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Abstract—Secure processor technologies leveraging enclaves as their

architectural security primitive are frequently deployed in cloud environments.

However, enclave-based systems incur performance penalties due to architectural

limitations arising from costly enclave exits incurred to interact with system-level

software. Exitless calling aims to improve enclave-based performance by spawning

additional responder threads alongside the enclave to execute system calls on its

behalf, obviating costly enclave exits. However, exitless calling must operate the

responder threads as truly asynchronous to the enclave for security isolation

guarantees. The self governed timers induce polling stalls that lead to performance

losswhen enclave and responder threads saturate the available cores in the

system. This paper aims to address the polling challenge by introducing security

service engines (SSEs) to offload responder threads on dedicated hardware

resources. The evaluation shows that SSE equipped securemulticore achieves

performance scaling that is at par with a baseline systemwith no security primitives.

Ç

1 INTRODUCTION

Cloud computing offers a compelling alternative to costly on-site
computing [3], but requires remote clients to rely on third-party cloud
providers to process their code and data. This reliance on untrusted
third parties raise security concerns addressed in part by the deploy-
ment of secure processor technologies [4]. Prevailing secure processor
technologies such as Intel Software Guard Extensions (SGX) [4] and
AMD Secure Encrypted Virtualization (SEV) [8], as well as upcoming
technologies [9], [13], are similar in that they leverage the enclave as
their essential security primitive. Enclaves provide isolated execution
environments protected from both co-resident user- and system-level
software, as well as additional security features, such as physical
memory confidentiality and integrity, and remote attestation and
authentication. Consequently, enclaves are a staple of secure proces-
sor technologies and have remained prevalent across both academia
[2], [5], [14] and industry [1].

Enclaves offer enhanced security but introduce performance
issues. For example, on each enclave memory access, encryption
and integrity checking overheads are incurred. Since system-level
software may not execute inside enclaves, when an application
requires system-levels software services, an enclave exit must be
performed which incurs an overhead due to core serialization, state
purging, and security checks. To demonstrate how often enclave
exits are incurred, we measure the per-core frequency of system-
level software interactions for applications commonly used to char-
acterize enclave performance [15], [18], [19]. On an SGX-enabled
Intel machine, the average per-core system-level software interac-
tions are observed to be 100K system calls and 50K hypercalls per
second. SGX- and SEV-based systems consider the operating sys-
tem and hypervisor to be untrusted, respectively. This leads to fre-
quent enclave exits for system calls in SGX and hypercalls in SEV,
thus making enclave-based processing expensive. Consequently,
exitless calling was introduced to avoid enclave exits while

upholding isolation guarantees between untrusted system-level
software and enclaves [15], [19]. Exitless avoids enclave exits
through the utilization of an asynchronous worker-responder call-
ing mechanism that spawns two types of threads: (i) workers that
execute application code inside enclaves, and (ii) responders that
execute system calls on behalf of enclaves. However, the challenge
for exitless calling is that when worker threads saturate the avail-
able cores in a system, the additional responder threads incur poll-
ing induced stalls due to their asynchronous execution to ensure
the isolation property for security [6], [15], [19].

Prior works [16], [17] improve exitless by pinning worker–
responder thread pairs on same cores and introduce hardware sup-
port for lightweight context switching between them. However,
they do not fundamentally address the security-centric polling limi-
tations of exitless. In this paper we make the key observation that if
the worker and responder threads execute on dedicated hardware
resources, then one can fundamentally address the polling problem
in exitless. We propose Security Service Engines (SSEs) that offer each
enclave core a dedicated hardware context to offload responder
threads. In our executionmodel, each enclave coremaps application
threads, but at any given time the corresponding SSE engine serves
to truly operate in parallel and asynchronously. The lightweight
and programmable SSEs provide dedicated hardware in the shared
memory paradigm to execute the responder threads. Furthermore,
due to their programmability, when exitless calling is not beneficial,
the SSE engines can be utilized for other offload services.

The SSEsmitigate the performance bottlenecks of exitless execution
for highly parallel cloud applications that effectively utilize the avail-
able cores in a multicore. Thus, with responders executing exclusively
on SSEs, workers operate uninterrupted and exploit parallelism. Fur-
thermore, polling stalls and context switches are avoided, and costly
memory overheads are no longer incurred. To demonstrate the perfor-
mance benefits with SSEs, we evaluate a web server workload repre-
sentative of commonly deployed cloud applications on the MIT
Graphite multicore simulator [12] modified with the RISC-V instruc-
tion set. In comparison to exit-based and exitless enclave execution
models, SSEs improve throughput when worker threads match the
number of enclave cores in the system. Consequently, the dedicated
SSEs for corresponding responder threads deliver at par performance
scalingwith a baseline system that implements no security primitives.

