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Abstract We study the nucleation and development of crack patterns in thin compos-
ite fibers under tension in this work. A fiber comprises an elastic core and an outer
layer of a weaker brittle material. In recent tensile experiments on such composites,
multiple cracks were observed to develop simultaneously on the outer layer. We pro-
pose here a simple one-dimensional model to predict such phenomenon. We idealize
the problem as two axially loaded rods coupled by a linear interfacial condition. The
latter can be regarded as an adhesive that resists slip between the two materials. One
rod is modeled as a brittle material, and the other a linearly elastic material, both
undergoing finite deformations.
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1 Introduction

We study the nucleation and development of crack patterns in thin composite fibers
under tension in this work. A fiber comprises an elastic core and an outer layer of
a weaker brittle material, as illustrated in Figure 1(a). In recent tensile experiments
on such composites, multiple cracks were observed to develop simultaneously on the
outer layer [2], [11]. We propose here a simple one-dimensional model, in the spirit of
Ericksen’s famous paper [4], to predict such phenomenon. We idealize the problem
as two axially loaded rods coupled by a linear interfacial condition, as depicted in
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Fig. 1 (a) Illustrative picture of a coaxial composite fiber. (b) Axisymmetric idealization as a two-bar
system.

Figure 1(b). The latter can be regarded as an adhesive that resists slip between the
two materials. One rod is modeled as a brittle material, and the other a linearly elastic
material, both undergoing finite deformations.

Following [15], we employ the inverse-deformation formulation to analyze the
problem under hard loading. As first observed in [15], the infinite deformation gra-
dient associated with fracture registers as zero inverse deformation gradient. As a
consequence, the description enables more standard methods of analysis. For the
brittle rod, we also incorporate a small quadratic interfacial energy in terms of the
inverse-strain gradient. As shown in [15], that model predicts spontaneous fracture
with surface-energy effects at finite loading. The model from [15] incorporates nei-
ther a damage field nor pre-existing cracks. The difference here in this work is that
the brittle material is now interacting with an elastic rod. The route to failure in [15] is
a single crack at one or the other of the ends, after which there is no resistance under
hard loading. In contrast, the interaction with the elastic core here allows for multiple,
simultaneous cracks of the outer layer to develop at criticality. More importantly, the
cracked outer layer continues to interact with the inner core beyond that load. Thus,
crack development presents a delicate problem here, not arising in [15]. Also, our
model requires a fourth order displacement formulation in the presence of a unilat-
eral constraint. In particular, the phase plane, as employed in [15], is not available to
us.

The outline of the work is as follows. We present our model in Section 2. We bor-
row an idea from [21], viz., assume the modulus of the elastic core is much greater
than the stiffness of the interfacial adhesion. In this way, the elastic core always be-
haves homogeneously; the brittle rod can deform homogeneously, while inhomoge-
neous states are also possible. We henceforth say that the elastic core constitutes a
pseudo-rigid foundation, in accordance with the terminology of [21]. In Section 3 we
provide a weak formulation of the problem, enabling a global bifurcation analysis
that accounts for the possibility of fractured states along solution branches. We show
that the homogeneous solution for the brittle material loses stability at a certain load,
where bifurcation to an inhomogeneous family of equilibria arises. As in [15], the lo-
cal solution branch is a subcritical (unstable) pitchfork. However, the first instability
here is characterized by a higher-wave solution - much like the buckling of a beam
on an elastic foundation [17]. Motivated by the results from [15], the bifurcating so-
lution branch is expected to “evolve” to a fractured state - in this case characterized
by multiple cracks. However, in the absence of the phase-plane arguments as in [15],
the question of subsequent fracture or not relies on numerical computation.

We introduce our computational formulation in Section 4, employing a finite ele-
ment discretization. The implementation is delicate, due to the presence of a unilateral
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Fig. 2 The two bars are connected by uniformly distributed springs. This interface condition introduces a
resistance to slip between the bars.

constraint insuring that the inverse deformation gradient is non-negative. We impose
the constraint on each node of the mesh and solve for equilibria using the active-
set method [12]. We check the local stability of the computed equilibrium via the
second-variation condition. The latter is diagnosed indirectly via the signature of the
full Jacobian (of the combined equilibrium and constraint equations) [12]. We present
our computational results in Section 5 for the same two sets of parameter values used
in the local analysis of Section 3. In each case, multiple, simultaneous cracks nucleate
on the outer layer on the unstable pitchfork branch, after which the solutions regain
stability as the width of the cracks on the outer layer continue to evolve and widen.
Lastly, we locate the critical stretch value beyond which the stable multiple-cracked
solutions have lower energy than the homogeneous solution. We note that models os-
tensibly like ours employing the referential description have been studied previously,
cf. [16], [19], [20]. Reference [16] also uses a phase-field method. In Section 6, we
compare our approach and results with those works and make other final remarks.

