
Protecting On-Chip Data Access Against
Timing-Based Side-Channel Attacks on Multicores

Usman Ali, Abdul Rasheed Sahni, Omer Khan
{usman.ali, abdul.rasheed, khan}@uconn.edu

University of Connecticut, Storrs, CT, USA

Abstract—Shared hardware resources in multicore
processors enable massive performance gains but
bring security challenges. Adversaries have successfully
leaked on-chip data using timing-based side-channel
attacks (SCA) targeting shared caches, network-on-
chip, and memory controller hardware. Existing mit-
igation schemes protect on-chip data against attacks
targeting a single hardware resource, while leaving
the additional channels unprotected. This paper imple-
ments multi-level mitigation schemes that protect on-
chip data access against timing-based SCA targeting
multiple shared hardware resources. It evaluates the
performance implications of individual and multi-level
mitigation schemes using security-critical graph and
machine learning workloads. The multi-level mitigation
schemes are shown to have ∼2% overall performance im-
plication that primarily depends on the cache behavior
of the workloads.

I. Introduction
In today’s multicore systems, on-chip data traverses

various shared hardware resources to complete memory
operations. This sharing of underlying hardware resources
brings massive performance gains but introduces security
challenges. The hardware sharing allows interference be-
tween otherwise virtually isolated processes, which ad-
versary applications use to leak information. For exam-
ple, adversaries have shown exploitation of Caches [1],
[2], Network-on-Chip (NoC) [3], and Memory Controller
hardware [4] using timing-based side-channel attacks. The
literature proposes various mitigations schemes at software
and hardware levels to ensure protection for on-chip data.
For example, process-level isolation schemes at the software
level (i.e., KASLR [5]) are adopted across co-executing
processes to guarantee memory isolation, but it fails to
protect against timing attacks targeting shared hardware.
Contrary, hardware-level schemes protect individual shared
hardware resources while leaving other channels vulnerable.

Existing mitigation schemes consider attacks on a
discrete shared hardware resource as an independent
problem. For example, randomization [6]–[8] and isolation
schemes [9]–[11] protect shared caches against timing-
attacks. Similarly, temporal isolation-based mitigation
schemes, such as TDM [12] and SurfNOC [13] protect
against timing attacks on network-on-chip shared routers
and wires. Whereas, memory controller shared hardware
queues are protected using temporal [4] or spatial [14]

isolation schemes. However, a multi-level mitigation scheme
that protects against multi-channel attacks is missing in
the literature. What are the performance implications
when two or more mitigation schemes are implemented
simultaneously? Which combination of mitigation schemes
is performance efficient? This paper aims to answer these
questions by considering the data access path and its shared
hardware resources holistically.

We consider multicore processors with on-chip data
access that traverses the shared caches, NoC routers
and wires, and memory controller hardware queues. The
performance implications of protecting individual and
multi-level hardware channels against timing-based side-
channel attacks are evaluated using security-critical graph
and machine learning workloads. We implement state-of-
the-art randomization scheme [8] and partitioning scheme
[10] [11] for cache protection. The literature shows that
both schemes can be used for practical purposes, but it
misses a direct performance comparison between them.
Although both schemes require changes at the hardware
level, the partitioning scheme is easier to implement with
less hardware overhead but requires system support to tune
cache partition sizes. Whereas, a randomization scheme
requires more intrusive hardware changes, but it does
not require system software support. The network-on-chip
hardware is protected using a state-of-the-art, performance-
efficient SurfNOC [13] scheme that temporally isolates
shared NoC hardware to protect against timing attacks.
Similarly, spatial and temporal [4] isolation schemes are
implemented to protect the memory-controller hardware
against timing-based side-channel attacks. The spatial
partitioning scheme is shown to be performance efficient in
literature [14]. Two combinations of multi-level mitigation
schemes RSP (Randomization for cache, SurfNOC for NoC,
and Spatial Partitioning for memory controller), and PSP
(Partitioning for cache, SurfNOC for NoC, and Spatial
Partitioning for memory controller) are derived based on
the performance characterization of the individual channel
mitigation schemes, and evaluated against each other.

The hardware intrusive schemes, such as SurfNOC, re-
quire hardware support that is not available in commercial
off-the-shelf machines. Therefore, to study performance
implications of mitigation schemes using realistic work-
loads, a detailed application-level simulator is needed. The

190

2022 IEEE International Symposium on Secure and Private Execution Environment Design (SEED)

978-1-6654-8526-5/22/$31.00 ©2022 IEEE
DOI 10.1109/SEED55351.2022.00024

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
Se

cu
re

 a
nd

 P
riv

at
e

Ex
ec

ut
io

n
En

vi
ro

nm
en

t D
es

ig
n

(S
EE

D
) |

 9
78

-1
-6

65
4-

85
26

-5
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SE

ED
55

35
1.

20
22

.0
00

24

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 15:19:15 UTC from IEEE Xplore. Restrictions apply.

evaluated mitigation schemes are implemented on a RISC-
V multicore simulator [15]–[17] that has been derived from
the MIT Graphite [15] simulator with support for the RISC-
V instruction set architecture. The hardware performance
models are also updated in the simulator to study the
performance implications of the timing-based side-channel
mitigation schemes for a set of memory bound graph and
machine learning workloads.

The evaluations show that the overall performance
implications depend on the cache behavior of the work-
loads. Overall, both multi-level mitigation schemes have
performance degradation of ∼2%, where RSP incurs a
data access overhead of ∼8% and PSP ∼10%. Both
schemes have different underlying reasons for performance
degradation. The multi-level mitigation scheme with cache
partitioning reduces the cache size, resulting in cache
misses that inject increased traffic on NoC and the memory
controller hardware. A costly mitigation scheme for NoC
and memory-controller adversely affects the performance
of such workloads. For example, for heavily memory bound
workload, the cache partitioning scheme increases the
NoC traffic by ∼40% and data access overhead of ∼10%
compared to ∼5% for mixed traffic workloads. Contrary,
a multi-level scheme with cache randomization disturbs
the cache locality, resulting in unpredictable performance
implications. The randomization penalty combined with
performance implications of NoC mitigation decides the
overall performance impact. For example, a workload with
mixed on-chip and off-chip bound traffic shows data access
overhead of ∼6% compared to ∼9% for on-chip memory
traffic bound workload.

We conclude that multi-level mitigation schemes with
cache randomization and partitioning have comparable
performance implications. Cache randomization schemes
have high hardware overhead and do not require operating
system support. In comparison, the partitioning scheme
incurs minimal hardware changes, but requires system
support for auto tuning cache partition sizes.

II. Timing-based SCAs on Shared Channels
This section provides an overview of the data flow

through shared hardware resources in a multicore processor.
Further, this section discusses timing-based SCAs on
individual and multi-level hardware channels, and threat
model for multi-level mitigation schemes.