2 BACKGROUND AND MOTIVATION

Industry and academia have aggressively adopted enclaves to
enhance cloud computing security services, using (i) isolation of
code/data at the hardware level, (ii) remote attestation and authen-
tication of code/data for remote users, and (iii) encryption of code/
data that is only decrypted while being used inside the enclave.
Moreover, two types of enclaves have been introduced, user-level
and VM-based, differentiated by the scope of applications they pro-
tect. User-level enclaves (e.g., Intel SGX) can only encapsulate and
execute user-level code. VM-based enclaves (e.g., AMD SEV),
encapsulate entire virtual machine (VM) instances, and therefore
execute code across multiple privilege levels.

Both types of enclaves introduce performance overheads intrin-
sic to their implementations. For example, to uphold confidential-
ity and integrity of enclave memory, costly memory encryption
and integrity checks are performed on each enclave memory
access. Additionally, expensive secure switches outside (and back
inside) enclaves are required to enforce isolation from system-level
software. These expensive switches are incurred by both user-level
and VM-based enclaves, which consider the operating system and
hypervisor to be untrusted, respectively. Enclave execution models
are described next, followed by their limitations.
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Exit-based calling implements special procedures for the enclave
code to securely access system software services. An untrusted
application executes an enclave enter instruction (ecall) that makes
a secure context switch into trusted enclave code. Similarly, an
enclave exit instruction (ocall) is executed within an enclave to
return control back to the untrusted application. During an ecall,
hardware security checks are performed, the untrusted state is
backed up, the enclave state is restored, and the processor cores
are switched into enclave mode. During an ocall, the enclave state
is backed up, the untrusted state is restored, the core pipeline is
flushed, and the processor cores are switched out of enclave mode.
If an ocall is invoked to utilize system-level services, all informa-
tion located in enclave memory needed by system-level software
must first be copied from enclave to untrusted memory. Conse-
quently, entering and exiting enclaves is very costly, and takes 83–
113x longer than typical system calls [19].

Exitless calling proposes an alternative model that mitigates expen-
sive enclave exits/enters using an asynchronous calling mechanism
betweenworker threads (executing enclave code) that make system call
requests, and responder threads (executing untrusted code) that process
system call requests [15], [19]. To uphold isolation guarantees, respond-
ers are not allowed to directly access enclave code/data. Therefore, exit-
less utilizes an asynchronous polling mechanism to create a
communication channel between the worker and responder threads
using a shared buffer located in untrusted memory. Each responder
thread implements a self-governing polling method to periodically
check, receive, and process pending system call requests. On the other
hand, the correspondingworker threadwaits for its pending system call
request to complete by monitoring the shared buffer. Once completed,
the worker thread copies the result back into trusted memory and con-
tinues execution. It has been shown in prior works [6], [19] that exitless
calling improves performance by avoiding the exit-based overheads.

Limitations of exitless calling arise from polling and context switch-
ing overheads induced by the responder threads. Polling overheads
are incurred due to the asynchronous interface between workers and
responders and are greatest at increased parallelism. This is because
responders continuously poll, even without requests to process. Poll-
ing consumes a hardware context without meaningful work until the
responder’s self-governed timer expires. This results in performance
bottleneck when a responder thread is forced to share a core with
other worker or responder threads. In such a scenario, a responder
pollswithoutmeaningfulwork to process, and reduces the utilization
of that core. Moreover, when there are not enough cores for all work-
ers and responders to execute on, the system scheduler is frequently
invoked to swap workers for responders and vice versa. This results
in costly context switching overheads.

Prior works [16], [17], [18], [19] have introduced thread scheduling
and sleepingmechanisms to reduce the time responders poll when few
call requests are made. More specifically, [18], [19] reduce responder
poll time by having responders set a timer and sleep until it expires. As
communication between workers and responders must be truly asyn-
chronous to uphold the isolation property, responders must operate on
their own autonomous timers without requiring the workers to invoke
them. This requirement makes setting the timer length difficult as res-
ponders must sleep often and long enough to reduce polling and con-
text switches, but not so much that wake-up penalties or unnecessary
context switching occurs. Therefore, while exitless model allows for
improved performance compared to exit-based, it suffers from signifi-
cant performance challengeswhenpolling becomes the bottleneck.

