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ARTICLE INFO ABSTRACT

Keywords: Despite the high sensitivity of water use efficiency (WUE) estimates to intracellular carbon dioxide concentra-
Eddy covariance tions (¢;) in the Flux Variance Similarity (FVS)-based partitioning method, a systematic analysis of the sensitivity
Evaporation

of WUE to ¢; parameterizations has largely been lacking. Using high-frequency (10 Hz) eddy covariance data for
two crop sites: wheat (Triticum aestivum L.) and canola (Brassica napus L.), we performed a sensitivity analysis of
four ¢; parameterizations (constant c¢; value, constant c;/c, ratio, and c;j/c, as square root and linear functions of
vapor pressure deficit) and compared them with the optimized WUE approach with no adjustable parameter. The
results illustrated the role of c; parameterizations on the evapotranspiration (ET) partitioning results (i.e.,
transpiration (T) to ET ratios). Notably, constant c; value and constant cj/c, ratio parameterizations for the
largest considered c; values (commonly used default values in most previous studies) showed comparable T:ET
with the optimized WUE approach. Additionally, all these three models produced reduced T:ET in wet periods
and increased T:ET in dry periods. In contrast, square root and linear models were unable to accurately capture
expected trends of T:ET for wet and dry periods, and also showed large discrepancies when compared with the
optimal WUE approach. The results suggest that optimal parameterizations of c; should be derived in constant ¢;
value and constant c;/c, ratio methods to accurately capture temporal variations of WUE and T:ET. The results
also indicate the potential of the optimum model for inter-model comparison, especially in sensitivity analysis,
for FVS partitioning in C3 species. This study provides novel insights into the implications of the choice of
parameterization on the WUE estimations and partitioning outcomes.

Flux partitioning
Sensitivity analysis
Transpiration

1. Introduction

Partitioned evaporation (E) and transpiration (T) are used for mul-
tiple purposes (e.g., input, calibration, and validation) in numerous land
surface, satellite, and hydrological models (Dong et al., 2020; Kumar
and Duffy, 2015; Stoy et al., 2019; Villegas et al., 2014). Additionally,
partitioning of evapotranspiration (ET) is needed for assessing man-
agement strategies to reduce non-productive water loss in agricultural
fields to conserve water (Wagle et al., 2020b; Zhou et al., 2018) as well
as to improve our understanding of underlying biophysical processes
that control E and T separately (Klosterhalfen et al., 2019; Kool et al.,
2014).

Eddy covariance (EC), the most commonly used technique to directly
measure ecosystem-level ET, cannot provide E and T separately. Flux
Variance Similarity (FVS)-based partitioning technique was proposed in
the past decade to separate stomatal and non-stomatal fluxes by
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examining the correlation structure using high-frequency (i.e., 10 or 20
Hz) EC raw data (Scanlon and Kustas, 2010; Scanlon and Sahu, 2008).
This method offers numerous unique advantages, including spatiotem-
poral representativeness, the potential for partitioning using past EC raw
data, and no additional data requirement other than high-frequency EC
data. However, the requirement of high-frequency (i.e., 10 or 20 Hz) EC
raw data and the computational complexity are some of the practical
challenges of the FVS method. The method has shown good performance
in diverse biomes, including grassland (Good et al., 2014; Wang et al.,
2016), forest or woody plant covers (Sulman et al., 2016; Wang et al.,
2010), various C3 and C4 grain crops (Rana et al., 2018; Scanlon and
Kustas, 2010; Wagle et al., 2021b), sugarcane (Saccharum officinarum L.)
(Anderson et al., 2017a), alfalfa (Medicago sativa L.) (Wagle et al.,
2020b), and fruit plantations (Peddinti and Kambhammettu, 2019;
Skaggs et al., 2018).

The FVS method uses estimated water use efficiency (WUE) at the
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leaf level as the only input for partitioning. Although it has been clear
that WUE estimates greatly influence FVS partitioning outputs (Klos-
terhalfen et al., 2019; Sulman et al., 2016; Wagle et al., 2021b),
leaf-level WUE estimates have been derived using a single method in
most studies. The necessity of continuous estimates of WUE is a major
potential source of uncertainty or error for FVS-based partitioning.

In Fluxpart — an open-source software for FVS partitioning (Skaggs
et al., 2018), the default estimate of leaf-level WUE is computed as
follows:

1 Cy — Ci
woe= (o) (5=3) 0

where ¢, and q, represent ambient concentrations of carbon dioxide
(CO2) and water vapor (H0), respectively, and c¢; and q; represent
intercellular concentrations of CO5 and H20, respectively. The molec-
ular diffusivity (DR) ratio for H,O and COj fluxes through stomata is 1.6
(Massman, 1998). Above-canopy EC tower measurements can be used to
derive c; and g, (Scanlon and Kustas, 2010). In Fluxpart, q; is set to
100% relative humidity and the leaf temperature is assumed to be equal
to the above-canopy air temperature (Skaggs et al., 2018). The c; can be
parametrized using different algorithms such as constant c¢; value
(Campbell and Norman, 2012), constant c;/c, ratio (Kim et al., 2006;
Sinclair et al., 1984), linear function of vapor pressure deficit (VPD)
(Morison and Gifford, 1983), square root function of VPD/c, (Katul
etal., 2009), and optimized approach (Scanlon et al., 2019). Out of these
five WUE algorithms, four algorithms (constant c; value, constant c;j/c,
ratio, linear, and square root) have adjustable parameters to estimate c;
(details are provided in the Methods). The optimum model does not
have an adjustable parameter as WUE is derived solely based on EC
statistics.