A. On-Chip Data Access
A multicore processor requires hardware sharing between

multiple on-chip components to execute memory operations
efficiently. Figure 1 shows an architecture of a 4x4 multicore
processor consisting of 16 tiles. Each tile consists of a
private core, private caches, shared cache slice, and network
router. Certain tiles also include hardware for the memory
controller. A shared cache is a fast memory accessible
to all tiles in a multicore processor. NoC connects all
tiles of a multicore processor to perform data accesses.

����
����
����

�	�
���	�

�
�
�

���

������

������

��� ���

������

�����

� � � �

� 	
 �

� �� �� ��

�� �� �� �	

�����

Fig. 1. A block diagram of multicore processor and two applications
sharing on-chip hardware resources and point of contentions including
1) caches, 2) network-on-chip, and 3) memory-controllers.

The memory controllers enable access to off-chip main
memory, and the retrieved data is moved on the NoC
interconnect until it reaches its destination. An application
data is homed at certain shared cache locations on-chip,
and requires multiple hops on the NoC to reach the target
tile. Similarly, shared cache misses require NoC to access
the assigned memory controller to complete main memory
accesses. For example, R-App (i.e., receiver application)
in figure 1 uses a shared cache of tile 5, MC1 memory
controller, and NoC hardware of tiles 1, 5, 6, and 7 with a
T-App (i.e., transmitter application). This dependency on
shared hardware causes timing variations that enable T-
App to establish a covert-communication channel with
R-App using timing-based SCAs. R-App can measure
timing variations based on contention status on these
shared hardware resources. Consequently, it uses the timing
variations to infers secret data values.

B. Individual Channel SCAs
In timing-based SCA, an adversarial application per-

forms software operations and measures the completion
time of the operation under different states of the target
shared hardware channel (i.e., cache, NoC, or the memory
controller). The efficacy of attack depends on timing-
variations, i.e., the timing difference to perform same
operation under contended or non-contended access to the
hardware channel. Modern processor enables precise timing-
measurement using cycle accurate counters. In this paper,
the Tilera TileGx-72 multicore processor is utilized, where
the get cycle count() api is used for timing measurements
[18]. For a state-of-the-art cache attack [2], an adversarial
application attempts to access a shared cache block. If the
cache block exists in a shared cache, it results in a fast
timing measurement due to cache hit access. The Tilera
TileGx-72 cache read hit operation takes ∼10-30 cycles,
depending on the number of NoC hops between the tiles
hosting the application code and the shared cache slice. On
the contrary, if the cache block does not exist in the shared
cache slice, a main memory request is generated. The cache
miss operation involves cache tag check, memory controller
requests, and data fetch from the main memory (i.e.,
DRAM). On Tilera TileGx-72, a cache miss takes ∼130-150

191

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 15:19:15 UTC from IEEE Xplore. Restrictions apply.

cycles to read a cache block from main memory. This ∼100
cycle timing-variation is sufficient for reliable timing-based
SCAs to create a covert-communication channel.

Figure 1 shows an attack setup for covert-communication.
It consists of a receiver application (R-App) and transmitter
application (T-App). Transmitter application modifies the
state of shared cache hardware, where receiver application
measures the timing of cache hit versus miss using the
cycle accurate counter. Similar to cache timing attacks, the
transmitter application in [3] occupies the NoC resources
(i.e., links, buffers, and crossbars), and creates timing-
variations for the receiver application to measure. On
the Tilera machine, a remote cache access involving non-
contended NoC hardware takes ∼40-42 cycles. In case the
NoC hardware is contended by an adversary application,
the same operation takes ∼45-47 cycles. This timing
variation of 5 to 7 cycles is sufficient for low efficacy
timing-based SCAs but require additional optimizations
(i.e., repetition codes [19]) for practical attacks. Similar
to NoC hardware, memory controller shared hardware
queues [4] are contended by the adversary application to
create timing variations. A contended memory controller
operation requires an additional 5 to 7 cycles compared to
non-contended memory controller operations.
C. Multi-Channel SCA

�
���
���
���
	��

��
���

�� 	
 �� �
 �� ��
 ��� ��
 �
� ��
 �
� ��

�
��
��
���
��
��
��

����������������

��
��	������������
����	��
��������������������
�����
��
�
�
 ���	� ���	����� ���	�������������

Fig. 2. Contention induced timing variations on shared hardwares.

A multi-channel timing-based SCA aggregates timing
variations of two or more channels (i.e., cache, NoC,
and memory controller), and thus have 1) high timing-
variations compared to individual channels, and 2) shows
timing variations for cases where mitigation schemes are
in-place for certain shared hardware, but not all. Figure
1 shows two application codes and data placed such
that they share the cache, NoC, and memory controller
hardware. A multi-channel attack works similar to existing
individual channel attacks [2] [3] [4]. In the multi-channel
attack, a receiver application places data in a shared cache
line (i.e., a variable), and let the transmitter application
modify the state of the cache line. In the next step, the
receiver application measures the latency to access the data.
Suppose the transmitter application does not modify the
state of the cache line. The receiver application finds the
data in the cache line, and memory access involves cache

hit and NoC accesses through tiles 5 and 7, resulting in
a fast access latency. On the contrary, if the transmitter
application flushes or evicts the cache line, the data access
results in the main memory access through the memory
controller. This operation involved cache (i.e., tag check),
NoC accesses on tiles 1, 5, 6, and 7, and memory controller
access on tile 1. The contention on these shared hardware
channels results in a slow access latency observed by the
receiver application. Although cache access (i.e., a cache
miss) creates a significant timing variation by itself, the
additional NoC and memory controller channels contribute
to the timing variations. If the processor protects the cache
hardware channel, the adversarial application can still use
the aggregate timing variations due to NoC and memory
controller channels to create a successful timing-based SCA.
Figure 2 shows the timing variations histogram for cache
channel, a combination of cache and NoC channels, and
a multi-channel configuration consisting of cache, NoC
and memory controller channels on the Tilera TileGx-
72 processor. A multi-channel contention aggregates the
timing variations, and increases the efficacy of timing-based
side-channel attacks.
D. Motivation for Multi-Level Mitigation

Existing mitigation schemes [8] [13] [4] protect against
individual channel attacks while leaving remaining channels
vulnerable for timing-based SCAs. For example, cache
address randomization [8] or cache isolation-based mit-
igation schemes [11] eliminate timing variations from cache
hardware. However, contention on unprotected NoC and/or
memory controller is sufficient for timing-based SCAs.
Similarly, NoC protection scheme [13] temporally isolates
the NoC hardware, but shared memory controller queues
can contend for timing variations. The improved efficacy of
multi-channel attacks demand a holistic mitigation scheme
that considers all sources of timing variations. This papers
explores multi-level mitigation schemes, and evaluates their
performance implications using security-critical graph and
machine learning workloads.
E. Threat Model

The threat model is adopted from timing-based SCAs
on shared hardware resources [1] [3] [4]. It is assumed
that the adversary is capable of executing a co-located
malicious application on the processor. The adversary also
controls co-location of data on shared hardware (i.e., caches,
NoC, and memory controller) since it has system level
access. Additionally, the adversary is capable of measuring
the timing information using cycle-accurate hardware
counters. The threat vector only focuses on software-based
timing SCAs and considers physical attacks such as power
analysis, thermal monitoring, and electromagnetic attacks
as orthogonal attack vectors.

