
1

Secure Remote Attestation with Strong Key
Insulation Guarantees

Deniz Gurevin, Chenglu Jin, Phuong Ha Nguyen, Omer Khan, Marten van Dijk

Abstract—Secure processors with hardware-enforced isolation are crucial for secure cloud computation. However, commercial secure
processors have underestimated the capabilities of attackers and failed to provide secure execution environments capable of protecting
sensitive information against side channel attacks. Remote Attestation protocols based on traditional signature schemes are not secure
under side channel attacks anymore since their secret keys can be leaked. Previously, Key-Insulated Schemes (KIS) have been
introduced to mitigate the damage caused by secret key exposure in cryptosystems by breaking the lifetime of secret keys into
independent sessions. KIS protect the security of all other sessions if any session keys are compromised, however, provide no security
guarantees for a compromised session. We introduce a new cryptographic primitive called One-Time Signature with Secret Key
Exposure (OTS-SKE), which ensures no one can forge a valid signature of a new message or nonce even if all secret session keys are
leaked. OTS-SKE enables us to sign attestation reports securely under a powerful adversary who can observe all digital states in
secure enclaves through side channel attacks. We also minimize the trusted computing base by introducing a secure co-processor that
is only responsible for key generation into the system. Our experiments show that the signing of OTS-SKE is faster than KIS as well as
Elliptic Curve Digital Signature Algorithm (ECDSA) used in Intel SGX.

Index Terms—Remote Attestation, One Time Signatures, Secure Processor Architecture

F

1 INTRODUCTION

Sensitive computations are being increasingly de-
ployed on shared pay-per-use infrastructures that leverage
economies of scale and drive down costs. These shared
services expose software systems and even physical hard-
ware components to emerging security vulnerabilities. This
trend has led to the deployment of trusted execution envi-
ronments (TEE), more recently coined as Confidential Com-
puting platforms. Driven by the security challenges, the
semiconductor industry has adopted a paradigm shift in
security as most major instruction set architectures have
added support for confidential computing. Examples in-
clude Intel SGX, TDX, AMD SEV, and ARM CCA that aim
to enable application isolation technology, enclaves [1], [2],
[3], [4], [5].

In general, the secure processor technology [1], [6], [7],
[8], [9], [10], [11], [12], [13] is based on hardware isolation
and remote attestation (RA) principles. Hardware isolation
allows one to run a code snippet in an enclave that is
isolated from the OS and other enclaves with the goal of
keeping its internal computations private. Besides being
able to execute code in a trusted execution environment
that guarantees privacy, a remote user also needs to be able
to verify whether a computed result originated from the
executed code. RA is based on digital signature schemes
that sign and bind a computed result to the enclave code
that produced it, along with the processor identity. A remote
user needs remote attestation to verify the results produced
by such an enclave. Usually, an asymmetric key crypto-system
is adopted for attestation purposes, so that an attestation can

• D. Gurevin and O. Khan are with the Department of Electrical and
Computer Engineering, University of Connecticut, Storrs, CT 06269,
USA. E-mail: deniz.gurevin, khan@uconn.edu

• C. Jin and M. Dijk are with CWI, Amsterdam, The Netherlands. M.
van Dijk is affiliated with the Vrije Universiteit van Amsterdam and
University of Connecticut. E-mail: chenglu.jin, marten.van.dijk @cwi.nl

• P. H. Nguyen is with eBay, San Jose, CA, USA. E-mail:
phuongha.ntu@gmail.com

be performed using the private key in an enclave isolated
platform, and then verified by a remote user using the
corresponding public key that is known to the verifier.

Unfortunately, hardware isolation that RA relies on for
its security has shown to be elusive. The enclave plat-
form, where the remote attestation is performed, itself may
have vulnerabilities and can possibly be exploited through
its own I/O interactions. With the developing capabilities
of adversaries and side channel attacks, vulnerabilities of
processors executing enclaves continuously keep getting
exploited, leaking private digital state (including private
keys). A recent survey [14] has shown that Intel SGX has
been susceptible to a wide range of attacks [15], [16], [17],
[18], [19]. We may conclude that hardware isolation as is

implemented today for executing enclave code cannot

guarantee privacy. An RA scheme that relies on hardware
isolation to hide its attestation keys will suffer from side
channel attacks, which can leak these secret keys when they
are used inside enclaves. In fact, any internally computed
enclave value may potentially leak, and we cannot make
any solid privacy guarantee. Therefore, we cannot trust the
current state-of-the-art processor technology’s RA.

Key-Insulated Schemes (KIS) have been introduced to
mitigate the damage caused by secret key exposure in
public cryptosystems [20], [21]. KIS breaks the lifetime of
the secret key into multiple sessions and updates it at the
beginning of every session. KIS typically has an architectural
design with a user and a base. The secret keys are held in
shares by the user and its base, and all secret session keys
correspond to one universal public key. Hence, the public
key does not need to be updated frequently, while the secret
session keys are refreshed for each session. A perfectly key-
insulated scheme protects the security of all other sessions
if any session keys are compromised [20]. However, KIS
signature schemes leave a loophole for attackers to exploit,
i.e., the KIS signatures provide no security guarantees for a
compromised session. If a session key is leaked, the attacker

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3290870

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 14:55:48 UTC from IEEE Xplore. Restrictions apply.

2

can use the leaked key to forge valid signatures of any
messages specific to the compromised session. One can use a
synchronization mechanism between the signer and verifier
to synchronize a clock and enforce the expiration of a session
key so that a signature can only be deemed valid within
a time window. Nevertheless, having a synchronization
mechanism still does not completely protect the security of
the leaked session since the attacker can still forge valid
signatures within the time window.

We introduce a new cryptographic protocol, One-Time

Signature with Secret Key Exposure (OTS-SKE) that guar-
antees the security of all sessions, including the compromised
session. In OTS-SKE, each secret session key is unique to
both the message and a fresh nonce sent by the user. Hence,
even if a session key is leaked, it can only be used to sign
the message-nonce pair that the session was scheduled to
sign. Signing a different message or nonce using the leaked
session key will result in a failure in signature verification.
Figure 1 depicts our solution, where a one-directional mem-
ory component is added that ensures one-time use of session
keys. The OTS-SKE scheme signs each user’s message with a
secret session key tailored for the user’s nonce and message.
Unlike KIS, OTS-SKE does not require a synchronization
mechanism between the signer and the user to enforce the
expiration of a session key since the session key automat-
ically expires with each usage. An adversary who is able
to leak a session key cannot use this key to sign another
message to forge a signature since the key does not match
with another message-nonce pair. Consequently, the forged
signature fails during the verification by the user. Therefore,
OTS-SKE severely limits the exposure to the adversary.

Both KIS and OTS-SKE protocols require their private
key generation to be secure, and the master secret key
that is responsible for session private keys should be kept
hidden. Since the enclave processor takes inputs from a
user, it cannot be isolated from the adversary. Therefore,
as shown in Figure 1, we introduce a truly isolated piece of
hardware that is not affected by any adversary – a secure
co-processor that is dedicated to generating secret keys.
This is accomplished by enforcing a unidirectional inter-
action between the KeyGen co-processor and the enclave
processor, and hence the co-processor only generates fresh
secret keys and does not take any inputs. The session keys
in both protocols can be observed by the adversary once
they enter the enclave processor. However, in OTS-SKE, they
are discarded as soon as they are used. This requires the
co-processor to generate new session keys at the rate with
which remote attestations are being requested.

The secure key generation co-processor generates a set of
secret keys skt for each session t, and stores these subkeys in
a special memory component, called One-Directional Memory
(ODM) [22], [23] as highlighted in Figure 1. The signing
enclave then selects a subset skx of these keys based on
a message including the user’s nonce to create a unique
session key that binds to the user and the message. All
secret keys that once leave the one-directional memory are
exposed to the adversary, and they are used for signing the
attestation report. The output skx returned by the ODM is
essentially already a signature due to its unique dependence
on the combination of a message and nonce. Therefore, the
role of the signing function is to combine the subset skx of
subkeys for that session to generate a shorter signature. The

Fig. 1. Overview of the proposed RA protocol. A remote user makes an
attestation request sending a random nonce to the enclave processor.
The KeyGen co-processor generates and transfers session keys using
the unidirectional interface enabled by the One-Directional Memory. The
RA/signing enclave creates a RA signature with session key skx which
is read out as a subset of the key material skt most recently generated
by the KeyGen co-processor; skx corresponds to the user’s nonce
and message. The remote user uses the public key to verify the RA
signature.

signature produced by the signing enclave is verified by the
user using a single universal public key, the message, and its
nonce. To ensure one time use, ODM implements a special
mechanism for the used and unused session keys: after read-
ing a subset of the subkeys chosen by the enclave processor
from the one-directional memory, all subkeys of that session
are automatically erased. This way, the unused session keys
are not exposed to the adversary. However, even though the
used session keys are exposed, the adversary is unable to
forge another valid signature since these keys are unique to
each usage.