Our recent study showed substantially different performances of
these five WUE algorithms owing to their inherent assumptions and
necessities (Wagle et al., 2021b). Given that a detailed investigation of
the sensitivity of WUE algorithms to partitioned fluxes is lacking
(Klosterhalfen et al., 2019; Sulman et al., 2016), there is a need to assess
the sensitivity of adjustable parameters of several WUE algorithms for
FVS partitioning. In this study, we performed a sensitivity analysis using
five coefficients in each of the four WUE algorithms and compared them
with the outputs of the optimum model. We hypothesized that changing
coefficients would greatly alter WUE estimates resulting in different
partitioned outputs (i.e., T:ET ratios) for all four WUE algorithms. The
study provides novel insights into the role of c¢; parameterizations on
partitioned outputs from the FVS-based partitioning method.

2. Materials and methods
2.1. Study sites and EC measurements

This study was performed at two crop sites: wheat and canola. The
sites are located at the United States Department of Agriculture (USDA),
Agricultural Research Service, Grazinglands Research Laboratory near
El Reno, Oklahoma, USA. The major soil types are the complex of
Renfrow-Kirkland silt loams, Bethany silt loams, and Norge silt loams in
both sites (USDA-NRCS, 1999).

These rainfed sites experience a temperate continental climate, with
a long-term (1981-2010) annual rainfall of ~925 mm (Wagle et al.,
2020a). Both wheat (cv. Gallagher) and canola crops were planted in
rows (~19 cm apart) by mid-October 2016 and harvested in mid-June
2017. Both fields were conventionally tilled. The 2016-2017 growing
season for wheat and canola was one of the most favorable growing
seasons (i.e., well-distributed seasonal rainfall of 517 mm and slightly
warmer spring, with the absence of any severe drought periods). Both
fields were managed for high yield potential using standard manage-
ment (e.g., applications of fertilizer based on soil tests and applications
of herbicide/pesticide as needed). Maximum dry biomass
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(aboveground) was approximately 1.3 kg m~2 for wheat and 0.82 kg
m ™2 for canola in April. Maximum LAI was approximately 7 m? m~2 for
wheat and 4.75 m? m~2 for canola. Grain yield was approximately 4.86 t
ha~! for wheat and 1 t ha™" for canola (roughly 50% of the grain yield
was lost due to shattering because of delayed harvesting caused by
rains).

Eddy covariance systems, comprised of a sonic anemometer (CSAT3 -
Campbell Scientific Inc., Logan, UT, USA) and an open-path infrared gas
analyzer (LI-7500 - LI-COR Inc., Lincoln, NE, USA), were deployed near
the center of wheat (27.5 ha) and canola (17.2 ha) fields to collect EC
measurements at 10 Hz frequency for the entire growing seasons. High-
frequency (10 Hz) EC data were processed using the EddyPro software
(LI-COR Inc., Lincoln, NE, USA) to compute 30 min values of ET. Fluxes
with bad quality flags (i.e., the quality flag of 2) and unreliable numbers
or statistical outliers (beyond +3.5 SD for 14 days) were removed (Sun
et al., 2010; Wagle and Kakani, 2014; Zeeman et al., 2010). Gaps in
fluxes were filled using the REddyProc package (Wutzler et al., 2018).
Details on crop growth and development, EC measurements and data
processing, and management practices in both fields for the study period
can be found in a previous publication (Wagle et al., 2021a).

2.2. FVS partitioning of ET using multiple WUE algorithms, and
sensitivity analysis

We used high-frequency (10 Hz) EC raw data to partition ET using
Fluxpart (source code is accessible at https://github.com/usda-ars-ussl
/fluxpart) (Skaggs et al., 2018). Leaf-level WUE is the only input for
FVS partitioning. However, the following different models can be used
to parametrize c; for the estimates of leaf-level WUE in FVS partitioning:

i) Constant c; value (Const_value): ¢; (kg m_3) is computed using a
constant value. In Fluxpart, the default constant ppm value is 280
ppm for Cz and 130 ppm for C4 species (Campbell and Norman,
2012).

¢; = f(ci_ppu; temperature, pressure) (2)

Measured c; for four winter wheat cultivars under various meteoro-
logical conditions ranged from 120 to 300 ppm (Xue et al., 2004). Based
on this finding, a range of 200 and 300 ppm was chosen for winter wheat
for the sensitivity analysis in a previous study (Klosterhalfen et al.,
2019). In this study, we chose 220, 240, 260, 280, and 300 ppm for c; in
both winter wheat and canola.

ii) Constant c;j/c, ratio (Const_ratio): In Fluxpart, default constant c;/c,
ratios (k) are 0.7 for Cg (Sinclair et al., 1984) and 0.44 for C4 species
(Kim et al., 2006).

Ci

—k 3

Cq

To match the same proportion of ranges from constant value (220 to
300 ppm), we computed c; for five values of k ranging from 0.55 to 0.75
[e.g., k1 = 0.7(220/280) = 0.55 and k5 = 0.7(300/280) = 0.75].

iii) Linear: cj/c, is derived as a linear function of vapor pressure
deficit (VPD)
Ci

~=b—m=VPD ()]

Ca
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where b is ~1 (unitless) and mis 1 (Pa~1). In Fluxpart, default values for
the (b, m) pair are (1, 1.6e_4) and (1, 2.7e_4) in C3 and C4 species,
respectively (Morison and Gifford, 1983).