2 The model

Neglecting the radial deformation and assuming an axisymmetric response, we ideal-
ize the problem as two axial rods coupled by a linear interface condition, as schemat-
ically illustrated in Figure 2. Ignoring strain-gradient effects for the time being, the
potential energy of the system is given by

E[λ , f , fc] =
󰁝 1

0

󰀗
W ( f ′)+Wc( f ′c)+

1
2

k( f − fc)
2
󰀘

dx, (1)

where (·)′ := d(·)/dx, f , fc : [0,1] → R are deformations of the outer layer and the
core, respectively, W and Wc are the respective stored-energy functions, and k > 0 de-
notes the stiffness per unit length of the interface. The placement boundary conditions
(hard loading) are prescribed as

f (0) = fc(0) = 0, f (1) = fc(1) = λ , (2)

where λ > 1 is the loading parameter.
For the elastic core, we assume the simple energy function

Wc( f ′c) =
γ
2
( f ′c −1)2, (3)
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where γ > 0 is the elastic modulus. With this in hand, the first variation of (1) with
respect to fc delivers the Euler-Lagrange equation

−γ f ′′c + k( fc − f ) = 0. (4)

Borrowing an idea from [21], we now assume that the stiffness of the core is much
higher than the stiffness of the interface springs i.e. k

γ → 0. Equation (4) then simpli-
fies to

f ′′c = 0, =⇒ fc = λx. (5)

Substituting (5)2 into (1), we find

E[λ , f ] =
󰁝 1

0

󰀗
W ( f ′)+

1
2

k( f −λx)2
󰀘

dx+Wc(λ ), (6)

where Wc(λ ) is the total energy of the core independent of f . As already pointed out
in [15], it is natural to attempt the standard (quadratic) strain-gradient regularization
of (6). However, this leads to unbounded energies; the precise identification of frac-
ture, viz., f ′ ∼+∞, causes great analytical and numerical difficulties. In fact, it is not
possible to pinpoint complete fracture nucleation (i.e., infinite strain) and its further
development in such Lagrangian models. We elaborate on these points in the final
Section 6.

In lieu of (6), we follow [15] and introduce the inverse mapping h : [0,λ ]→ [0,1];
zero inverse strain h′ = 0 now corresponds to infinite strain f ′ ∼+∞. We include an
interfacial energy in (6) employing the inverse strain gradient, viz.,

E∗[λ ,h] = E[λ ,h−1] =
󰁝 λ

0

󰀗
ε
2
(h′′)2 +W ∗(h′)+

kh′

2
(y−λh)2

󰀘
dy+Wc(λ ), (7)

h(0) = 0, h(λ ) = 1, h′ ≥ 0, (8)

where now (·)′ := d(·)/dy. Here W ∗(H) = HW (1/H), where H = h′ ≥ 0 is the in-
verse deformation gradient and ε > 0 is a small parameter. Note that H > 0 on [0,λ ]
implies that the outside material is unbroken, while H(y) = 0 signifies breakage at
y ∈ [0,λ ]. As employed in [15], a prototype for the stored energy function for the
outside material is

W (F) =
β
6

󰀕
1− 1

F

󰀖2

, =⇒ W ∗(H) =
β
6

H(1−H)2, (9)

where β > 0 is the apparent elastic modulus. Observe that W ∗ is a two-well potential
with wells at H = 0 and H = 1, while the interfacial term in (7) introduces a transition
layer of length O(

√
ε), cf. [15].

Since Wc(λ ) is independent of h, the problem reduces to solving for minimizers
of

I∗[λ ,h] = E∗[λ ,h]−Wc(λ ) =
󰁝 λ

0

󰀗
ε
2
(h′′)2 +W ∗(h′)+

kh′

2
(y−λh)2

󰀘
dy (10)
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As in [15], we rescale so that the problem is defined on a fixed domain. Let y =
λ s, s ∈ [0,1] and u(s) = h(λ s)− s. Then I∗[λ ,h] scaled by λ 3 is equivalent to

J∗[λ ,u] = λ 3I∗[λ ,h] =
󰁝 1

0

󰀝
ε
2
(u′′)2 +λ 4

󰀗
W ∗

󰀕
1+u′

λ

󰀖
+

kλ
2

u2(1+u′)
󰀘󰀞

ds,

(11)
where now (·)′ := d(·)/ds. The geometric boundary conditions (8) become

u(0) = u(1) = 0. (12)

Moreover, the unilateral constraint now reads u′ ≥−1 on [0,1].
Finally, we note that the term u2u′, subject to (12), is a null Lagrangian, i.e., it

plays no role in the determination of critical points or equilibria. Hence, we ignore
that term in what follows.

3 Global bifurcation of weak solutions

We now provide a weak formulation of the problem that accounts for the possibility
of fracture in the brittle layer. First, we define the Hilbert space

H = H2(0,1)∩H1
o (0,1), (13)

equipped with the inner product

〈u,v〉=
󰁝 1

0
u′′v′′ ds, (14)

the latter of which induces a norm equivalent to the usual one on H2(0,1). The closed
convex cone of admissible states is defined by

K = {v ∈ H : v′ ≥−1}, (15)

and we denote the open cone of “unbroken” states by

K o = {v ∈ H : v′ >−1}, (16)

We note that the pointwise characterizations above makes sense due to embedding,
viz., v′ is continuous on [0,1].

