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Characterization of Timing-based Software Side-channel
Attacks and Mitigations on Network-on-Chip Hardware
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Modern network-on-chip (NoC) hardware is an emerging target for side-channel security attacks. A recent
work implemented and characterized timing-based software side-channel attacks that target NoC hardware
on a real multicore machine. This article studies the impact of system noise on prior attack setups and shows
that high noise is sufficient to defeat the attacker. We propose an information theory-based attack setup that
uses repetition codes and differential signaling techniques to de-noise the unwanted noise from the NoC
channel to successfully implement a practical covert-communication attack on a real multicore machine.
The evaluation demonstrates an attack efficacy of 97%, 88%, and 78% under low, medium, and high external
noise, respectively. Our attack characterization reveals that noise-based mitigation schemes are inadequate
to prevent practical covert communication, and thus isolation-based mitigation schemes must be considered
to ensure strong security. Isolation-based schemes are shown to mitigate timing-based side-channel attacks.
However, their impact on the performance of real-world security critical workloads is not well understood
in the literature. This article evaluates the performance implications of state-of-the-art spatial and temporal
isolation schemes. The performance impact is shown to range from 2-3% for a set of graph and machine
learning workloads, thus making isolation-based mitigations practical.
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1 INTRODUCTION

Homogeneous many-core processors and heterogeneous system-on-chip-based systems are
widely deployed in the real world due to efficient utilization of shared hardware resources (i.e.,
caches, speculation units, interconnect hardware). Although resource sharing brings substantial
performance benefits, adversaries exploit such resource sharing for timing-based side-channel
attacks (SCA). Google [20] released a proof-of-concept for timing attacks that target execution
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Fig. 1. (a) Timing variations to access shared NoC hardware under contention and no contention situations.

units and leaks data from chrome browser. Timing-based channels on shared hardware resources
are classified as persistent and non-persistent channels. In persistent channels (i.e., caches and
main memories), the hardware stores code or data until evicted (i.e., for a longer time), whereas
in non-persistent channels (i.e., execution units and network-on-chip), the shared hardware does
not store code or data for a long time period; rather, it aides with the movement of code or data.
The persistent channels have proved to be a reliable source (i.e., high timing variations and less
prone to noise) for timing-based SCA [13, 19, 27], and thus they have been the focus of interest for
security researchers. Contrary, the non-persistent channels are noisy, less explored, and not easy
to attack.

Prior work [24] indicated the potential of timing-based SCA on the non-persistent network-on-
chip (NoC) hardware and proposed an attack setup (baseline). The setup consists of two indepen-
dent applications (i.e., a transmitter and receiver) with spatially distributed code and data across
four cores in a multicore machine. Although these applications are fully isolated due to process iso-
lation, they share the underlying NoC hardware. The transmitter application occupies shared NoC
resources by accessing data and causes latency variations for all other applications receiving data
over the NoC hardware, including the receiver application. Figure 1 shows the timing histogram of
receiver application data accesses with NoC hardware under contention and no contention. These
latency variations are exploited for timing-based side-channel attacks. A recent work, ConNOC [8]
implements the baseline attack setup on a real machine and shows that timing variations are inad-
equate for practical SCA attacks. It proposes a novel code and data placement method to improve
the accuracy of the attack using timing variations in the NoC hardware. It quantifies the attack
to deliver ~100% accuracy at a much higher speed as compared to the baseline setup. Moreover,
it demonstrates practical covert-communication and information leakage attacks on a real multi-
core machine. Although ConNOC claims to show the practicality of attack, it does not consider
realistic situations such as the impact of system noise on the attack efficacy. For example, will an
SCA attack work in the presence of external system noise? Can noise reduction approaches from
information theory, such as differential signaling, de-noise unwanted interference in the attack?

This article evaluates the baseline and ConNOC attack setups that target NoC hardware in the
presence of random external noise and characterizes the effect of noise on the efficacy of attack.
Three applications are utilized to generate low, medium, and high system-level noise in the mul-
ticore machine. The evaluation shows that baseline attack efficacy drops to 88%, 78%, and 55%
for the low, medium, and high noise scenarios. We propose to utilize information theory concept
of differential signaling to de-noise the attack. Differential signaling requires transmission of a
reference signal alongside the original signal; thus, if external noise affects both signals, then a dif-
ference between the original and reference signal reveals original information. Our evaluation of
the information theory attack shows that the efficacy of SCA attack improves to 97%, 88%, and 78%
under low, medium, and high noise, respectively. A 78% efficacy of attack is sufficient to leak criti-
cal information, specifically for covert-communication. Therefore, we implement and characterize
a practical attack to demonstrate covert leakage of a 240 x 180 pixel image over the NoC covert-
communication channel in the presence of high system noise in our multicore machine setup.
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Literature shows that SCA attacks can be mitigated using obfuscation- [14, 15, 28] and isolation-
[18, 24, 25] based approaches. Both schemes have security and performance implications. Ob-
fuscation schemes mitigate timing-based SCA by making constant time for contention and no-
contention cases. One approach is to introduce random noise on NoC hardware to obfuscate timing
variations. For example, Reference [28] generates dummy traffic to corrupt timing variations (i.e.,
constant time for contention and no contention cases) to mitigate the timing-based SCA. Although
noise injection schemes are claimed to obfuscate timing variations, they are not evaluated in terms
of timing-based SCA on NoC hardware. For example, how much noise is required to mitigate attack
that targets NoC hardware effectively? Further, are de-noising schemes such as repetition codes
and differential signaling from information theory sufficient to overcome obfuscation mitigation
schemes? Our information theory attack answers these questions and concludes that random noise
can be de-noised, thus making the obfuscation-based mitigation schemes inadequate for practical
purposes. To successfully mitigate timing attacks on NoC hardware, isolation-based schemes must
be considered.

Isolation schemes [18, 24, 25] distribute shared resources spatially or temporally to provide
strong security guarantees by removing interference that causes timing variations. However, these
schemes incur performance implications. For example, spatial isolation distributes shared hard-
ware into secure and non-secure domains and limits the efficient usage of hardware resources.
However, the temporal isolation schemes allow efficient utilization of resources by allocating
shared hardware to each application for small time quanta. The temporal isolation approach allows
full utilization of hardware resources for a unique application, but co-located applications need to
wait. Prior work [24, 25] characterizes temporal isolation schemes using micro-benchmarks and
synthetic traces, but performance implication study on the real-world applications is missing in
the literature. Further, a comparison study of performance implications of spatial and temporal
mitigation schemes is missing in the literature.

Isolation schemes, such as Ironhide [18], TDM [24], and SurfNOC [25] require hardware sup-
port that is not available on commercial off-the-shelf machines. Therefore, to study their perfor-
mance impact on real workloads, a detailed application-level simulator is needed. In this article,
we implement three state-of-the-art isolation-based NoC mitigation schemes on a RISC-V multi-
core simulator [4, 12, 17]. We extend hardware performance models in the simulator to study the
performance implications of the mitigation schemes for a set of graph and machine learning work-
loads executing real-world inputs. First, we demonstrate that the simulator has enough fidelity
for timing-based attacks that exploit the underlying shared NoC hardware. Second, we show a de-
tailed performance evaluation of the mitigation schemes and conclude performance degradation
of 2.29%, 12.5%, and 2.97% for Ironhide, TDM, and SurfNOC, respectively. Ironhide spatially parti-
tions the available cores into hardware isolated clusters of cores. The NoC traffic is not allowed to
cross cluster boundaries, thus ensuring isolation. The hardware support needed for Ironhide is at
the core-level cluster formation. This technique works best when workload resource demands are
matched with the spatial partitioning of core-level resources. However, SurfNOC temporally iso-
lates NoC traffic from different applications with properties that minimize stalls in the NoC. This
technique is shown to be as effective as Ironhide, but it comes at the cost of hardware support in
the NoC router microarchitecture. Both Ironhide and SurfNOC approaches are practical to protect
against timing-based software side-channel attacks on NoC hardware.