For sensitivity analysis in this study, we kept b =1 in all cases and
changed the parameter m to match the ranges considered in constant
value or constant ratio methods above. The value of m ranged from (m1)
2.4e~* to (m5) 1.336’4, with m4 is equal to default value of 1.6e 4.

iv) Square root (sqrt): cj/c, is determined as a function of the square
root of (VPD/c,) only in C3 species (Katul et al., 2009), due to the
lack of equivalent relationship between ci/c, and VPD in C4
species (Leakey et al., 2019).

0.5
G- (DR*A* VPD ) 5)
Cy

The default coefficient of A (kg-CO» m >Pa Din Fluxpart is 22¢e7°,
For sensitivity analysis, we changed the parameter A to match c; ranges
as considered in constant value or constant ratio methods above. The
value of A ranged from 49.5¢ 7 to 3.82e~°, with A4 being equal to the
default value of 22¢~°.

v) Optimum (Opt): WUE is determined using the optimized approach
(Scanlon et al., 2019) using only EC data (i.e., no parameterized
model is required to compute c;).

DR-VPD-m — \/DR-VPD-m(c, + DR-VPD-m)

WUE: = DR-VPD

©

where

2p
. 6.F, — R.40,0.F. 7

T R2F. —
0. F. —R.40,0.F,

where Ry represents the correlation coefficient for g and c. F, and Fy
represent ¢ and q fluxes, respectively. o4 and o, represent standard de-
viations of q and c, respectively. The Optimize approach may not be
applicable in C4 species due to the potential inconsistent formulation of
Ci/cq > 0.5 for C4 physiology (Oren et al., 1999).
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2.3. Gap filling of partitioned outputs and determining T:ET ratios

The FVS partitioning may not yield successful partitioned outputs for
every 30 min time interval because high-frequency EC data for all times
may not satisfy numerous theoretical and numerical constraints (e.g.,
incompatible EC data and WUE estimates) of FVS partitioning (Scanlon
etal., 2019). Instead of gap-filling longer data gaps by interpolation, we
created diurnal mean (half-hourly) values of T and ET, obtained from
Fluxpart, for each week and then summed those half-hourly binned
values to determine the weekly average T:ET (i.e., a constant T:ET ratio
for each week). These weekly average T:ET ratios were used to partition
EC-measured daily ET to daily E and T.

3. Results and discussion
3.1. Seasonadlity of ET

The seasonality of ET was similar for wheat and canola due to their
similar crop seasonality (Fig. 1). Both crops were planted by mid-
October and harvested in mid-June. In both crops, the magnitudes of
ET increased with increasing crop growth during the early growing
season. Daily ET rates decreased to <1.0 mm around mid-December
through mid-January due to cold temperatures and lower solar radia-
tion. With increasing crop growth, rising temperature, and higher solar
radiation, the magnitudes of ET began to increase after mid-January and
peaked in early May for wheat and mid-May for canola, with 7-day
average daily ET rates of approximately 5 and 4.7 mm for wheat and
canola, respectively. The ET rates declined sharply during grain filling
and senescence of crops.

3.2. Sensitivity of WUE estimates to c; parameterizations

During the peak growth period, mean diurnal (monthly average)
patterns of WUE estimates for the range of ¢; parameters showed
different magnitudes of variations for WUE algorithms (Fig. 2). For
example, differences in WUE estimates using five ¢; parameterizations
for const_value and const_ratio were substantially larger during predawn
hours, the periods of largest WUE (negative sign convention) due to
smallest VPD values. However, WUE estimates using different c; pa-
rameterizations for both const_value and const_ratio models were rela-
tively similar from noon to the afternoon (i.e., during periods of higher
temperature, VPD, and solar irradiance). In both models, WUE estimates
decreased (negative sign convention) with an increasing magnitude of
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Fig. 1. Seasonal patterns of eddy covariance measured evapotranspiration (ET) in wheat and canola for the 2016-2017 growing season. Daily rainfall data are

also shown.
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Fig. 2. Half-hourly binned (monthly mean) daytime patterns of water use efficiency (WUE) for different parameterizations of intercellular carbon dioxide con-
centrations in WUE algorithms for wheat and canola during peak growth (from March 15 to April 14 for both crops).
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¢;. The WUE estimates from the opt model showed similar diurnal pat-
terns as those from the const_value and const_ratio models in both wheat
and canola. During predawn hours, the magnitudes of WUE for the opt
model were similar to those for the largest c; parameters for const_value
(300 ppm) and const_ratio (0.75) models. The linear model produced
estimated WUE with no clear diurnal patterns and negligible variations
for custom input parameters. The sqrt model yielded WUE estimates

(a) const_value
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with a smaller diurnal pattern [ie., slightly larger (negative sign
convention) values during predawn hours] and smaller variations for the
custom ¢; parameters as compared to const_value and const_ratio. The
results were consistent for both wheat and canola. These results support
the hypothesis that the selection of an appropriate coefficient in WUE
algorithms is required to accurately partition stomatal and non-stomatal
fluxes.
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Fig. 3. Seasonal dynamics of transpiration (T) to evapotranspiration (ET) ratios for different parameterizations of intercellular carbon dioxide concentrations in leaf-
level water use efficiency (WUE) algorithms for wheat and canola. The T:ET ratios were derived from sums of diurnal mean values (half-hourly binned) of T and ET
for a month.
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Large differences in diurnal patterns of WUE estimates by different
WUE algorithms (Fig. 2) can be attributed to differences in their sensi-
tivity to VPD. For both const_value and const_ratio, WUE is proportional
to VPD"-1. For linear, WUE is insensitive to VPD. For sqrt, WUE is
moderately sensitive to VPD as it is proportional to VPD*-0.5. For opt,
WUE is not directly proportional to VPD, but it is closest to varying with
VPD"-1 (similar to const_value and const_ratio). As a result, const_value,
const_ratio, and opt models yielded similar diurnal patterns of WUE
estimates.