For u,v ∈ K , convexity implies (1− t)u+ tv ∈ K for all t ∈ [0,1]. For fixed
λ ∈ (0,∞), consider eλ (t) := J∗[λ ,(1− t)u+ tv], for t ∈ [0,1]. Then u is a critical
point or an equilibrium (at λ ) if [deλ (t)/dt]|t=0 ≥ 0, which yields the Euler-Lagrange
variational inequality

󰁝 1

0

󰀗
εu′′(v−u)′′+λ 3Ẇ ∗

󰀕
1+u′

λ

󰀖
(v−u)′+ kλ 5u(v−u)

󰀘
ds ≥ 0, for all v ∈ K ,

(17)
where Ẇ ∗(H) := d

dH W ∗(H).
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Proposition 1 An interior point u ∈ K o satisfies (17) (at λ ∈ (0,∞)) if and only if
u ∈C4[0,1] and satisfies

εuiv −λ 2Ẅ
󰀕

1+u′

λ

󰀖
u′′+ kλ 5u = 0 in (0,1),

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(18)

Proof The boundary conditions (12) are clear. Since u is an interior point of K , we
may choose v = u± tφ , for φ ∈ H , and t > 0 sufficiently small. Then (17) implies

󰁝 1

0

󰀗
εu′′φ ′′+λ 3Ẇ ∗

󰀕
1+u′

λ

󰀖
φ ′+ kλ 5φ

󰀘
ds = 0, for all φ ∈ H . (19)

By imbedding, we have u ∈C1[0,1], and (19) directly implies that the third distribu-
tional derivative of u can be identified with a continuous function. Integrating the first
term by parts then yields the other boundary conditions in (18)2 and

εu′′′−λ 3Ẇ ∗
󰀕

1+u′

λ

󰀖
=−kλ 5

󰁝 s

0
u(τ)dτ +C in (0,1), (20)

where C is a constant. We observe that the left side of (20) is equal to a continuously
differentiable function; (18)1 follows upon differentiation of (20). ⊓⊔

For u ∈ K , we define the broken set

Bu :=
󰀋

s ∈ [0,1] : u′(s) =−1
󰀌
.

Theorem 1 Any solution u ∈ K of (17) (at λ ∈ (0,∞)) is twice continuously differ-
entiable on [0,1].

Proof We let ψ ∈ H with ψ ′ ≥ 0 on Bu, and set v = u+ψ ∈ K in (17) to find
󰁝 1

0

󰀗
εu′′ψ ′′+

󰀝
λ 3Ẇ ∗

󰀕
1+u′

λ

󰀖
− kλ 5

󰀕󰁝 s

0
u(τ)dτ

󰀖󰀞
ψ ′

󰀘
ds ≥ 0,

for all such ψ . By the Riesz-Schwarz theorem [9], there is a non-negative measure µ ,
with support in Bu, such that

− εu′′′+λ 3Ẇ ∗
󰀕

1+u′

λ

󰀖
− kλ 5

󰁝 s

0
u(τ)dτ −C1 = µ (21)

in the distributional sense, where C1 is a constant. Integration of (21) then yields

εu′′ = λ 3
󰁝 s

0

󰀝
Ẇ ∗

󰀕
1+u′(ξ )

λ

󰀖
− kλ 5

󰁝 ξ

0
u(τ)dτ

󰀞
dξ −C1s−C2 −φ(s), (22)

where C2 is another constant and φ ′ = µ in the sense of distributions. Since u ∈
C1[0,1] and φ is non-decreasing, the same argument used in [15, Theorem 2.3], can
be employed here to deduce that u′′ is continuous on [0,1]. ⊓⊔
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For the purpose of a global bifurcation analysis that includes the possibility of
broken solutions (Bu is non-empty), we follow the approach in [10], also employed
in [15]. First, we express (17) abstractly via

〈εu+G(λ ,u),v−u〉 ≥ 0 for all v ∈ K , (23)

where G : (0,∞)×H → H is the compact mapping defined by

〈G(λ ,u),φ〉 :=
󰁝 1

0

󰀝
λ 3Ẇ ∗

󰀕
1+u′

λ

󰀖
− kλ 5

󰁝 s

0
u(τ)dτ

󰀞
φ ′ ds, (24)

for all φ ∈ H , λ ∈ (0,∞).
Let PK denote the closest-point projection from H onto K , and define F :=

PK ◦G. Then (23) is equivalent to the operator equation

εu+F(λ ,u) = 0, (25)

where F : (0,∞)×K → K is continuously differentiable and compact (since PK is
continuous). Thus, the Leray-Schauder degree is well defined for the mapping u 󰀁→
εu+F(λ ,u), for each λ ∈ (0,∞), e.g., [8].

Clearly, 0 ∈ K o, and thus, F(λ ,0)≡ PK (G(λ ,0)). From (24), we find that

〈G(λ ,0),η〉= 0, for all η ∈ H , λ ∈ (0,∞) =⇒

F(λ ,0) = G(λ ,0)≡ 0, i.e., (25) admits the trivial line of solutions u = 0 for all λ ∈
(0,∞). The rigorous linearization of (25) about the trivial line is denoted abstractly
via

εη +L(λ )η = 0, for all η ∈ H , (26)

where L(λ ) := DuG(λ ,0) denotes the Fréchet derivative with respect to u. From (14)
and (24), we see that (26) is equivalent to

󰁝 1

0
εη ′′φ ′′+λ 2

󰀝
Ẅ ∗

󰀕
1
λ

󰀖
η ′− kλ 3

󰁝 s

0
η(τ)dτ

󰀞
φ ′ ds = 0, (27)

for all η ,φ ∈ H , λ ∈ (0,∞). Arguing as in the proof of Proposition 1, (27) implies