III. Mitigation Schemes
The timing variations are essential to enable timing-

based SCAs on shared hardware resources. Existing miti-

192

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 15:19:15 UTC from IEEE Xplore. Restrictions apply.

gation schemes attempt to eliminate timing variations on
individual shared hardware channels, and are categorized
into obfuscation and isolation-based schemes. Obfuscation
schemes remove timing variations by introducing non-
deterministic placement of data, and attempt to make
constant time for critical security operations. Whereas, an
isolation-based scheme partitions the critical security appli-
cations from non-critical applications. A cache randomiza-
tion scheme, CEASER [8] introduced address randomiza-
tion based on the principles of encryption/decryption for
generic cache architectures. Other mitigation schemes, such
as MIRAGE [20], ScatterCache [21], PhantomCache [22],
CEASER-S [23], and CaSA [24] focus on specialized caches,
such as skewed caches. Similarly, state-of-the-art isolation
cache isolation schemes [10], [11] propose partitioning of
caches for security and maximum performance.

The NoC and memory controller hardware are pro-
tected against timing attacks using isolation-based schemes.
This section focuses on the 1) randomization and spa-
tial isolation-based schemes [8], [10], [11] for Cache, 2)
temporal isolation schemes i.e., TDM and SurfNOC for
network-on-chip hardware, and 3) temporal and spatial
partitioning schemes for the memory controller. These
mitigation schemes have been shown in literature to provide
strong security guarantees for individual shared hardware
resources. However, these schemes leave the remaining
channels vulnerable for multi-channel attacks. This section
explains mitigation schemes for individual channels, and
multi-level mitigation schemes.
A. Cache Mitigations

Shared cache is protected using a randomization or iso-
lation scheme. Although, both schemes guarantee security,
they have different implementation costs and execution
requirements.

��������� ��������������������#

�	��

� ����

�
���
�����

��!�����������

������

��!�����������

������

��������������"�����

������

������

��� ���

������

�����

� � � �

� 	
 �

� �� �� ��

�� �� �� �	

�����

Fig. 3. A representation of randomization mitigation scheme in
multicore system.

1) Randomization: A cache timing attack requires the
identification of a unique cache line or set in cache
memory, and the literature has shown such attacks. A
randomization based mitigation scheme encrypts cache
line addresses to randomize the placement of cache lines,
thus mitigating the attack. Figure 3 shows the architecture
of a randomization based mitigation scheme. It consists
of an encryption hardware, and all cache operations are
performed using the encrypted addresses. It also includes

the decryption hardware to access outside data, i.e., write-
back operation, and performs re-mapping. A single use of
encryption/decryption hardware for address randomization
incurs two additional cycles [8]. The randomization scheme
is hardware intrusive and requires encryption/decryption
hardware in all tiles. However, it is a hardware-only scheme
and does not require system software support at runtime.

����
����

������

������

��� ���

������

�����

� � � �

� 	
 �

� �� �� ��

�� �� �� �	

�����

Fig. 4. A representation of cache partitioning scheme for two domains
in a multicore system.

2) Partitioning: Spatial isolation scheme distribute the
physical cache memory into clusters to create isolated
domains for the co-located applications. Cache implementa-
tions are organized in sets and ways, and they can be either
set-partitioned or way-partitioned. Figure 4 shows a 4x4
multicore setup with cache set-partitioning implemented on
all tiles. The performance implications are dependent on the
number of domains, and optimal size of the cache sets for
each domain is depend on the workloads. The size of a set is
computed either statically [9]–[11] or dynamically [25], and
depends on the co-located workloads. Cache partitioning
is relatively easier to implement by modifying each cache
controller. However, it requires system software support to
auto-tune set-partition size for each domain and workload.

B. Network-on-Chip Mitigations
Temporal isolation schemes guarantee security in NoC

hardware.

��� ���

������

�����

� � � �

� � � 	

 �� �� ��

�� �� �� ��

�����

��� ���

������

�����

� � � �

� � � 	

 �� �� ��

�� �� �� ��

�����

����������

	����������������������� 	���������
�������������

����������

������

������

������

������

Fig. 5. TDM scheduling of NoC router in a 4x4 multicore system
with two domains.

1) TDM: In time-division multiplexing (TDM) based
temporal mitigation scheme, all NoC routers are allocated
temporally to different domains at once. Figure 5 shows

193

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 15:19:15 UTC from IEEE Xplore. Restrictions apply.

temporal scheduling of NoC hardware allocation for two
domains i.e., receiver and transmitter applications. The
domain 0 application traffic uses NoC routers, queues, and
links in odd cycles, whereas domain 1 traffic uses NoC
hardware in even cycles. For example, Figure 5 shows an
X-Y routing scheme where a domain 1 packet originating
from tile 5 in an even cycle waits for an odd cycle to move
to tile 7. For a one-cycle per-hop NoC hardware, the packet
requires a total of 4 cycles to reach its destination compared
to 2 cycles without TDM. This temporal isolation scheme
eliminates the contention occurrence due to interference
from other domain’s application, thus guaranteeing protec-
tion against timing-based SCAs. However, the performance
overheads in TDM are directly proportional to the number
of domains and tiles. For example, every packet must wait
for an additional cycle, proportional to tiles and domains
to traverse through the target NoC routers.

��� ���

������

�����

� � � �

� � � 	

 �� �� ��

�� �� �� ��

�����

��� ���

������

�����

� � � �

� � � 	

 �� �� ��

�� �� �� ��

�����

����������

	����������������������� 	���������
�������������

����������

������

������

������

������

Fig. 6. SurfNoC scheduling of NoC router in a 4x4 multicore system
with two domains.

2) SurfNOC: In SurfNOC [13], data from different
domains flow like surfs. This wave-like packet traversal guar-
antees non-interference while reducing latency overhead
compared to the TDM scheme. Figure 6 shows surf-like
scheduling of two domains using SurfNOC. For example,
the domain 0 data flows on red waves, whereas domain 1
data flows on blue waves. For an X-Y routing scheme, the
figure 6 shows a domain 0 packet originating at tile 5 and
having a destination at tile 8 observes a one cycle delay
at start time while waiting for a red wave. The packet
reaches its designation on cycle 4. The SurfNOC takes one
cycle during traversal compared to two additional cycles of
TDM (i.e, total 6 cycles for TDM). Each domain observes
a delay directly proportional to the numberofdomains − 1
at start time, and once data rides the wave, there are no
further delays. The only exception is for a higher number
of domains (i.e., greater than 2) where an additional
delay is possible at the turn while the packet changes
the wave (i.e., dimension change). The target SCA attacks
focus on two domains. Thus, SurfNoC reduces up to 75%
performance implications compared to TDM, where the
overhead depends on the number of tiles.

