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1 Introduction

Historically, heavy flavor (HF') hadrons (e.g containing at least one ¢ or b quark) have been
extensively used to study the deconfined state of hadronic matter, the Quark-Gluon Plasma
(QGP) [1-3], in particular at the LHC and RHIC [4-6]. Because their high masses exceed
the QCD energy scale, charm and beauty quarks are produced at an early stage of the col-
lision and experience the entire evolution of the colliding medium. Medium-induced energy
loss has been studied by measuring the so-called nuclear modification factor (Raa ), defined
as the ratio of the production yield in nucleus-nucleus (AA) collisions to the one in pp colli-
sions scaled by the number of binary nucleon-nucleon collisions. The measurements of the
production cross-section, together with studies of the elliptic flow, indicate a strong interac-
tion between heavy quarks and the deconfined medium. In addition, HF hadrons provide a
good laboratory to study hadronization. In particular, baryon-to-meson production ratios
are of great interest as they are only sensitive to hadronization. Many measurements have
been carried on in ete™ [7-9] and pp collisions [10-12] to measure fragmentation functions
of heavy quarks into heavy hadrons, the latter being extensively used to describe hadron
production at high transverse momentum (pr). However, recent measurements of the AT



to DY production ratio! (R AL/ po) challenge understanding of hadronization. At the LHC,
ALICE has measured the charmed baryon-to-meson ratio at mid-rapidity in pp, pPb and
PbPb collisions at /s = 7TeV and /syy = 5.02 TeV, respectively [13-16]. The measured
R+ /po Tatio is larger than predictions of the pp event generator PYTHIA 8 [17] with
the so-called MONASH tuning for pp data. This tuning does include a color reconnection
(CR) mechanism but only at leading order approximation [18], and data can only be ex-
plained by the next-to-leading order approximation. In addition, another measurement of
R AF/po Was carried out by ALICE versus the number of charged particles produced (i.e
multiplicity) in pp collisions at /s = 13 TeV [19] at mid-rapidity. The results show an
evolution of the pr dependence of the ratio as the multiplicity increases, with a shift of
the mean pr distribution towards a higher value, while the pp-integrated value of R AF /DO
remains constant. The PbPb result shows also a large enhancement of the ratio compared
to pp and pPb collisions, with a significant dependence of the p distribution with central-
ity. Similarly, CMS [20] has performed the same measurement at mid-rapidity in pp and
PbPb collisions at \/sxy = 5.02TeV, for pr > 5GeV/c and pr > 10 GeV/c, respectively.
Compatible results are found between the two data samples for the common range in pr
(i.e pr > 10GeV/c). In this case, the data are well described by PYTHIA 8 only when
the CR mechanism beyond leading colour approximation is used. At the RHIC collider,
the STAR collaboration has also measured R At/po at mid-rapidity in Au-Au collisions at
VSnn = 200 GeV [21]. An enhanced baryon-to-meson ratio is found at low pt compared
to scaled pp collisions. It is worth mentioning that both ALICE and STAR measurements
in AA collisions can be described by a coalescence hadronization mechanism [6, 22-26] in
which quarks can (re)combine with close-by partons in the QGP to form hadrons. Other
predictions based on the Statistical Hadronization Model (SHM) [27], using an augmented
set of excited charm baryons based on the relativistic quark model (RQM), have success-
fully described the charmed baryon-to-meson ratio measured at RHIC and LHC. In this
model, the relative abundances of the different charm hadron species are fixed by the SHM,
while their pt spectra are described using independent fragmentation of charm quarks. Fi-
nally, a last class of model based on transport equations, using both fragmentation and
coalescence effect, can successfully reproduce the ALICE and RHIC data in nucleus-nucleus
collisions [28].