Overall, this article makes the following contributions:

(1) Shows that system noise significantly reduces the efficacy of state-of-the-art baseline and
ConNOC attack setups that target NoC hardware for a timing-based side-channel attack on
real hardware.
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(2) Propose an information theory-based analysis of the attack that uses repetition codes
and differential signaling to de-noise the attack setup and demonstrate a practical covert-
communication attack with high accuracy on real hardware.

(3) It shows that de-noising methods make obfuscation-based mitigation schemes inadequate.
Therefore, it evaluates isolation-based mitigation schemes using real graph and machine
learning workloads and quantifies their performance implications using an application-level
RISC-V multicore simulator.

2 BACKGROUND AND MOTIVATION
2.1 Timing-based SCA on NoC

Timing-based SCA exploits timing variations in performing same operation under different condi-
tions. For example, a data read from a remote core takes varying time based on the availability of
shared hardware resources. NoC hardware consists of wires, buffers and crossbars that are shared
among all available cores. Prior work [24] proposed an attack setup that consists of code and data
of two applications spatially distributed over four cores in multicore configuration. These applica-
tions are virtually isolated but share underlying non-persistent NoC hardware. ConNOC [8] imple-
mented a novel placement strategy that better exploits the underlying NoC hardware for timing
variations. An adversary can carefully control contention on NoC hardware to create a timing-
based SCA, which is used for practical covert communication and information leakage attacks.

2.2 Information Theory and Noise

Noisy communication channels (i.e., wireless communication) are common problem in informa-
tion theory, and various techniques are used to improve signal quality and de-noise signal at bit
level, word level, and packet level. This work focus on information theory concepts of repetition
codes [21, 23] and differential signaling [16] for bit-level timing-attack.

2.2.1 Repetition Codes. The repetition codes require a re-transmission of the original signal
multiple times. This approach introduces redundancy of transmittable information and increases
the probability of the signal reaching its destination. For example, a repetition code of three will
convert a bit-level information 101 into bit-level information 111 000 111 (i.e., each bit is transmit-
ted three times). This increases the probability of contention on NoC hardware.

2.2.2  Differential Signaling. The differential signaling technique de-noises the original signal
from unwanted noise. The differential signaling technique requires a simultaneous transmission
of two signals for each bit of information, an original signal and a reference signal (i.e., bit 0 or
low signal). Later, a difference between the original signal and the reference signal is used to infer
original information. For a bit 1, the differential signaling approach requires transmission of “10,”
and a positive difference indicates original bit 1. For bit 0, the “00” is transmitted, and no difference
indicates the original bit 0. This approach makes the attack resilient to external noise.

2.3 Mitigation Schemes

Timing-based SCA is possible due to controlled interference at underlying shared hardware result-
ing in timing variations. Such attacks can be mitigated by either hiding timing variations or pro-
hibiting adversaries from making controlled interference on shared hardware. Mitigation schemes
are classified into obfuscation and isolation schemes.

2.3.1 Obfuscation Schemes. Obfuscations schemes [14, 15, 28] introduce random noise to hide
the timing variations by attempting to make constant timing for all operations. For example, an
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obfuscation-based mitigation scheme can create contention on shared NoC hardware with the help
of external noise to deceive adversaries into inferring bit 1, where it was bit 0.

2.3.2 Isolation Schemes. Isolation schemes prevent adversaries from creating contentions by
isolating shared hardware spatially or temporally. Spatial isolation [18] allocates dedicated hard-
ware to adversary applications and secure applications. However, temporal schemes [24, 25] alter-
natively allocate hardware to each application for a small interval of time.

2.4 Limitations of Prior Work and Goals

State-of-the-art work on timing-based SCA on NoC hardware implements baseline and ConNOC
attack setups, but a study on the impact of noise targeting NoC attacks is missing in the literature.
Further, the literature lacks answers to the following questions: (1) Can unwanted noise reduce
the efficacy of the SCA attack?, (2) Can we use information theory concepts to improve the attack
in the presence of noise?, (3) Can we develop a real attack using the NoC channel? Will noise-
based mitigation schemes work for SCA that targets NoC hardware?, and Can we defeat noise-
based mitigation schemes? Contrary to attacks and noise-based mitigations, there are practical
mitigation schemes based on isolation for timing attacks, but evaluation of these schemes focuses
on security aspects and performance of synthetic traffic. However, performance implication studies
and comparison of these mitigations on real-world applications are missing in the literature.

This work aims to answer missing literature questions and comprehensively characterize timing-
based attacks on NoC hardware under realistic conditions. This work also evaluates performance
characterizations of three isolation-based mitigation schemes using six real-world security-critical
applications.

2.5 Threat Model

The work adopts threat model from timing-based SCAs on shared hardware resources [8, 24, 27].
The threat model considers that two applications (i.e., transmitter and receiver) are unauthorized
to communicate with each other. Both applications have user-level privileges and control place-
ment of their data on different cores. Modern multicore processors enables user-level applications
to pin code and data to certain cores for higher performance gains and benefit from parallelism.
For example, the numactl command pins application code on certain cores and allocate memory
controllers in a real Tilera TileGx-72 multicore processor running the Linux operating system nu-
mactl command [2] is used pin application code to certain cores and allocate memory controllers.
Numactlis user-privileged command and ensure the pinning of application to certain cores and pre-
vent operating system to re-allocate the application to random cores. Application data are pinned
to certain tiles using the Tilera Tile Multicore Components (TMC) Library [10]. Further, the
threat model assumes that all applications have access to a cycle accurate timer to measure tim-
ings of operations. The threat model focus on software-based SCAs and considers physical SCAs
such as thermal, power, sound, and EM outside of the threat model. Consequently, it focuses on
software-introduced (i.e., parallel running applications to SCA attack) noise and ignores physical
noise such as thermal or coupling noise outside of the threat model. It also considers performance
degradation attacks such as denial-of-service beyond the scope of this work.

3 TIMING ATTACKS ON NOC HARDWARE

The timing-based SCA targets shared resources in NoC hardware, including shared buffers, wires,
and crossbars. For example, if an application running on core 0 requests data read from a remote
core 3, then the data will initially move from the remote core’s cache to NoC hardware, where
it stays in buffers until the crossbar is available. The data are multiplex over wires to utilize re-
sources efficiently. An adversary application may simultaneously occupy the buffers, wires, and
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Fig. 2. Three components of timing-based attack on NoC hardware: (1) encoder, (2) timing-based communi-
cation channel, and (3) decoder.

crossbars and force other application’s data to wait. This leads to timing variations in data access
when the NoC hardware resources are contended or not. An SCA attack exploits these timing vari-
ation to conduct covert communication or information-leakage attacks. The efficacy of the attack
depends upon (1) the maximum time difference that an adversary application can create between
contention and no contention, (2) synchronization between creation of contention and detection
of contention, and (3) unwanted resource occupation from non-malicious applications sharing
NoC hardware. Prior work characterized maximum timing variations and their amplification us-
ing repetition codes, but the efficacy of attack NoC hardware in the presence of system-level noise
is missing. This section explains components of the attack setup and the proposed information
theory attack to de-noise unwanted interference that affects the attack efficacy.