εη ′′′−λ 2Ẅ ∗
󰀕

1
λ

󰀖
η ′ =−kλ 5

󰁝 s

0
η(τ)dτ +C in (0,1), η ′′(0) = η ′′(1) = 0,

(28)
where C is a constant. As before, we may rigorously differentiate (28)1 to obtain the
linearized problem

εη iv −λ 2Ẅ ∗
󰀕

1
λ

󰀖
η ′′+ kλ 5η = 0 in (0,1),

η(0) = η(1) = η ′′(0) = η ′′(1) = 0,
(29)

which is equivalent to (26).
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Fig. 3 First five curves (n equal to 1 to 5) of (31) for W ∗ given by (9) and parameter values ε = 0.03, β = 3.
For k = 2, n = 3, λ3 = 2.449; for k = 2.5, n = 4, λ4 = 2.8561.

The linear problem (29) admits nontrivial solution of the form ηn(s) = sin(nπs)
whenever λ = λn is a root of the characteristic equation

ε(nπ)4 +λ 2Ẅ ∗
󰀕

1
λ

󰀖
(nπ)2 +λ 5k = 0. (30)

We find such roots by plotting

k(λ ) =−ε
(nπ)4

λ 5 −Ẅ ∗
󰀕

1
λ

󰀖
(nπ)2

λ 3 , (31)

for different values of n, and looking for intersections with horizontal lines, k =
constant. Figure 3 depicts the first five curves for W ∗ given by (9) and parameter
values ε = 0.03, β = 3. We concentrate only on generic values of k: There are either
two or no intersections for a given value of n; values where two curves for differ-
ent values of n intersect are avoided. For example, for k = 2, there are no roots for
n = 1,2, while there are two roots for each of the other values for n > 2. For a given
generic value of k, the smallest possible root of (30), denoted λ = λn, is the criti-
cal (potential) bifurcation. For example, at k = 2, the smallest root λ3 occurs on the
n = 3 curve, while for k = 2.5, the smallest root λ4 occurs on the n = 4 curve. These
are marked at the points P and Q, respectively, on Figure 3. The graphs give good
approximate values, and we find λ3 = 2.4490 and λ4 = 2.8561 via Newton’s method.

Before exploring bifurcation, we show that there is an exchange of stability along
the trivial solution path, u ≡ 0, for all 1 ≤ λ < ∞, at a critical root of the characteristic
equation. As such, we first compute the second variation of the functional (11):

δ 2J∗[λ ,u] =
󰁝 1

0

󰀗
ε(η ′′)2 +λ 2Ẅ ∗

󰀕
1+u′

λ

󰀖
(η ′)2 +λ 5kη2

󰀘
ds, (32)
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for all η ∈ H . By virtue of Proposition 1, we work in the class of functions C4[0,1]
satisfying the boundary conditions (29)2. Integration by parts and subsequent evalu-
ation at u ≡ 0 yields

δ 2J∗[λ ,0] =
󰁝 1

0

󰀗
εη iv −λ 2Ẅ ∗

󰀕
1
λ

󰀖
η ′′+λ 5kη

󰀘
η ds. (33)

Generally, if δ 2J∗[λ0,0]> 0 for all η ∈ H , then we say that an equilibrium u ≡ 0 at
λ = λ0 is locally stable. If δ 2J∗[λ0,0] is indefinite, then we say that the equilibrium
there is unstable. We note that the term in brackets in (33) agrees with the left side of
equation (29). Now consider the eigenvalue problem

εη iv −λ 2Ẅ
󰀕

1
λ

󰀖
η ′′+λ 5kη = λ 5ση in (0,1),

η(0) = η(1) = η ′′(0) = η ′′(1) = 0,
(34)

subject to the same boundary conditions as in (29), where λ 5σ is the scaled eigen-
value. Clearly the same nontrivial solutions ηn = sin(nπs) arise for roots of the char-
acteristic equation (30), but now with k −σ in place of k. The roots can again be
deduced graphically as in Figure 3; call the smallest root λ̃n. In particular, note that
σ > 0 ⇔ λ̃n < λn. And σ < 0 ⇔ λ̃n > λn until a second root corresponding to the
same n appears. We conclude that (33) is positive, and hence, the trivial solution is
stable for λ̃n < λn. For λ̃n > λn the solution is unstable, at least until a second root
for the same value of n appears.

To establish bifurcation at (λn,0), it is sufficient to show that L′(λn)ηn does not
belong to the range of the linear operator L(λn), where L′(λ ) denotes partial differ-
entiation with respect to λ [3]. Since the operator defined by the left side of (26)
is formally self-adjoint, partial differentiation of (27) with respect to λ leads to the
sufficient condition

〈ηn,L′(λn)(λn,0)ηn〉=
󰀝

n2π2
󰀗

2λnẄ ∗
󰀕

1
λn

󰀖
−

...
W

∗
󰀕

1
λn

󰀖󰀘
+5λ 4

n k
󰀞

·
󰁝 1

0
cos2(nπs)ds ∕= 0,

or

n2π2
󰀗

2λnẄ ∗
󰀕

1
λn

󰀖
−

...
W

∗
󰀕

1
λn

󰀖󰀘
+5λ 4

n k ∕= 0. (35)

Notice that (35) simply states that the root λ = λn of (30) is simple.