In four winter wheat cultivars, measured c; ranged from 120 to 300
ppm under various soil water potential and VPD conditions (Xue et al.,
2004). Given that ¢; is greatly influenced by soil water status and VPD
(Monteith and Greenwood, 1986; Turner, 1986; Xue et al., 2004), our
results highlight that errors in temporal variations of c; estimates can
lead to significant errors in WUE at a range of time scales. Notably, soil
water status and VPD fluctuate over time during the growing season,
resulting in significant impacts on gas exchange parameters. Addition-
ally, VPD fluctuates even during the same day as it increases with
increasing air temperature during the daytime and peaks in the late
afternoon (around 4-5 pm local time as shown in Fig. 2a, e). Greater
stomatal limitation (i.e., partial or full stomatal closure) at higher VPD
reduces c;, resulting in decreased stomatal conductance (gs) and net COy
assimilation rate (A,). In addition, soil water stress may modulate WUE,
gs, and T simultaneously (Liu et al., 2020; Turner, 1986). Thus, using
direct measurements of leaf-level WUE could be an option for improving
the performance of FVS partitioning (Anderson et al., 2017b; Sulman
et al., 2016). However, upscaling of non-continuous (e.g., only a few
days in a season) leaf-level WUE measurements to canopies and eco-
systems is a complicated process as underlying mechanisms and pro-
cesses vary at those spatial scales (Medlyn et al., 2017).

As FVS partitioning requires continuous estimates of WUE at 30 min
intervals, large differences in diurnal patterns of WUE for custom input
¢; within the same WUE algorithm and among WUE algorithms, as
shown in Fig. 2, can induce large discrepancies in partitioned outputs.
Thus, we explore this next by comparing the sensitivity of T:ET ratios.

3.3. Differences in the seasonality of T:ET with WUE algorithms and c;
parameterizations

Seasonal patterns of T:ET for all WUE algorithms were consistent in
both crops (Fig. 3). Seasonal patterns of T:ET were similar for con-
st_value, const_ratio, opt, and sqrt models. The linear model produced a
different seasonal pattern of T:ET ratios. The T:ET ratios for const_value,
const_ratio, opt, and sqrt models decreased in the winter months (lowest
in February) and increased with increasing temperature and crop
growth in spring. The T:ET ratios for the linear model increased in
January and February and decreased from March to May for wheat, but
they slightly decreased in January and February, increased in March,
and decreased during April-May for canola.

The largest discrepancy in T:ET ratios, obtained from different WUE
algorithms, was found during the winter months. For example, monthly
T:ET ratios from the opt model were ~0.6 compared to 0.7-0.9 found
with the linear model for different c; parameterizations during January-
February in wheat. Similarly, for canola in January and February, T:ET
ratios from the opt model were 0.63 and 0.54 compared to 0.7-0.8 (for
different c; parameterizations) obtained using the linear model. Notably,
T:ET ratios of 0.8-0.9 for the linear model during winter months, when
crop growth slows down and canopy coverage decreases due to physical
damages, might be considered beyond the reasonable range. Even for
the dry period during peak crop growth (i.e., full canopy cover), T:ET
ratios were only around ~0.8 in canola (Wagle et al., 2021a) and maize
(Zea mays L.) (Zhou et al., 2016). These results illustrate that the choice
of appropriate WUE algorithms can result in large discrepancies in
seasonal patterns of T:ET ratios.

Additionally, differences in c¢; parameterizations within the same
WUE algorithm caused large differences in monthly T:ET ratios (Fig. 3).
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Monthly T:ET ratios generally differed by approximately 10-20% for the
smallest and largest c; parameters for all WUE algorithms in both crops.
Monthly T:ET ratios obtained from the opt model were similar to T:ET
ratios found with the largest c; coefficients (which were usually used as
default values in most previous studies) for const_value or const_ratio
models in both crops. As compared to monthly T:ET ratios obtained
using the opt model, T:ET ratios from linear and sqrt models were larger
for most of the c; parameters in both crops. Due to large variations in
monthly T:ET ratios in response to input parameters throughout the
growing season, we explore the impact of ¢; parameterizations in WUE
algorithms on seasonal T:ET ratios in the next section.

3.4. Sensitivity of seasonal T:ET ratios to c¢; parameterizations

Overall, seasonal T:ET ratios in both wheat and canola increased (by
10-15% for the range of considered c; values) with an increasing
magnitude of ¢; parameterization in all four WUE algorithms (Table 1).
Smaller input of c; yielded larger (negative sign convention) WUE values
(Fig. 2), resulting from relatively smaller T losses, which leads to smaller
T:ET ratios. In general, seasonal T:ET ratios were higher for sqrt and
linear models than for const_value, const_ratio, and opt models. Lower
WUE estimates by the sqrt and linear models (Fig. 2) resulted in higher
T:ET ratios (i.e., higher loss of T) for those models. In comparison, the
seasonal T:ET ratio for the opt model was 0.71 in wheat (similar to the T:
ET ratio for ¢_240 ppm and k_0.65) and 0.72 in canola (similar to the T:
ET ratio of ¢_300 ppm and k_0.75).

