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Abstract—Hardware sharing in multicore processors
enables massive performance improvements but brings
security challenges. Adversaries exploit shared hard-
ware for timing-based side-channel attacks and leak
secret information. This paper proposes a novel multi-
channel timing-based side-channel attack (called Mul-
tiCon) that exploits aggregated timing variations on
shared cache, network-on-chip (NoC), and memory
controller hardware in a multicore processor. Base-
line cache, memory controller and NoC hardware con-
tention attacks show sufficient timing variations, but
their overall efficacy in the presence of external noise
reduces significantly. De-noising schemes, such as rep-
etition codes increase the efficacy but at the cost of
slowing down the attack. MultiCon uses aggregate
timing variations of multiple shared hardware resources
and is less sensitive to external noise. Our evaluation on
a Tile-Gx72 processor shows that MultiCon is able to
achieve higher efficacy in the presence of external noise,
and is >3x faster than baseline single-channel attacks.

I. INTRODUCTION

Modern multicores exploit hardware sharing for co-
located applications. The sharing of underlying hardware
enables massive performance improvements in virtualized
systems but brings security challenges. For example, adver-
sary applications leak security-critical information using
timing-based side-channel attacks (SCAs) that exploit
the underlying shared hardware. Timing-based SCAs leak
secret information based on timing variations that are
caused due to the presence or absence of contention on
shared hardware. Google [1] recently published a proof-of-
concept for timing-based SCAs. These attacks are broadly
categorized into spatial and temporal contention attacks,
where the adversarial code measures the latency difference
between contended and non-contended accesses to the
shared hardware resource. The spatial contention attacks
exploit timing variations due to spatial contention on a
hardware resource, such as a cache (or TLB or memory),
where shared data is pinned until explicitly removed.
Temporal contention attacks exploit timing variation on
shared hardware structures that hold transient shared data,
such as network-on-chip and memory controller queues and
buffers. Both types of attacks have motivated mitigation
schemes, and adversaries are inclined towards new attacks
that can bypass existing mitigations.

Prior work shows that the spatial contention attacks
[2] [3] [4] have a high timing-variation. For example, a

state-of-the-art cache contention attack [3] shows ~100
cycle timing-variation. This timing variation is sufficient
to reliably leak secret information. Contrary, the temporal
contention attacks [5] [6] combine low timing-variations of a
few cycles [5] with de-noising capabilities (such as repetition
codes [7]) to successfully leak secret information. Repetition
codes aggregate the timing variations and increase the
efficacy of the attack but at the cost of the speed of attack.
Both attacks are sensitive to external noise, and their
success depends on an adversary’s capabilities to de-noise
the timing side-channel. Prior work uses repetition codes [5]
to de-noise the SCAs from external noise. Repetition codes
re-transmit information multiple times and decrease the
probability of noise affecting the efficacy of attack. However,
repetition codes reduce the speed of attack. Existing attacks
[3] [2] [] [6] target single hardware channel to create timing
variations that makes them sensitive to external noise. A
unified attack that aggregates timing variations across
multiple shared hardware channels to improve the attack
efficacy is missing in the literature.

This paper aggregates timing variations on spatial and
temporal contention channels and proposes MultiCon, a
multi-channel timing-based SCA that exploits contention
on underlying shared cache, network-on-chip, and memory-
controller hardware in a multicore processor. It also uses
repetition codes [7] to de-noise the channel. Although
timing variations on the cache hardware are sufficient for
a reliable timing-based attack, an external noise (e.g., a
concurrent user application) targeting the shared cache
obfuscates cache timing variations. However, an attack with
timing variations aggregating from multiple side-channels
potentially enables higher efficacy at higher speeds. For
two applications based attacks where one application role
plays as a transmitter and the other as a receiver, MultiCon
proposes placement of code and data such that they share
multiple underlying hardware channels that aggregate the
timing variations. The transmitter application occupies
the shared hardware and creates contention, which conse-
quently causes latency delays for the receiver application’s
accesses. The transmitter application creates contention
for a short period to leak secret bit 1, and stays idle to
transmit secret bit 0.