Theorem 2 Let S denote the closure of the set of all nontrivial solution pairs of
(25). Assume that λ = λn is simple root of (30), viz., condition (35) is satisfied. Then
S has a component Σn ⊂ R×K containing (λn,0) satisfying at least one of the
following:

(i) Σn is unbounded in R×H ;
(ii) (λ∗,0) ∈ Σn, where λ∗ ∕= λn.
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Moreover, in a sufficiently small neighborhood of (λn,0), Σn is characterized uniquely
by a (pitchfork) curve of solutions of the form

λ = λn +o(τ), u = τ sin(nπs)+o(τ), asτ → 0. (36)

Proof As already discussed, the presumed simplicity of the root (35) insures the exis-
tence of the unique local path of non-trivial solutions of (25) and hence of (18). That
the path is a so-called pitchfork, viz., o(τ) vs. O(τ) in (36), follows either by direct
calculations or via “hidden” symmetry arguments, e.g., [5].

To verify the alternatives (i), (ii), we first note that L(λ ) : H → H is a compact
map. Accordingly, the Leray-Schauder linearization principle shows that the topo-
logical degree of u 󰀁→ εu+F(λ ,u) on some ball Br(0) ∈ H , centered at u ≡ 0 of
sufficiently small radius r > 0, is given by

deg(εI +F(λ , ·),Br(0),0) = (−1)m(λ ), (37)

where m(λ ) denotes the number of negative eigenvalues counted by algebraic multi-
plicity of the linear map εI +L(λ ), for λ ∈ (a,λn)∪ (λn,b), where both λn −a > 0
and b−λn > 0 are sufficiently small. We observe that (34) is the same as

εη +L(λ )η = λ 5σT η , for all η ∈ H , (38)

where T η :=
󰁕 s

0 η(τ)dτ . Consequently, the exchange-of-stability argument given just
after (34) imply

deg(εI +F(λ1, ·),Br(0),0) ∕= deg(εI +F(λ2, ·),Br(0),0), (39)

for λ1 ∈ (a,λn) and λ2 ∈ (λn,b). Thus, (i), (ii) follow from the theorem of Rabinowitz
[14]. ⊓⊔

4 Numerical Continuation

The existence results of the previous section do not address if cracks actually emerge
on global solution branches. For that, we turn to numerical continuation methods
using a finite element discretization. We express the weak form (21) as
󰁝 1

0

󰀝
εu′′ψ ′′+λ 3Ẇ ∗

󰀕
1+u′

λ

󰀖
ψ ′+λ 5kuψ

󰀞
ds =

󰁝

Bu

{µψ ′+ζ (u′+1)}ds, (40)

where the measure µ in (21) is now assumed to belong to L∞(0,1), and ζ ∈ L∞(0,1)
is defined as an admissible variation. The function µ is interpreted as the Lagrange
multiplier field associated with the inequality constraint u′+1 ≥ 0 such that

µ(s)≥ 0, and µ(s)(u′(s)+1) = 0 for all s ∈ [0,1]. (41)

The domain [0,1] is divided into N elements of equal length and N + 1 nodes.
The values of u, u′, and µ represented by uk, u′k and µk at the kth-node are unknowns.
To evaluate the left side of (40), we interpolate {uk} using piecewise cubic Hermite
shape functions. As used in Euler-Bernoulli beam problems, these provide sufficient
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continuity across elements such that interpolated functions lie in H2(0,1) [6]. The
integrand is evaluated at Gauss points and the complete integral is evaluated using
quadrature.

The right side of (40) is evaluated as follows:
󰁝

Bu

{µψ ′+ζ (u′+1)}ds ≈ ∑
sk∈Bh

u

{µkψ ′
k +ζk(u′k +1)}. (42)

where Bh
u := {sk : k ∈ 1,2, · · · ,N + 1; sk ∈ Bu} is the finite dimensional approx-

imation of Bu. The interpolation (42) implies that constraints u′k + 1 = 0 are im-
posed on the discretized problem at all nodal points sk ∈ Bh

u . For a solution (λ ,u) ∈
(0,∞)×K o in the interior of the cone, the set Bh

u is empty and the right side of (40)
is zero. When Bh

u is not empty, it contains position of nodes where u′k +1 = 0. This
is determined using the active-set method [12] and is discussed further in the next
subsection.

The active-set method works within pseudo-arc length continuation [7]. We drop
the natural parametrization of the solution by λ and increment over the arc-length
of the curve. This allows the algorithm to traverse past singularities on the solution
curve.

4.1 Active-set method

The active-set Bh
u is the set of all nodes where the inequality constraint is active, i.e.

u′k +1 = 0, for sk ∈ Bh
u . If Bh

u is known, then the inequality constraints are imposed
as equality constraints at the nodal points sk ∈ Bh

u , and the solution is found using
Newton’s method. However, the active-set Bh

u is generally not known and is found
in conjunction with equilibrium. We start by making a guess of the optimal Bh

u and
solving for equilibrium. If the solution satisfies conditions

µk ≥ 0 for all sk ∈ Bh
u , (43)

and
u′k +1 ≥ 0 for all sk /∈ Bh

u , (44)

then the solution is in the feasible region. If the conditions fail, then one node is
either added in or removed from the active-set Bh

u . If (43) fails, then the node with
minimum value of µ is removed from the active-set. If (43) is satisfied but (44) fails,
then the node with minimum value of u′ is added in the active set. In each iterate
only one node is moved, and the procedure is repeated until a solution in the feasible
region is found. More details related to convergence of the method are in [12].