In this paper, we make a key observation that KIS is
not able to protect remote attestations against impersonation
attacks that involve an adversary that leaks the session keys
and use them to forge signatures. We introduce the OTS-

SKE cryptographic primitive that improves security over

KIS by protecting against an adversary who is capable

of leaking all current and past secret session keys and

launching signature forgery attacks using them. Building
upon the proposed OTS-SKE construction, we propose a
remote attestation scheme and demonstrate its effectiveness
and performance compared to the KIS-based remote attes-
tation scheme for secure processors. We also compare the
performance of the OTS-SKE and KIS schemes against El-
liptic Curve Digital Signature Algorithm (ECDSA) deployed
in existing commercial secure processors. Our evaluation
shows that the performance of OTS-SKE is constrained by
the rate of generating private keys. We have implemented
the key generation on an Intel machine, as well as an area
and power-optimized ARM processor. The key generation
on the secure co-processor executes in parallel with the sign-
ing. Therefore, the performance overhead of the proposed
protocol can maintain high throughput if the key generation
processor keeps up with the expected signing rate.

1.1 Paper Outline
In Section 2, we give an overview of the remote attestation
protocol implemented in commercial secure processor ar-
chitectures, and their shortcomings in the presence of side-
channel attacks. Motivated by these security challenges, we
define a strong adversary that is able to leak secret keys.
Section 3 introduces a baseline system implementation of
the KIS-based RA protocol for secure processor architectures
and discusses its security challenges. Section 4 extends KIS

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3290870

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 14:55:48 UTC from IEEE Xplore. Restrictions apply.

3

and introduces the OTS-SKE protocol for secure processor
architectures that is secure in the presence of the adversary.
Finally, Section 5 evaluates the performance of the RA
protocols.

2 MOTIVATION AND ADVERSARIAL MODEL
Today’s secure processors from Intel and AMD support
authentication with a remote user [2], [19]. For instance, in
Intel SGX the RA flow starts with a remote user sending an
attestation request, with a nonce to guarantee freshness, to
the SGX platform. The SGX application receives this request
and forwards it to its application enclave, which generates a
local attestation report that includes the enclave’s measure-
ment and the nonce. The Quoting Enclave (QE) then verifies
the local attestation and signs it with a secret attestation key
that is provided by Intel. This signed report is called a Quote
and can then be verified by the remote user using the public
key. Intel SGX uses an ECDSA-based attestation, which
allows third parties to build their own non-Intel attestation
infrastructure. ECDSA uses 256-bit Elliptic Curve secret and
public key pairs.

In all commercial secure processors, remote attestation
relies on the usage of a single private signing key that is the
root of trust. To secure the storage and use of these keys, the
secure processors rely on hardware isolation principles and
access control mechanisms. While theoretically intact, these
hardware isolation primitives are not sufficient to prevent
private data from leaking through side channels, i.e., other
sources of information that can still be observed and used
by a malicious adversary to extract sensitive information.
In fact, in recent years, it has been shown that commercial
secure processors are vulnerable against a wide range of
side channel attacks [14], [17], [18], [19]. We may conclude

that the private keys that are used for attestations leak

due to side channel attacks. We can no longer only rely on
hardware isolation for the maintenance of the private keys.

In order to provide a secure remote attestation protocol
in secure processor architectures, we have to consider an
adversary with all known and unknown side-channel attack
capabilities. We assume an adversary that can observe and
leak all digital secrets in the enclave processor where the
RA enclave resides, including the secret signing keys for
attestation. In other words, we do not trust the confidential
computing offered by secure processor architectures as se-
cret values inside enclaves leak through side channels. On
the other hand, we trust the integrity of the code executed
inside the enclave, i.e., we assume that the enclave processor
keeps on functioning according to its specification which
includes under which conditions (verified by hardware
checks) an executing process (OS or enclave code) can
access or manipulate data flow. Therefore, we consider a
passive adversary that cannot tamper with computations
in the processor but can observe them. Let us consider an
adversary that

• can compromise and alter the OS, run its own en-
clave code, and can execute or interact with instanti-
ations of the RA enclave,

• can observe all digital state of the enclave processor,
which includes all intermediate digital values com-
puted by the RA enclave as well as all digital storage
together with register values, permanent storage,
and fused (endorsement) keys,

• cannot tamper with the enclave processor’s function-
ing in that its specification cannot be circumvented,
in particular, the adversary is not physically present
or has inserted hardware Trojans (as a consequence
the adversary cannot circumvent the enclave proces-
sor’s specified hardware checks in order to tamper
with values computed inside the RA enclave or
stored in the on-chip digital storage),

• cannot tamper with or observe the secret computa-
tions within the physically isolated key generation
co-processor,

• and cannot tamper with or observe the stored values
in the one-directional memory before they leave the
one-directional memory.

These capabilities give the adversary the opportunity to
steal digital keys and perform impersonation attacks. We
argue that one can only achieve secure remote attestation if
we can design a protocol that is intact in the presence of the
proposed adversary.

3 KIS-BASED REMOTE ATTESTATION

In order to mitigate secret key exposure, Key Insulated
Schemes (KIS) have been introduced in literature [20], [21].
KIS implements a public cryptosystem by generating a
public key along with a master secret key which is stored
on a secure device. The lifetime of the secret key is divided
into distinct periods of time, called sessions. A secret key for
each session is generated from the master secret key, and
then used for signing on an insecure device where the key
exposure may occur. At the end of the session, the secret
session key is discarded and replaced with a new session
key. This makes it possible to refresh a potentially leaked
secret key periodically, without the need to replace the
public key. Because each secret session key is independent
of one another, KIS reduces the damage caused by secret
session key leakage.

In the remainder of this section, we describe the KIS-
based RA in further detail. We start by giving the definition
of a Key-Insulated Signature Scheme based on the scheme
introduced in [21].

A KIS S consists of three procedures1

S = (KEYGEN, SIGN, VERIFY) :

Key generation. Based on a security parameters �, KEY-
GEN generates a public key pk together with session se-
cret key ski and auxiliary variables auxi for each session
i 2 {0, . . . , N � 1}. We have

(pk, {ski, auxi}N�1
i=0) KEYGEN(�).

1. A typical KIS signature scheme consists of five procedures: key
generation, device (base) key update, user key update, signing, and
verification [21]. Because KIS schemes store and manage the secret
keys of the device (base) and the user separately, they have separate
procedures to generate the initial secret keys (the key generation
procedure in [21]) and to update the device key and the user key. For
the simplicity of our discussion and comparison with our scheme, we
merge the device/user key update procedures into the key generation
procedure in our discussion, such that the definition of KIS will be
consistent with the one we propose for OTS-SKE.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3290870

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 14:55:48 UTC from IEEE Xplore. Restrictions apply.

4

Signing. SIGN takes as input the session id i with session
secret key ski and auxiliary variable auxi. Together with a
message M 2 {0, 1}n as input SIGN produces a signature �,

� SIGN(ski, auxi;M).

Verification. VERIFY outputs

{true, false} VERIFY(pk, i;�,M)

for a signed message (�,M) for session id i. Notice that the
same public key pk is used for all sessions.