As mentioned, ALICE, CMS, and STAR measure a R AL /DO in heavy-ion collisions at
mid-rapidity, with a raising trend from low to intermediate transverse momentum. Re-
gardless of the theoretical model used to interpret the data, results at mid-rapidity point
toward an effect that depends either on the charged particle multiplicity or the centrality.
The latter can be interpreted as a dependence on the mean number of nucleons participat-
ing in the collision ((Npart)). On the other hand, LHCb has measured a ratio with no pr
dependence in pPb collisions at /syy = 5.02TeV in the rapidity (pr) range 2 < y < 4.5
(2 < pr < 8GeV/c) [29]. These results correspond to smaller 12+ /po Values compared to
measurements by other experiments and are fully compatible with predictions from cold
nuclear matter effects [30, 31] within the HELAC-Onia approach [32-34]. The LHCD re-

LIf not stated otherwise, charge conjugation is assumed throughout the article.



sults are yet to be compared with a coalescence-based model. These differences between
mid and forward rapidity results indicate a strong rapidity dependence of this ratio and
motivate further studies to better improve the model predictions in different phase-space
regions.

This paper presents the first measurement of R AF /DO production cross-section ratio in
the forward rapidity region in peripheral PbPb collisions at |/sxx = 5.02 TeV by the LHCb
collaboration. The paper is organized as follows. Section 2 briefly presents the detector
and the data sample. Section 3 describes the analysis steps, from the signal extraction to
the estimation of efficiency corrections. The sources of systematic uncertainties are given
in section 4. The results are presented and compared to theory predictions in section 5,
and conclusions are summarized in section 6.

2 Detector and data selection

The LHCb detector [35, 36] is a single-arm forward spectrometer covering the pseudora-
pidity range 2 < 1 < 5, designed for the study of particles containing b or ¢ quarks.
The detector includes a high-precision tracking system consisting of a silicon-strip vertex
detector (VELO) surrounding the interaction region [37], a large-area silicon-strip detec-
tor located upstream of a dipole magnet (UT) with a bending power of about 4 Tm, and
three stations of silicon-strip detectors and straw drift tubes [38] placed downstream of the
magnet. The tracking system provides a measurement of the momentum, p, of charged
particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at
200 GeV/e. The minimum distance of a track to a primary collision vertex (PV), the impact
parameter (IP), is measured with a resolution of (15 + 29/pr) um, with pp in GeV/c. Dif-
ferent types of charged hadrons are distinguished using information from two ring-imaging
Cherenkov detectors [39]. Photons, electrons and hadrons are identified by a calorimeter
system consisting of scintillating-pad and preshower detectors (SPD), an electromagnetic
(ECAL) and a hadronic (HCAL) calorimeter. Muons are identified by a system composed
of alternating layers of iron and multiwire proportional chambers [40]. The online event
selection is performed by a trigger [41], which consists of a hardware stage, based on infor-
mation from the calorimeter and muon systems, followed by a software stage, which applies
a full event reconstruction.

The PbPb collision data at /sxx = 5.02TeV were recorded in 2018 and correspond
to an integrated luminosity of about 210 ub~!. Offline quality selections are applied on
a run-by-run basis, based on the trend of trigger counts with time. At the hardware
trigger stage, events containing A} or D° candidates are required to match the minimum
bias (MB) trigger corresponding to a requirement of at least four SPD hits or a high-pp
muon (pr > 10GeV/c) or a minimal energy deposit in HCAL (Et > 15GeV/c). The
events are required to have at least 15 VELO tracks in the backward direction and the
number of clusters (Nc¢) in the VELO should be at least 1000; these requirements suppress
contamination from both the Pb-gas? and ultra-peripheral collisions. The latter are defined

2Simultaneously to PbPb collisions, Neon gas was injected in the beam pipe near the interaction point,
using the LHCb fixed-target SMOG system [42].



as electromagnetic nucleus-nucleus interactions where the impact parameter (b) is greater
than the sum of the nuclei radii. Finally, events are rejected if N. > 10000, due to hardware
limitations.