C. Memory Controller Mitigations

Memory controllers are protected using temporal or
spatial isolation schemes.

��� ���

������

�����
������

� � � �

� � � 	

 �� �� ��

�� �� �� ��

������

�����

	���������
�������������

����������

��� ���

������

�����

� � � �

� � � 	

 �� �� ��

�� �� �� ��

�����

����������

	�����������������������

������

������

Fig. 7. TDM scheduling of Memory-Controller traffic in a 4x4
multicore system with two domains.

1) TDM: Similar to the temporal isolation of NoC
hardware, all memory controllers are allocated to an
individual domain at once. For example, Figure 7 shows a
domain 0 workload utilize all available memory controllers
in odd cycles, and domain 1 workloads use memory
controllers in even cycles. This temporal allocation protects
against timing attacks but is performance intrusive. The
performance implications are directly dependent on the
number of memory controllers and domains.

��� ���

������

�����������

� � � �

� � � 	

 �� �� ��

�� �� �� ��

������

�����

	��
�������������
��

	��
�������������
��

Fig. 8. A representation of memory-controller partitioning in a
multicore system with two domains.

2) Spatial Partitioning: Spatial partitioning distributes
memory controllers in two domains to guarantee security.
Figure 8 shows a setup with four memory controllers, and
two memory controllers are allocated per domain. For
example, the MC1 and MC2 are allocated to domain 0
workloads, and MC3 and MC4 are allocated to domain
1. All data of a domain is stored in the corresponding
main memory modules, and accessed using the assigned
memory controllers. Compared to spatial partitioning of
cache memories, spatial partitioning of memory controller
is less sensitive to re-allocation of memory controllers. Thus,
static allocation performs efficiently.

194

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 15:19:15 UTC from IEEE Xplore. Restrictions apply.

����
�����
���

���
�
���

���

�����

��������
��	�
����
�
	

���

�� 	���

����������
�����

������� �������

�������

�
��
���
	��

����
�����
���

���
�
���

���

�����

���
����

������� �������

�������

���
����

�
��
���
	��

��

�����	� �����	�

���
����

���
����

Fig. 9. Two combinations of multi-level mitigation scheme including
SurfNOC for NoC, Spatial Partitioning for Memory Controller and
Cache with a) Randomization based address obfuscation, and b)
Spatial Partitioning of cache sets for two domains.

D. Multi-level Mitigations
Timing-based SCAs targeting shared cache, NoC, and

memory controller can be protected using any combination
of mitigation schemes. An ideal combination of mitigation
schemes should have 1) minimum performance overhead
for the workloads and 2) minimum software and hardware
implementation cost. Cache randomization and spatial
isolation schemes have comparable performance overheads
but differ in implementation cost. Randomization requires
additional new hardware and modification in the hardware
of cache controllers, where isolation requires operating
system support. Due to comparable performance and
implementation costs of cache mitigation schemes, both
schemes are considered. NoC mitigation schemes, TDM and
SurfNOC have comparable implementation requirements,
but SurfNOC outperforms TDM in terms of overall per-
formance. On the other hand, memory controller temporal
and spatial isolation schemes have comparable performance
overheads. Temporal isolation requires hardware modifi-
cation, whereas spatial isolation needs operating system
support. Due to low numbers of memory controllers as
compared to the number of cores in multicore processors,
static spatial isolation eliminates the need for operating
system support.

Based on these insights, we have selected two represen-
tative combinations that both utilize the best performing
schemes for the NoC and memory controller but considered
both options for cache protection. The two schemes are
1) RSP (Randomization for caches, SurfNOC for NoC
hardware, and Spatial Partitioning for memory controllers)
and 2) PSP (Partitioning for caches, SurfNOC for NoC
hardware, and Spatial Partitioning for memory controllers).
Figure 9 shows the required changes in each tile of the
multicore to support the proposed multi-level mitigation
schemes. RSP and PSP schemes differ in hardware in-
trusiveness and software support for implementation. For
caches, randomization requires implementations of hard-
ware intrusive encryption/decryption modules in each tile
alongside key generation and control logic. The partitioning
scheme requires modification in the cache controller to

TABLE I
Architectural parameters for evaluation

Architectural Parameter Simulator
Number of Cores 64 @ 1 GHz
Compute Pipeline per Core Single–Issue

Memory Subsystem
L1–I Cache per core 32 KB, 4–way Assoc.
L1–D Cache per core 32 KB, 4–way Assoc.
L2 Inclusive Cache per core 256 KB, 8–way Assoc.
Directory Protocol Invalidation–based MESI
Num. of Mem Cntrl 4
DRAM Bandwidth per Cntrl 10 GBps

Electrical 2–D Mesh with XY Routing
Hop Latency 2 cycles (1–router, 1–link)
Contention Model Only link contention

(Infinite input buffers)
Flit Width 64 bits

allocate limited addresses for the security-critical applica-
tions, where the remaining addresses are assigned to non-
secure applications. Further, it requires system software
support for allocation, re-allocation of cache sets, and
calculation of the optimal size of the cache sets. The
randomization scheme is oblivious to the system software.
For SurfNoC, a modification is needed in the NoC router
and crossbar to implement the surf schedular. For memory-
controller spatial partitioning, the cache controller needs a
modification to confine the memory address to allocated
memory controllers. Section V evaluates the performance
implications of these multi-level mitigation schemes. RSP
and PSP schemes show comparable performance overhead,
and any scheme can be used for practical purposes.

IV. Methodology
Hardware intrusive mitigation schemes (i.e., cache ran-

domization and SurfNoC) require modifications in hard-
ware, thus all schemes are modeled on a multicore simulator.
We utilize an in-house RISC-V based large core count
application level multicore simulator [17]. The simulator
uses performance models from the MIT Graphite multicore
simulator [15], and Architecture Description Language
(ADL) [26] to describe the functional aspects of the RISC-
V instruction set architecture, e.g., implementation of
instructions, register states, MMU, and memory hierarchy
models.

Table I configuration parameters are used in a 64 tiles
multicore simulator. By default, each tile implements a
single-issue in-order core pipeline with a 32 entry store
buffer. However, to evaluate out-of-order cores, the evalua-
tion is also performed with a core pipeline that implements
32-entry load and store queues, and a 128 entry reorder
buffer and speculative execution. Each tile implements
private level 1 (L1) instruction and data caches, 32KB
each. A 16MB shared cache is physically distributed among
tiles, where each tile implements a 256KB L2 cache slice.
The tiles are kept cache coherence for their data accesses

195

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 15:19:15 UTC from IEEE Xplore. Restrictions apply.

using a directory-based hardware cache coherence protocol.
The on-chip network implements a 2-D mesh topology
using X–Y routing protocol.
A. Implementation of Mitigation Schemes

The simulator L2 cache models are modified to im-
plement randomization, partitioning functionality and
performance counters. A 40-bit encryption and decryp-
tion functions [8] are implemented to randomize cache
addressing. All incoming traffic to L2 cache from Core, L1,
and NoC router (includes memory controller) is encrypted
before allocating and placing a cache line. The decryption
is used for outward traffic including write-back of dirty
cache lines and responses for synchronization purposes.
The partitioning is implemented by reducing overall per
tile L2 cache size, i.e., by half (for 50%) or quarter (for
25%) and assign it to a given domain.