The proposed MultiCon attack setup is evaluated on
the TileGx-72 multicore processor with and without the
presence of external noise originating from concurrently
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executing applications. The single-channel baseline cache,
network-on-chip, and memory controller attacks are imple-
mented and evaluated in terms of efficacy and speed. The
efficacy metric quantifies the true positive (TP) rate of
information leakage, which relies on the timing-variations
measured by the receiver application. On the other hand,
the speed of the attack is measured using bits leaked
per million cycles (bpmc) metric. The bpmc relies on the
number of repetitions needed to de-noise the timing-channel
to achieve a target efficacy, as well as the average time
taken by the receiver application to conduct its accesses for
bit leakage. It is shown that ~110 cycles timing-variations
are sufficient for reliable attack using the cache channel.
However, ~5 cycle timing-variations for network-on-chip
channel, and ~10 cycles for memory controller channel
require repetition codes for reliable attacks. In the presence
of external noise, all single-channel attacks are impacted
with reduced efficacy and require increased repetitions to
achieve the target efficiency. Therefore, all these attacks
suffer from significant slowdowns. On the contrary, the
proposed MultiCon attack aggregates timing-variations
(i-e., ~125 cycles) and shows less sensitivity to external
noise since these variations originate from multiple sources
of contention points. Consequently, it requires less number
of repetitions to achieve the desired efficacy, and results in
a speed-efficient attack. The results show that MultiCon
achieves a 100% TP rate with the highest speed among all
evaluated attacks without external noise. In the presence
of external noise, MultiCon achieves a 90% TP rate target
that is >3x faster than the baseline single-channel cache,
network-on-chip, and memory controller attacks.

II. SINGLE-CHANNEL SCA ATTACKS

This section discusses the working of existing timing-
based SCAs that target individual hardware channels,
including shared cache, network-on-chip, and memory
controller.

A. Cache attack

Cache contention attacks exploit timing variations for
data access operations under different cache states (i.e.,
cache-hit or cache-evict). This work uses cache contention
using the Flush+Reload [3] attack. The efficacy of a timing
attack depends on the timing variations (delta), which is
a difference between two memory access states. Suppose
an application makes access to a data (time), and data
is not available in the cache hardware. This triggers a
cache miss, and data is fetched from main memory using
a memory controller. This operation typically takes ~140-
160 cycles. On the contrary, if the data is available in the
shared cache, the same operation takes ~30-40 cycles to
move requested data to its destination core. This results
in a timing-variation (delta) of ~110 cycles. The timing-
variations between cache-hit and cache-miss are sufficient
to create a practical attack without the need of repetition
codes (codes).
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B. Memory Controller attack

Memory controller SCA attacks temporally exploit tim-
ing variations on memory-controller hardware queues and
buffers [6]. For a memory controller contention attack, the
receiver application makes random accesses to its data,
and measures the data arrival time, which is in ~140-160
cycles range. The data comes from the DRAM memory via
the memory controller for all data accesses. Concurrently,
the transmitter application randomly accesses its data
such that all requests involve the same memory controller
hardware as the receiver application. This causes contention
on the memory controller hardware queues and buffers.
This contention results in timing-variations (delta) of ~10
cycles for the applications sharing the memory controller
hardware. This timing variation enables the timing attack
using the memory controller hardware.

C. Network-on-Chip attack

NoC attack targets shared links, buffers and crossbars of
the per-core router hardware for timing variations. Prior
work, ConNoC [5] proposes an attack setup for the NoC
contention attack. Suppose an application makes data
access that is served by another core (remote cache) in
the multicore. This takes ~30-40 cycles on average for
the remote cache access time. Now, another application
randomly accesses its data such that it shares the under-
laying NoC hardware crossbars, buffers, and links. This
results in contention situation at the NoC hardware, and
it increases the delta by ~2-5 cycle for the applications
sharing the NoC hardware resources. This timing variation
is insufficient for practical attacks, and requires repetition
codes to improve the efficacy of the attack.

III. MuLTICON: MULTIPLE-CHANNEL SCA ATTACK

This section discusses our motivation for MultiCon
attack, threat model, attack setup and practical attacks
using MultiCon.

A. Motivation for MultiCon Attack

A cache contention attack efficacy is drastically reduced
in the presence of external noise due to decrease in timing
variations (delta). The external noise can be added by
executing a concurrent application on the system. The
random accesses by the noise generating application may
evict data items from the cache sets participating in the
underlying cache SCA attack. In such scenarios, the receiver
application may observe high latency due to main memory
access, while in the absence of noise the access would have
been a fast cache hit. This operation increases the average
memory access time since it now requires a ~140-160
cycles compared to a ~30-40 cycles (when data is present
in the cache). This makes the attack slower due to an
increase in average time. To overcome the noise challenge,
the attack requires repetition codes. It re-transmits the
secret bit value multiple times and reduces the probability
of noise affecting multiple instances of secret bit value. The
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speed of attack is multiple of time and codes, and both
contribute to slowing down the attack.