3.1 Design Requirements
Secret Key Generation. KIS requires its key generation to
be on a physically secure device, i.e., the future/unused
session keys should not be exposed to the adversary. Since
the enclave processor where the RA report is signed can-
not be trusted, the key generation must be offloaded to a
completely isolated hardware that is only responsible for
refreshing session keys. It is important to minimize the
attack surface for key generation by removing any user-
level communication channels. This is done by having a
physically isolated key generation processor, that is sepa-
rated from the enclave processor. The physically isolated
co-processor generates secret signing keys at runtime that
are concurrently used by the remote attestation enclave.
Local Attestation. In practice, an application enclave first
uses local attestation to a quoting enclave that is responsible
for the remote attestation protocol with the client. For this
reason, we need to rely on secure local attestation in the
presence of the adversary who can steal any master key of
the local attestation mechanism and use this to remotely
circumvent the application enclave and impersonate its
identity. One solution is to implement local attestation as
a physical authentic channel between enclaves. Here, the
channel is hardware isolated such that the messages trans-
mitted over the channel cannot be tampered with, and the
source/authenticity of messages cannot be modified [11].
As another option, adopted in this paper, the application
and remote attestation enclaves can be combined together
in one single enclave such that a physical authenticated
channel is inherently present. Here, each application enclave
implements its own remote attestation. This discards the use
of a quoting enclave (with higher permissions as in Intel
SGX) which implements remote attestation for all applica-
tion enclaves. Instead, each application enclave uses its own
remote attestation code as a wrapper around the applica-
tion enclave itself. In what follows, RA enclave should be
interpreted as the application enclave with its own remote
attestation wrapper code.

3.2 KIS-based RA Protocol
A remote attestation wrapper (RAWrapper) is merged with
the application enclave (AppEnc). We want to show that
AppEnc can have its computed result signed by RAWrapper
for a remote user. Figure 2 depicts the solution. There are
three main functions for the KIS scheme: KEYGEN, SIGN
and VERIFY. The secure isolated co-processor implements
KEYGEN to generate a sequence of session keys. The SIGN
functionality is implemented by the RAWrapper, and the

Fig. 2. KIS-based RA protocol. The remote user starts the RA process
by sending a random nonce nonce. The AppEnc forwards this request
along with its computed result R to RAWrapper. In order to retrieve a
signing key, RAWrapper computes a message M that takes the hash
of the AppEnc’s measurement along with the result R and the user’s
nonce. RAWrapper uses the current session key that is provided by
the Secure Coprocessor to create a signature and sends it back to the
remote user, who can then verify the signature using the public key.

remote user uses VERIFY to verify the result sent by the
RAWrapper.

During the initialization phase of the RA protocol, the
secure key generation co-processor bootstraps and uses
KEYGEN to generate a public key pk and initializes the
default state of the session counter i to 0. The public key
must bind to the identity of the processor.2 During the
initialization of RAWrapper it takes this pk from the key
generation co-processor and stores precomputed values that
it can use during runtime for signing. The pk is known by
the remote user and used during attestation verification.
After the initialization, the essential components of the RA
protocol are set up.

Algorithm 1 describes the signature generation process
for the RA protocol. KEYGENPROCESSOR is responsible for
the key generation module while RAWRAPPER(.) handles
the RA requests from the remote user and is responsible for
signature generation.
Key Generation. In the secure coprocessor, if the session
key has expired (i.e., the time elapsed since the last session t
is greater than the predefined session period �T), then the
session counter i is incremented and published (Line 3–4).
The coprocessor then starts pregenerating the next session’s
secret key ski+1 along with the auxiliary information
auxi+1 and sends the updated key to the RAWrapper (Line
5–6).

Signing. The signing is performed by the RAWrapper
which resides in the insecure enclave processor. RA starts
with RAWrapper receiving a signing request from the
remote user along with its random nonce. The RAWrapper
receives a result R from an AppEnc and combines AppEnc’s
measurement MRapp with R and nonce to create a unique
message, M = HASH(MRapp, R, nonce) (Line 11–13).
RAWrapper receives the current session secret key and its

2. During bootstrapping, this public key should leave the secure co-
processor in a one-directional way and must be released to the clients
securely. In other words, no adversary should be present during the
initialization phase. In order to achieve this, the initialization mode of
KEYGEN can for example be done on the manufacturer side (Intel) and
the manufacturer can then certify the public key and serve as a third
party that knows that the processor is associated with the specific public
key.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3290870

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 14:55:48 UTC from IEEE Xplore. Restrictions apply.

5

Algorithm 1 KIS-based Remote Attestation
We assume a bilinear-map based KIS S =
(KEYGEN, SIGN, VERIFY). KEYGEN is implemented in
a secure isolated co-processor and SIGN is performed in
the RAWrapper. In the initialization phase, pk is generated
and published, and the session counter variable i = 0 is
initialized in the isolated secure co-processor. sk is updated
periodically, i.e. when the time elapsed since the last session
(t) is greater than the pre-defined key renewal period (�T).

1: procedure KEYGENPROCESSOR
2: if t � �T then

3: i += 1
4: Publish i
5: Send (ski, auxi) to RAWrapper
6: (ski+1, auxi+1) KEYGEN(�)
7: end if

8: end procedure

9: procedure RAWRAPPER
10: while true do

11: Pop a signing request from the queue
12: (R,nonce,RemoteUser)
13: M = HASH(MRapp, R, nonce)
14: (ski, auxi, i) KEYGENPROCESSOR
15: key (ski, auxi)
16: � = SIGN(key;M)
17: S (i,�,MRapp, R)
18: send S to RemoteUser
19: end while

20: end procedure

Algorithm 2 Request and Verification
We assume the remote user knows pk (as part of a
certificate issued by a trusted CA) of the KIS S =
(KEYGEN, SIGN, VERIFY) used by AppEnc with RAWrap-
per.

1: procedure REQUESTANDVERIFY
2: send random nonce to AppEnc
3: receive S from AppEnc
4: (i,�,MRapp, R) S
5: M = HASH(MRapp, R, nonce)
6: return VERIFY(pk, i;�,M)
7: end procedure

session ID from the KEYGENPROCESSOR, and uses it to
sign M (Line 14–16). Finally, RAWrapper sends the session
counter i and the resulting signature S consisting of �,
measurement of AppEnc, and the result R to RemoteUser
(Line 17–18).

Verification. On the remote user’s side (explained in Algo-
rithm 2), after selecting a nonce and making an RA request
to RAWrapper with it, the user receives the created signature
S = (i,�0,MRapp, R) for the i-th session (Line 2–4). After
computing M (Line 5), it can verify the validity of its
signature using the public key pk and session counter3 i
(Line 6).

3. This includes verifying whether counter i corresponds to a �T
time window not too far in the past.

3.3 Shortcomings of KIS-based RA Protocol
If the KIS-based RA protocol fails to prevent an adversary
from stealing a session key, then the adversary can forge a
valid signature within the same session. Because a single
secret key is used multiple times for different users in a
session (i.e., a time window), the key is not unique to the
user’s message. Therefore, an adversary who leaks the secret
key in a session, can create his own message and sign it
to create a valid signature for that session. To limit the
adversary’s capability to leak the secret key, the session
length in KIS can be shortened to enforce the expiration
of a session key more frequently to limit the damage of a
compromised session. However, this still requires a reliable
synchronization mechanism implemented between the user
and processor to ensure freshness of the session key.

In the next section, we introduce One-time Signature
with Secret Key Exposure (OTS-SKE) to make the remote at-
testation resilient to signature forgery attacks. The objective
is to strengthen the security of KIS-based remote attestation
in secure processors.

4 OTS-SKE REMOTE ATTESTATION PROTOCOL
In the proposed OTS-SKE scheme, an attacker cannot forge
a valid signature of a new message for any session even
if all session keys are leaked, while key-insulated schemes
provide no security for the compromised sessions. Given
this, the next sections describe the definition of OTS-SKE,
the construction and implementation of this new signature
scheme, and how it is contextualized in state-of-the-art
secure processor architectures.

4.1 OTS Scheme with Secret Key Exposure
The idea is to have (1) one (universal) public key that can
be used to verify all session signatures, (2) each session
generates at most one signature with its own secret session
key that is unique to a random nonce sent by the remote
user and the message to be signed, and (3) this unique
session key is exposed to the adversary for free. Since the
session key is unique to the message, the key cannot be
used to sign any other messages. Also, the key cannot be
used to sign messages for other users due to the use of a
random nonce.

An OTS-SKE scheme S consists of three procedures

S = (KEYGEN, SIGN, VERIFY) :

Key generation. Based on a security parameters �, KEYGEN
generates a public key pk together with session secret keys

ski = {ski,j}q�1
j=0

and auxiliary variables auxi for each session i 2 {0, . . . , N�
1} and a-priori fixed parameter q. We have

(pk, {ski, auxi}N�1
i=0) KEYGEN(�).