The simulator NoC performance models are modified to
include additional latency penalties for TDM and SurfNOC.
In TDM implementation, the latency of routers doubles
for the two domains setup at every NoC router. Contrary
to TDM, the SurfNOC requires additional latency while
waiting for surf and changing a surf (i.e., dimension shift).
To model SurfNOC performance implications for two
domains, the router latency is doubled at first NoC router,
and later an additional router latency if an X to Y turn is
detected. To model spatial isolation of memory controller on
the simulator, L2 misses are routed to memory controllers
mapped to their respective DRAM regions.
B. Benchmarks

The performance implications of the mitigation schemes
are evaluated using six applications from two different
security-critical domains. Three graph benchmarks, Single
Source Shortest Path (SSSP), PageRank, and Triangle
Counting (TC), are executed using a real-world California
Road Network graph [27]. A machine learning workload
AlexNet is also considered. ImageNet [28] is provided as an
input to this benchmark. A sparse matrix-vector workload
(SpMV), and a dense matrix-vector multiplication workload
(GeMV) is ported from the PrIM benchmark suite [29].
SpMV and GeMV have extensive applications in graph
and machine learning domains.
C. Evaluation Metrics

The workload performance is measured using the overall
completion time and data access latency metrics. The
overall completion time is reported using breakdowns of
the time spent on performing operations in core (i.e.,
compute time) and time spent on data path (i.e., memory
time). The data-access time is further broken down into
time spent in L1 Cache, access between private L1 and
shared L2 cache components (L1-L2 Home, L2Home-
Waiting, L2Home-Sharers), and access between L2 cache
and memory controllers (L2Home-Off-chip).

To measure the accuracy and reliability of mitigation
schemes against timing-based SCA, the True Positive (TP)

rate and Discrimination Index (DI) [30] metrics are used.
The TP rate indicates the correct inference of contention
or no-contention situation on the shared hardware. For
example, if a transmitter application creates a contention
situation on shared hardware, the receiver application
successfully measures and infers a contention situation.
We calculate the TP rate using TP = dc+dn

tc+tn
, where dc

is total correctly classified contention cases, and dn is
the correctly classified no-contention case. The tc is the
total number of contention situations, and tn is the total
number of no-contention situations. The timing variations
are plots for contention and no-contention situations, and
TP is not sufficient to measure reliability of mitigations
scheme. The DI metric quantifies the difference between
two distributions of timing variations. DI uses the statistical
mean and the variance of each distribution. We calculate
the DI using DI = µc+µn√

σ2
c +σ2

n

, where µc is the statistical
mean of distribution in contention case, and µn is the
statistical mean of distributed in no-contention case. The
σ2

c and σ2
n are the variance in contention and no-contention

cases, respectively.

V. Evaluation
Individual and multi-level mitigation schemes are evalu-

ated. Initially, mitigation schemes are evaluated for indi-
vidual hardware resources, and the efficient performance
scheme for each hardware component is selected. The
SurfNOC scheme for NoC hardware and spatial partitioning
scheme for memory controller is found to be efficient. On
the contrary, the efficiency of the randomization and cache
partitioning scheme depends on benchmarks. We evaluate
two multi-level mitigation scheme variants that both
include SurfNOC for NoC hardware, Spatial Partitioning
for memory controller, and randomization or partitioning
of cache hardware. Finally, we show a security verification
study of both cache schemes against conflict-based cache
timing SCAs.

A. Cache mitigation performance implications
We evaluate randomization and the partitioning scheme

to protect cache timing side-channel. Figure 10 shows the
time spent on data access path of benchmarks without
cache mitigation scheme, with two variants of partition-
ing scheme (i.e., 25% and 50% sets) and randomization
mitigation scheme. The partitioning reduces cache size,
thus causes an increase in cache misses, consequently
increasing waiting time from the remote cache and off-chip
memory. The partitioning has a negligible performance
effect on benchmarks with minimum cache requirements
(e.g., Tri-Count, PageRank), where the effect is visible on
benchmarks with efficient utilization of shared cache (e.g.,
GeMV and AlexNET). On the other side, randomization
has constant encryption/decryption overhead, and remap-
ping affects the locality of cache placement due to address
randomization. Randomization affects the performance of
the L2 cache, and all workloads show an increased time for

196

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 15:19:15 UTC from IEEE Xplore. Restrictions apply.

�
���
���
���
���
�

���
���
���

��
��
���
�

��

�
��
�!

"

��

�
��
�"

��
��

��
�

��
��
���
�

��

�
��
�!

"

��

�
��
�"

��
��

��
�

��
��
���
�

��

�
��
�!

"

��

�
��
�"

��
��

��
�

��
��
���
�

��

�
��
�!

"

��

�
��
�"

��
��

��
�

��
��
���
�

��

�
��
�!

"

��

�
��
�"

��
��

��
�

��
��
���
�

��

�
��
�!

"

��

�
��
�"

��
��

��
�

��
��
���
�

��

�
��
�!

"

��

�
��
�"

��
��

��
�

			� 	��� ���� ��������
�������� ������� �������

�

��

��
���

��
��

�
��

��

�

�
��
��
��
��
�	
�

������	 ������	������	 �����	���
�
�� �����	�����	�� �����	��

��
�

Fig. 10. Data access path performance implication of baseline, 25%, 50% cache randomization and partitioning

�
���
���
���
���
�

���
���

��
��
��
��

�

��
�

��
���

�
�

��
��
��
��

�

��
�

��
���

�
�

��
��
��
��

�

��
�

��
���

�
�

��
��
��
��

�

��
�

��
���

�
�

��
��
��
��

�

��
�

��
���

�
�

��
��
��
��

�

��
�

��
���

�
�

��
��
��
��

�

��
�

��
���

�
�

���	 ���
 ���
 	���
��� ��������� ������� �������

�

��

��
���

��
��

�
��

��

�

�
��
��
��
��
�	
�

������	 ������	������	 �����	���
�
�� �����	�����	�� �����	��

��
�

Fig. 11. Data access path performance implications of baseline, TDM and SurfNOC for network-on-chip

L2 home accesses. Partitioning shows batter performance
for Tri-Count and PageRank, and randomization performs
batter for remaining benchmarks.