The external noise also significantly reduces the timing-
variations between contention and no-contention on mem-
ory controller hardware. It reduces the overall delta,
and the adversary requires a high number of repetition
codes (codes) to overcome this challenge. Further, external
noise causes additional unwanted contention on memory
controller that results in an increase in the average access
time (time). A high number of codes and expensive time
reduces the overall speed of the memory controller attack
as compared to the cache attack.

Similar to memory controller attack, external noise signif-
icantly reduces the timing variation between contention and
no-contention on NoC hardware and reduces the efficacy
of the attack. Therefore, a higher number of repetition
codes are needed to overcome this challenge. Contrary to
memory controller attack, where external noise increases
the time due to occupation of limited buffers, the noise
affects distributed buffers of NoC hardware, and time shows
a negligible increase. Although NoC attack has a lower
average memory access time (time) due to all accesses
involving shared cache access, it needs a large number of
repetitions (codes) to de-noise the channel. The reason for
higher codes is due to the already tight timing-variations
(i.e., a delta of ~2-5 cycles). However, a high number of
codes reduces the overall speed of the attack.

B. Threat Model

The threat model is adopted from timing-based SCAs
on shared hardware resources [3] [5] [6]. It is assumed
that the adversary is capable of executing co-located
malicious application(s) on the system. Since it has system-
level access, the adversary also controls the co-location of
data on shared hardware (i.e., caches, NoC, and memory
controller). Additionally, the adversary can measure the
timing-variations across multiple data accesses using cycle-
accurate hardware counters. The threat model focuses
on software-based timing SCAs, and considers physical
attacks such as power analysis, thermal monitoring, and
electromagnetic attacks as orthogonal attack vectors.

C. MultiCon Attack Setup

The existing baseline attacks target a single shared
hardware in a multicore processor that limits their efficacy
and speed. We propose MultiCon, a multiple channel
timing-based SCA that aggregates timing-variations of
cache, NoC, and memory controller hardware. Figure 1
shows the placement of two applications using the proposed
MultiCon attack setup. R-App (i.e., receiver) application
is pinned on tile 8, where its code is pinned on tile 5.
T-App (i.e., transmitter) application is pinned on tile 7,
and its data is pinned on tile 5. Both application’s code
and data are virtually isolated but share the underlying
cache, NoC, and memory-controller hardware. Suppose
R-App makes memory access, and its data is available
in cache memory while NoC and memory controller are
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Fig. 1. A block view of a multi-core processor consisting of two
applications that share hardware resources including 1) caches, 2)
network-on-chip, and 3) memory-controllers, and contention points.

not contented. The data arrives in ~30-40 cycles. On the
other hand, if data comes from the DRAM while NoC
and memory controller are contented, it takes ~160-180
cycles. This additional contention on NoC and memory
controller increases the timing-variations (delta) to ~125
cycles. High timing-variations are less sensitive to external
noise and require fewer repetition codes (codes) to overcome
external noise. Although this additional contention on
NoC and memory controller increases the average memory
access time, the increased delta decreases the number
of repetitions (codes) needed to de-noise the channel.
MultiCon has an average memory access time similar to
cache attack, but greater than the NoC attack. However, a
high delta of ~125 cycles reduces the required repetitions
(codes), resulting in a faster attack than cache and NoC.
Memory controller attack has the highest time and requires
high codes due to low delta. Thus, it is the slowest attack as
compared to others, including MultiCon. The higher timing
variations of MultiCon enable a fast attack in the presence
of realistic conditions (i.e., external noise) for practical SCA
attacks, such as covert-communication between co-located
applications on the processor.