The A} (D) candidates are reconstructed via the decay channel A} — pK 7+ (D? —
K~nT), with a selection on transverse momentum 2 < pr < 8 GeV/c and rapidity 2 <
y < 4.5. Offline selections are applied to the candidates following the same strategy as
in pPb collisions [43] to ensure a high signal significance and improve the purity of the
D% and A} candidates. Pion, kaon, and proton tracks should match tracking and particle
identification (PID) quality requirements. The A} (D°) decay products are required to
have pr > 400 MeV/c (pr > 500 MeV/c) and 2 < y < 4.5. The charm hadron lifetime is
required to be less than 0.3 ps to reduce the fraction of non-prompt contribution coming
from b-hadron decay. The cosine of the direction angle between the candidate’s momentum
and the vector between the PV and the candidate’s decay vertex, is required to be larger
than 0.9998. In addition, a fiducial cut around the beams’ collision point is applied based
on the primary vertex (PV) of the A} and D° candidates.

Simulated PbPb collisions at \/sxxy = 5.02TeV with full event reconstruction are used
to evaluate efficiencies. The A} and D° candidates are generated with PYTHIA 8 [17]
and embedded into minimum bias PbPb collisions from the EPOS event generator [44]
tuned with LHC data [45]. Decays of hadronic particles are described by EvtGen [46],
in which final-state radiation is generated using PHOTOS [47]. The interaction of the
generated particles with the detector, and its response, are implemented using the Geant4
toolkit [48, 49] as described in ref. [50].

3 Analysis overview

The R AF /DO ratio is obtained through the ratio of corrected yields as:

BP = Km " YA (pr gy or (Npart))

- BAT =Kt YD (proy or (Npart))

RAj/DO(pTa?J or (Npart)) (3.1)
where B2 = (3.950 + 0.031)% (l?)’AJr = (6.28 £ 0.32)%) is the branching fraction for the
D° (AF) decay channel [51], respectively; pr and y are the transverse momentum and
rapidity of the DY (A}) candidate; (Npart) is the mean number of nucleons participating
in the collision and is related to the centrality of the collision; ¥ 2" (YAC+) is the D% (A})
corrected yield defined as

0 At DO,Azf
NDA (pT7 Yy or <Npart>) : fprompt (pT) Yy or <Npart>)

DOAF
€tot (pTa Yy or <Npart>)

+
YA (pp,y or (Npars)) = (3.2)

In eq. (3.2), N DAL is the inclusive number of particles measured in the PbPb dataset,

+
and fﬁf,ﬁgt is the fraction of particles produced promptly in PbPb collisions, while €t
is defined as the total efficiency (see section 3.3). Finally, (Npar) is defined as the mean
number of nucleons participating in the collision. A brief description of the method used

to evaluate this quantity is given in section 3.1.



N, interval | (Npart) | Opart

1000-10000 | 15.8 10.0
1000-3000 6.5 2.5
3000-5500 12.4 4.4
5500-10000 | 26.6 7.5

Table 1. values of (Npar) in N, intervals, with opa, indicating the total systematic uncertainty of
(Npast)-

3.1 Centrality determination

In heavy-ion collisions, centrality classes are defined as percentiles of the total inelastic
hadronic PbPb cross-section and are related to the impact parameter b of the collision: the
more central (peripheral) the collision, the smaller (greater) the b value, and the smaller
(greater) the centrality percentile. Likewise, (Npart) increases from peripheral to central
collisions. The Glauber Monte Carlo (GMC) model [52] is used to estimate all these geo-
metrical quantities from recorded data. A detailed description of the centrality estimation
in the LHCb experiment can be found in ref. [53]. The method is based on a binned fit
of the total energy deposit in ECAL with the GMC model in MB data, collected with the
same trigger conditions as that of the signal sample. Once the fit is performed, a centrality
table is produced, mapping the total ECAL energy deposit and (Npart).

While the recorded data sample used to fit the GMC model covers the full centrality
range, data used to compute RA;‘ /po are limited to N, < 10* and centrality at about
65—90%. A one-to-one correspondence between ECAL and the geometrical quantity is
performed on an event-by-event basis using the GMC model. Data are divided into three
intervals in N, (1000-3000, 3000-5500 and 5500-10000), based on the statistics available
from the signal extraction. For each interval, other quantities (e.g. (Npart)) are derived.
A lower cut on N, and on the total deposited ECAL energy to be above 310 MeV are
applied to exclude the centrality range 90-100% where most of the electromagnetic con-
tamination occurs, which could bias the data. Results are given in table 1. Three sources
of systematic uncertainty associated with (Npar) of each interval are considered: (i) the
reference hadronic cross-section parameter; (ii) the fit uncertainty; (iii) the bin size un-
certainty. These uncertainties are summed in quadrature to compute the total systematic
uncertainty presented in table 1.