3 SECURITY SERVICE ENGINES

We propose to couple each tile (that implements the general-pur-
pose enclave core) in a shared-memory multicore with a fully pro-
grammable lightweight security service engine (SSE) to overcome
the polling challenge with exitless mechanism. As shown in Fig. 1,

SSEs access the shared cache hierarchy via their own dedicated
small private L1 instruction and data caches.

Theworker-responder architecture is similar to that of exitless, but
with two key differences. First, workers execute exclusively on
enclave cores, while responders are offloaded to the SSEs. Second,
applications are only allowed to spawn as many responder threads
as there are SSEs on a machine to avoid unwanted polling bottle-
necks. Each SSE operates such that its responder thread strictly serves
the worker thread(s) executing on its corresponding enclave core.
Thus, while an application may still spawn more worker threads
than there are general-purpose enclave cores, any additional perfor-
mance penalty incurred under SSE because of over-saturating
enclave coreswill also be incurred by a baseline systemwithout SSEs.

Lightweight Implementation. The work performed by responder
threads, i.e., checking the shared buffer and executing system calls,
is not compute intensive. Therefore, each SSE utilizes a simple in-
order shallow pipeline with no out-of-order execution support.
Additionally, during a system call an SSE only performs a one-time
copy of data located in untrusted memory. With little data reuse, an
SSE implements small and simple private caches. Furthermore, due
to the layer of indirection added when workers and responders
interact, shared data must be marshalled back-and-forth between
private caches of enclave cores and SSEs. For simplicity, an SSE is
designed not to cachemuch of the system call data, but instead evict
it to the shared L2 cache. Consequently, the enclave core is able to
move the requested data back into its enclave memory without
needing to invalidate the SSE private cache, thus avoiding costly
sharing misses. These implementation choices result in cost effec-
tive caches in SSEwithout reducing performance.

Benefits. Overall, an SSE enhanced secure multicore provides a
novel method to address the polling bottleneck in exitless calling.
The responders operate truly asynchronous to the workers, and SSEs
can avoid the performance challenges associated with the security-
centric polling to service system calls. Consequently, performance
gains are achieved by avoiding unwanted thread switches, and
reduced system callwaiting times for the enclave cores.

Area Overhead. The SSEs come at the cost of additional simple in-
order pipeline and minimal private caches. Thus, we consider two
multicore implementations: (i) SSE No Hardware Penalty (SSE-
NHP) that reduces the size of the shared L2 cache in each enclave
core to compensate for the hardware overhead of the SSEs, and (ii)
SSE Hardware Penalty (SSE-HP) that pays for an added cost of SSE
in each core with the goal to improve performance.

Generality. Multiple enclave cores may share a single SSE engine to
reduce hardware overhead. However, for applications where each
worker frequently interacts with system-level software, a one-to-one
coupling of enclave cores and SSE engines is necessary to achieve opti-
mal performance. For less interactive applications, a one-to-one cou-
pling of enclave cores and SSE engines is excessive and fewer SSE
engines suffice. To optimize resource utilization under such scenarios,
the programmable SSE engines can be reused for other useful services
such as cache, prefetching, or even powermanagement optimizations.

Fig. 1. Tile level view of the proposed architecture with SSE engine integrated
alongside general-purpose core and cache hierarchy. The worker and responder
threads execute concurrently to exploit multicore parallelism.
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4 METHODOLOGY

The baseline (BL), exit-based (EX-B), exitless (EX-L), and our pro-
posed SSE-enhanced architecture (SSE) are implemented using the
MIT Graphite simulator enhanced with the needed performance
models, and RISC-V ISA [7], [12]. A 64-core tiled shared memory
multicore processor is modeled with a two-level coherent private
32KB L1-I and L1-D, shared 256KB L2 cache hierarchy per core,
resulting in a 16MB total shared cache capacity. Each tile’s enclave
core implements an out-of-order RISC-V pipeline. The tiles are
interconnected using a 2D mesh on-chip network with X-Y routing.

4.1 Enclave Modeling
To model the performance overheads of memory encryption and
integrity checking, a constant latency of 10 cycles is added to each
main memory data access performed across each implementation
excluding BL.

Exit-based (EX-B). Tian et al. [17] quantify the overhead of each
ecall and ocall in Intel SGX to be 9,000 cycles, respectively. Thus, a
9,000-cycle latency is added to each ecall and ocall performed in
EX-B.