D. Practical Attacks using MultiCon

This section use MultiCon setup to demonstrate two
practical attacks 1) covert-communication attack, and
2) function monitoring attack. In covert-communication
attack, two unauthorized applications communicate using
timing variations. Whereas in function monitoring attack, a
malicious application infer secrets from a secure application
that execute secrets-based functions (i.e., RSA crypto-

system).
1) Covert-Communication Attack: In a covert-
communication attack, the transmitter application

(T-App) shares a cache line with the receiver application
(R-App) using a shared library. The transmitter is able to
modify the state of the shared cache line and contented on
NoC and memory controller hardware. Figure 2 shows the
pseudo code for the covert-communication attack using
MultiCon attack setup. For initial setup, a global cycle
counter is used for synchronization purposes between
T-App and R-App. For transmission of bit 0, the T-App
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// transmitter pseudo code /I receiver pseudo code

wait_sync_flag(); wait_sync_flag();
for every bit:

|
|
|
|
|
| for every bit:
if (bit == 1): :
|
|
|
|
|
|

timer_start();
for (num of replays):
contention_monitor();

for (num of replays):
contention_generator();

else if (bit == 0): stop_timer();
for (num of replays):
stay_idle(); if (time > threshold):

bit =1
else
bit=0

Fig. 2. Pseudo-code for covert-communication attack using MultiCon
attack setup.

executes contention generation function that places data
in the cache line. Whereas for bit 1, the T-App flushes the
data from the cache line and contends on the NoC and
memory controller hardware. On the receiver side, the
contention monitor function measures the contention on
cache, NoC, and memory controller with help of a cycle
accurate timer. A contention situation is classified as bit 1,
whereas non-contention situation is inferred as bit 0. This
process is repeated to leak a stream of secret information
over the convert communication channel.

1/ secure sample code / adversary pseudo code

wait_sync_flag(); wait_sync_flag();
if (secret_bit == 1):

|

|

|

|

|

| for secret every bit:
for (num of replays): :

|

|

|

|

|

|

timer_start();
for (num of replays):
contention_monitor();
stop_timer();

high_function(secret);
low_function(secret);
else if (secret_bit == 0):
for (num of replays):
low_function(secret); if (time > threshold):
current_bit = 1
else
current_bit =0

if (last_bit == 1 && current_bit = 0):
secret_bit =1

else if (last_bit == 1 && current_bit = 1):
secret_bit =0

Fig. 3. Pseudo-code for function monitoring attack using MultiCon
attack setup.

2) Function Monitoring Attack: The function monitoring
attack models a function based on square and multiple
algorithm of the RSA crypto-system [3]. Figure 3 shows
the pseudo code of the function monitoring attack using
MultiCon attack setup. The threat model allows adversarial
application to interrupt and control execution of the secure
function. This capability allows the adversarial application

to implement repetition codes on the secure application.

Similar to covert communication attack, a global cycle
counter is used for synchronization purposes. For secret
bit 1, the RSA type algorithm executes two functions that
generate contention and no-contention situations. Whereas
for bit 0, the secure function executes the contention
generation function only. An adversary uses the contention
levels to infer secret bits. For example, a contention
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situation followed by no contention situation is categorized
as secret 1, and a contention situation followed by another
contention situation is inferred as secret bit 0.

IV. METHODOLOGY

The baseline attack setups and the proposed Multi-
Con attack are implemented on the Tilera® Tile-Gz72™
multicore processor. Tile-Gx72 is a tiled shared-memory
architecture with 72 independent tiles and four memory
controllers connected to 4 different tiles. Each tile has a
64-bit multi-issue in-order core, 32K B private level-1 (L1)
data and instruction caches, and a slice of shared level-
2 (L2) cache of 256 K B aggregate (shared cache capacity
of 18 M B distributed in 72 tiles). The cache line size for
private and shared caches is 64 bytes. It consists of Network-
on-Chip hardware, which comprises five independent 2-D
mesh networks with X-Y routing (iMesh™ [8] Technology).
Each NoC flit is 8 bytes (64 bits) in size. Four 72-bit
ECC-protected DDR memory controllers are connected to
corner tiles to access off-chip memory. The system uses a
GNU/Linux operating system with kernel version 8.10.55-
MDE-4.3.2.182362. Tilera Multicore Components (TMC)
API library is used to manage code and data placement
for receiver and transmitter applications and tile resources,
including memory-controller and NoC traffic.

A. External Noise Application

Stress application [9] version 1.0.4 is used to generate
low, medium, and high noise levels. The Stress application
threads are randomly pinned on different tiles such that
it shares cache, NoC, and memory controller hardware
channels with the co-located transmitter and receiver
applications for the SCA attack. It is capable of executing
multiple threads that generate noise by injecting random
data accesses. A single thread spins on malloc()/free()
instructions that access data from the targeted memory
controller and contend on the caches and network routers
on its path. The evaluation uses a single thread for low
noise, four threads for medium noise, and eight threads for
high noise.