Signing. SIGN takes as input the session id i with session
secret key ski and auxiliary variable auxi. Together with a
message M 2 {0, 1}n as input SIGN produces a signature �,

� SIGN(ski, auxi;M).

The computation of SIGN is split in three steps:

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3290870

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 14:55:48 UTC from IEEE Xplore. Restrictions apply.

6

1) We have a keyed pseudo random permutation
PRP(key;x) which, for each key, is a bijective map-
ping from strings x 2 {0, 1}n to {0, 1}n. We also
have an injective mapping � from {0, 1}n to subsets
of {0, . . . , q � 1} (here, q � n). SIGN first selects a
random key and computes the subset

I = �(PRP(key;M)) ✓ {0, . . . , q � 1}.

2) SIGN extracts a corresponding subset of the i-th
session secret key:

ski,I = {ski,j}j2I .

3) SIGN uses ski,I together with auxi and input mes-
sage M to produce a signature �0. In order to make
the dependence on the subset of the session key
explicit, we write

�0 SIGN’(ski,I , auxi;M).

SIGN returns � = (�0, key).

Verification. VERIFY outputs

{true, false} VERIFY(pk, i;�,M)

for a signed message (�,M) for session id i. Notice that the
same public key pk is used for all sessions.

4.1.1 Correctness and Security Definition

We define correctness and security of the OTS-SKE scheme
even if the adversary has the knowledge of subsets of
session keys.

Correctness. OTS-SKE scheme S is correct if for all �
SIGN(ski, auxi;M) we have true VERIFY(pk, i;�,M).

Security. Even if an adversary has knowledge of subsets of
session keys

{ski,Ii}N�1
i=0

together with auxiliary information {auxi}N�1
i=0 , the adver-

sary cannot impersonate a signature for some session with
id i⇤ for a new message that has not yet been signed in
session i⇤. This security notion is formalized by GameOTS-
SKE for S as the following security game:

• Setup: The challenger runs KEYGEN which returns

(pk, {{ski,j}q�1
j=0, auxi}N�1

i=0).

The challenger gives pk as well as {auxi}N�1
i=0 to the

adversary.
• Query: The adversary adaptively issues a sequence

of messages Mi at most one message for each session
id i. The challenger computes

Ii = �(PRP(keyi;Mi)) and ski,Ii = {ski,j}j2Ii

for random keyi.
The challenger gives the extracted information ski,Ii
with keyi to the adversary (as soon as Mi is re-
ceived).
Notice that the adversary can use this information
to sign message Mi for session i by applying SIGN’.
This may lead to multiple signatures for Mi (since
SIGN’ may use fresh randomness for each signature

generation). However, no signatures for other mes-
sages 6= Mi for session id i can be forged if the
following Guess does not succeed.

• Guess: The adversary selects a session number i⇤ 2
{0, . . . , N � 1} which refers to the session for which
the adversary will want to forge a signature: The ad-
versary outputs a signed message (�,M⇤) for session
i⇤ such that M⇤ 6= Mi⇤

The adversary wins the game if the signature verifies,
that is,

true VERIFY(pk, i⇤;�,M⇤).

In this game, the adversary, denoted by A, is called an OTS-
SKE-EUF-CMA (OTS-SKE Existential UnForgeability under
Chosen Message Attack) adversary.

If A wins GameOTS-SKE with probability � ✏ in time
 T , then we call A a (T,QP , ✏)-OTS-SKE adversary for S ,
where QP is the maximum number of queries allowed to
be made by A to a PRP oracle in GameOTS-SKE. We say
scheme S is (T,QP , ✏)-secure against OTS-SKE-EUF-CMA
attacks if no (T,QP , ✏)-OTS-SKE adversary exists.

4.1.2 Bilinear-Map based OTS-SKE Construction

We introduce a new bilinear-map based construction that
realizes a correct, secure OTS-SKE scheme S . We begin with
introducing the following definitions:

Bilinear map. Let G be a bilinear group of prime order p
and g be a generator of G. Here, size p of G is determined
(by some functional relation) by the security parameter � of
the to-be-explained constructions. Let e : G ⇥ G ! G1 be a
bilinear map, i.e., we have the following properties

• Bilinear : For all x, y 2 G and all a, b 2 Z,

e(xa, yb) = e(x, y)ab.

• Non-degenerate : e(g, g) 6= 1.

For practical usage the bilinear map should be efficiently
computable. The above properties can be realized by the
modified Weil pairing based on supersingular curves.

OTS-SKE scheme. Below we describe our OTS-SKE scheme

S = (KEYGEN, SIGN, VERIFY) :

Key generation. We use parameters q = tn and represent
index tj + b 2 {0, . . . , q � 1} as the pair (j, b). KEYGEN sets
parameters, computes the public key, and all secret keys

(pk, {{ski,j,b}n�1,t�1
j=0,b=0 , auxi}N�1

i=0) KEYGEN(�)

as follows:

• (p,G,G1, e, g, g2) IG(1�) where � is the security
parameter and algorithm IG generates a suitable
mathematical structure for our signature scheme. g
and g2 are generators of G and G1, respectively.

• Randomly generate ↵ 2 Z⇤
p and set g1 = g↵. Define

F (i) = gi1h where h is a random number chosen
from G. Note that F : Zp ! G.

• Generate N secret keys {ski}N�1
i=0 with auxiliary in-

formation {auxi}N�1
i=0 as follows:

ski = {ski,j,b}n�1,t�1
j=0,b=0

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3290870

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 14:55:48 UTC from IEEE Xplore. Restrictions apply.

7

with

ski,j,b = g↵2 F (itn + bntj)rivi,j and auxi = gri , (1)

where ri is a random number chosen from Zp

and vi,j = g�i,j , where �i,j are random numbers
from Zp such that

Pn�1
j=0 �i,j = 0, or equivalently,Qn�1

j=0 vi,j = 1.
• Parameters pk = (p,G,G1, e, g, g1, g2, h) are made

public and secret keys {ski}N�1
i=0 are kept private.

The auxiliary information {auxi}N�1
i=0 is kept at the

signer but is not kept secret (it can be accessed by
anyone who wants to). Random numbers {ri} and
{vi,j} are deleted.

We notice that KeyGen can be implemented in KEY-
GENPROCESSOR using an update rule as in [24] to create
a continuous stream of session keys.

A deviation from [24] is the secret sharing mechanism
based on the {vi,j}, which role will become clear in the
security analysis and allows us to achieve resistance against
OTS-SKE-EUF-CMA attacks.

Signing. We compute B =
Pn�1

j=0 bjtj with 0  bj < t as
the pseudo random permutation output B = PRP(key;M)
for a random key. We define subset �(B) = {tj + bj}n�1

j=0 of
{0, . . . , q � 1} for q = tn. We represent its elements by the
pairs (j, bj). We produce

�0 SIGN’({ski,j,bj}n�1
j=0 , auxi;M),

which signs a message M 2 G1 as follows:
• Compute

ski =
n�1Y

j=0

ski,j,bj =
n�1Y

j=0

g↵2 F (itn + bjnt
j)rivi,j

= gn↵2

0

@
n�1Y

j=0

F (itn + bjnt
j)

1

A
ri

= gn↵2 (git
n+B

1 h)nri = (g↵2 F (itn +B)ri)n.

• Return signature � = (�0, key) for

�0 = (y, z)

= (auxi, ski)

= (gri , (g↵2 F (itn +B)ri)n).

Verification. VERIFY(pk, i;�,M) with � = (�0, key) verifies
signature �0 = (y, z) for message M , where �0 is generated
during the i-th session:

• Compute B = PRP(key;M).
• The signature verifies if and only if

e(g, z) = e(g1, g
n
2)⇥ e(y, (gk1h)

n) with k = itn +B.

Correctness. The correctness of the scheme follows from
g1 = g↵, y = gri , z = (g↵2 F (k)ri)n, and

e(g1, g
n
2)⇥ e(y, (gk1h)

n)

= e(g↵, gn2)⇥ e(gri , (gk1h)
n) = e(g↵, g2)

n ⇥ e(gri , gk1h)
n

= (e(g↵, g2)⇥ e(gri , gk1h))
n = (e(g, g↵2)⇥ e(g, (gk1h)

ri))n

= (e(g, g↵2 (g
k
1h)

ri))n = (e(g, g↵2 F (k)ri))n

= e(g, (g↵2 F (k)ri)n) = e(g, z).