3.1 Timing-based SCA Components

The attack setup consists of two applications, a transmitter application and a receiver applica-
tion with code and data spatially distributed across cores such that they share underlaying NoC
hardware. Figure 2 shows a layout of attack components with (1) a timing-based communication
channel, (2) an encoder, and (3) a decoder. A timing-based communication channel [8, 24] is un-
derlaying shared NoC hardware that causes timing variations for data movement. The encoder
is implemented in the transmitter application, which creates a contention pattern on the timing
channel. Contrary, the decoder is implemented in the receiver application and decodes the timing-
variation pattern on the NoC hardware timing channel. The success of the attack also depends on
synchronization between encoder and decoder applications. The timing-based SCA are synchro-
nized using cycle-accurate global cycle counters or shared global flags. Both applications initiate
a transmission and receive at pre-agreed time ticks in a fully synchronized attack. For example, at
every ¢ cycle, the transmitter application invokes an encoder to generate contentions or vice versa,
and the receiver application invokes a decoder to monitor contention situation on NoC hardware.

3.1.1  Timing-based Communication Channel. A timing-variations-based side-channel on NoC
hardware is a channel for communication between two applications. Figure 2 shows a transmitter
application T hosted on core 1 and the transmitter data T; pinned on core 2. A communication
between T and T, causes contention on NoC hardware between core 1 and core 2. Similarly, the
receiver application R is hosted on core 0 and receiver data R; pinned on core 3. A contention on
core 1 and 2 NoC hardware will cause a delay in the latency of communication between R and
Ry, and application R will observe timing variations based on contention level. This placement of
code and data is used to create a timing-based SCA. For example, to transmit a bit 1, an application
creates a high contention on the NoC hardware channel, whereas to transmit a bit 0, no contention
is created on NoC hardware. Although this is a low timing variation and a high noise channel, an
encoded stream of information with information theory concepts overcome such challenges. The
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Core 0 Core 1

Fig. 3. Layout for timing-based SCA on NoC hardware. (a) Baseline attack setup and contention points. (b)
Point of contention in NoC hardware. (2) ConNOC placement of code and data with contention points.

baseline attack proposes a timing-based communication channel, which later ConNOC improves
by means of better code and data placement strategies.

3.2 Baseline and ConNOC Attack Setup

The baseline attack setup consists of victim (i.e., transmitter) and adversarial (i.e., receiver) applica-
tions where code and data are spatially distributed across four cores. Figure 3(a) shows the baseline
attack setup where transmitter application is hosted on core 0, and its data are hosted on core 3,
whereas receiver application is pinned on core 1, and its data are hosted on core 2. The baseline
attack partially exploits contention points (i.e., wires, buffers, and crossbars) on core 1 and core
2. The baseline attack on the NoC hardware side-channel is primarily limited by the placement of
code and data for the adversarial and victim applications in a multicore setting. Figure 3(b) shows
a possible point of contention. Moreover, the success of the attack depends on the probability of
aligning contented data accesses on one or more of these sources. A ConNOC data placement
scheme improves the number of contention points, as well as the probability of success to activate
them at runtime, and thus requires fewer repetition codes and results in high-speed attack. This is
done by placing the code and data for each application on the extreme ends of the multiple cores
setup in a multicore. An important factor is the number of cores that actively participate in the
attack setup. When the number of cores is small, the number of potential contention points are
constrained while the probability of activating them is high. However, when the number of cores
is large (potentially each flit of a cache line occupying a core), the setup utilizes a much larger
number of contention points. However, the probability of activating contention on multiple NoC
resources decreases. ConNOC is a data and code placement strategy that aims to maximize the
number of NoC hardware contention points. The maximum occupancy of a path from an appli-
cation’s data access point of view is the number of flits per access. For example, if the processor
implements 64-bytes cache line and 64-bits flit size, then the maximum number of cores occupied
by a single path is eight cores. In this scenario, ConNOC utilizes eight cores where the code and
data placement are done on the extreme points of the interconnected cores. However, ConNOC
placement works efficient in three-core configurations. Figure 3(c) shows a three-core placement
of code and data to maximize attack efficacy.

3.3 Impact of System Noise

The efficacy of baseline and ConNOC attack setup depends on the successful creation of contention
and no-contention situations on NoC hardware by transmitter and receiver applications. For ex-
ample, the transmitter application may create a no-contention situation in NoC hardware for ¢
time, whereas the receiver measures its data access latency to detect the no-contention scenario.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 21. Pub. date: June 2023.



21:8 U. Ali et al.

Without system noise, this results in a data access latency for the receiver that falls within the
prescribed range. Contrary, in the presence of system noise the receiver data access latency is
perturbed. The receiver may detect this situation as a contention case, while the transmitter in-
tended a no-contention scenario. This unwanted interference drastically reduces attack efficacy
and requires additional methods to make the attack more resilient to system noise.

3.4 Information Theory Attack Setup

The baseline attack setup and ConNOC are studied without presence of noise, where noise dras-
tically reduces the efficacy of attacks and makes them inadequate for practical attacks that target
noisy and non-persistent timing-based SCA on NoC hardware. This section improves the baseline
and ConNOC attack setups with information theory concepts of repetition codes and differential
signaling to overcome the challenges of unwanted external noise. Although information theory
improves the efficacy of an attack, it reduces the attack speed. A practical attack requires a full
synchronization of two applications. Otherwise, attack efficacy reduces drastically. A practical
covert-communication attack is implemented to show the efficacy of the information theory at-
tack in presence of noise.

3.4.1 Repetition Codes. The repetition codes is simple information theory [22] approach to im-
prove the quality of signal over noisy channel. The repetition codes require a re-transmission of
the original signal r times. This approach introduces redundancy of transmittable information and
increases the probability of the signal reaching its destination. For example, a repetition code of
three will convert a bit-level information 101 into bit-level information 111 000 111 (i.e., each bit
is transmitted three times). However, the receiver has 3-times-higher probability of receiving the
correct information. In our attack, a repetition is implemented by occupying the NoC hardware re-
sources r times. This increases the probability of creation of contention for transmitter application
on NoC hardware and consequently detection of contention by receiver application.

3.4.2 Differential Signaling. The differential signaling technique is used in electrical cir-
cuits [16] to remove unwanted electrical interference. The differential signaling technique requires
a simultaneous transmission of two signals for every bit of information—an original signal (could
be bit 0 or bit 1) and a reference signal (i.e., bit 0 or low signal). The receiver will collect both sig-
nals. Later, a difference between the original signal and the reference signal is used to infer original
information. The differential signaling works on the assumption that noise will effects both sig-
nals equally, while a difference will remain constant, i.e., a positive difference for bit 1 and no
difference for bit 0. For example, in bit 1, the differential signaling approach requires transmission
of “10,” and a positive difference indicates original bit 1. For bit 0, the “00” is transmitted, and no
difference indicates the original bit 0. This approach makes the attack resilient to external noise.

3.4.3 Information Theory Attack. The encoder in transmitter application consists of repetition
codes and differential signaling components. Figure 4 shows layout for information theory attack
setup. In the first step, the secret bit is encoded using repetition code and differential signaling.
In step 2, a contention and no contention pattern is generated on timing-based communication
channel based on encoded information. This attack uses 4-core baseline attack setup as a commu-
nication channel. In step 3, the receiver application detects contention and no-contention patterns
and decodes differential signaling and repetition codes to retrieve the secret bit. Figure 5 shows a
pseudo code of transmitter and receiver applications for information theory attack. The next sec-
tions explain encoder and decoder implementation of repetition codes and differential signaling.