B. FEwvaluation Metrics

The baseline and MultiCon attack’s accuracy and reli-
ability is measured using Timing-variations (delta), True
Positive (TP) rate [5], and Discrimination Index (DI) [10]
metrics. The delta is the average timing difference between
two memory accesses under contention and no-contention
situations. The TP rate measures the correct contention
or no-contention situation detection on shared hardware
(i.e., cache, NoC, memory-controller). For example, if
a transmitter application creates a contention situation
on shared hardware, the receiver application successfully
detects a contention situation. We calculate the TP rate
using TP = %, where d. is total correctly inferred
contention cases, and d, is the correctly inferred no-
contention case. The t. is the total number of contention
situations, and t,, is the total number of no-contention
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Cache attack timing-variations
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Fig. 4. Timing-variations histogram of cache attack setup.

situations. The timing variations are plots for contention
and no-contention situations on shared hardware, and the
TP rate is inadequate to measure the reliability of an attack.
The DI metric quantifies the two distributions of timing
variations under contention and no-contention. DI uses the
values of statistical mean and the variance of contention
and no-contention distributions. We calculate the value of
DI for a specific attack using DI = —£etbén_ where p, is

o2+02 ’
the statistical mean of distribution in contention plot, and
[ is the statistical mean of distributed in no-contention
plot. The o2 and o2 are the variance of distributions under
contention and no-contention, respectively.

The speed of the attacks is quantified using the average
time of memory access for the receiver application (time),
and the number of repetition codes (codes) needed to de-
noise the channel. It uses bits per million cycle (bpmc)
metric for overall speed. Bpmc measures the number of
bits that a receiver application receives in one million
cycles. The attack speed is a function of the average time
to make memory access by the receiver (¢time) and the
number of times a single bit is received (codes). So, for
a given attack setup, the speed of attack is calculated as
Speed = 1x10° bpme.

times X codes
V. EVALUATION

This section evaluates cache, memory controller, NoC,
and MultiCon attack setups on the Tile-Gx72 multicore
processor. It uses TP and DI metrics to evaluate the efficacy
of attacks. On the other hand, it evaluates the speed of
attack using the bits-per million cycle metric. The attacks
are also evaluated using Stress [9] application under low,
medium, and high noise configurations. An information
theory technique, repetition codes [7] is used to de-noise
the attack setups.

A. Ewvaluation without repetition codes

This section evaluates baseline and MultiCon attack
setups with and without noise. The receiver application
makes memory access to a shared cache line for a cache
contention attack. In the case of cache-hit, the data arrives
in ~40 cycles (time). On the contrary, in the case of cache-
miss, the data that arrives from the main memory involves
the memory-controller hardware and takes ~155 cycles
(time). The transmitter application controls cache data
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Memory controller timing-variations histogram
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Fig. 5. Timing-variations histogram of memory controller attack
setup.

NoC attack timing-variations histogram
W without contention  m with contention

o 700
3 600
2 500
€ 400
» 300
5 200
o 100
Z 0

DI: 0.50 TP: 58%

0 15 30 45 60 75 90 105 120 135 150 165

Latency (cycles)

Fig. 6. Timing-variations histogram of NoC attack setup.

placement, thus controlling cache-hit/miss. This high delta
of ~115 cycles is sufficient for a practical SCA attack.
Figure 4 shows the timing-variations histogram for cache
contention attack. In memory controller contention attacks,
the receiver application makes access to random data. Data
is fetched from the main memory involving the memory
controller. This operation takes ~155 cycles (time). In the
other case, the transmitter application creates contention
on the memory-controller by continuously making memory
accesses and occupying memory-controller shared queues.
In this case, the receiver application takes ~165 cycles
(time), and overall timing-variations of ~10 cycles (delta)
are observed. Figure 5 shows timing-variations for the
memory controller attack. Similarly, Figure 6 shows timing
variation for the NoC channel, where contention case takes
~45 cycles for memory access (time), and no-contention
case takes ~40 cycles (time). This confirms the low delta
of ~5 cycles for the NoC attack.