Overall, seasonal T:ET ratios were smaller when T:ET ratios were
determined only for the periods when partitioned fluxes were available
for all five WUE algorithms (see T:ET ratios in parentheses in Table 1).
However, variability in T:ET ratios with parameters still showed a
similar variation (i.e., 13-18% for the range of considered c; values) as
described above.

Additionally, successful fractions of partitioned outputs declined
with the increasing magnitude of ¢; in each WUE algorithm (Table 2). On
average, the number of successful partitioned outputs decreased by
~10% for the range of considered coefficients in both crops. This
reduction is related to the declining magnitude of WUE to the point that
it is less than the magnitude of Fc/Fq (see Eq. (8) in Scanlon et al., 2019)
with increasing c; values (Fig. 2), which is theoretically not possible.
Although the performance of different WUE algorithms may not be

Table 1

Seasonal average ratios of transpiration (T) to evapotranspiration (ET) for
different parameterizations of water use efficiency (WUE) in wheat and canola.
The T:ET ratios computed only for the periods when partitioning solutions were
available for all algorithms are presented in parentheses.

WUE algorithms Wheat Canola
Const_value c_220 ppm 0.66 (0.53) 0.61 (0.51)
¢_240 ppm 0.70 (0.56) 0.61 (0.54)
¢_260 ppm 0.75 (0.60) 0.64 (0.58)
¢_280 ppm 0.77 (0.65) 0.68 (0.62)
c_300 ppm 0.80 (0.71) 0.71 (0.67)
Const_ratio k_0.55 0.64 (0.55) 0.59 (0.52)
k_0.60 0.67 (0.58) 0.62 (0.55)
k_0.65 0.71 (0.61) 0.64 (0.59)
k_0.70 0.75 (0.65) 0.66 (0.63)
k 0.75 0.80 (0.70) 0.70 (0.68)
Linear m1l 0.81 (0.70) 0.80 (0.70)
m2 0.83 (0.73) 0.81 (0.73)
m3 0.84 (0.76) 0.82 (0.76)
m4 0.86 (0.80) 0.83 (0.79)
m5 0.89 (0.84) 0.85 (0.83)
Sqrt Al 0.75 (0.63) 0.71 (0.63)
A2 0.77 (0.67) 0.74 (0.67)
A3 0.80 (0.70) 0.76 (0.70)
A4 0.83 (0.75) 0.79 (0.74)
A5 0.85 (0.80) 0.82 (0.79)
Opt 0.71 (0.66) 0.72 (0.66)
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Table 2

Successful fractions of half-hourly partitioned solutions for different parame-
terizations of intercellular carbon dioxide concentrations (c;) in different water
use efficiency (WUE) algorithms during a growing season for wheat and canola.
Total partition attempts for the opt model were 10,073 and 9,697, while they
were 18,876 and 17,380 for the other four WUE models in wheat and canola,
respectively.

WUE algorithms Successful fractions

Wheat Canola
Const_value ¢_220 ppm 0.65 0.66
c_240 ppm 0.64 0.64
¢_260 ppm 0.61 0.62
c_280 ppm 0.59 0.58
¢_300 ppm 0.54 0.54
Const_ratio k_0.55 0.65 0.66
k_0.60 0.64 0.64
k_0.65 0.62 0.62
k 0.70 0.60 0.60
k 0.75 0.57 0.56
Linear ml 0.50 0.51
m2 0.48 0.48
m3 0.46 0.45
m4 0.43 0.43
m5 0.41 0.40
Sqrt Al 0.61 0.62
A2 0.58 0.59
A3 0.56 0.56
A4 0.52 0.52
A5 0.48 0.48
Opt 0.66 0.65

judged solely based on the number of successful partitioned outputs, a
large number of partitioned outputs are needed to accurately determine
T:ET ratios.

Overall, seasonal T:ET ratios varied greatly (i.e., up to >15%) when
they were derived using all successful partitioned outputs for individual
WUE algorithms or they were determined only for the periods when all
WUE algorithms produced successful partitioned outputs (Table 1).
Most studies use a single method to estimate leaf-level WUE in FVS
partitioning. Our results demonstrate that the use of a single WUE al-
gorithm or multiple WUE algorithms to determine T:ET ratios for FVS
partitioning can lead to large differences in seasonal T:ET ratios for
water balance interpretations.

Seasonal T:ET ratios found with the opt model were comparable to
the T:ET ratios found with const_value and const_ratio models in both
wheat and canola (Fig. S1). When compared to the opt model, the ranges
of mean absolute percent error (MAPE) for different c; parameterizations
in const_value and const_ratio models were 13-19% in wheat and 14-
22% in canola (Fig. S1). In comparison, the MAPE range for different c;
parameterizations in the linear model was 47-59% in wheat and 49-65%
in canola. Similarly, the MAPE range for the sqrt model was 20-37% in
wheat and 21-40% in canola. Since const_value and const_ratio models
produce nearly identical seasonal T:ET ratios for identical c;, either of
these models can be selected for FVS partitioning. Additionally, con-
st_value and const_ratio models yield a higher frequency of T:ET esti-
mates than does the opt model. Despite a substantially lower number of
successful partitioning solutions, the opt model also showed its potential
for inter-model comparison, especially in sensitivity analysis, for FVS
partitioning in C3 species. However, the formulation constraint of ¢; /¢,
> 0.5 limits the applicability of the opt model in C4 species (Scanlon
et al., 2019; Wagle et al., 2021b).