The procedure is sensitive to the initial guess of the active-set Bh
u and the ini-

tial guesses of {uk}, {u′k}, and {µk} in Newton’s methods. Different choices leads to
different iteration sequences and often different equilibrium solutions. Since the al-
gorithm works within a continuation scheme, we use information from previous point
as initial guesses while solving for a new point on the solution curve.
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4.2 Stability analysis

A solution (λ0,u0) ∈K is locally stable if δ 2J∗[λ0,u0] defined in (32) is positive for
all η ∈ H , η ′ = 0 on Bu. Although variations η ′ > 0 on Bu lie in the admissible
set of the minimization problem, they imply healing in the material. This phenomena
is not considered here, and such variations are not included in the determination of
stability of an equilibrium.

We determine stability of an equilibrium from eigenvalues of the Jacobian ob-
tained using the finite element discretization. This Jacobian matrix is square and
symmetric of size 2N +M, where M is number of nodes in Bh

u . It is of the form

K =

󰀗
G AT

A 0

󰀘
(45)

where G is a square matrix of size 2N obtained from taking variation of left side
of (40) and imposing geometric boundary conditions. Matrix A is of size M × (2N)
obtained from the derivative of constraints u′k +1 = 0 on Bh

u . We define the inertia of
the matrix K as

inertia(K) = (n+,n−,n0) (46)

where n+, n−, and n0 are the number of positive, negative, and zero eigenvalues of
K.

Upon discretization, the space of variations η ∈ H , η ′ = 0 on Bu is approx-
imated using finite dimensional vectors {ηk} and {η ′

k} such that η ′
k = 0 for all

sk ∈ Bh
u . These vectors lie in the null space of matrix A. Let Z be a (2N)× (2N −M)

sized matrix such that its columns span the null space of A. Then the equilibrium so-
lution is stable if the matrix ZT GZ is positive definite. It follows from Theorem 16.3
in [12] that ZT GZ is positive definite if

inertia(K) = (2N,M,0). (47)

For every equilibrium point we evaluate the inertia of K. If it matches (47), the solu-
tion is locally stable. Otherwise, it is unstable.

5 Numerical results

We present numerical results for the data sets discussed in Section 3. As before, we
set ε = 0.03 and β = 3, for which we consider the cases k = 2 and k = 2.5. Recall
that for k = 2, the first bifurcation is at λ = 2.4490, corresponding to point P in
Figure 3, with associated mode number n = 3. For k = 2.5, the first bifurcation is at
λ = 2.8561, corresponding to point Q in Figure 3, and the associated mode number
is n = 4. We use 100 elements for the finite element discretization and relative and
absolute tolerances of 10−7 in the Newton’s method. Further refinement of the mesh
did not provide more accuracy in the results presented here.

In Figure 4, both the macroscopic stress and energy for the brittle bar vs. the
stretch parameter λ for the case k = 2 are shown. At any solution pair (λ ,uλ ), the
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Fig. 4 Stress and energy curves for parameter values ε = 0.03, β = 3, k = 2. (a) Stress (σ ) vs stretch (λ ).
(b) Energy (I∗) vs stretch (λ ). Solid and dashed black lines show stable and unstable equilibria respectively.
Red line shows transition between the two stable solutions.

inverse deformation map is given by hλ (y) = uλ
󰀃 y

λ
󰀄
+ y

λ . We compute the energy I∗

by substituting this in (11), and we compute the macroscopic stress via

σ(λ ) =
d

dτ
I∗ [τ,hτ ]

󰀏󰀏󰀏󰀏
τ=λ

, (48)

which follows from Castigliano’s first theorem [18]. For instance, along the trivial
solution u ≡ 0, I∗[λ ,0] = λW ∗(1/λ ) =W (λ ) = β

6

󰀃
1− 1

λ
󰀄2

, the latter two equalities
of which follow from the definition of W ∗ and (9). From (48), the macroscopic stress
is then given by σ = Ẇ (λ ), which is simply the uniform-stretch constitutive law for
the brittle rod. For numerical solutions, we compute I∗ at points along the solution
curve and then evaluate (48) via linear interpolation. In any case, σ in (48) represents
the difference between the stress required to pull the composite rod and the stress in
the pseudo-rigid elastic bar at λ .

The solid and dashed lines shown in Figure 4 represent stable and unstable equi-
libria, respectively. The points A, B, C, and D are chosen to illustrate various features
of solutions. The deformation f on [0,1] and the inverse deformation gradient H on
[0,λ ] are depicted in Figure 5 for each of those points. The marker E in red corre-
sponds to the value of λ at which the energy of the two stable solutions are equal.

The trivial solution u ≡ 0 is locally stable for all λ values less than the bifurcation
point at λ = 2.4490, after which stability is lost. These are homogeneous solutions,
and the configuration corresponding to point A in Figure 4 is depicted in Figure 5(a);
the constant inverse strain is shown in Figure 5(b). The bifurcation is a subcritical
pitchfork; in particular, it is locally unstable. Globally, the solutions along the two
“sides” of the pitchfork are equivalent - related by reflection symmetry. As such, their
projections overlap in both Figure 4(a) and (b). The configuration corresponding to
point B is shown in Figure 5(c), and the associated inverse strain in Figure 5(d).