3.2 Signal extraction

The signal extraction is performed after the selection criteria listed in section 2 are ap-
plied. Figure 1 shows the (top) K~ 7" and (bottom) pK 7" invariant-mass spectra for
the selected D° and A} candidates, respectively. The data are fitted using unbinned
maximum-likelihood fits combining a Crystal Ball (CB) function [54] for the signal, and a
first-order polynomial function for the background. While the CB function is chosen as it
models the radiative tail of the invariant mass peak, the first-order polynomial function is
chosen empirically to describe the observed background. The mean and width of the CB
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Figure 1. Invariant-mass spectra of (top) K~n" and (bottom) pK ~n™ final states. The data are
overlaid with the results of the fit.

function are left free, while the other parameters are fixed to the values extracted from
the simulation. An alternative used to assess systematic uncertainty for the background
description is to multiply the first-order polynomial by an exponential function. The total
number of fitted DY (A}) signal yield is 46000 (600) events.

To estimate the fraction of prompt DY (A}) hadrons in the measured yield, the back-
ground contribution is first subtracted from the datasets using the sPlot technique [55]. A
fit to the log(x%P) distribution of the signal is performed to discriminate the prompt from
non-prompt contributions. The x% is defined as the difference in the vertex-fit x? of a
given PV reconstructed with and without the candidate under consideration. An exam-
ple of such fit is given in figure 2, where the log(xip) distributions are fitted with a CB
(Gaussian) function for the prompt (non-prompt) component. It is worth noticing that the
log(x#p) is a better prompt/non-prompt discriminant for DY candidates when compared
to Al candidates. This is due to the shorter lifetime of the A} baryon: for non-prompt
candidates, typically the addition of the A} track to the PV fit leads to a lower value of
X%P than that of the non-prompt D° track.
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Figure 2. Distributions of x# of the D° (top) and A} (bottom) after background substraction.

The data are overlaid with the results of the fit.

3.3 Efficiency estimation

The total efficiency (eot) is factorized as

DOAF _ DYAF DO AF DOAF

€tot (pTJ/ or NC) = €acc (pTa y) X Erecézsfal(pTa y or NC) X 6PI]§ (pTay or NC)7 (33)

where €,.. is the acceptance; €recgsel 18 the reconstruction and selection efficiency; epp is
the PID selection efficiency; (N., pr,y) indicate given ranges in N, pr and rapidity.
The acceptance €cc, for both A} and DY hadrons, is defined as

2<y<4.5

DOAS — d
€acc (pT7 y) - ;{i]—%d ) (34)
cand
where N4 | are simulated D° or A} yields within the fiducial acceptance and N, CQ,;%@‘B

indicate the number of the candidates in the fiducial acceptance and having their decay
products’ rapidity within 2 <y < 4.5. The fiducial acceptance is defined as 2 < y <
4.5 and 2 < pp < 8GeV/c. This factor is directly computed from simulation based on
PYTHIA 8.



N, interval k(Ne)

1000-4000  0.9740.03
4000-5500  0.93 £0.04
5500-10000 0.91+£0.05

Table 2. Value of the k factor in intervals of N.. The uncertainties are obtained from the statistical
uncertainties of the different D calibration samples in data and MC summed in quadrature.