3.5. Sensitivity of weekly T:ET ratios in response to rainfall and dry
periods

Since large ranges in seasonal patterns of T:ET ratios were found for
different WUE algorithms, we further investigated weekly T:ET ratios for
variable input parameters in WUE algorithms for wet and dry periods
during peak growth (Fig. 4). Week to week T:ET variations were
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different for different WUE algorithms (Fig. 4). The T:ET ratios are larger
during dry periods due to reduced E and smaller during wet (rain or
irrigation) periods due to higher E loss from wet surfaces (soil, plant
canopy, and litter). In the first week of peak growth with no rainfall and
higher VPD (diurnal peak VPD of ~23 hPa), we observed comparable T:
ET ratios for all five WUE algorithms in both crops. In both crops, T:ET
ratios differed only slightly for five WUE algorithms in the second week
that received 47 mm rainfall towards the end. Additional rainfall in the
third week caused large discrepancies in T:ET for WUE algorithms as T:
ET ratios decreased for const_value and const_ratio, but T:ET ratios did
not decrease for linear and sqrt in both crops. In the fourth week of peak
growth (no rainfall at all), T:ET ratios in wheat increased by ~10% from
the third to the fourth week for const_value, const_ratio, and opt, but
remained constant for linear and only increased by 2-3% for sqrt.
Similarly, T:ET ratios in canola increased by ~30% for const_value and
const_ratio, and 23% for opt, but only increased by ~5% for linear and
~15% for sqrt. Similar temporal variations in T:ET ratios for con-
st_value, const_ratio, and opt models, and their ability to capture
reduced T:ET in wet and increased T:ET in dry conditions indicate their
greater potential to accurately partition ET into E and T in wheat and
canola.

As mentioned above, the opt model showed great potential to be used
for inter-model comparison and sensitivity analysis for FVS partitioning.
However, it is important to mention that the total number of partitioning
attempts and successful fractions of partitioned outputs for the opt
model was substantially lower in both wheat and canola, indicating the
need for careful consideration of bypassing some filtering constraints for
retrieving a large number of successful partitioning solutions. Addi-
tionally, previous studies have shown inapplicability of the opt model in
C4 species (Scanlon et al., 2019; Wagle et al., 2021b). Particularly, the
opt model could be more useful for mixed vegetation as upscaling of
leaf-level measurements of WUE is challenging for mixed vegetation due
to dissimilarities in stomatal strategies among species (Scanlon et al.,
2019). Results illustrated the poor performance of linear and sqrt models
to accurately capture expected trends of T:ET in wet and dry periods as
they were unable to capture reduced T:ET ratios under wet conditions,
most probably due to estimation errors in WUE. Linear and sqrt models
are solely based on VPD to compute c;, but variations in other drivers
such as soil moisture can alter the performance of these models by
influencing plant gas exchange parameters and stomatal conductance
(Monteith and Greenwood, 1986; Turner, 1986; Xue et al., 2004).

4. Conclusions

A constant defined value has been usually used for parameterizing
intercellular COy concentrations (c;) in four WUE algorithms (const ¢;
value, const cj/c, ratio, and c;j/c, as linear and square root functions of
VPD) for FVS partitioning. In this study, we performed a sensitivity
analysis of chosen inputs (a range of five values) for parametrizing c; on
ET partitioning for four WUE algorithms (const_value, const_ratio,
linear, and square root) and compared them with the outputs of the
optimum model for inter-model comparison. Notably, the optimum
model (ie., optimized WUE approach based on eddy covariance statis-
tics only) has the advantage of not having an adjustable parameter for c;
parameterization. As we hypothesized, changing c; parameters resulted
in varied partitioned outputs (i.e., T:ET ratios), due to the direct impact
on WUE estimates and T, for all four WUE algorithms. Seasonal T:ET
ratios differed by 10-15% for different c; coefficients for the same WUE
algorithm in both crops. In general, the optimum model produced mid to
upper-range estimates of WUE and T:ET ratios as compared to con-
st_value and const_ratio. Three models (const_value, const_ratio, and
optimum) were able to produce expected T:ET patterns during dry and
wet periods in both wheat and canola. These results indicated the po-
tential for using const_value and const_ratio models for FVS partitioning
by continuing to use the commonly used c;, especially as these methods
provide more number of T:ET estimates as compared to the optimum
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Fig. 4. Weekly ratios of transpiration (T) to evapotranspiration (ET) for different parameterizations of intercellular carbon dioxide concentrations in water use
efficiency (WUE) algorithms for wheat and canola during the peak growth (from March 15 to April 14 for both crops). Rainfall data are also shown. Diurnal (weekly
average) peak VPD (hPa) values for wheat and canola, respectively, were 22.81 and 22.65, 17.02 and 16.2, 13.66 and 13.45, and 14.68 and 18.6 during the first,

second, third, and fourth weeks, respectively.

model in both crops. Despite a substantially lower number of successful
partitioned outputs, the optimum model also showed its potential for
inter-model comparison, especially in sensitivity analysis, for FVS par-
titioning in Cs3 species. Linear and square root models showed poor
performances (i.e., inability to produce variable T:ET trends in wet and
dry periods) in both crops. Additionally, the lower success rates of linear
and square root models due to producing more physically impossible

values (WUE > Fc/Fq) are also further evidence of their poor perfor-
mance. Results illustrate that the choice of WUE algorithm and input
value for c; parameterization in WUE algorithms for FVS partitioning
can lead to large biases in partitioned fluxes. Thus, more accurate esti-
mates of ¢; rather than assuming a constant value in WUE algorithms to
account for a wide range of meteorological and water stress conditions
are needed for further improvement of the performance of the FVS



P. Wagle et al.

partitioning method. Techniques allowing temporally complete
coverage of c; could be immensely useful in reducing uncertainty in ¢;
parameterizations.