Point C in Figure 4 corresponds to the nucleation of cracks. The configuration
and inverse strain with two zero values are shown in Figure 5(e) and (f), respectively.



14 Arnav Gupta, Timothy J. Healey

0 0.5 1
(a)

0

1

2
A:

Deformation map: f(x)

0 1 2
(b)

0

0.2

0.4

0.6

Inverse deformation gradient: H(y)

0 0.5 1
(c)

0

1

2
B:

0 1 2
(d)

0

0.2

0.4

0.6

0 0.5 1
(e)

0

1

2
C:

0 1 2
(f)

0

0.2

0.4

0.6

0 0.5 1
(g)

0

1

2
D:

0 1 2
(h)

0

0.2

0.4

0.6

Fig. 5 Deformation f (x) and inverse deformation gradient H(y) at 4 different points for comparison (see
Figure 4). Point A is before bifurcation. Point B is on the unstable non-trivial post-bifurcation curve. Point
C is the point where cracks first appear. Point D is on the stable curve post-fracture. The red color in
C, D marks the discontinuities in the deformation map and the corresponding regions in the deformed
configuration having zero inverse strain (implying infinite strain in the deformed configuration).
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Since the cracked outer layer continues to interact with the pseudo-rigid bar, the stress
does not drop to zero (as in [15]). As shown in Figure 4, a new stable branch emerges
from point C, along which the cracks widen and the outer layer continues to interact
with the pseudo-rigid foundation. Figure 5(g) and (h) depict the configuration and
inverse strain fields, respectively, corresponding to the point D in Figure 4, clearly
demonstrating the opening of the cracks at x = 1/3 and x = 1 in the reference config-
uration.

The jump-discontinuities in the deformation and the corresponding regions in
the deformed configuration where the inverse strain is zero are highlighted in red in
Figures 5(g) and (h), respectively. In the reference configuration, the corresponding
strain is infinite, demonstrating crack openings at precise locations. Moreover, the
boundary between the black and red in Figure 5(h) precisely delineates the crack
“faces”. Since the inverse strain is zero there, the red regions have zero density, i.e.,
they correspond to empty space, cf. [15]. As the loading is increased further, the
separation between the black regions, i.e., between the crack faces, increases along
the solution path C-D and the cracks open further.

We remark that two other distinct solution branches emanate from the point C as
well. However, both branches contain “healing” solutions, viz., one of the two cracks
closes up. Also, both branches are unstable. As such, we do not consider them here.
Finally, the cracked solutions in Figure 4, along the branch containing the segment
C-D, have lower energy than the trivial, homogeneous solutions, at all values of λ >
2.3385, which corresponds to the point E.

Figures 6-8 present the same information just discussed, but for the case k = 2.5.
The difference here with n = 4 is that the two sides of the pitchfork lead to ostensibly
different fracture patterns. In particular, Figure 7(e)-(h) corresponding to points H
and I in Figure 6, indicate three cracks - one at each end and one at the midpoint.
On the other side of the pitchfork with typical solutions shown in Figure 8(e)-(h) and
also corresponding to points H and I in Figure 6, we observe 2 symmetrically spaced

Fig. 6 Stress and energy curves for parameter values ε = 0.03, β = 3, k = 2.5. (a) Stress (σ ) vs stretch (λ ).
(b) Energy (I∗) vs stretch (λ ). Solid and dashed black lines show stable and unstable equilibria respectively.
Red line shows transition between the two stable solutions.



16 Arnav Gupta, Timothy J. Healey

0 0.5 1
(a)

0

1

2

3

F:

Deformation map: f(x)

0 1 2 3
(b)

0

0.2

0.4

0.6

Inverse deformation gradient: H(y)

0 0.5 1
(c)

0

1

2

3

G:

0 1 2 3
(d)

0

0.2

0.4

0.6

0 0.5 1
(e)

0

1

2

3

H:

0 1 2 3
(f)

0

0.2

0.4

0.6

0 0.5 1
(g)

0

1

2

3

I:

0 1 2 3
(g)

0

0.2

0.4

0.6

Fig. 7 Deformation f (x) and inverse deformation gradient H(y) at 4 different points for comparison (see
Figure 6). Point F is before bifurcation. Point G is on the unstable non-trivial post-bifurcation curve.
Point H is the point where cracks first appear. Point I is on the stable curve post-fracture. The red color
in H, I marks the discontinuities in the deformation map and the corresponding regions in the deformed
configuration having zero inverse strain (implying infinite strain in the deformed configuration).
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Fig. 8 Deformation f (x) and inverse deformation gradient H(y) at 4 different points for comparison (see
Figure 6). Point F is before bifurcation. Point G is on the unstable non-trivial post-bifurcation curve.
Point H is the point where cracks first appear. Point I is on the stable curve post-fracture. The red color
in H, I marks the discontinuities in the deformation map and the corresponding regions in the deformed
configuration having zero inverse strain (implying infinite strain in the deformed configuration).
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interior cracks. In spite of these observations, the solutions and their energies again
overlap on Figure 6 - just as in the previous case k = 2 (n = 3). As discussed in [15],
the strain gradient surface energy associated with fracture implies that fewer cracks
“cost” less. But end cracks are different from interior cracks: the former involve only
one fractured “face”, whereas the latter involves two. In other words, the two end
cracks in Figure 7(e)-(h) are equivalent to an interior crack as in Figure 8(e)-(h). This
explains the overlap in Figure 6(a) and (b).