B. NoC mitigation performance implications
The NoC performance implications are evaluated using

two temporal isolation schemes. Figure 11 shows the time
spent on data access path using the TDM and SurfNOC
schemes. For a two domain threat model, the TDM scheme
schedules one domain traffic in the even cycle and the
other in the odd cycle. Thus, each domain traffic must
wait for an extra cycle on every NoC router. It increases
the 100% penalty on NoC router hardware. Figure 11
shows a visible increase in time spent on L2-Home time
and L2-Sharers. Contrary, SurfNoC proposes an efficient
performance scheduling for the NoC router. SurfNoC
schedules traffic on NoC hardware in wave type pattern
instead of scheduling traffic in even/odd cycle for two
domains. This wave-like scheduling incurs delays at the
start of the wave and on change of wave. For example,
it results in a maximum two-cycle delay for any routing.
SurfNoC shows a ∼3% increase in time spent on the data
access path, compared to the TDM ∼18% increase. We
propose to use SurfNOC in our multi-level mitigation

schemes due to its lower performance overhead for all
benchmarks.
C. Memory Controller mitigation performance implications

Figure 12 shows the time spent on the data access path
with temporal mitigation (i.e., TDM) and three configu-
rations of spatial partitioning mitigation scheme using 1,
2, and 3 memory controllers. The original configuration
has 4 memory controllers. The memory controllers have
high bandwidth, and the majority of benchmarks use 2
memory controllers to work efficiently. Figure 12 shows
that all benchmarks perform efficiently with 2 memory
controllers and have negligible overhead on the memory
path of <1%. The TDM scheme schedules memory traffic
in even/odd cycles for two domain configurations. This
scheduling forces each domain traffic to wait for additional
cycles while other domain uses the memory controller
resources and consequently doubles the time spent on
off-chip hardware. Figure 12 shows a 100% increase in
off-chip time spent. Although selecting optimal number of
memory-controller requires system support, we observe that
2 memory controllers are sufficient to fulfill all benchmark’s
requirements. Therefore, we pick 2 memory controllers per
domain (i.e., 50% spatial partitioning) for the multi-level
mitigation schemes.

197

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 15:19:15 UTC from IEEE Xplore. Restrictions apply.

%

%#(

&

&#(

'

'#(

��
��

���
�

�
��

$�
'(

�
��

$�
(%

�
��

$�
)(

��
�

��
��

���
�

�
��

$�
'(

�
��

$�
(%

�
��

$�
)(

��
�

��
��

���
�

�
��

$�
'(

�
��

$�
(%

�
��

$�
)(

��
�

��
��

���
�

�
��

$�
'(

�
��

$�
(%

�
��

$�
)(

��
�

��
��

���
�

�
��

$�
'(

�
��

$�
(%

�
��

$�
)(

��
�

��
��

���
�

�
��

$�
'(

�
��

$�
(%

�
��

$�
)(

��
�

��
��

���
�

�
��

$�
'(

�
��

$�
(%

�
��

$�
)(

��
�

�
��� ���� �������� ���$��!� ���"	� �������

�

��

��
���

��
��

�
��

��

�

�
��
��
��
��
�	
�

�&����� �&�����$�'���� �'����$��� ��� �'����$
������ �'����$
������

Fig. 12. Data access path performance implications of baseline, TDM and Spatial Partitioning for memory controller

�

���

���

���

���

�

���

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

			� 	��� �
�� ���
����
�������� ��
��
� �
��
��

�

��

��
���

��
��

�
��

��

�

�
��
��
��
��
�	
�

������	 ������	������	 �����	���
�
�� �����	�����	�� �����	��

��
�

Fig. 13. Data access path performance implications of multi-level scheme with RSP (Randomization, SurfNOC, Spatial Partitioning) and
PSP (Spatial Partitioning, SurfNOC, and Spatial Partitioning) for Cache, NoC, and Memory Controller.

D. Performance implications of multi-level mitigation

Multi-level mitigation protects on-chip data access
against timing-based SCAs on multiple shared hardware
resources. The performance of randomization and isolation-
based mitigation schemes for shared cache depend on the
benchmarks, as discussed in Section V-A. We use both
cache schemes alongside SurfNOC for NoC hardware and
50% spatial partitioning of memory controllers. Figure 13
shows time spent on the data access path for RSP (i.e.,
Randomization, SurfNOC, and Spatial Partitioning) and
PSP (Partitioning, SurfNOC, and Spatial Partitioning)
multi-level mitigation schemes. Randomization incurs a
fixed encryption/decryption overhead of 2 cycles, affecting
the cache locality due to the randomization of the cache
address. The encryption/decryption overhead increases
time spent on the home L2 cache portion, and address
randomization affects the time spent on L2-sharers (remote
slices of shared L2 cache). Figure 13 shows that RSP
performs worst in benchmarks including Tri-Count, and
PageRank. These benchmarks involve considerable on-
chip operations that involve L2 cache accesses. In PSP,
the number of cache sets reduces to 25% or 50% based

on the demand of the benchmarks. For example Tri-
Count, and Page-Rank need minimum L2 cache to work
efficiently, whereas SpMV, GeMV, SSSP, and AlexNet
require a minimum of 50% cache sets to work optimally. The
partitioning reduces the size of the slice of home L2, which
triggers a trickle-down effect on other shared hardware. For
example, L2-waiting time and L2-Sharers usage increases,
which involves NoC hardware and memory controllers. For
off-chip bound benchmark, GeMV, the time spent on data
access path shows a ∼10% degradation compared to the
geometric mean of ∼5%.

Although both RSP and PSP affect the time spent on
the data access path, the overall completion times (i.e.,
time spent within the core, core synchronization, and
memory path) are similar for all benchmarks. Figure 14
shows both RSP and PSP multi-level mitigation schemes
degrade performance when each core implements an in-
order pipeline. It shows a geometric mean performance
overhead of ∼2%.

To evaluate the performance sensitivity of the SCA
mitigation schemes for more powerful cores, each tile
implements an out-of-order core. Figure 15 shows perfor-

198

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 15:19:15 UTC from IEEE Xplore. Restrictions apply.

�
���
���
���
���
�

���

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

			� 	��� �
�� ���
����
�������� ��
��
� �
��
����

	

��
���

��
�	

��
��
��

�
��	

�
��
�

��
��
��
�

�

����	�� �����
 ����

Fig. 14. Overall performance implications of multi-level scheme with RSP (Randomization, SurfNOC, Spatial Partitioning) and PSP
(Partitioning, SurfNOC, and Spatial Partitioning) for Cache, NoC, and Memory Controller on an in-order processor

�
���
���
���
���
�

���

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

��
�

���

�	
�

�	
�

			� 	��� 	��� ���
����
�������� ��
��
� �
��
����

	

��
���

��
�	

��
��
��

�
��	

�
��
�

��
��
��
�

�

����	�� �����
 ����

Fig. 15. Overall performance implications of multi-level scheme with RSP (Randomization, SurfNOC, Spatial Partitioning) and PSP
(Partitioning, SurfNOC, and Spatial Partitioning) for Cache, NoC, and Memory Controller on an out-of-order processor

mance degradation of RSP and PSP multi-level mitigation
schemes. Out-of-order cores reduce the overall memory
stalls by exploiting instruction and memory level paral-
lelism. It is evident that the time spent in computations
increases as compared to memory stalls. However, the
overall performance impact on the mitigation schemes is
similar to in-order cores, resulting in a geometric mean
performance overhead of ∼3%. Although both schemes i.e.,
RSP and PSP have the same performance overhead and
guarantee security, they differ in hardware implementations
and software support needs.