The reconstruction and selection efficiency €recgsel, for both AT and D particles, is
defined as:

DO A+ Nrec.gzsel.

e __ ~can

6rec&tsel(p’I"y or NC) - W’ (35)
cand

where Négﬁ‘c‘l&sel' are reconstructed D° and A} candidates passing the selection criteria
within the simulation samples. We recall that the samples are produced with the PYTHIA
8 hard processes embedded into generated MB EPOS events. Several sources of bias are
considered for €yocg 501 due to the limitations of MC to fully model all the bias in the real
detector’s response. The first source is the tracking algorithm efficiency, defined as the
efficiency to reconstruct a track, for which simulations are usually better than in data.
Rather than directly measuring the tracking efficiency, the ratio of the efficiency between
data and simulation is estimated using two D° calibration channels (D° — K~7T and
DY — K—atn~7t). Their yields are evaluated in PbPb data and simulation and the
difference of their ratio from unity is encoded in a factor k. Results are given in table 2.
Other sources of systematic uncertainty are the ab-initio assumptions on the pr, y and
N, distributions, and correlation effects between these variables not accounted for with
the embedding technique. To account for all these effects, an iterative method based
on data is employed. In the first step, the raw (i.e not corrected for inefficiency) pr,
rapidity, and N, distributions are extracted from the data based on the signal extraction
defined in section 3.2. In the second step, these distributions are corrected using the data-
to-simulation tracking efficiency (k factor) and the PID efficiency (epip) computed with
the raw kinematic distributions reconstructed in the simulation. In the third step, the
reconstructed distributions from the simulation are weighted using several iterations until
they match the data as a function of pr, y, and N, simultaneously. Finally, €rec&sel iS
computed in step four. Steps two to four are repeated until €pocg501 cOnverges to a final
value, which is the case after three iterations.

The PID efficiency epip is computed using the weighted simulation samples. The
methodology is similar to that used for pp collisions [56], and is based on a tag-and-probe
technique. In this approach, the epip for a given probe particle eg;]r)t (e.g. pion) is computed
from a reference sample (e.g. D° — K~ 7t) where a tight selection cut on the tag particle
(i.e. the kaon) is applied, while no PID selection is applied to the probe particle. In the
next step, the sPlot technique [55] is used to remove the background with the invariant
mass as a discriminating variable. Finally, the PID efficiency of the probe is computed as
the fraction of candidates (i.e. DY) fulfilling given PID requirement.

Kaon and pion PID efficiencies are computed using the PbPb D% sample, while the
proton efficiency is computed from A — 7~ p decays in PbPb data. Two-dimensional maps



are then computed for each particle (i.e kaon, pion, proton) as a function of p and y, for
different ranges in N.. Finally, these maps are used to compute hadron PID efficiency for
DY and A} candidates as

did t
DO,A;*' N.) — H(p:)zll:t date 6%?15 (pv Y, NC)
€PID <pT’ yor C> - N rec.&sel. ) (36)
cand

where (pr,y or N.) are the candidates kinematic variables and e%}‘g (p,y, N.) is the single-

particle efficiency given as functions of the decay products kinematic variables.

4 Systematic uncertainties

Several sources of systematic uncertainty on R AF/po are considered. For the signal extrac-
tion, three parametrizations of the CB functions are combined with the two background
shapes. The systematic uncertainties are taken as the RMS of the results of all the fits for
a given bin, considered as uncorrelated between the kinematic intervals. A similar strategy
is employed for the prompt fraction estimation, where the Gaussian function is replaced
by a Bukin function [57].

Four sources of systematic uncertainty are considered for the iterative method used to
compute €recgsel and epip: (i) the uncertainty on the k factor; (ii) the choice of the binning
used for the reference raw data distribution; (iii) the sensitivity to the initial reference
data distribution; (iv) the uncertainty on the PID maps. The general strategy consists
of performing the iterative procedure by varying individually each source of uncertainty
within their uncertainties. For each source, €recgsel and epip are computed by changing the
configuration, and the RMS of all the variations are taken as the systematic uncertainties.
For the first source, new results have been obtained on RAZF /Do using 20 values of k,
varied within uncertainties. The systematic uncertainty associated with the choice of the
binning scheme (i.e second source) is evaluated by using a finer scheme than the nominal
one. The sensitivity to the initial reference distributions (i.e third source) is tested by
evaluating them using the sPlot technique instead of a fit of invariant-mass spectra. Finally,
the uncertainty linked to the PID maps (i.e fourth source) is evaluated using a smearing
technique to compute 20 PID maps where the efficiency in each bin is randomly varied
within its statistical uncertainty.