In MultiCon attack, the receiver application makes a
data access. In the case of cache-hit, the data arrives in
~40 cycles (time) as the transmitter is performing no
operations of its own. Whereas, in the case of cache-miss,
the transmitter is simultaneously making random accesses
to the DRAM that involves memory controller and NoC
hardware as well. This controlled contention delays the
latency for receiver application accesses to ~170 cycles
(time), resulting in a timing-variation of ~125 cycles (~15
additional cycles compared to cache contention attack).
Figure 7 confirms the timing variations for MultiCon attack
setup without any noise and repetition codes.
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Fig. 7. Timing-variations histogram of MultiCon attack setup.
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Fig. 8. Efficacy of cache, memory controller, NoC and MultiCon
attack without external noise

The efficacy of attack setups is quantified using TP and
DI metrics. Figure 8 summarizes the efficacy for baseline
and MultiCon attack setups. Cache and MultiCon show a

TP rate of 100% and DI of ~1 due to high timing variations.

The memory controller and NoC attacks show ~10 cycle
and ~5 cycle timing variations respectively, and low delta
reduces the efficacy of the attack setup. A low DI of 0.50,
0.32, and a low TP rate of 62% and 58% confirm the low
efficacy of memory controller and NoC attacks without
repetition codes.

Low, medium and high noise is generated using the Stress
application that executes in parallel with the transmitter
and receiver applications. Figure 9 shows the efficacy of
baseline and MultiCon attack setups in the presence of
medium noise levels without repetition codes. The TP
rate drops to 68% for cache contention attack, compared
to 100% without noise. Similarly, the TP rate drops to
~50% for memory controller and NoC attacks compared
to ~60% without noise. The MultiCon attack shows a 72%
TP rate and DI of 0.68 due to its high efficacy, i.e., timing
variations (delta=125 cycles). External noise is sufficient to
make baseline and MultiCon attacks less effective, and the
adversary requires de-noising capabilities (i.e., repetition
codes) to make the attack successful.

B. FEwvaluation with repetition codes

The noise reduces the efficacy and speed of the attack
due to an increase in contention on shared buffers/queues
of shared hardware and extra memory accesses involving
memory-controller hardware. Therefore, repetition codes
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Fig. 9. Efficacy of cache, memory controller, NoC and MultiCon
attack with medium level of external noise
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Fig. 10. Speed vs TP rate plots for cache, NoC, memory controller
and MultiCon attack with Low noise

are needed to increase the efficacy of the attack. Repetition
codes re-transmit every bit of secret information multiple
times, and multiple transmissions reduce the speed of
attack.

Figure 10 confirms the increase in TP rate with a
decrease in speed of the attack. Speed of attack depends
on average time for a receiver to make a memory access
(time) and number of repetition codes (codes). The external
noise impacts both time and codes. Figure 10 plots
attack speed and efficacy (TP rate) in presence of low
external noise. A low-noise situation causes cache misses
and results in additional DRAM memory access in cache
contention attacks, reducing the timing variations (delta)
and consequently the efficacy (TP Rate). An increase
in repetition codes increase the TP rate but reduce the
speed of attack. For low noise, the cache contention attack
achieves the 90% TP rate with a DI of 0.94 at a speed of
4 kilo-bpme with repetition codes of 5. Similarly, low noise
affects the timing variations of MultiCon attack due to
extra cache misses, but high timing variations in MultiCon
require one repetition code to achieve the target 90%
efficacy. This results in a faster attack at a speed of ~18
kilo-bpmc, which is 4.5x faster compared to cache attack.
Similarly, NoC attack shows a speed of 2.40 kilo-bpmc and
memory controller contention attack reaches 90% TP rate
at 0.65 kilo-bpmc. Both these attacks are much slower than
the cache and MultiCon attacks.

Figure 11 plots the attack speed and efficacy (TP rate)
in presence of medium external noise. A medium noise
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Fig. 12. Speed vs TP rate plots for cache, NoC, memory controller
and MultiCon attack with High noise