3.4.4 Encoder. The encoder includes a bit-level repetition code to overcome low timing varia-
tions. Repetition codes introduce redundancy in transmittable information and amplify the effect
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/I transmitter pseudo code /I receiver pseudo code

set_sync_bit(); while(sync == 1) {
t_start = timer();
for(loop < replay_rate){
read_data()

|
|
|
|
while(sync == 1) { !
if (bit==1){ |
/I generate contention at NOC | }
for(loop < replay_rate){ : t_diff0 = timer() - t_start;
read_data(); |
| t_start = timer();
: for(loop < replay_rate){
| read_data()
|
|
|
|

for(loop < replay_rate){
//do nothing;
}

Jelse if(bit==0){

}
t_diff1 = timer() - t_start;

for(loop < replay_rate){ if (t_diff1 - t_diff0 > threshold){
/ldo nothing; secret_bit = 1;
Yelse{// infer secret = 0
for(loop < replay_rate){ secret_bit = 0;
/ldo nothing; }
} }

}
}

Fig. 5. Pseudo code for information theory attack.

of timing variations. This amplification causes a larger timing difference between contention and
no contention cases. For example, an r times repetition of a bit 1 will generates a stream of r times
bit 1, which results in a d times increase in timing variations. Further, this encoder includes a
differential signaling component to overcome the challenge of external system noise. Differential
signaling is a technique used in information theory to de-noise the signal. The differential signal-
ing encodes a single bit into a pair of bits. For example, a bit 1 is encoded into a low and high
pattern (i.e., 01), and bit 0 is encoded into a low and low pattern (i.e., 00). Later a latency difference
of two signals is used to infer transmitted bit. The external noise affects both bits of the encoder,
but the difference between the two signals remains constant—for example, a positive difference
for bit 1 and zero for bit 0.

3.4.5 Decoder. The decoder monitors latency values to infer contention levels at NOC hard-
ware and decodes components for differential signaling and repetition codes. If latency is greater
than a set threshold, then this is inferred as a contention case or vice versa. The decoder repeats this
process and collects multiple latency samples, and the differential signaling component decodes
these t samples into a stream of repetition codes value. These repetitions are later resolved to a
secret bit value. For example, the decoder detects a case of 0101, and the differential signaling com-
ponent will convert this into 11, which later resolves to secret bit 1 using repetition code decoder.

3.5 Covert-Communication Attack

To measure the efficacy of the information theory attack, we have implemented a covert-
communication attack. A covert-communication attack allows communication between otherwise
two unauthorized applications. The transmitter application has access to confidential data and uses

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 21. Pub. date: June 2023.



21:10 U. Ali et al.

a timing-based channel to exfiltrate information to a receiver application. The transmitter applica-
tion uses the information theory attack setup to leak secret information. For example, the trans-
mitter application occupies shared NoC hardware for a short time quanta, where the receiver ap-
plication observes contention on receiver data read within the same time quanta. This contention
results in an additional latency, which the receiver application compares against a threshold to in-
fer the transmitted information. If latency is greater than a threshold, then the receiver infers it as
a contention case, and if it is equal or less than the threshold, then the receiver application infers it
as a no contention case. The decoder converts this pattern into secret information. This process is
repeated to leak a large amount of data. This covert-communication attack is synchronized using
a cycle-accurate global cycle counter. The fully synchronized attack that uses information theory
slows the overall speed of baseline attack, and external noise affects the efficacy of the attack. We
demonstrate that a slow and low efficacy attack is sufficient to leak useful information.

4 MITIGATIONS SCHEMES

The controlled contention is an essential requirement to enable timing-based SCA on non-
persistent NoC channels. The obfuscation schemes depend on external noise to obfuscate timing
variations, and information theory attacks can de-noise the external noise, which makes obfusca-
tion schemes inadequate for practical purposes. Thus, this section focuses on the aforementioned
isolation-based schemes, i.e., TDM, SurfNoC, and Ironhide [18, 24, 25]. These isolation-based mit-
igation schemes have been shown in literature to provide strong security guarantees. However,
their performance implications on real applications is missing in the literature, which is character-
ized in this article.

4.1 Temporal Isolation: TDM

In a TDM-based temporal mitigation scheme [24], all NoC routers are allocated temporally to
different domains at once. Figure 6(a) shows temporal scheduling of NoC hardware allocation for
two domains. A domain is a specific set of applications that requires isolation for security or other
reasons. The domain 0 application traffic will use NoC routers, queues, and links in odd cycles,
whereas domain 1 traffic will use NoC hardware in even cycles. For example, Figure 6(a) shows an
X-Y routing scheme where a domain 1 packet originating from core 7 in an odd cycle will have to
wait for an even cycle to move to core 6. For a one-cycle per-hop NoC hardware, the packet requires
a total of eight cycles to reach its destination compared to four cycles without the TDM. This
temporal isolation scheme eliminates the chances of contention occurrence due to interference
from other domains applications, thus guaranteeing against timing variations. Although TDM
protects against timing variations, performance overheads are directly proportional to the number
of domains and cores. For example, every packet will have to wait for an additional cycle, multiple
to the number of cores and domains to traverse to the target NoC router.

4.2 Temporal Isolation: SurfNOC

SurfNOC [25] aims to improve the performance overhead of TDM and temporally schedules
isolation of NoC hardware resources. In SurfNOC, data from different domains flow like surfs.
This wavelike packet traversal guarantees non-interference while reducing latency overhead
compared to the TDM scheme. Figure 6(b) shows surflike scheduling of two domains using
SurfNOC. For example, the domain 0 data flow on black waves, whereas domain 1 data flow on
gray waves. For an X-Y routing scheme, the Figure 6(b) shows a domain 0 packet originating at
core 7 and having a destination at core 1 observes a one cycle delay at start time while waiting
for a black wave. The packet reaches its designation on cycle 5. The SurfNOC takes an additional
one cycle during traversal compared to four additional cycles of TDM. Each domain observes a
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Fig. 6. A sample scheduling of two domains-based mitigations using (a) TDM-based temporal isolation, (b)
SurfNOC-based temporal scheduling, and (c) Ironhide, a cluster-based spatial isolation scheme.

delay directly proportional to the number of domains — 1 at start time, and once data ride the
wave, there are no delays. The only exception is for a higher number of domains (i.e., greater
than 2) where an additional delay could add at the turn while the packet changes the wave (i.e.,
dimension change). This work focus on two domains. This scheme reduces up to 75% performance
implications compared to TDM, where the overhead depends on the number of domains and cores.

4.3 Spatial Isolation: Ironhide

Ironhide [18] dynamically partitions NoC hardware, including routers and links, into two strongly
isolated clusters of cores, creating two domains. One cluster is assigned to domain 0 applications,
while the other executes domain 1 applications. This spatial isolation prohibits the sharing of NoC
hardware and protects against timing leakages. Figure 6(c) shows the architectural structure of
Ironhide in sample 4 X 4 tiles multicore architecture. Based on scheduled applications resource
demands, Ironhide performs dynamic allocation of cores to the domain in a multicore setting.
The security kernel in Ironhide implements the heuristics to determine optimal resource alloca-
tion points by monitoring misses per-kilo instructions (MPKI) of scheduled processes. MPKI
trend contains a saturation point that indicates resource allocation point beyond which process
performance saturates. These saturation points for each process are stored in the security kernel,
and during the process scheduling, the cluster size is reconfigured to match these saturation points.

Processes are executed in multiple domains by pinning their threads into cores of respective
domains. The shared cache slices are also homed within the same domain, while the off-chip mem-
ory is statically distributed among processes of different domains. The memory controllers are also
statically distributed among different domains to avoid interference at memory controller queues.
The network traffic is routed in such a way that all network packets remain within the cluster
boundary. A deterministic X-Y routing protocol is deployed to confine each packet source to the
destination path to never violate the cluster boundary. Though Ironhide protects against timing
SCA by creating strongly isolated clusters, partitioning resources can affect application perfor-
mance due to reduced number of available cores. Applications with high core-level parallelism
show degraded performance due to partitioning of cores into clusters. However, processes with
fewer resource demands do not observe any degradation. Figure 6(c) shows two clusters with each
cluster of size 8—a packet traversing from core 7 to core 1 in cluster 1 (i.e., domain 1). The packet
will take four cycles to reach its destination, compared to 5 in SurfNOC and 8 in TDM.