Security. For any (T,QP , ✏)-OTS-SKE adversary, for S
with N sessions, there exists an algorithm that solves
CDHP (Computational Diffie-Helman Problem) in G (ellip-
tic curve) in expected time  T (QP + 1)N/✏. The details
of the security proof are provided as an appendix in the
supplementary material.

4.2 Design Requirements
Based on our adversarial setting, we have the following
requirement: we have to prevent the leakage of future, past
and current secret session keys. Leakage of future secret
session keys can be prevented by using an isolated secure
key generation co-processor that is also required by KIS
as described in Section 3.1. However, additionally, the past
keys must be protected to prevent impersonation attacks by
an adversary who is able to observe session keys once they
enter the enclave processor. Hence, the signing key must be
used only once, and the remote user must be able to verify its
freshness by generating a session key that is unique based
on her random nonce.

This is achieved by generating and storing in One-
Directional Memory (ODM) a session key as a sequence of
secret subkeys by using the strongly isolated key generation
processor. Based on a random nonce received from the
remote client (for proving freshness) and based on the to
be signed message, the RA enclave/wrapper computes a
nonce which it forwards to the ODM. The ODM combines
and maps the nonce and the measurement of the RA enclave
(includes the application code) to a subset of subkeys which
are read and given to the RA enclave. By its specification,
the ODM erases the rest of the sequence. The RA enclave
combines the selected subset and creates a single unique
session key, which is used by the RA enclave for signing.
The adversary can observe this subset of keys, but despite
leaking them, he cannot forge a signature since in our
construction the selected subset of subkeys returned by
the ODM already represents an unforgeable binding to the
measurement of the RA enclave, the message to be signed,
and the random nonce from the remote client.

4.3 Proposed Remote Attestation Protocol
The OTS-SKE based RA protocol follows the same building
blocks as the KIS-based RA protocol described in Section
3.2. However, the one-directional memory is included as
a buffer between the secure co-processor and the enclave
processor for providing the secret session keys as shown in
Figure 3. Different from KIS, now the secure co-processor
generates and stores multiple subkeys per session in the
ODM. Upon the RAWrapper’s read request with its message
x that includes the remote user’s nonce, only a subset of
secret session keys are selected corresponding to x and the
rest are automatically erased.

The initialization phase follows the same procedure
of KIS-based RA described in Section 3.2 where pk is
generated and published, and the session counter i is
initialized as 0. Algorithm 3 describes the working phase of
the RA protocol. EODMEM(.) is implemented as an enclave
call that handles the ODM’s read requests and implements
its access control mechanism.

Key Generation. KEYGENPROCESSOR increments the ses-
sion counter i and generates the complete set of secret keys

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3290870

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 14:55:48 UTC from IEEE Xplore. Restrictions apply.

8

Algorithm 3 OTS-SKE based Remote Attestation
We assume a OTP-SKE-EUF-CMA secure bilinear-map
based OTS-SKE scheme S = (KEYGEN, SIGN, VERIFY)
where SIGN is defined by procedure SIGN’. KEYGEN is
implemented in a secure isolated co-processor and SIGN is
performed in the RAWrapper.

1: procedure KEYGENPROCESSOR
2: i = i + 1
3: key = ({ski,j,b}n�1,t�1

j=0,b=0 , auxi) KEYGEN(�)
4: Publish {auxi, i}
5: Store ski = {ski,j,b}n�1,t�1

j=0,b=0 in OD memory Mem
6: end procedure

7: procedure EODMEM(x)
8: Compute I = �(HASH(x,MRcaller))
9: Read y = (Memj)j2I

10: Erase (Memj)j /2I

11: return y
12: end procedure

13: procedure RAWRAPPER
14: while true do

15: Pop a signing request from the queue
16: (R,RemoteUser,nonce)
17: M = HASH(MRapp, R)
18: x = HASH(nonce,M)
19: {auxi, i} KEYGENPROCESSOR
20: {keyI} EODMEM(x)
21: k Combine keyI , auxi

22: �0 = SIGN’(k;M)
23: S (i,�0,MRapp, R)
24: send S to RemoteUser
25: end while

26: end procedure

ski along with the auxiliary information auxi (Line 2–3). It
publishes auxi with the session i, and it stores the set of sub-
keys that constitute session secret key ski = {ski,j,b}n�1,t�1

j=0,b=0
in the one-directional memory (Line 4–5).

EODMEM(.) is implemented as an ECall (enclave call)
that handles the read requests for the one-directional mem-
ory. It computes the hash of input x, concatenated with the
caller enclave’s measurement MRcaller to compute the set
I = �(HASH(x,MRcaller)) to extract a subset of keys from
memory that is related to I (Line 8). Here, we define

PRP(i;M) = HASH(HASH(noncei,M),MRapp),

where noncei is the nonce received from RemoteUser for
session i. Regarded as a function of M a collision resistant
hash function HASH(noncei,M) cannot be distinguished
from a pseudo random permutation with non-negligible
probability. Therefore, we may use this for our PRP and
fit the definition of the OTS-SKE scheme. As soon as the
subset of secret keys y is extracted, the rest of the secret
keys that are not included in subset I are erased from the
one-directional memory, and y is returned to the caller (Line
9–11).

An example of how this process works is demonstrated
in Figure 3. I is generated to map x to n t-ary symbols (t = 3
and n = 4 in the example). This implies that OTS-SKE key
generation produces nt = 12 subkeys in a single session.
The ODM selects exactly one subkey out of t subkeys for

Fig. 3. The one-directional memory (ODM) stores the complete set of
keys for a session i, skj,b where j 2 {0, 1, 2, 3} and b 2 {0, 1, 2}, gener-
ated by the secure key generation co-processor. When the RAWrapper
makes a read request to the one-directional memory by sending its input
x = HASH(nonce,M), ODM extracts a unique subset of keys related to
the input x, and immediately erases the keys that were not included
in the subset. RAWrapper combines this subset of keys and uses it
to create a signature and sends it back to the remote user, who then
verifies the signature using the public key.

each j where j = {0, 1, ..., n� 1}.
Signing. Remote attestation session starts with RAWrapper
receiving a signing request. The RAWrapper receives a result
R from an AppEnc, which needs to be signed for a remote
user. RAWrapper combines AppEnc’s measurement with R
to create a unique message, M = HASH(MRapp, R). After
this, the random nonce, that is received as a part of the RA
request, is used to compute the input x = HASH(nonce,M)
(Line 14–18). Meanwhile, RAWrapper receives the current
session’s auxiliary key along with the session counter i
from KEYGENPROCESSOR. In order to read the subset of
secret keys from the one-directional memory, it makes
the EODMEM(x) call and it reads the secret key subset
that is related to the input x (which is unique to nonce
and the message M) from the one-directional memory.
It then combines this unique subset of secret keys, along
with the auxiliary key auxi to generate the signing key k,
which is used to sign the message M (Line 19–21). Finally,
RAWrapper sends the session counter i and the resulting
signature S consisting of �0, measurement of AppEnc and
the result R to RemoteUser (Line 22–24). The subkeys in the
ODM are overwritten by the secure coprocessor in the next
session.

Verification. On the remote user’s side, after selecting a
nonce and making a RA request to RAWrapper with it, the
user receives the created signature S = (i,�0,MRapp, R) for
the i-th session. The user uses VERIFY to verify the signature
S. If verified, then the remote user knows that R was indeed
created by AppEnc at the enclave processor: The chain of
trust shows that the signature was created by RAWrapper,
which only signs messages M that are a hash of MRapp with
R.

4.4 Security of OTS-SKE based RA Protocol
In OTS-SKE, even if a current session key leaks, it cannot
be used to impersonate a signature for the current session.
OTS-SKE uses one-time signatures, whereas KIS uses a
time window: During the time window, new signatures can
be impersonated, as many as feasibly possible. OTS-SKE
based RA protocol prevents an adversary from forging a

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3290870

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 14:55:48 UTC from IEEE Xplore. Restrictions apply.