Finally, the last sources of uncertainty considered are the statistical uncertainty coming
from the size of the Monte Carlo sample (e (stat.)) after the iterative procedure, and
the statistical uncertainty on the acceptance.

All the systematic uncertainties are summarized in table 3. Each uncertainty category
is treated as uncorrelated and is added in quadrature. Systematic uncertainty arising from
the B ratio of D — K~nt and A} — pK 7" decays, entering eq. (3.1), is also included in
table 3. This contribution is fully correlated between different kinematic variable intervals.

5 Results

Results for the R, + /DO production ratio are given in table 4. The N, variable is replaced
by (Npart) as shown in table 1. As can be seen in figure 3, the pr-integrated RA+/D0 shows



Source N, pr (GeV/e) Y
ot (stat.) 5171 4151 [41-71
Invariant-mass fit 1-5 1-5 1-5
Jorompt 1.8-8.1 1.4-10.2 3.4-4.6
€ace <1 <1 <1
Iterative procedure 79 4-11 4-8
Total 9-12 8-14 8-10
Ratio of decay branching fractions 5.16 5.16 5.16

Table 3. Summary of the ranges of systematic uncertainties for the considered intervals of N, pr
and y for the R+ /po Tatio given in percentage.

pr (GeV/c) RAj/DO
2-3 0.188 £ 0.095 £ 0.025
3-4 0.389£0.072+0.029
4-5 0.349 £ 0.052 +0.040
56 0.272+£0.049 +0.036
6-8 0.2351+0.035£0.032

Y RAj‘/DO
2.0-2.5 0.288 +0.044 £+ 0.029
2.5-3.0 0.292 +0.048 +0.028
3.0-3.5 0.246 +0.056 £ 0.020
3.5-4.5 0.120£0.067 +£0.011

<Npart> + Opart RAi/DO
6.0£2.5 0.288 +0.029 £ 0.034
124+44 0.253 +0.029 £ 0.022
26.6£7.5 0.2274+0.071 £0.024

Table 4. Results for the prompt RAj /DO production ratio, where the first uncertainties are sta-
tistical and the second systematic. A fully correlated systematic uncertainty of 5.16%, due to the
limited knowledge of the external decay branching fractions, affects all the intervals.

no dependence on (Npat), within uncertainties, with a mean value (R, / po) ~ 0.27. In
figure 4, the pp and |y*| dependent R AF /DO results are compared to those from pPb data at
VSnn = 5.02TeV [29], showing a good agreement between the measurements. Here |y*| is
defined as the absolute value of rapidity in the center-of-mass system (y*). Due to the beam
boost, the pPb (proton beam towards LHCb) and Pbp (lead beam towards LHCb) data
were recorded at forward (1.5 < y* < 4.0) and backward (—4.5 < y* < —2.5) rapidity, the
direction of the proton beam pointing toward the LHCb acceptance for positive y* values.
This observation is consistent with the fact that the two samples have relatively close
center-of-mass energy, and similar (Npar¢) values ((Npar) ~ 7.9 in pPb collisions at /syw
= 5.02 TeV as measured by ALICE [58]). The same measurements of R+ /po Versus pr
and y are compared to theoretical predictions in figure 5. Both dependencies are compared

~10 -
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being the rapidity in the centre-of-mass system for the pPb and Pbp results.The error bars represent
the statistical uncertainties, the boxes around the points the uncorrelated systematic uncertainties.
Results are compared to the same measurement in pPb and Pbp collisions at \/sxy = 5.02 TeV by
the LHCbD experiment [43].