5 METHODOLOGY

This section explains methodology for information theory attack and mitigation schemes imple-
mentation. The information theory attacks are implemented on a real multicore processors [10].
Contrary, the TDM and SurfNOC mitigation schemes requires hardware modification capabilities
that are not available in commercial hardware. Thus, are implemented on a RISC-V simulator.
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5.1 Information Theory-based Attacks

The baseline and information theory attacks are characterized on a 72-core Tilera Tile-Gx72
processor [10].

5.1.1 Tile-Gx72. Tile-Gx72 is a tiled architecture with five independent two-dimensional (2D)
mesh NOC hardware (iMesh) with X-Y routing. Each tile consists of 32 KB private and 256 KB
shared level-2 cache. The cache line size is 64 bytes, whereas the NOC flit size is 8 bytes. This work
explicitly targets the cache-coherence network (TDN) of iMesh. The GNU/Linux operating system
with kernel version 3.10.55-MDE- 4.3.2.182362 uses the Tilera TMC library to manage network
traffic and tile resources.

5.1.2  Attack Implementation. The cache coherent TDN NoC hardware of iMesh is targeted in
this article. The baseline 4-core setup is used explain the attack implementation. To measure the
timing variations of data read, the GNU/Linux command numactl pins the code for receiver to core
0. The TMC library allocates a memory page (4-KB data structure) using tmc_alloc_set_home() on
core 3 (i.e., the data structure uses core 3’s L2 cache slice as it’s home location). The local caching
for core is disabled using TMC library call tmc_alloc_set_caching(). Whenever receiver application
on core 0 fetches data from primary memory (i.e., read a variable int i), the data are moved to core
3’s shared L2 cache, and after that to core 0’s register file (core 0 local caching is disabled). The
TMC library function get_cycle_count() read the value of global cycle counter. The time is measured
in four steps. (1) Initially, the receiver application on core 0 reads data (int i) that is brought on
the chip from primary memory and placed on core 3’s shared L2 cache. (2) Read the global cycle
counter using get_cycle_count() and store results into a temporary variable. (3) Receiver application
on core 0 reads int i again. The data (a cache line, 64 bytes) moves from core 3 shared L2 cache,
but only the requested data are stored in the register file of core 0. (4) Read the time counter value,
and subtract from the earliest temporary stored counter value to measure the timing latency. This
latency includes time to fetch data from core 3’s L2 cache and its traversal over the TDN NoC
hardware of the iMesh network toward core 0.

In the no-contention scenario, only receiver executes in the system. However, in the case of the
contention scenario, the code for another transmitter application is pinned on core 1, whereas its
data are pinned to core 2 using the appropriate TMC library calls. While keeping the measurement
data size the same (i.e., a single cache line), the transmitter makes concurrent access from core 1
to core 2, thus creating opportunities for contention in the shared NoC hardware resources.

5.1.3  Noise Generation Applications. Noise is an unwanted perturbation in timing variations of
the receiver application due to parallel running applications. Noise can be generated by normal
parallel running applications or specialized applications designed for mitigation purposes. This
work use LYNX [5], CURL [1], and STRESS [6] for low, medium, and high noise generations. LYNX
is a command-line-based web browser for Linux that cause low compute and memory activity.
Web browsing causes sparse traffic on NOC hardware, which causes low disturbance. CURL is
command-line for data transfer from internet. A continuous data transfer causes significant noise
(medium) on NOC hardware. STRESS is a benchmark application to generate noise on various
hardware components. We use it to generate a high noise situation involving memory hierarchy
and NOC hardware.

5.2 Characterization of Mitigation Schemes
Mitigation schemes are modeled using RISC-V-based large core count simulator.

5.2.1 RISC-V Multicore Simulator. This work use an in-house application class multicore RISC-
V simulator [4]. The simulator uses performance models of MIT’s Graphite simulator [17] and uses
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Architecture Description Language [3] models that describe the functional aspects of RISC-V sim-
ulated multicore, e.g., Instructions implementation, register states, MMU, and memory hierarchy
models. The simulator is equipped with performance models to capture latency of hop-by-hop
NOC hardware [17]. In NoC performance model, each packet movement traces (including NoC
latency) are collected at each core level, and overall NoC latency for an application is measured
using these traces.

5.2.2  Implementation of Mitigation Schemes. The simulator NoC performance models are mod-
ified to include additional latency penalties for TDM and SurfNOC. In TDM implementation, we
have doubled the latency of routers for the two domains experiment at every NoC router. Contrary
to TDM, the SurfNOC requires additional latency while waiting for surf and changing a surf (i.e.,
dimension shift). To model SurfNOC performance implications for two domains, we have doubled
router latency at first NoC router and later added additional router latency if we detect an X to Y
turn. To model Ironhide on the simulator, all available resources are distributed into two domains.
Security-critical applications are executed in domain 1 such that they are spatially isolated from
other applications of domain 0 running in parallel. The challenge here is to find the optimal re-
source distribution point between domains. As mentioned in Section 4.3, the security kernel in
Ironhide captures the MPKI trend using a representative input.

The security kernel first allocates all the resources to user application and captures the MPKI
value. The resource allocations are monotonically decreased to obtain an MPKI trend as a function
of core count. The MPKI curve contains the saturation point representing the resource allocation
point beyond which the performance scaling saturates, as shown in Figure 15. The domain size
for a secure application is configured to match the saturation point to avoid any performance
degradation. The secure application threads are pinned to respective cores of domain 1. The L2-
homing policy is updated to map local misses to L2 slices within the cluster, whereas L2 misses are
routed to memory controllers mapping the respective DRAM regions. The X-Y routing protocol
for on-chip network makes sure that network packets of a cluster do not violate cluster boundary.

5.2.3 Timing-variations Fidelity on Multicore Simulator. A Table 1 configuration is used to ex-
periment and collect timing information. Like the attack setup on Tilera, the receiver thread is
pinned on core 0 and data on core 3. The transmitter application is pinned on core 1, and transmit-
ter data are pinned on core 2. To pin data on respective cores, we reserved a large array of “char”
variables of 1-byte size and shortlisted variables such that they store in respective cores L2 cache
memory—first access load data into respective core L2 and application core private caches. The pri-
vate caches are flushed in the next step, and data are accessed again. Meanwhile, the time to load
that data are measured. This process is repeated to take latency measurement under contention
and no contention scenarios.

5.3 Evaluation Metrics

This work use True Positive (TP) rate [22] and Discrimination Index (DI) [16] as timing-
variation metrics to evaluate the efficacy and reliability of information theory attacks. The TP rate
is based on correct inference of contention situation at underlying NoC hardware-based timing-
channel. For example, if the transmitter application creates contention on NoC hardware, and the
receiver application successfully infers the contention, then it calculates the TP rate using follow-
ing equation TP = %
where t, was total samples when the transmitter was idle (i.e., no contention on NoC hardware).
The b, is the number of samples inferred as contention when the transmitter application creates
contention, where by is the number of samples recorded as no contention when there was no
contention on NoC hardware.