9

signature of a malicious result R for a remote user, even
if the adversary leaks all the session keys. This is because
each session key is unique to the user’s message M . If the
adversary observes and leaks the current or a past session’s
secret key, the observed session key will always be unique
to another user’s message (that includes the hash of the
application enclave’s report and the user’s nonce together).
The adversary can create his own message M⇤, however,
the stolen session key will not match the message, and the
forged signature will fail during verification.

Moreover, the adversary cannot learn the unused portion
of the session subkeys in the ODM and use them to forge a
valid signature in that session. Even if the adversary runs
the RAWrapper itself, it only learns at most one subset
of keys {ski,j}j2I and auxi for a session id i, because
once a subset is used for signing, i is incremented. If the
adversary attempts to read the one-directional memory,
the returned subset of keys depends on the adversarial
enclave’s measurement through a hash evaluation (Line 10
in EODMEM). Because of the hash collision resistance, the
adversary cannot use EODMEM to learn a set of subkeys
that fits MRapp. If the adversary observes the message
M as supplied by the remote verifier, then he learns the
related subset of keys of session i and can create other
�0 for the same message M and session id i. However, as
previously explained, he cannot generate a signature for a
new malicious message M⇤. A new malicious message M⇤

corresponds to a different subset of the session key indicated
by a set I⇤.

The security guarantee of the OTS-SKE scheme shows
that the adversary cannot successfully forge a signature for
M⇤. We conclude that under the adversary our scheme
offers secure RA.4

5 IMPLEMENTATION & EVALUATION

In this section, we give the details of our implementation
and performance analysis for our proposed protocol. We
show the timings for key generation, signing, and verifi-
cation phases of our proposed RA attestation.

5.1 Experimental Setup
All experiments are conducted on an Intel Xeon Gold 5218
CPU with 2 sockets, each supporting 16 cores, running at
2.3 GHz and using Ubuntu 18.04 operating system. For
the parallel execution of the key generation module of the
OTS-SKE-based RA protocol, the pthread library and g++
compiler (v 6.4.1) with the -O3 optimization flag are used.

The bilinear map based OTS-SKE scheme is imple-
mented using the open-source MIRACL Multiprecision In-
teger Cryptographic Library5 that includes elliptic curve
cryptography arithmetic. C++ language is used for our
implementation, along with fast in-line assembly language

4. Note that, in our scheme, even if signing goes wrong due to fault
injections [25], [26], the security of our RA scheme is not broken.
Because there are no secrets used in the signing procedure, injecting
faults in the signing procedure cannot leak any extra information.
The remote user will reject a wrong signature, so one just needs to
sign again with a new session key from the co-processor. However,
fault injections may hurt the correctness of results R produced by the
AppEnc, therefore the AppEnc needs to use some form of fault-tolerant
computing if fault injection attacks are present.

5. https://github.com/miracl/MIRACL

TABLE 1
Runtime Cost Analysis (in milliseconds) per Remote Attestation (RA)
session of the bilinear map based OTS-SKE scheme in Comparison
with the KIS-based RA and the ECDSA used in Intel SGX (Average

over 100 runs). In the bilinear map based scheme we use t = 4 (such
that (t/ log2 t) · 64 = 128 and 128/ log2 t = 64). The classical security
of both schemes is 256 bits and a message signed during a RA session
has 128 bits. The overhead of key generation that runs on the secure

co-processor has been reported using ARM and Intel processors.

OTS-SKE KIS ECDSA

Key Generation
1153.4 (ARM) 74.2 (ARM) 21.235.6 (Intel) 26.6 (Intel)

Signing 3.5 66.9 22.5
Verification 69.3 70.2 78.5

alternatives for most performance-critical parts of our code
to speed up the performance, such as modular multiplica-
tion and exponentiation.

In order to evaluate the performance of the key gener-
ation of the OTS-SKE and KIS-based RA protocols that is
performed on the proposed secure co-processor, we have
additionally used with a slower in-order ARM architecture
simulation with 64KB L1-I and L1-D cache, L1-I associativity
of 2 and L1-D associativity of 4 using gem5 and compared its
performance against the Intel key generation co-processor.

5.2 Runtime Cost Comparison
Table 1 shows the performance comparison of the KIS,
OTS-SKE-based RA protocols with the standard Elliptic
Curve Digital Signature Algorithm (ECDSA) based attes-
tation used by Intel SGX. Both schemes are implemented
with 256-bit security and the message signed during an RA
session has 128 bits. The nonce used by the remote user
has 64 bits. Note that the reported results correspond to
a single session for OTS-SKE and KIS. For OTS-SKE, 64-
bit nonce is represented by n = 32 t-ary symbols, where
t = 4 (64 = n log2 t). This implies that OTS-SKE key
generation produces nt = 128 subkeys in a single session.
On the other hand, KIS produces a single key per session.
ECDSA does not use sessions and pre-generates a single
secret key, hence, we report the initial key generation time.
The subkey generation of OTS-SKE has been parallelized
using 32 threads on the Intel machine. However, on the in-
order ARM machine, a serial key generation module has
been used.
Key Generation. As it can seen from Table 1, with a se-
rialized implementation of key generation in OTS-SKE (as
used in the in-order ARM co-processor), the key generation
cost of OTS-SKE (1.1 seconds) is significantly higher than
the baselines, KIS and ECDSA (15⇥ and 54⇥ higher, re-
spectively). This is because OTS-SKE generates 128 subkeys
per session to create a unique secret signing key for each
user. However, the generation of these subkeys can be
significantly reduced by exploiting extreme parallelism. A
parallel implementation on the faster Intel key generation
co-processor using 32 threads has reduced this cost to 35.6
milliseconds (ms), which is comparable with the baselines.

Signing. In OTS-SKE, the signing process is completed by
computing a string x based on the user’s received random
nonce and the message M and extracting a set of secret keys
unique to x. For this reason, the generated unique secret
session key can be directly forwarded to the user, rather than

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3290870

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 14:55:48 UTC from IEEE Xplore. Restrictions apply.

10

Algorithm 4 Bilinear-map based OTS-SKE
The implementation of the Key Generation and Signing
modules of the OTP-SKE-EUF-CMA secure bilinear-map
based OTS-SKE scheme. Algorithm IG generates a suitable
mathematical structure for our signature scheme and � is
the security parameter. We assume a Pseudo Random Num-
ber Generator (PRNG) bootstrapped from an initial seed
extracted from a True Random Number Generator (TRNG)
to generate random bit strings.

1: procedure KEYGEN(session i)
2: pk (p,G,G1, e, g, g1, g2, h)
3: ri PRNG
4: auxi gri

5: l = g↵2 h
ri

6: k = gri1
7: for j 0 to n� 1 do

8: Generate Vj .
Qn�1

j=0 Vj = 1
9: m = lVj

10: for b 0 to t� 1 do

11: ski,j,b = m(k(it
n+bntj))

12: end for

13: end for

14: end procedure

1: procedure SIGN(session i, nonce, M)
2: Initialize skprod 0
3: B = PRP(nonce;M) . B =

Pn�1
j=0 bjtj

4: for j 0 to n� 1 do

5: skprod = skprod · ski,j,bj
6: end for

7: �0 (auxi, skprod)
8: return � (�0, nonce)
9: end procedure

performing an actual signing operation on message M . This
reduces the computational overhead of OTS-SKE’s signing
(3.5 ms) since it only requires the selection and combination
of a subset of keys. This allows OTS-SKE to avoid complex
and costly elliptic curve operations during signing such as
pairings. On the other hand, during the signing, KIS requires
pairing on the elliptic curve which approximately takes 35
ms. This operation is repeated 3 times during signing. By
parallelizing 2 pairings, we have reduced the signing cost
of KIS from 105 ms to 66.9 ms, which is still significantly
slower than the OTS-SKE. This can potentially become the
main performance bottleneck in the runtime. Overall, OTS-
SKE achieves 19⇥ and 6.4⇥ speedup over KIS and ECDSA,
respectively.

Verification. This step is performed offline on the remote
user side and therefore, its performance is not critical for the
throughput of the RA protocol. However, as it can be seen
from Table 1, the performance OTS-SKE, KIS and ECDSA-
based RA protocols are comparable to each other during
verification. As discussed in Section 4.1.2 During verifica-
tion, pairing operation on the elliptic curve is performed
3 times. In our implementation, we have performed these
3 pairings in parallel, with takes 49.4 ms in total. Because
of this, the overall cost of verification is high (70 ms on
average for OTS-SKE and KIS), while the ECDSA takes
74.2 ms for verification. The performance of the verification

TABLE 2
Breakdown of Key Generation and Signing Modules of OTS-SKE given

in Algorithm 4 (in milliseconds).

