6.1 Timing Attacks on Unprotected Hardware
	6.2 The ASM Protected Multicore Hardware

	7 Performance Evaluation
	7.1 Capture the Shared Cache MPKI Trend
	7.2 Various Secure Processes versus ASM-2 Cluster on 64-Core Tilera
	7.3 The ASM Secure Processors with 128 and 256 Cores

	8 Conclusion
	References