E. Security Analysis of Cache Mitigation Schemes

�

���

���

���

���

���

	�
� ��� ��� ��� ��� ��� �	� ��� ��� ��� ����
��
��
���
�

��

�

���
�	���	�	�
��

���
��������������

���
�����������

����������
	������

Fig. 16. Timing-variation histogram with Cache protection enabled

To validate the efficacy of our mitigation schemes,
we implement a contention-based attack template with

transmitter and receiver applications. As discussed earlier,
timing variations observed by receiver application with
and without contention on the multiple (cache, NoC and
memory controller) shared hardware channels is sufficient
for practical attacks. A positive DI of 1 and TP rate of
100% confirmed the efficacy of the attack vector. Figure 16
shows timing-variations of attack when cache partitioning
is enabled to remove the timing variations from cache
hardware. However, the NoC and memory controller are
still used to create timing variations. The DI of 1 and TP
rate of 100% confirm that an adversary is still successful
with their attack.

�

���

���

���

���

���

	�
� ��� ��� ��� ��� ��� �	� ��� ��� ��� ����
��
��
���
�

��

�

���
�	���	�	�
��

���
��������������

���
�����������

	
����������������

Fig. 17. Timing-variation histogram with Cache and NoC protection
enabled

Figure 17 shows the timing-variation histogram with
cache and NoC hardware protection schemes, but the

199

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 15:19:15 UTC from IEEE Xplore. Restrictions apply.

shared memory controller can still be exploited for timing
attacks. A positive DI of 0.93 and TP rate of ∼100%
confirms the inadequate mitigation. A multi-level mitiga-
tion scheme, i.e., RSP/PSP, completely removes timing
variations. Figure 18 shows histogram with overlapped
timing-variations. A negative DI and TP rate of ∼49%
confirms successful mitigation of timing-based SCA with a
multi-level mitigation scheme.

�

���

���

���

���

���

	�
� ��� ��� ��� ��� ��� �	� ��� ��� ��� ����
��
��
���
�

��

�

���
�	���	�	�
��

���
��������������

���
�����������

�	������
�	����

Fig. 18. Timing-variation histogram with multi-level protection
enabled

VI. Related Work
A. Timing-based SCA

Cache hardware is extensively studied for timing-based
SCA [1] [2] [31] [12] [3] [4] to leak security-sensitive
information. Cache attacks such as Prime+Probe [1] and
Flush+Reload [2] are shown to leak private keys of AES and
RSA cryptosystems and are used alongside other vulnerabil-
ities to develop newer attacks, including Spectre [32]. In the
Prime+Probe attack, the adversary application occupies a
cache set and lets the victim application evict a cache line
from the occupied cache set. This victim-induced eviction
forces adversaries to load data from primary memory, which
takes extra time. An adversary can infer interference based
on this extra time and creates a timing profile to leak
secret information or develop practical attacks. A recent
work, ConNOC [3] shows that the NoC hardware could
be contented to develop practical covert-communication
attack based on timing variations. In ConNOC attack, a
receiver application and its data are pinned so that it shares
NoC hardware with the victim application and its data.
The transmitter and receiver applications are otherwise
virtually isolated. The receiver application occupies all
NoC hardware resources and starts monitoring packet
arrival times. The transmitter application accesses its data,
which affects the timing of receiver applications that create
timing variations. Similarly, literature shows that memory
controllers [4] [33] are exploited for timing-based SCA.

B. Mitigation Schemes
Timing-based SCAs are mitigated at the software level

and hardware levels. Various techniques are proposed in
the literature to detect the timing-based SCA that targets
cache hardware at the software level. FlowTracker [34]
uses an information flow tracking approach to analyze
the code to detect timing attacks statically. The system

software level schemes such as KASLR [5] are used to
enforce software isolation to guarantee security against
such attacks, but software-based mitigations failed to fix
the core problem. The hardware/architecture level scheme
removes timing variations by either making access constant
time/randomization or enforcing hardware-level isolations.
Cache randomization scheme RPCache [6] uses permutation
tables to randomly moves cache set, and NewCache [7]
randomizes cache lines and track randomized cache lines
based on a Random Mapping Table. On the other hand,
Ceaser [8] and randomization-based mitigation schemes
[23] [20] [21] encrypt cache addresses using a pair of keys
are performance efficient. The isolation schemes such as
Intel CAT [9], DAWG [10], and IRONHIDE [11] protect
cache hardware against timing attacks by enforcing strong
isolation at cache set levels. This distribution of cache
resources can be done statically [11] or dynamically [25].
NoC hardware is shown to be protected using either spatial
isolation [12] or temporal isolation [13] schemes. Ed. Suh
[12] proposed a one-way spatial isolation-based scheme
that tags secure traffic as low priority traffic on NoC
hardware with a fixed bandwidth quota. This approach
removes interference at NoC but limits the usage of NoC
hardware. Later SurfNOC [13] propose a new scheduling
scheme that enforces temporal isolation but minimum
performance implications. The memory-controller hardware
is shown to be protected using either temporal isolation
[4] scheme or spatial isolation [11] [14] schemes. TDM
schedules allocation of resources to secure traffic on even
cycles and non-secure applications on odd cycles. Contrary,
the spatial isolation schemes allocate a fixed amount of
memory controllers to secure and non-secure applications.

VII. Conclusion

Timing-based SCAs leak on-chip data that traverses
various shared hardware resources in multicore proces-
sors. Existing software level mitigation schemes provide
inadequate security, whereas hardware schemes protect
on-chip data for individual shared hardware channels.
This paper evaluates existing hardware-level mitigation
for each hardware resource on the on-chip data access
path, and implements two combinations of multi-level mit-
igation schemes (i.e., RSP and PSP) that provide holistic
protection against timing-based SCAs. The performance
implications of the multi-level mitigation schemes depend
on the cache behavior of workloads. Our evaluation shows
that multi-level mitigation schemes incur performance
overheads of ∼2% for real-world graph and machine
learning workloads. Although both schemes protect against
timing side-channel attacks and have similar performance
implications, they differ in hardware implementation cost.
RSP scheme has high hardware overhead but is oblivious
to the system software, whereas the PSP scheme has low
hardware overhead but requires the system to implement
auto-tuning for set-partitioning of the shared cache.

200

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 15:19:15 UTC from IEEE Xplore. Restrictions apply.

VIII. Acknowledgments

This research was supported by the National Science
Foundation under Grant No. CNS-1929261. This research
was also supported in part by the Semiconductor Research
Corporation (SRC).

References

[1] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: The case of aes,” in Topics in Cryptology – CT-
RSA 2006 (D. Pointcheval, ed.), (Berlin, Heidelberg), pp. 1–20,
Springer Berlin Heidelberg, 2006.