increases cache-misses and contention on memory controller
queues for cache contention attacks. It reduces the timing-
variations between contention and no contention cases,
and causes an increase in repetition codes for the receiver
application. The cache contention attack shows 90% TP
rate with DI of 0.83 at a speed of 0.83 kilo-bpme. NoC and
memory controller have low timing-variations, and medium
noise is sufficient to minimize the timing-variations. A
low timing-variations requires a high repetition codes to
overcome, and results in low attack speeds. The NoC attack
shows a speed of 0.48 kilo-bpmc for 90% TP rate with DI
of 0.78. The memory controller has high average memory
access time, and requires high number of repetition codes,
that consequently reduces the speed. Medium Noise with
MultiCon setup is able to show a TP rate of 90% with
speed of 2.10 kilo-bpmc with a DI of 0.85. This is ~3x
faster compared to the cache attack. Figure 12 shows the
results for high external noise scenario. High noise reduces
the efficacy of baseline and MultiCon attack setups and
requires a high number of repetition codes to overcome.
MultiCon is the only attack setup that is able to achieve a
90% TP rate with 0.85 DI and at speed of 0.38 kilo-bpmc.
All baseline attack setups fail to achieve efficacy with 90%
TP rate.

The speed of attack is the product of average time to
make a memory access (time) by receiver application and
number of repetition codes. Figure 13 shows the receiver
application’s average time for memory access (time) to
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Fig. 13. Average memory access time for receiver applications under
no-noise, low, medium, and high noise situations.
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Fig. 14. No. of repetition codes needed to achieve 90% TP rate.

receive a single bit once using various channels and noise
situations. For example, on average, a cache contention
attack takes ~48 cycles to measure memory access. In the
presence of high noise, the time increases to ~63 cycles
due to unwanted cache misses and contention on memory
controller queues. The MultiCon attack shows comparable
average memory access (time) to cache attack. The NoC
attack shows smallest time and memory contention attack
has highest time. Figure 13 summarizes the average access
time. Repetition codes are required to overcome noise
challenges, and the number of repetition codes depends
on the timing variations (delta). Although cache and
MultiCon attacks have similar time, MultiCon high timing
variations are less sensitive to external noise and require
fewer repetition codes. Figure 14 shows the number of
repetition codes required by baseline and MultiCon attack
setups under low, medium, and high noise to achieve a high
threshold of TP rate (i.e., 90%). Figure 14 confirms that
MultiCon significantly lowers the number of repetitions due
to its high timing-variations, and cache, memory controller
and NoC attacks all require high repetitions to achieve the
target TP rate of 90%.

VI. RELATED WORK

Timing variation attacks are extensively studied to
develop software SCA [2] [3] [4] [11] [12] [13] [14] [5] [6] [15]
to leak security-sensitive information. Cache attacks such
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as Prime+Probe [2] and Flush+Reload [3] are shown to
leak private keys of AES and RSA cryptosystems. In the
Prime+Probe attack, the receiver application operates on
a cache set level granularity and has a high average time to
access memory (i.e., a cache set where a cache set contains
multiple cache lines). In the Flush+Reload attack, the
receiver application operates at cache line-level granularity,
resulting in a faster attack. Memory-controller contention
attacks [16] [6] [17] [18] are studied in literature for denial-
of-service (DoS) and timing-based SCAs. A prior work [16]
shows a DoS attack that targets memory controllers in
a multicore machine. It exploits the unfair allocation of
shared resources of a memory controller. Other works [6]
[18] also demonstrate the timing-variations on a memory
controller for practical attacks (i.e,. covert-communication
attack). Shared NoC hardware is also targeted [11] [5] for
timing-variation attacks. Ed. Suh [11] shows the possibility
of timing attacks that exploit the NoC hardware. In recent
work, ConNOC [5] proposes a novel placement of code
and data to exploit shared NoC hardware efficiently and
demonstrates it on real hardware. Prior works [19] [20] have
also used noise to show that it reduce the timing-variations
of timing attacks, and [7] [5] have successfully shown the
use of repetition codes to amplify the timing-variations.
Such attacks are mitigated using isolation and obfuscation
based mitigation schemes [21].

VII. CONCLUSION

This paper proposes a multi-channel timing-based side-
channel attack (called MultiCon) that aggregates timing-
variations on shared cache, network-on-chip, and memory-
controller hardware in a multicore processor. It implements
the proposed attack and baseline single-channel attacks
(cache, NoC, and memory controller contention attacks)
on a real Tile-Gx72 processor and shows that the efficacy
of attacks is drastically reduced in the presence of external
noise. It uses repetition codes to increase the efficacy of
the attack setups but at the cost of speed. MultiCon with
90% TP rate (efficacy) has a speed that is greater than 3x
faster as compared to baseline attacks in the presence of
external noise.
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