Disclaimer

“Mention of trade names or commercial products in this publication
is solely for the purpose of providing specific information and does not
imply recommendation or endorsement by the U.S. Department of
Agriculture. USDA is an equal opportunity provider and employer.”

CRediT authorship contribution statement

Pradeep Wagle: Formal analysis, Writing — original draft, Writing —
review & editing. Pushpendra Raghav: Formal analysis, Writing —
original draft, Writing — review & editing. Mukesh Kumar: Writing —
review & editing. Stacey A. Gunter: Writing — review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This study was partly supported by the USDA-ARS Office of National
Program (Project number: 3070-21610-003-00D), USDA-LTAR (Long-
Term Agroecosystem Research) Network, and USDA-NIFA (Project
number: 2019-68012-29888). Partial funding support from NSF OIA-
2019561, NSF EAR-1920425, and NSF EAR-1856054 are also
acknowledged. We are thankful to Dr. Todd Scanlon and an anonymous
reviewer for providing constructive comments on the manuscript.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.agrformet.2022.109254.

References

Anderson, R.G., et al., 2017a. Assessing FAO-56 dual crop coefficients using eddy
covariance flux partitioning. Agric. Water Manag. 179, 92-102.

Anderson, R.G., Zhang, X., Skaggs, T.H., 2017b. Measurement and partitioning of
evapotranspiration for application to vadose zone studies. Vadose Zone J. 16 (13),
1-9.

Campbell, G.S., Norman, J., 2012. An Introduction to Environmental Biophysics.
Springer Science & Business Media.

Dong, J., et al., 2020. Soil evaporation stress determines soil moisture-evapotranspiration
coupling strength in land surface modeling. Geophys. Res. Lett. 47 (21),
€2020GL090391.

Good, S.P., et al., 2014. 82H isotopic flux partitioning of evapotranspiration over a grass
field following a water pulse and subsequent dry down. Water Resour. Res. 50 (2),
1410-1432.

Katul, G.G., Palmroth, S., Oren, R., 2009. Leaf stomatal responses to vapour pressure
deficit under current and CO2-enriched atmosphere explained by the economics of
gas exchange. Plant Cell Environ. 32 (8), 968-979.

Kim, J., et al., 2006. Upscaling fluxes from tower to landscape: overlaying flux footprints
on high-resolution (IKONOS) images of vegetation cover. Agric. For. Meteorol. 136
(3-4), 132-146.

Klosterhalfen, A., et al., 2019. Sensitivity analysis of a source partitioning method for
H20 and CO2 fluxes based on high frequency eddy covariance data: findings from
field data and large eddy simulations. Agric. For. Meteorol. 265, 152-170.

Kool, D., et al., 2014. A review of approaches for evapotranspiration partitioning. Agric.
For. Meteorol. 184, 56-70.

Agricultural and Forest Meteorology 328 (2023) 109254

Kumar, M., Duffy, C., 2015. Exploring the role of domain partitioning on efficiency of
parallel distributed hydrologic model simulations. J. Hydrogeol. Hydrol. Eng. 4, 1.

Leakey, A.D., et al., 2019. Water use efficiency as a constraint and target for improving
the resilience and productivity of C3 and C4 crops. Annu. Rev. Plant Biol. 70,
781-808.

Liu, Y., Kumar, M., Katul, G.G., Feng, X., Konings, A.G., 2020. Plant hydraulics
accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim.
Change 10 (7), 691-695.

Massman, W., 1998. A review of the molecular diffusivities of H20, CO2, CH4, CO, 03,
S02, NH3, N20, NO, and NO2 in air, O2 and N2 near STP. Atmos. Environ. 32 (6),
1111-1127.

Medlyn, B.E., et al., 2017. How do leaf and ecosystem measures of water-use efficiency
compare? New Phytol. 216 (3), 758-770.

Monteith, J., Greenwood, D., 1986. How do crops manipulate water supply and demand?
[and discussion]. Philos. Trans. A Math. Phys. Eng. Sci. 316 (1537), 245-259.
Morison, J.I., Gifford, R.M., 1983. Stomatal sensitivity to carbon dioxide and humidity: a

comparison of two C3 and two C4 grass species. Plant Physiol. 71 (4), 789-796.

Oren, R., et al., 1999. Survey and synthesis of intra-and interspecific variation in
stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22 (12),
1515-1526.

Peddinti, S.R., Kambhammettu, B.P., 2019. Dynamics of crop coefficients for citrus
orchards of central India using water balance and eddy covariance flux partition
techniques. Agric. Water Manag. 212, 68-77.

Rana, G., Palatella, L., Scanlon, T.M., Martinelli, N., Ferrara, R.M., 2018. CO2 and H20
flux partitioning in a Mediterranean cropping system. Agric. For. Meteorol. 260,
118-130.

Scanlon, T.M., Kustas, W.P., 2010. Partitioning carbon dioxide and water vapor fluxes
using correlation analysis. Agric. For. Meteorol. 150 (1), 89-99.

Scanlon, T.M., Sahu, P., 2008. On the correlation structure of water vapor and carbon
dioxide in the atmospheric surface layer: a basis for flux partitioning. Water Resour.
Res. 44 (10).

Scanlon, T.M., Schmidt, D.F., Skaggs, T.H., 2019. Correlation-based flux partitioning of
water vapor and carbon dioxide fluxes: method simplification and estimation of
canopy water use efficiency. Agric. For. Meteorol. 279, 107732.