Exitless (EX-L). When the number of threads exceed the core
count (at 64 workers), each worker-responder pair is pinned to a
single core as this yields the highest performance under such con-
ditions. As workers and responders cannot execute simultaneously
on the same core, they are swapped out for one another based on a
timer set by the responder. Initially, responders check the shared
buffer for requests, and if there are none, set a timer and sleep until
it expires. After a responder goes to sleep, a worker is swapped in
and executes until the timer set by a responder expires.

The cost of a context switch is set to a conservative 500ns based
on measurements performed in [10]. Responder sleep times are
configured to 10ms which was experimentally determined to
achieve optimal performance for the evaluated workload.

Security Service Engines (SSE). SSEs are modeled by adding an
additional in-order simple pipeline and its own private 1KB L1
caches to each of the 64 tiles. Each SSE placed in a tile shares the L2
cache slice with the corresponding enclave core. Two variants of
SSEs are evaluated: (i) SSE-NHP which has a reduced 224KB L2
slice on each tile to compensate for the SSE area overhead and
ensure resources comparable to BL, EX-B, and EX-L are used, and
(ii) SSE-HPthat has a full 256KB L2 slice on each tile. Threads are
spawned such that workers are mapped to enclave cores, while res-
ponders are mapped to the SSEs.

4.2 Workload
To systemically study enclave performance at increased parallel-
ism, we utilize a workload that is able to execute on an application-
level simulator as porting real applications to a simulator is not fea-
sible. We develop a representative workload, Server, that is highly
interactive and modeled to match the steady-state behavior of the
web-server lighttpd [11] used by several highly cited works on
SGX [15], [18], [19].

Server spawns N workers that serve M/N web page requests that
are divided evenly between workers, whereM is the total number of
web page requests issued. After accepting a connection request,
workers iterate over a loop that beginswith ioctl call to get the request
size, then allocates a buffer of that size. The request is read using
recvcall, and parsed which also gets the requested file name, then the
file is opened using opencall. Fstat is then called to get the needed file
stats needed that generates the response sent to the client using send
call. Fstat is called again to ensure the file has not beenmodified, then
lseek is called to move the file offset to the beginning of the file. A
buffer is allocated to store the file contents that are read and then sent
using read and send calls, respectively. Finally, the worker closes the
file using close call, then repeats this process for the next request.

Server is evaluated under two configurations: (i) an SGX-like config-
uration that incurs an enclave exit upon each traditional system call
mentioned in the previous paragraph, and (ii) an SEV-like configuration
that only incurs enclave exits upon send and recv system calls as these
communicate directly with devices that are managed by the hypervi-
sor. 1000 requests, each with web page size of 16KB are issued evenly
between clients, with each worker serving its respective client’s
requests. Throughput is measured in thousands of requests served per
second and all evaluations are performedwith 4 to 64worker threads.

4.3 Metrics
The performance of each implementation is measured by tracking
the parallel completion time across all workers. To gain further
insights, latency measurements are also tracked as follows:

! Workload is the time spent executing workload-specific
tasks that are not system calls or hypercalls.

! Pack andUnpack are the time spent copying data from enclave
memory to untrusted memory and the time spent copying
data to enclavememory fromuntrustedmemory, respectively.

! Syscall is the time spent processing system calls andhypercalls
for the SGX-like and SEV-like configurations, respectively.

! Polling is the time (i) workers wait for a responder’s timer
to expire after making a request and (ii) responders spend
checking the shared buffer for requests.

! Ecall and Ocall are the time spent performing ecalls and
ocalls, respectively.

! Ctx Switch is the time spent executing a context switch,
which is incurred on each swap of workers and responders
in EX-L.

5 EVALUATION

BL achieves the highest throughput across both workload configu-
rations as the number of workers are increased from 4 to 64
(Fig. 2). EX-B is able to achieve performance scaling under both
configurations but does consistently worse due to costly ecalls/
ocalls. EX-L meanwhile achieves performance scaling relatively in
line with the baseline up to 32 workers for both configurations, but
suffers a decrease in performance at 64 workers, primarily due to
polling overheads. The context switching overheads also contrib-
ute to the performance degradation observed in EX-L.

SSE behaves identically to EX-L up to 32 workers, but continues
to scale at 64 workers in both configurations as the additional ser-
vice engines enable SSE to mitigate polling and context switching
overheads. As we are focused on improving EX-L performance
specifically when the number of threads exceed the number of
cores, we show the normalized breakdown of 64-worker configura-
tions in Fig. 3, and use this as the basis of our analysis for each
implementation’s performance behavior.