[2] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low
noise, l3 cache side-channel attack,” in 23rd USENIX Security
Symposium (USENIX Security 14), (San Diego, CA), pp. 719–
732, USENIX Association, Aug. 2014.

[3] U. Ali and O. Khan, “ConNOC: A practical timing channel attack
on network-on-chip hardware in a multicore processor,” in IEEE
International Symposium on Hardware Oriented Security and
Trust (HOST), 2021.

[4] Y. Wang, A. Ferraiuolo, and G. E. Suh, “Timing channel
protection for a shared memory controller,” in 2014 IEEE
20th International Symposium on High Performance Computer
Architecture (HPCA), pp. 225–236, 2014.

[5] C. Canella, M. Schwarz, M. Haubenwallner, M. Schwarzl, and
D. Gruss, “Kaslr: Break it, fix it, repeat,” in Proceedings of the
15th ACM Asia Conference on Computer and Communications
Security, ASIA CCS ’20, (New York, NY, USA), p. 481–493,
Association for Computing Machinery, 2020.

[6] Z. Wang and R. B. Lee, “New cache designs for thwarting
software cache-based side channel attacks,” in Proceedings of the
34th Annual International Symposium on Computer Architecture,
ISCA ’07, (New York, NY, USA), p. 494–505, Association for
Computing Machinery, 2007.

[7] Z. Wang and R. B. Lee, “A novel cache architecture with
enhanced performance and security,” in 2008 41st IEEE/ACM
International Symposium on Microarchitecture, pp. 83–93, 2008.

[8] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks
via encrypted-address and remapping,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 775–787, 2018.

[9] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and
R. B. Lee, “Catalyst: Defeating last-level cache side channel
attacks in cloud computing,” in 2016 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA),
pp. 406–418, 2016.

[10] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and
J. Emer, “Dawg: A defense against cache timing attacks in
speculative execution processors,” in Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-51, p. 974–987, IEEE Press, 2018.

[11] H. Omar and O. Khan, “Ironhide: A secure multicore that effi-
ciently mitigates microarchitecture state attacks for interactive
applications,” in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 111–122, 2020.

[12] Y. Wang and G. E. Suh, “Efficient timing channel protection
for on-chip networks,” in 2012 IEEE/ACM Sixth International
Symposium on Networks-on-Chip, pp. 142–151, 2012.

[13] H. Wassel, Y. Gao, J. Oberg, T. Huffmire, R. Kastner, F. Chong,
and T. Sherwood, “Surfnoc: a low latency and provably non-
interfering approach to secure networks-on-chip,” in ISCA, 2013.

[14] A. Shafiee, A. Gundu, M. Shevgoor, R. Balasubramonian,
and M. Tiwari, “Avoiding information leakage in the memory
controller with fixed service policies,” in 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 89–101, 2015.

[15] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal, “Graphite: A distributed
parallel simulator for multicores,” in HPCA - 16 2010 The Six-
teenth International Symposium on High-Performance Computer
Architecture, pp. 1–12, 2010.

[16] H. Dogan, M. Ahmad, B. Kahne, and O. Khan, “Accelerating
synchronization using moving compute to data model at 1,000-
core multicore scale,” ACM Trans. Archit. Code Optim., vol. 16,
pp. 4:1–4:27, Feb. 2019.

[17] “QUARQ: A Novel General Purpose Multicore Architecture
for Cognitive Computing.” https://khan.engr.uconn.edu/pubs/
quarq-techcon17.pdf, 2017.

[18] T. Corporation, “Tile-gx72 processor,” 2014.
[19] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas,

and C. W. Fletcher, “Microscope: Enabling microarchitectural
replay attacks,” IEEE Micro, vol. 40, no. 3, pp. 91–98, 2020.

[20] G. Saileshwar and M. Qureshi, “MIRAGE: Mitigating Conflict-
Based cache attacks with a practical Fully-Associative design,”
in 30th USENIX Security Symposium (USENIX Security 21),
pp. 1379–1396, USENIX Association, Aug. 2021.

[21] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss,
and S. Mangard, “ScatterCache: Thwarting cache attacks via
cache set randomization,” in 28th USENIX Security Symposium
(USENIX Security 19), (Santa Clara, CA), pp. 675–692, USENIX
Association, Aug. 2019.

[22] Q. Tan, Z. Zeng, K. Bu, and K. Ren, “Phantomcache: Obfus-
cating cache conflicts with localized randomization.,” in NDSS,
2020.

[23] M. K. Qureshi, “New attacks and defense for encrypted-address
cache,” in 2019 ACM/IEEE 46th Annual International Sympo-
sium on Computer Architecture (ISCA), pp. 360–371, 2019.

[24] T. Bourgeat, J. Drean, Y. Yang, L. Tsai, J. Emer, and M. Yan,
“Casa: End-to-end quantitative security analysis of randomly
mapped caches,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 1110–1123, 2020.

[25] H. Omar, B. D’Agostino, and O. Khan, “Optimus: A security-
centric dynamic hardware partitioning scheme for processors that
prevent microarchitecture state attacks,” IEEE Transactions on
Computers, vol. 69, no. 11, pp. 1558–1570, 2020.

[26] “FreescaleADL: An Industrial-Strength Architectural Descrip-
tion Language For Programmable Cores.” http://opensource.
freescale.com/fsl-oss-projects/, 2013.

[27] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “Crono: A benchmark
suite for multithreaded graph algorithms executing on futuristic
multicores,” in IISWC, 2015.

[28] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in IEEE
CVPR, 2009.

[29] J. Gómez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F.
Oliveira, and O. Mutlu, “Benchmarking a New Paradigm: An
Experimental Analysis of a Real Processing-in-Memory Archi-
tecture,” 2021.

[30] Y. Massoud, J. Kawa, D. MacMillen, and J. White, “Modeling
and analysis of differential signaling for minimizing inductive
cross-talk,” in Proceedings of the 38th Annual Design Automation
Conference, DAC ’01, (New York, NY, USA), p. 804–809,
Association for Computing Machinery, 2001.

[31] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush:
A fast and stealthy cache attack,” in Proceedings of the 13th
International Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment - Volume 9721, DIMVA 2016,
(Berlin, Heidelberg), p. 279–299, Springer-Verlag, 2016.

[32] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in
2019 IEEE Symposium on Security and Privacy (SP), pp. 1–19,
2019.

[33] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“DRAMA: Exploiting DRAM addressing for cross-cpu attacks,”
in 25th USENIX Security Symposium (USENIX Security 16),
(Austin, TX), pp. 565–581, USENIX Association, Aug. 2016.

[34] B. Rodrigues, F. M. Quintão Pereira, and D. F. Aranha, “Sparse
representation of implicit flows with applications to side-channel
detection,” in Proceedings of the 25th International Conference
on Compiler Construction, CC 2016, (New York, NY, USA),
p. 110–120, Association for Computing Machinery, 2016.

201

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 06,2023 at 15:19:15 UTC from IEEE Xplore. Restrictions apply.