. Here t; is total contention samples that transmitter application creates,
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Table 1. Architectural Parameters for Evaluation

| Architectural Parameter | Simulator | TILE-Gx72 ‘
Number of Cores up to 64 @ 1 GHz 72 @ 1 GHz
Compute Pipeline per Core | In-Order, Single-Issue 64-bit VLIW
Memorgy Subsystem
L1-I Cache per core 32 KB, 2-way Assoc. 32 KB, 2-way Assoc., 2 cycles
L1-D Cache per core 32 KB, 2-way Assoc. 32 KB, 2-way Assoc., 2 cycles
L2 Inclusive Cache per core | 256 KB, 4-way Assoc. 256 KB, 4-way Assoc., 10 cycles
2 cycle tag, 4 cycle data
Directory Protocol Invalidation-based MESI | Invalidation-based
Num. of Mem Cntrl 4 4
DRAM Bandwidth per Cntrl | 10 GBps 12 GBps
Electrical 2D Mesh with XY Routing
Hop Latency 2 cycles (1-router, 1-link)
Contention Model Only link contention
(Infinite input buffers)
Flit Width 64 bits 64 bits

Contrary to the TP rate, which gives attack efficacy, the DI is used to measure the reliability
of the timing channel. The DI is a statistical tool that quantifies the timing variations distribu-
tions under contention and no contention cases. The DI calculations include the statistical mean
of timing variations distribution and the variance under contention and no contention scenar-

ios. We have calculated the DI using following equation: DI = % Here, the y; is the mean
of timing-variation distribution under the contention situation, anld ;30 is the statistical mean of
timing-variation distribution under a no-contention case. The variance of timing-variation distri-
butions is represented by o7 for contention and of for no contention scenarios, respectively.

The implementation of information theory concepts directly affects the speed of attack, and
this work uses the traditional communication metric of speed, i.e., kilobits per second (kbps), to
measure the maximum speed of attack. The mitigation schemes are evaluated using the completion

time metric for security-centric applications.

5.4 Performance Benchmarks

The performance implications of these mitigation schemes have been evaluated using six appli-
cations from three different security-critical computing domains. Three graph benchmarks, Sin-
gle Source Shortest Path (SSSP), PageRank, and Triangle Counting, are executed using a real-
world California Road Network graph [7] A mission planning algorithm, Artificial Bee Colony
(ABC) [26], is also analyzed. Two machine learning workloads AlexNet and Squeeze-Net, are also
considered. ImageNet [11] is provided as an input to these benchmarks.

6 EVALUATION

This section evaluates implemented attacks with information theory concepts and uses TP rate,
DI, and speed metrics to quantify attack efficacy.

6.1 Attack with Repetition Codes

This section evaluates the baseline and ConNOC attack setup alongside encoder and decoder with
repetition codes only and without any external noise. Figure 7 shows a detailed dot plot of baseline
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attack for TP rate against repetition codes value from a range of 1 to 100. The experimental results
show that without repetition codes, the TP rate is 50%, which is equivalent to randomly guessing
the contention and no contention cases. We have set a threshold of 90% TP rate to consider an attack
a practical threat. A 30 times repetition of contention and no contention cases is required to achieve
a threshold of 90%, with a DI value of 2.7. We observed that the proposed setup with repetition
codes only shows 100% TP rate at 55 repetitions with DI of 3.3. Further increase in repetition codes
does not improve the TP rate where DI continuously increases at a slow rate. Although TP rate is
an important metric, the attack speed largely affects practical attacks. Figure 7 shows that with an
increase in repetition rates, the speed of attack decreased attack. The speed is maximum with no
replay and reduces to 384 kbps at 30 repetition rate and 224 kbps at 55 repetition rate.

Figure 8 shows the dot plot for ConNOC attack setup with TP rate against repetition codes
values. The experiment results shows a 68% TP rate without any repetition codes compared to 50%
of baseline attack setup. The repetition code of 4 is required to achieve threshold of 90% where
repetition codes of 5 is required to achieve 100% TP rate, that results in a speed of 1.5 mbps. Further
increase in repetition codes only decreases the speed of the attack.

6.2 Attack with Differential Signaling

This section evaluates the baseline and ConNOC attack setup alongside encoder and decoder with
repetition codes and differential signaling analysis under low, medium, and high noise conditions.
The experiments are performed in the presence of three real applications that generate different
levels of noise on shared NoC hardware. For low noise conditions, a LYNX browser (low noise)
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application is executed on core 2 for baseline and ConNOC attack setup, the core that hosts trans-
mitter data and traffic between attack setup. For medium noise, the CURL application is used that
download a file from a remote server. To generate high external noise, an artificial noise is gener-
ated using STRESS application. The STRESS application is used with memory-intensive operations
that involve NOC. Figure 9 shows results of baseline attack setup with repetition code only and
repetition codes with differential signaling. These experiments use a repetition rate of 55. We ob-
served that the TP rate drops to 88%, 78%, and 55% in the presence of the low, medium, and high
noise, respectively, without differential signaling. In the presence of differential signaling, the TP
rate stays 97%, 88%, and 78% in low, medium, and high noise, respectively.

Figure 10 shows the experimental results for the ConNOC setup. Here repetition codes of 5 are
used, since they result in the target TP rate. The results show that information theory concepts not
only make the attack practical but also makes it resilient to unwanted external noise and randomly
added noise for obfuscation-based mitigations.

6.3 Covert-communication Attack

This section evaluates our practical attack implementation using baseline attack setup with 55
repetition codes that exploits underlying shared NoC hardware as a timing channel. Our attack
consists of a transmitter application and a receiver application. The transmitter application loads
the BMP format 240 x 180 pixel image (176-kilometer size). Each byte is transmitted bitwise using
the contention (for bit 1) and no contention (bit 0) at a speed of 244 kbps speed under different
conditions. Figure 11(a) shows original image, where Figure 11(b) show an image received using 55
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a) Original image b) Image received with c) Image received with high d) Image received with high noise,
repetition codes enabled noise and repetition codes enabled  repetition codes and differential signaling.

Fig. 11. Covert transmission of sample image with information theory attack.
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Fig. 12. Histograms showing fidelity of timing variations on simulator.

repetition codes implementation. Figure 11(c) shows retrieved image under high noise conditions
with repetition codes only. The visual results confirmed that attack efficacy dropped sufficiently
under high external noise. In the last experiment, we have used differential signaling and repetition
code of 55 under high noise conditions. Figure 11(d) confirmed our hypothesis that information
theory concepts can de-noise the external noise and thus can be used against obfuscation-based
mitigation schemes.

6.4 Timing Variations Fidelity on Simulator

Study on performance implications of mitigation schemes requires a simulator. This section eval-
uates timing variation fidelity on the RISC-V simulator. Figure 12 shows a timing-variation study
with contention and without contention using different repetition codes. For example, a histogram
without repetition rate (i.e., baseline setup) and a threshold of 32 shows a negligible timing varia-
tion with a TP rate of 51.7% and DI of 0.1. If we increase the repetition rate to 20, then the histogram
shows considerable timing variation under contention and no contention situations. The threshold
of 631 cycles shows a TP rate of 80.9%, and DI increases to 0.81. Finally, a repetition rate of 40 shows
that TP rate of 100.00% and DI of 0.98, and this configuration can be used to construct practical
attacks. The results in Figure 12 reveal that this simulator has sufficient fidelity for timing-based
SCA that targets the underlying NoC hardware.

6.5 Performance Implications of Mitigations Schemes

This work evaluates the temporal and spatial isolation schemes on a 64-core multicore simulator
using 2-domains. Figure 13 summarizes the performance implications for six real-world workloads.
The results are normalized to the default configuration of 64 cores without any mitigation scheme.
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Fig. 14. Applications completion time breakdown of memory hierarchy.

The completion time is distributed in core computation time and memory communication time
that involves the NoC hardware.