to predictions from PYTHIA 8 [18] in pp collisions at /s = 5.02 TeV using the beyond-
the-leading-color contributions. For these predictions, a special tuning is used to increase
the A color-reconnection mechanism at the expense of D mesons (see appendix A). In
addition, the CR mechanism is also allowed. A good description of the pr trend is found
between theory and data for pp > 3 GeV/¢, while tensions are observed at pr < 3 GeV/c.
The model predicts a constant trend with rapidity and overshoots systematically the data
by up to three standard deviations. The pr dependence is also compared to predictions
from the SHM [27] for which an augmented set of excited charm-baryon states decaying
into Al is considered, and where fragmentation functions are used to compute the charm-
hadron pr spectra. The uncertainty band encompasses the uncertainty from varying the
branching fractions from 50% to 100%. According to this model, these additional states
could explain the large RA? /DO observed by the ALICE experiment at mid-rapidity in
pp and pPb collisions at /sxy = 5.02TeV [14, 15]. These predictions are systematically
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Figure 5. Prompt R+ po production ratios as a function of (left) pr and (right) rapidity. The
error bars represent the statistical uncertainties, the boxes around the points the uncorrelated
systematic uncertainties. Results are compared to PYTHIA 8 [18] in pp collisions at /s = 13 TeV
(magenta band) and predictions from a Statical Hadronization Model [27] (blue band).

higher than the LHCb data versus pr. Finally, plots comparing the present results to
recent ALICE and STAR data can be found in appendix B.

6 Conclusions

This paper reports the first measurements of the R AF /DO production cross-section ratio
in peripheral PbPb collisions at /syx = 5.02TeV by the LHCb experiment. The R AF /DO
shows no significant dependence on either rapidity or (Npar) in peripheral collisions within
uncertainties and has a mean value of (R + / po) ~ 0.27. However, the ratio tends to de-
crease at lower pp. More data are needed to confirm the results. Results are consistent
with previous LHCb measurements in pPb collisions at \/syx = 5.02TeV [43]. Compared
to theory predictions, the results are compatible within one standard deviation with the
PYTHIA 8 predictions in pp collisions at /s = 5.02 TeV, including the CR mechanism
at next-to-leading color approximation, except at low pr. In contrast, a systematic dis-
crepancy versus pr is observed with the SHM model predictions with an extended set
of baryon states. These new experimental results point toward a strong dependence of
RAC+ /po on rapidity when compared to ALICE measurements at mid-rapidity in pp and
pPb collisions [15], which could help to constrain theory predictions in this particular
phase-space region.
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A PYTHIA 8 tuning

The parameters of the Pythia tuning used to produce the results shown in figure 5 are
reported in table 5.

Parameter Value

SoftQCD:all on
StringFlav:probQQ1toQQ0join 0.0275,0.0275,0.0275,0.0275
StringFlav:probQQtoQ 0.0780000
StringFlav:ProbStoUD 0.2

StringZ:al.und 0.36

StringZ:bLund 0.56
StringFlav:mesonCvector 1.35
ColourReconnection:mode 1
BeamRemnants:remnantMode 1

ColourReconnection:allowDoubleJunRem | off

MultipartonInteractions:pTORef 2.15
PartonVertex:ProtonRadius 0.7
PartonVertex:setVertex on
Ropewalk:beta 0.1
Ropewalk:deltat 0.05
Ropewalk:doFlavour on
Ropewalk:doShoving on
Ropewalk:gAmplitude 0.0
Ropewalk:RopeHadronization on
Ropewalk:tShove 0.1

Table 5. PYTHIA 8 tuning used for the theory predictions.
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B Comparison to other experiments

In this appendix, the results from this paper are compared to measurements from other

experiments.
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Figure 6. Prompt R, + o production ratios as a function of (top) pr and (bottom) rapidity in the
centre-of-mass system. The error bars represent the statistical uncertainties and the boxes around
the points the uncorrelated systematic uncertainties. On the top panel, results are compared to
the ALICE measurements in PbPb collisions at \/sxx = 5.02TeV [16] measured in (red) 0-10%
and (green) 30-50% centrality range. On the bottom panel, results are compared to the ALICE
measurements (green) in pp and (red) pPb collisions at /sy = 5.02TeV [15].
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Figure 7. Prompt R AF /DO production ratios as a function of (Npay). The error bars represent the
statistical uncertainties, and the boxes around the points are the uncorrelated systematic uncertain-

ties.

Results are compared to the STAR measurements in Au-Au collisions at /syy = 200 GeV [21].
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