Operation Time Repeats Total Time

Key

Generation

ri 0.005 1 0.005
auxi 5.35 1 5.35
l 7.34 1 7.34
k 3.45 1 3.45
Vj 0.11 32 3.52
m 0.34 32 10.88

ski,j,b 4.01 128 513.28
Total 543.8

Total (Parallel) 35.5

Signing

B 0.85 1 0.85
skprod 0.083 32 2.65
Total 3.5

process primarily depends on the overhead of the pairing
operation (approximately 35 ms) being performed on the
elliptic curve.

5.3 Implementation and Runtime Cost Analysis of OTS-
SKE based RA
Since the key generation and signing modules of the RA pro-
tocol are performed on the processor side, their performance
is more critical compared to the verification module. For this
reason, we provide the pseudocode for the implementation
of the KEYGEN and SIGN modules of the bilinear-map based
OTS-SKE in Algorithm 4, which have been introduced in
Section 4.1.2, and show a breakdown of the runtime cost of
each operation in Table 2. Note that, for the key generation,
we only provide the breakdown of the secret key generation
since the public key is generated once in the initialization
phase, and hence, is not performed in run-time.

In KEYGEN, the runtime cost of the pre-generated vari-
ables ri, auxi, l and k to generate secret keys ski,j,b are
reported in Table 2, with a total runtime cost of 16 ms. Vj

and m are generated n = 32 times and ski,j,b is generated
nt = 128 times, resulting in a total of 527 ms runtime cost
without parallelization. In our implementation, we have
parallelized the key generation loop (Line 7) given in Al-
gorithm 4, and therefore, the total cost of the key generation
has been reduced to 35.5 ms.

In SIGN, the computation of B to map the user’s nonce
with the message to a unique subset of the secret keys takes
0.85 ms in total. After this, n = 32 secret keys that belong
to this subset are combined, i.e., multiplied, to create the
final secret key skprod. Since this final key is created based
on the user’s nonce and message, it is directly returned by
the SIGN module as the final signature. Therefore, the per-
formance breakdown of the signature creation only includes
the multiplication operation between n = 32 chosen secret
subkeys, which takes 2.65 ms in total.

5.4 Performance Implications of Additional Hardware
The signing modules of both OTS-SKE and KIS run on the
same enclave processor as the ECDSA-based RA protocol
and the verification is offloaded to the remote user. There-
fore, signing and verifications are performed in the same
manner as the ECDSA-based RA and do not have additional
performance implications. The main additional hardware

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3290870

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 14:55:48 UTC from IEEE Xplore. Restrictions apply.

11

component required for the KIS and the OTS-SKE based
RA is a secure key generation coprocessor, which we have
evaluated in Table 1 using Intel and ARM processors. We
have shown that, by duplicating the same Intel processor
used by ECDSA as an additional co-processor for isolated
key generation, and using a parallel implementation of the
key generation module for OTS-SKE, we can make the
computational cost of OTS-SKE comparable to the baseline
KIS and ECDSA-based RA protocol.

The only additional requirement for OTS-SKE compared
to the KIS is the use of a one-directional memory for key
storage for a single session. While KIS only generates a
single secret key for a session, OTS-SKE generates multiple
subkeys (e.g., 128 given in Table 1). Therefore, OTS-SKE
requires an additional 8 KB memory to store all subkeys,
which is an inexpensive addition to the baseline KIS system.

5.5 Evaluation and Discussion
Today, the wide employment of elliptic curve cryptography
(ECC) in various applications relies on a variety of imple-
mentation types from pure software or hardware imple-
mentations to hardware and software co-design. However,
pure software implementations of ECC, despite offering
the best flexibility at the lowest cost, cannot cope with
the speed demands of many application areas as general
purpose processors are not designed for efficient handling of
ECC’s underlying finite field arithmetic. Considering these
limitations, hardware-based implementations turn out to be
the more suitable alternatives [27], [28], [29], [30], [31], [32],
[33]. Despite this, in this paper, we evaluate a software-
based implementation of the ECC-based signature scheme
that has its own computational disadvantages. However, we
posit that with hardware acceleration and high parallelism,
our proposed OTS-SKE RA scheme can achieve a significant
performance boost.

Table 1 shows that the key generation phase is the
main bottleneck in the OTS-SKE based signature scheme.
The main contribution OTS-SKE is the use of one-time
signatures for the RA in the secure processor architectures
to protect the digital secrets against the adversary. This
requires the processor to renew the secret keys, after each
signing session, to be secure against impersonation attacks.
This extra level of security increases the overhead of the
key generation co-processor, which emerges as the main
bottleneck in the OTS-SKE implementation. The introduc-
tion of a secure co-processor dedicated to key generation
can potentially increase the overhead of the key generation
due to the use of a slower processor. For example, on
an in-order ARM processor, the key generation takes 1.1
seconds while its parallel implementation takes 35.6 ms on
the main Intel processor. Even with the given slowdown
with a slower co-processor, considering the fact that the key
generation module runs in the background and in parallel
with the signing, and remote attestation is done only once at
the enclave (VM/container) creation time in state-of-the-art
secure processors, this key generation cost is acceptable. For
example, Kata container takes approx. 2.6 seconds to launch
with AMD SEV [34].

The signing cost (3.4 ms) of the OTS-SKE based RA
is much smaller than the baselines, while bringing better
security benefits. Note that the introduction of a secure co-
processor does not add additional overheads to the signing

and verification phases. The verification takes place on the
user side and the signing computations still take place in the
remote attestation enclave on the main enclave processor.
The only difference between the hardware implementations
of the OTS-SKE’s signing protocol and the baselines is the
retrieval of the signing key. In the OTS-SKE based RA, the
key needs to be retrieved from the special memory that
consists of the current session keys. In our performance
evaluation, we give an estimation based on key retrieval
from DRAM. On the other hand, given the fact that the size
of the entire set of session keys is 16KB, the proposed one-
directional memory can be designed as a relatively small
buffer with less latency than a DRAM. The signing cost of
OTS-SKE is 19 and 6.4 times faster than the KIS and ECDSA,
respectively. Therefore, even with multiple additional mem-
ory accesses, OTS-SKE remains faster during signing. Also,
considering the fact that the remote attestation is performed
only once at the enclave/VM/container creation time in
state-of-the-art secure processors such as Intel SGX, AMD
SEV, Intel TDX, the signing cost is relatively small. For
example, Intel’s EPID attestation takes 31.7 ms for quote
generation and signing, at the enclave creation which takes
24.5 ms itself on an enclave with 5 MB of memory [35]. This
shows that enclave creation itself already comes at a high
cost. Additionally, the signing cost can further be reduced
with pipelined hardware implementations of signing com-
putations, B, and �.

6 CONCLUSION
We demonstrated for the first time how to design a Remote
Attestation (RA) protocol that resists a powerful adversary
that can leak all digital secrets of a processor through side
channels during the signing procedure. Even with secure
processor technology that implements access control using
hardware isolation but without any privacy guarantees (due
to the recent avalanche of attacks), our remote attestation is
secure and can be used to verify computation by remote
users. The new RA scheme offers the first crucial level of
trust for current attacked secure processor technology.

ACKNOWLEDGMENTS
This research was supported by the National Science Foun-
dation under Grants No. 1617774 and 1929261.

REFERENCES
[1] V. Costan and S. Devadas, “Intel sgx explained,” IACR Cryptol.

ePrint Arch., vol. 2016, p. 86, 2016.
[2] Intel, “Intel trust domain extensions,”

2020. [Online]. Available: https:// soft-
ware.intel.com/content/dam/develop/external/us/en/documents/
tdxwhitepaper-v4.pdf

[3] D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption
whitepaper,” 2016.

[4] Arm, “Arm confidential compute architec-
ture (arm cca),” 2021. [Online]. Avail-
able: https://developer.arm.com/architectures/architecture-
security-features/confidential-computing

[5] ARM, “Arm security technology – building a secure system using
trustzone technology.” ARM Technical White Paper, 2009.

[6] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper
resistant software,” in SIGP, 2000.