The TDM requires modification in NoC routers and causes a performance penalty on all NoC
routers directly proportional to a number of domains and cores. Our performance evaluation shows
an average additional latency of 12.5% compared to the default configuration of 64 cores without
any mitigation scheme. Figures 13 and 14 shows the distribution of individual workload and time
spent at each component on workload for the TDM scheme. The increase in computation time for
TDM is due to stalls while waiting for the data, whereas memory components show an increase
due to the additional penalty of TDM implementation. The TDM shows the worst performance
compared to Ironhide and SurfNOC. The SurfNOC is an improvement over the TDM mitigation
scheme and shows up to 75% reduction in latency overhead compared to TDM. The SurfNOC is im-
plemented on individual NoC routers in 64 cores configurations. Figure 14 summarize the latency
distributions of memory operations of six workloads using SurfNOC implementations. Similarly
to TDM, the increase in computation time is due to stalls and, and additional latency in L1-to-L2
and L2-to-Off-chip is due to modifications to NoC routers scheduling that is required to implement
SurfNOC. The SurfNOC increased completion time on average of 2.97%, which is a quarter of the
TDM scheme and competitive to Ironhide scheme.

The Ironhide creates two clusters and dynamically distributes physical resources, including
cores, caches, memory, and NoC hardware. The Ironhide dynamic allocation depends on the sat-
uration point on the MPKI curve. Figure 15 shows MPKI curves with saturation points for all six
workloads. For example, the performance of ABC saturates at 54 cores, and allocating more cores
does not yield further improvements. Therefore, Ironhide can execute another process in parallel
with ABC on the remaining 10 cores. However, workloadslike SSSP with high saturation points,
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e.g., 60, result in fewer cores allocated for other clusters. Such resource distribution can affect the
overall system performance. We have captured the completion time distribution for benchmarks
mentioned in Section 5.4 by allocating the saturation point number of cores. Figure 13 shows that
for Ironhide, the core component in completion time breakdown is slightly increased, because Iron-
hide allocates less number of cores to process the same input. The rest of the components show
negligible variation over the default setup. Overall for all workloads, Ironhide shows an average
performance overhead of 2.29% over default multicore setup without any mitigation scheme.

Although all isolation-based mitigation schemes protect against timing attacks, the Ironhide and
SurfNOC show competitive performance implications of 2.29% and 2.97% for real six workloads
and thus should be used in practice. The Ironhide works best if workload demanded cores are
available in the cluster. Otherwise, SurfNOC works better.

6.6 Validation of Mitigation on Real Hardware

The simulator-based evaluation of the mitigation schemes shows that both Ironhide and SurfNoC
are competitive in terms of performance implications. However, implementation of these mitiga-
tion schemes require changes in the processor architecture. SurfNoC needs to update NoC router
microarchitecture for packet traversals in their respective waves. For a single virtual channel router
design, the SurfNoC requires modifications for domain specific arbitration of crossbar. Moreover, a
surf scheduling table needs to be pre-loaded in each router. However, Ironhide requires the creation
of clusters of cores such that packets from a given domain do not violate their cluster boundary.
Ironhide achieves strong isolation by (1) pinning threads to cores within the assigned cluster, (2)
mapping shared cache accesses to the cache resources allocated within the assigned cluster, and
(3) mapping memory controller accesses to the controllers assigned within the cluster. Thread
pinning on dedicated cores is implemented in most commercial processors. However, mapping
cache and memory controller accesses require modifications for hardware resource partitioning.
This capability is commercialized, such as Intel Cache Allocation technology [9] and Tilera’s hard-
ware hashing functionality to map memory pages to dedicated shared cache slices and memory
controllers [10]. We evaluate the Ironhide mitigation on the Tilera multicore processor. The hash-
for-home hardware capability is used to configure the per-core TLBs. During the virtual to physical
address translation in each core, the physical address uses a special hashing feature to determine
a user specific tile for shared cache homing. The shared L2 cache misses of a cluster are routed
to their respective DRAM regions via dedicated memory controllers. This capability is enabled by
a hardware exposed API call. It uses a user specific bit-mask that assigns memory controllers to
memory regions (physical addresses).

To validate the performance implications of the Ironhide mitigation scheme on a real ma-
chine, the Tilera capabilities are used to configure clusters of cores for the evaluated benchmarks.
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Ironhide on Tilera
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Fig. 16. Performance comparison of benchmark applications on Tilera.
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Fig. 17. Ironhide security validations on the real hardware.

The number of cores per cluster are matched with the saturation point of each workload. Fig-
ure 16 shows the completion time comparisons that are found to be correlated with the simulator-
based evaluation from Section 6.5. Ironhide approach reduces the available core-level performance
slightly and impacts performance by ~2.4% as compared to the default setting (where all cores ex-
ecute the application).

To validate the security guarantees of Ironhide scheme, the ConNOC attack setup with 5 rep-
etition codes and the baseline attack setup with 55 repetition codes are used. Figure 17(a) shows
timing-variations study for ConNoC attack setup where receiver application is pinned in cluster
0, and transmitter application is pinned in cluster 1. The TP rate of 47.1% and negative DI of —0.18
indicates the successful mitigation of the attack. Similarly, Figure 17(b) shows a timing-variations
study for baseline attack setup with receiver and transmitter applications are pinned on different
clusters. A 45.1% TP and negative DI of —0.10 show that the attack is successfully mitigated.

6.7 Validation of Mitigation on Simulator

The temporal isolation schemes (TDM and SurfNOC) guarantee protection against timing side
channel attacks. However, both schemes requires modifications in NoC router architecture and
these guarantees cannot be validated on real hardware. For example, the TDM implementations
for two domain requires crossbar to have ability to route packets in even or odd cycles for respec-
tive domains. Similarly, the SurfNoC requires capabilities to generate a wavelike packet traversing
mechanism. Modern commercialized hardware do not have these capabilities, and an application-
class simulator is needed to model and validate security guarantees of these schemes. We modified
the NoC architecture of our RISC-V simulator and implemented TDM and SurfNOC schemes. The
security guarantees of TDM and SurfNOC schemes are validated against baseline attack setup
and ConNOC attack setup. Figure 18 shows timing variations histogram for baseline attack. Fig-
ure 18(a) shows timing-variation histogram for TDM scheme, where contention and no contention
distributions are completed overlapped. The TP rate of 50% shows that the probability of detection
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a) Baseline Attack with TDM b) Baseline Attack with SurfNOC
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Fig. 18. TDM and SurfNOC mitigation schemes security validation against baseline attack setup on the
simulator.
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Fig. 19. TDM and SurfNOC mitigation schemes security validation against ConNOC attack setup on the
simulator.

of contention and no contention is random guess. The negative DI os —0.21 quantify that both
distributions are completed overlapped and attack is fully mitigated. Similarly, Figure 18(b) shows
timing-variations histograms for SurfNOC scheme, where contention and without contention dis-
tributions are complete overlapped. The less than 50% TP and negative DI of —0.13 shows that
baseline attack is fully mitigated. Figure 19 shows timing variations histogram for ConNOC attack
setup. A negative DI and 50% TP rate shows ConNOC attack is successfully mitigated using both
TDM and SurfNOC schemes.

7 CONCLUSION

This article studies the impact of unwanted noise on the timing-based baseline and ConNOC at-
tack setups that target non-persistent shared NOC hardware in a multicore processor. The results
show that a high noise situation is sufficient to drastically reduce the efficacy of timing-based
SCA. Tt proposes an information theory attack that uses concepts of repetition codes and differen-
tial signaling to overcome challenges of unwanted noise. The evaluation shows that attack with
information theory has efficacy of 97%, 88%, and 78% in low, medium, and high noise conditions,
respectively. It implements and demonstrates a successful practical covert-communication attack
in the presence of high noise. Based on these experiments, it concludes that the usage of noise
as mitigation is inadequate for practical purposes, and isolation schemes are required to mitigate
the attack successfully. This work implements state-of-the-art isolation-based mitigation schemes,
including Ironhide, a spatial isolation scheme, and SurfNOC, a temporal isolation scheme on a mul-
ticore RISC-V simulator. Performance evaluation of Ironhide and SurfNOC reveals a performance
impact of 2.29% and 2.97% on security-centric real-world workloads. It concludes that Ironhide
works better with workloads that required resources are available in clusters. Otherwise, SurfNOC
shows low-performance implications for security-centric workloads.