5.1 Exit-Based (EX-B) and Exitless (EX-L) Analysis
Compared to BL, EX-B incurs a massive ecall/ocall overhead on
each system call. These ecall/ocall overheads lead to a 2.2" and
1.5" performance loss for the SGX-like and SEV-like configura-
tions, respectively.

Fig. 2. Server throughput performance.
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At 64-workers, EX-L performance is 1.7" and 1.4"worse than BL
for SGX-like and SEV-like configurations, respectively. This happens
due to the frequent swapping of workers and responders as there are
more threads than cores. Frequent context switching leads to (i) cache
thrashing since data lost during a context switch must be re-fetched,
and (ii) increased polling time as responders check for system call
requests on each invocation. Fig. 3 shows polling overheads are the
primarily cause of performance degradation in EX-L. Even with an
ideal 0-cycle context switching overhead, EX-L would still trail BL
performance by 1.6" and 1.3" for the SGX-like and SEV-like configu-
rations, respectively. This demonstrates any EX-L configuration that
relies on the security-centric timerswill fail tomatch BL.

L1D cache thrashing is exacerbated by polling in EX-L compared
to BL. In the SGX-like configuration an increase in L1D and L2 cache
misses of 29% and 23%, respectively, are incurred compared to BL
which contribute to a 10% and 11% increase inworkload and system
call time, respectively. For the SEV-like configuration, cache thrash-
ing leads to an increase in L1D and L2 cache misses of 88% and 29%,
respectively, compared to BL which further causes an 8.2% and
18.7% increase in workload and system call time, respectively.

5.2 Security Service Engine (SSE) Analysis
SSE eliminates ecall/ocall and polling overheads incurred in both
EX-B and EX-L (Fig. 3). However, the worker–responder interac-
tions that are not present in BL are now split across enclave cores
and SSEs, adding undesirable data movement between them that
prevents SSE from matching BL performance.

Both SSE variants with and without hardware overhead penalty
incur a greater memory access latency than BL due to added mem-
ory system stress caused by data movement in worker-responder
interactions. Consequently, compared to BL an increase in L1D
sharing misses of 4.8" and 2.4" are incurred by SSE-NHP and an
increase in L1D sharing misses of 4.4" and 1.4" are incurred by
SSE-HP for the SGX-like and SEV-like configurations, respectively.
Compared to BL, SSE-NHP (which has a reduced L2 cache per
tile), incurs 16.1% and 11.8% more L2 misses, while SSE-HP incurs
0.2% and 0.1% more L2 misses for the SGX-like and SEV-like con-
figurations, respectively. These increases in memory access laten-
cies result in a performance loss in the workload, pack, unpack,
and system call processing components of execution latency. Fur-
thermore, SSE-NHP has longer work and system call processing
times than SSE-HP from increased L2 misses.

Overall, our evaluation indicates that as the total number of
threads exceed the core count of a machine, exitless calling becomes
less beneficial because of significant polling and context switching
overheads. However, by providing enough service engines such that
the hardware’s parallelism is not overburdened as proposed in the
SSE architecture, polling and context switching overheads can be
obviated and continued performance scaling is achieved.

6 CONCLUSION AND FUTURE WORK

This paper proposes a novel heterogeneous secure multicore archi-
tecture that leverages dedicated service engines to improve the per-
formance scaling of applications executing inside enclaves. The

preliminary evaluations show unnecessary stalls and frequent con-
text switches present in enclave exitless calling can be obviated
and performance scaling can be achieved even when the number
of workload threads exceed the number of cores. Our future work
will incorporate the following enhancements for the proposed SSE
architecture:

1) Reducing the system call processing overheads in SSE is
achievable by leveraging asynchronous execution of SSEs
and enclave cores. Enclave cores may continue to perform
useful work rather than busy poll after making a system
call request. We will explore a novel asynchronous calling
API that will allow workers to perform useful work while
responders process system call requests in parallel.

2) We will evaluate a diverse range of workloads to demon-
strate the applicability of the proposed SSE architecture.
Workloads will be developed from the domains of web
servers, database systems, encryption services, graph proc-
essing, and machine learning on images and graphs. We
will provide detailed analysis of the microarchitecture
effects across all workloads, and also study various area or
performance efficient implementations of SSEs.
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