[7] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
“Aegis: architecture for tamper-evident and tamper-resistant pro-
cessing,” in ICS, 2003.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3290870

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 14:55:48 UTC from IEEE Xplore. Restrictions apply.

12

[8] D. Champagne and R. Lee, “Scalable architectural support for
trusted software,” HPCA - 16 2010 The Sixteenth International
Symposium on High-Performance Computer Architecture, pp. 1–12,
2010.

[9] R. Boivie and P. Williams, “Secureblue++: Cpu support for secure
execution,” IBM, IBM Research Division, RC25287 (WAT1205-070),
pp. 1–9, 2012.

[10] C. W. Fletcher, M. van Dijk, and S. Devadas, “A secure processor
architecture for encrypted computation on untrusted programs,”
in STC ’12, 2012.

[11] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hard-
ware extensions for strong software isolation,” in USENIX Security
Symposium, 2016.

[12] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and S. De-
vadas, “Mi6: Secure enclaves in a speculative out-of-order pro-
cessor,” Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019.

[13] H. Omar and O. Khan, “IRONHIDE: A secure multicore that
efficiently mitigates microarchitecture state attacks for interactive
applications,” in IEEE International Symposium on High Performance
Computer Architecture, HPCA 2020, San Diego, CA, USA, February
22-26, 2020. IEEE, 2020, pp. 111–122. [Online]. Available:
https://doi.org/10.1109/HPCA47549.2020.00019

[14] A. Nilsson, P. N. Bideh, and J. Brorsson, “A survey of published
attacks on intel sgx,” ArXiv, vol. abs/2006.13598, 2020.

[15] S. Checkoway and H. Shacham, “Iago attacks: Why the system call
API is a bad untrusted RPC interface,” in Proceedings of ASPLOS
2013, R. Bodik, Ed. ACM Press, Mar. 2013, pp. 253–64.

[16] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,”
Science, vol. 283, pp. 1237 – 1237, 1999.

[17] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” 2019 IEEE Symposium
on Security and Privacy (SP), pp. 1–19, 2019.

[18] F. Dall, G. D. Micheli, T. Eisenbarth, D. Genkin, N. Heninger,
A. Moghimi, and Y. Yarom, “Cachequote: Efficiently recovering
long-term secrets of sgx epid via cache attacks,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2018, pp. 171–191, 2018.

[19] R. Buhren, C. Werling, and J.-P. Seifert, “Insecure until proven
updated: Analyzing amd sev’s remote attestation,” Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019.

[20] Y. Dodis, J. Katz, S. Xu, and M. Yung, “Key-Insulated Public Key
Cryptosystems,” in Advances in Cryptology - EUROCRYPT 2002,
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Amsterdam, The Netherlands, April 28 - May 2,
2002, Proceedings, 2002, pp. 65–82.

[21] ——, “Strong Key-Insulated Signature Schemes,” in Public Key
Cryptography - PKC 2003, 6th International Workshop on Theory and
Practice in Public Key Cryptography, Miami, FL, USA, January 6-8,
2003, Proceedings, 2003, pp. 130–144.

[22] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “One-time pro-
grams,” in Annual International Cryptology Conference. Springer,
2008, pp. 39–56.

[23] J. Kilian, “Founding crytpography on oblivious transfer,” in Pro-
ceedings of the twentieth annual ACM symposium on Theory of com-
puting, 1988, pp. 20–31.

[24] S. S. Chow, L. C. Hui, S. M. Yiu, and K. Chow, “Secure hierarchical
identity based signature and its application,” in International Con-
ference on Information and Communications Security. Springer, 2004,
pp. 480–494.

[25] K. Murdock, D. Oswald, F. Garcia, J. V. Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks
against intel sgx,” 2020 IEEE Symposium on Security and Privacy
(SP), pp. 1466–1482, 2020.

[26] Z. Kenjar, T. Frassetto, D. Gens, M. Franz, and A.-R. Sadeghi,
“V0ltpwn: Attacking x86 processor integrity from software,” in
29th {USENIX} Security Symposium ({USENIX} Security 20), 2020,
pp. 1445–1461.

[27] G. Agnew, R. Mullin, and S. Vanstone, “An implementation of el-
liptic curve cryptosystems over f2155,” IEEE J. Sel. Areas Commun.,
vol. 11, pp. 804–813, 1993.

[28] K. H. Leung, K. W. Ma, W. Wong, and P. Leong, “Fpga implemen-
tation of a microcoded elliptic curve cryptographic processor,”
Proceedings 2000 IEEE Symposium on Field-Programmable Custom
Computing Machines (Cat. No.PR00871), pp. 68–76, 2000.

[29] L. Gao, S. Shrivastava, and G. Sobelman, “Elliptic curve scalar
multiplier design using fpgas,” in CHES, 1999.

[30] Y. Zhang, C. Xue, D. Wong, N. Mamoulis, and S. Yiu, “Acceleration
of composite order bilinear pairing on graphics hardware,” IACR
Cryptol. ePrint Arch., vol. 2011, p. 196, 2012.

[31] S. Cui, J. Großschädl, Z. Liu, and Q. Xu, “High-speed elliptic curve
cryptography on the nvidia gt200 graphics processing unit,” in
ISPEC, 2014.

[32] W. Pan, F. Zheng, Y. Zhao, W. Zhu, and J. Jing, “An efficient elliptic
curve cryptography signature server with gpu acceleration,” IEEE
Transactions on Information Forensics and Security, vol. 12, no. 1, pp.
111–122, 2017.

[33] S. Pu and J. Liu, “Eagl: An elliptic curve arithmetic gpu-based
library for bilinear pairing,” in Pairing, 2013.

[34] J. Gu, X. Wu, B. Zhu, Y. Xia, B. Zang, H. Guan, and H. Chen,
“Enclavisor: A hardware-software co-design for enclaves on un-
trusted cloud,” IEEE Transactions on Computers, vol. 70, no. 10, pp.
1598–1611, 2021.

[35] K. A. Küçük, A. Paverd, A. Martin, N. Asokan, A. Simpson, and
R. Ankele, “Exploring the use of intel sgx for secure many-party
applications,” in Proceedings of the 1st Workshop on System Software
for Trusted Execution, ser. SysTEX ’16. New York, NY, USA:
Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/3007788.3007793

Deniz Gurevin received her B.S. degree in Elec-
trical and Electronics Engineering from MEF
University, Istanbul, Turkey in 2018. She is cur-
rently pursuing her Ph.D. degree and working as
a graduate research assistant in the Department
of Electrical & Computer Engineering at the Uni-
versity of Connecticut, CT, USA. Her main re-
search interests include hardware security, spa-
tiotemporal graph processing and deep learning.

Chenglu Jin received the Ph.D. degree from
the Electrical and Computer Engineering De-
partment, University of Connecticut, Storrs, CT,
USA, in 2019. He is a tenure-track researcher
in the Computer Security Group in Centrum
Wiskunde & Informatica (CWI Amsterdam), The
Netherlands. His research interests are cy-
ber–physical system security, hardware security,
and applied cryptography.

Phuong Ha Nguyen received the Specialist de-
gree in computer science and mathematics from
Lomonosov Moscow State University, Russia in
2008, and the Ph.D. degree in cryptography from
Nangyang Technological University, Singapore,
in 2013. He is currently working as a Researcher
at eBay. His research interests include machine
learning and cryptography.

Omer Khan is the Castleman Associate Pro-
fessor in the Department of Electrical & Com-
puter Engineering at the University of Connecti-
cut. Prior to joining UConn, he was a Postdoc-
toral Research Scientist at the Massachusetts
Institute of Technology. His research interests
include developing cross-layer methods to im-
prove the performance scalability and security
of multicore processor architectures. Khan re-
ceived a PhD in Electrical and Computer En-
gineering from the University of Massachusetts

Amherst. He is a senior member of IEEE and a member of ACM.

Marten van Dijk (Fellow, IEEE) is currently a
Group Leader of the Computer Security Group,
CWI, The Netherlands, with over 20 years of
experience in both industry (Philips Research
and RSA Laboratories) and academia (MIT and
UConn). His work has been recognized by the
A. Richard Newton Technical Impact Award in
electronic design automation, in 2015, and has
received several best (student) paper awards.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3290870

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 14:55:48 UTC from IEEE Xplore. Restrictions apply.