6 Concluding remarks

We present solutions exhibiting the spontaneous nucleation of cracks and their sub-
sequent opening under increased loading in a simple model for long thin composite
fibers. We employ the inverse-deformation approach of [15], incorporating neither
a damage field nor pre-existing cracks. As illustrated in Figures 5, 7, and 8, parts
(e), (g), respectively, we obtain configurations with finite-jump discontinuities in dis-
placements accompanied by infinite strain fields. As such, we can only plot the asso-
ciated inverse-strain profiles. For specific parameter sets, critical patterns comprising
two or three fractures in the outer layer of the composite are illustrated. It should be
clear that we can choose other parameter sets leading to as many cracks in a pattern as
desired. We emphasize the new difficulty here of addressing the unilateral constraint,
cf. (8). This is not an issue in [15], because the effective stress in that problem drops
to zero (identically) upon nucleation, after which cracks open freely under hard load-
ing. In contrast, the fractured outer layer continues to interact with the elastic core
in our problem. We compute these solutions by continuation while incorporating the
active-set method [12]. We show that nucleated cracks continue to evolve and widen
under increased loading.

One-dimensional Lagrangian models ostensibly like ours are studied in [16], [19]
and [20]. Each of these employs a strain-gradient energy along with a softening strain
energy like (9)1. A pseudo-rigid elastic foundation is also incorporated in [16], [20].
As already pointed out in [15], the quadratic strain-gradient model, as used in [16],
[20], is undefined for strains approaching infinity, viz., f ′ →+∞. The latter is the sig-
nature of brittle fracture, cf. [15, Fig. 1(A)]. Of course, infinite strain cannot be com-
puted via numerical methods in the referential description. This applies to the works
just mentioned as well as our own model when expressed in Lagrangian variables,
cf. [15, eq. 5.4]. This is not the case for our inverse-strain-gradient model: Infinite
strain at fracture corresponds to h′ = 0, and Theorem 1 shows that all weak solutions,
including fractured bars, satisfy h ∈C2[0,λ ]. This is one of the main strengths of the
inverse formulation, viz., it is well posed while accounting for discontinuities in the
actual deformation. We also remark that an existence theorem for weak (fractured)
solutions akin to Theorem 2 is not possible in the Lagrangian description.

Our inverse-strain-gradient model is not equivalent to any of the strain-gradient
models employed in [16], [19] or [20]. Correspondingly, the results obtained in those
works differ markedly from ours. For instance, in the absence of an elastic founda-
tion, the bifurcating branch found in [15, Fig. 4] “drops” to a completely broken,
zero-effective-stress solution. The bifurcating branches found in [16], [19] and [20]
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do not capture such behavior. In fact, the non-trivial solution branch obtained in [16,
Fig. 8(b)] reconnects with the homogenous solution at a large value of the hard load-
ing parameter, with unbroken, bounded-strain solutions found along the entire path.
These same properties are also reported in [16] in the presence of an elastic founda-
tion. In contrast, our bifurcating solution branch in this work also “drops” and ter-
minates at the solution where fracture nucleates. From there, a new solution branch
emerges with solutions exhibiting the opening of true cracks, cf. Figures 4 and 6.
This is not the usual kind of secondary bifurcation; the new solution arises from the
presence of a newly active Lagrange-multiplier field (enforcing the constraint h′ ≥ 0)
[13].

A phase-field model is also used in [16] yielding results closer to ours. Such mod-
els circumvent the problem of infinite strain, relying instead on the degradation of the
elastic stiffness controlled by a small parameter associated with the phase field. This
successful approach is well known, with the rigorous existence of fractured states es-
tablished via Gamma convergence, e.g., [1]. However, the small parameter can never
be zero in practical numerical settings, as required by the existence theorem. Conse-
quently, numerical solutions yield highly damaged, concentrated regions that are not
actually fractured. This is well illustrated in [16, Fig. 20]. The reported strain pro-
files are characterized by high but finite strain spikes. These highly damaged regions
maintain weakened elastic interaction. In contrast, the infinite-strain regions obtained
in our work correspond to empty space between newly formed cracked “faces” in
the outer layer of the fiber, cf. Figures 5, 7, and 8. We note that our model (10) also
contains a small parameter, ε > 0. But open cracks with zero material density form
for small non-zero values. Rather, ε asymptotically governs the concentration of in-
terfacial energy on the “faces” of newly formed cracks, which agrees with Griffith
for sufficiently small values, cf. [15].

If we drop the assumption leading to (5), i.e., make no assumption leading to a
pseudo-rigid foundation, the problem is more difficult. For instance, (4) becomes a
field equation; a two-rod model is now required. Moreover, from the experimental
results motivating our work, it is reported that the elastic core eventually fractures
as well [2]. To predict that phenomenon, a stronger, brittle model for the core is also
needed. This leads to an even more challenging problem, with each rod now requiring
its own inverse-deformation description. These problems are stepping stones to the
more realistic case of a 2D brittle solid, all of which we plan to pursue in the future.
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