REFERENCES

[1] 1998. Curl: Command Line Tool and Library for Transferring Data with URLs. Retrieved from https://curl.se/.

[2] 2002. Linux numactl. Retrieved from https://linux.die.net/man/8/numactl.

[3] 2013. FreescaleADL: An Industrial-Strength Architectural Description Language for Programmable Cores. Retrieved
from http://opensource.freescale.com/fsl-oss-projects/.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 21. Pub. date: June 2023.


https://curl.se/
https://linux.die.net/man/8/numactl
http://opensource.freescale.com/fsl-oss-projects/

21:22 U. Ali et al.

[4] 2017. QUARQ: A Novel General Purpose Multicore Architecture for Cognitive Computing. Retrieved from https://

khan.engr.uconn.edu/pubs/quarq-techcon17.pdf.

[5] 2018. LYNX—The Text Web-Browser. Retrieved from https://lynx.invisible-island.net/.

[6] 2019. STRESS—Tool to Impose Load On and Stress Test Systems. Retrieved from https://linux.die.net/man/1/stress.

[7] Masab Ahmad, Farrukh Hijaz, Qingchuan Shi, and Omer Khan. 2015. CRONO: A benchmark suite for multithreaded

graph algorithms executing on futuristic multicores. In Proceedings of the IEEE International Symposium on Workload

Characterization (ISWC’15).

Usman Ali and Omer Khan. 2021. ConNOC: A practical timing channel attack on network-on-chip hardware in a

multicore processor. In Proceedings of the IEEE International Symposium on Hardware Oriented Security and Trust

(HOST’21).

Intel Corporation. 2015. Improving Real-time Performance by Utilizing Cache Allocation Technology. Retrieved from

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-

white-paper.pdf.

[10] Tilera Corporation. 2014. TILE-Gx72 Processor. Retrieved from http://www.mellanox.com/related-docs/prod_multi_
core/PB_TILE-Gx72.pdf.

[11] J. Deng, W. Dong, R. Socher, L. J. Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09).

[12] Halit Dogan, Masab Ahmad, Brian Kahne, and Omer Khan. 2019. Accelerating synchronization using moving compute
to data model at 1,000-core multicore scale. ACM Trans. Archit. Code Optim. 16, 1, Article 4 (February 2019), 27 pages.
https://doi.org/10.1145/3300208

[13] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation leak-aside buffer: Defeating cache
side-channel protections with TLB attacks. In Proceedings of the 27th USENIX Security Symposium (USENIX Security’18).
USENIX Association, 955-972.

[14] F. Liu and R. B. Lee. 2014. Random fill cache architecture. In Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture. 203-215. https://doi.org/10.1109/MICRO.2014.28

[15] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yingian Zhang. 2021. A survey of microarchitectural side-channel
vulnerabilities, attacks, and defenses in cryptography. ACM Comput. Surv. 54, 6, Article 122 (July 2021), 37 pages.
https://doi.org/10.1145/3456629

[16] Yehia Massoud, Jamil Kawa, Don MacMillen, and Jacob White. 2001. Modeling and analysis of differential signaling for
minimizing inductive cross-talk. In Proceedings of the 38th Annual Design Automation Conference (DAC’01). Association
for Computing Machinery, New York, NY, USA, 804-809. https://doi.org/10.1145/378239.379070

[17] Jason E. Miller, Harshad Kasture, George Kurian, Charles Gruenwald, Nathan Beckmann, Christopher Celio, Jonathan
Eastep, and Anant Agarwal. 2010. Graphite: A distributed parallel simulator for multicores. In Proceedings of the 16th
International Symposium on High-Performance Computer Architecture (HPCA’10). 1-12. https://doi.org/10.1109/HPCA.
2010.5416635

[18] H. Omar and O. Khan. 2020. IRONHIDE: A secure multicore that efficiently mitigates microarchitecture state attacks
for interactive applications. In Proceedings of the IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA’20). 111-122. https://doi.org/10.1109/HPCA47549.2020.00019

[19] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Mangard. 2016. DRAMA: Exploiting
DRAM addressing for cross-CPU attacks. In Proceedings of the 25th USENIX Security Symposium (USENIX Security’16).
USENIX Association, 565-581.

[20] Stephen Réttger and Artur Janc. 2021. A Spectre proof-of-concept for a Spectre-proof web. Retrieved from https:
//security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html.

[21] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery, Josep Torrellas, and Christopher W. Fletcher.
2019. MicroScope: Enabling microarchitectural replay attacks. In Proceedings of the ACM/IEEE 46th Annual Interna-
tional Symposium on Computer Architecture (ISCA’19). 318-331.

[22] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery, Josep Torrellas, and Christopher W. Fletcher.
2020. MicroScope: Enabling microarchitectural replay attacks. IEEE Micro 40, 3 (2020), 91-98. https://doi.org/10.1109/
MM.2020.2986204

[23] Dimitrios Skarlatos, Zirui Neil Zhao, Riccardo Paccagnella, Christopher W. Fletcher, and Josep Torrellas. 2021. Jamais
vu: Thwarting microarchitectural replay attacks. In Proceedings of the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS’21). Association for Computing Machinery,
New York, NY, 1061-1076. https://doi.org/10.1145/3445814.3446716

[24] Y. Wang and G. E. Suh. 2012. Efficient timing channel protection for on-chip networks. In Proceedings of the [IEEE/ACM
6th International Symposium on Networks-on-Chip. 142-151. https://doi.org/10.1109/NOCS.2012.24

[25] H. Wassel, Y. Gao, J. Oberg, Ted Huffmire, R. Kastner, F. Chong, and T. Sherwood. 2013. SurfNoC: A low latency
and provably non-interfering approach to secure networks-on-chip. In Proceedings of the International Symposium on
Computer Architecture (ISCA’13).

[8

[}

[9

—

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 21. Pub. date: June 2023.


https://khan.engr.uconn.edu/pubs/quarq-techcon17.pdf
https://lynx.invisible-island.net/
https://linux.die.net/man/1/stress
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
http://www.mellanox.com/related-docs/prod_multi_core/PB_TILE-Gx72.pdf
https://doi.org/10.1145/3300208
https://doi.org/10.1109/MICRO.2014.28
https://doi.org/10.1145/3456629
https://doi.org/10.1145/378239.379070
https://doi.org/10.1109/HPCA.2010.5416635
https://doi.org/10.1109/HPCA47549.2020.00019
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://doi.org/10.1109/MM.2020.2986204
https://doi.org/10.1145/3445814.3446716
https://doi.org/10.1109/NOCS.2012.24

Characterization of Timing-based Software Side-channel Attacks and Mitigations 21:23

[26] Yu Xue, Jiongming Jiang, Binping Zhao, and Tinghuai Ma. 2018. A self-adaptive artificial bee colony algorithm for
global optimization. Soft Comput. 22 (2018), 2935-2952.

[27] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A high resolution, low noise, L3 cache side-channel attack.
In Proceedings of the 23rd USENIX Security Symposium (USENIX Security’14). USENIX Association, 719-732.

[28] Yangi Zhou, Sameer Wagh, Prateek Mittal, and David Wentzlaff. 2017. Camouflage: Memory traffic shaping to miti-
gate timing attacks. In Proceedings of the IEEE International Symposium on High Performance Computer Architecture
(HPCA’17). 337-348. https://doi.org/10.1109/HPCA.2017.36

Received 15 March 2022; revised 26 September 2022; accepted 29 January 2023

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 21. Pub. date: June 2023.


https://doi.org/10.1109/HPCA.2017.36