Sinclair, T.R., Tanner, C., Bennett, J., 1984. Water-use efficiency in crop production.
Bioscience 34 (1), 36-40.

Skaggs, T., Anderson, R., Alfieri, J., Scanlon, T., Kustas, W., 2018. Fluxpart: open source
software for partitioning carbon dioxide and water vapor fluxes. Agric. For.
Meteorol. 253, 218-224.

Stoy, P.C., et al., 2019. Reviews and syntheses: turning the challenges of partitioning
ecosystem evaporation and transpiration into opportunities. Biogeosciences 16 (19),
3747-3775.

Sulman, B.N., Roman, D.T., Scanlon, T.M., Wang, L., Novick, K.A., 2016. Comparing
methods for partitioning a decade of carbon dioxide and water vapor fluxes in a
temperate forest. Agric. For. Meteorol. 226, 229-245.

Sun, G., et al., 2010. Energy and water balance of two contrasting loblolly pine
plantations on the lower coastal plain of North Carolina. For. Ecol. Manag. 259 (7),
1299-1310.

Turner, N.C., 1986. Adaptation to water deficits: a changing perspective. Funct. Plant
Biol. 13 (1), 175-190.

Villegas, J.C., Espeleta, J.E., Morrison, C.T., Breshears, D.D., Huxman, T.E., 2014.
Factoring in canopy cover heterogeneity on evapotranspiration partitioning: beyond
big-leaf surface homogeneity assumptions. J. Soil Water Conserv. 69 (3), 78A-83A.

Wagle, P., et al., 2020a. Dynamics of CO2 and H20 fluxes in Johnson grass in the US
Southern Great Plains. Sci. Total Environ., 140077

Wagle, P., Gowda, P.H., Northup, B.K., Neel, J.P., 2021a. Ecosystem-level water use
efficiency and evapotranspiration partitioning in conventional till and no-till rainfed
canola. Agric. Water Manag. 250, 106825.

Wagle, P., Kakani, V.G., 2014. Growing season variability in evapotranspiration,
ecosystem water use efficiency, and energy partitioning in switchgrass.
Ecohydrology 7 (1), 64-72.

Wagle, P., Skaggs, T.H., Gowda, P.H., Northup, B.K., Neel, J.P., 2020b. Flux variance
similarity-based partitioning of evapotranspiration over a rainfed alfalfa field using
high frequency eddy covariance data. Agric. For. Meteorol. 285, 107907.

Wagle, P., et al., 2021b. Evaluation of water use efficiency algorithms for flux variance
similarity-based evapotranspiration partitioning in C3 and C4 grain crops. Water
Resour. Res. 57 (5), e2020WR028866.

Wang, L., et al., 2010. Partitioning evapotranspiration across gradients of woody plant
cover: assessment of a stable isotope technique. Geophys. Res. Lett. 37 (9).

Wang, W., et al., 2016. On the correlation of water vapor and CO2: application to flux
partitioning of evapotranspiration. Water Resour. Res. 52 (12), 9452-9469.

Wutzler, T., et al., 2018. Basic and extensible post-processing of eddy covariance flux
data with REddyProc. Biogeosciences 15 (16), 5015-5030.

Xue, Q., Weiss, A., Arkebauer, T.J., Baenziger, P.S., 2004. Influence of soil water status
and atmospheric vapor pressure deficit on leaf gas exchange in field-grown winter
wheat. Environ. Exp. Bot. 51 (2), 167-179.

Zeeman, M.J., et al., 2010. Management and climate impacts on net CO< sub> 2</sub>
fluxes and carbon budgets of three grasslands along an elevational gradient in
Switzerland. Agric. For. Meteorol. 150 (4), 519-530.

Zhou, S., Yu, B., Zhang, Y., Huang, Y., Wang, G., 2016. Partitioning evapotranspiration
based on the concept of underlying water use efficiency. Water Resour. Res. 52 (2),
1160-1175.

Zhou, S., Yu, B., Zhang, Y., Huang, Y., Wang, G., 2018. Water use efficiency and
evapotranspiration partitioning for three typical ecosystems in the Heihe River
Basin, northwestern China. Agric. For. Meteorol. 253-254, 261-273.


https://doi.org/10.1016/j.agrformet.2022.109254
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0001
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0001
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0002
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0002
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0002
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0003
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0003
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0004
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0004
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0004
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0005
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0005
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0005
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0006
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0006
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0006
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0007
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0007
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0007
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0008
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0008
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0008
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0009
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0009
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0010
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0010
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0011
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0011
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0011
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0012
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0012
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0012
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0013
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0013
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0013
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0014
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0014
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0015
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0015
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0016
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0016
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0017
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0017
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0017
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0018
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0018
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0018
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0019
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0019
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0019
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0020
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0020
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0021
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0021
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0021
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0022
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0022
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0022
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0023
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0023
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0024
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0024
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0024
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0025
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0025
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0025
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0026
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0026
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0026
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0027
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0027
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0027
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0028
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0028
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0029
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0029
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0029
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0030
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0030
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0031
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0031
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0031
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0032
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0032
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0032
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0033
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0033
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0033
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0034
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0034
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0034
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0035
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0035
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0036
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0036
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0037
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0037
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0038
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0038
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0038
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0039
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0039
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0039
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0040
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0040
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0040
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0041
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0041
http://refhub.elsevier.com/S0168-1923(22)00441-5/sbref0041

	Influence of water use efficiency parameterizations on flux variance similarity-based partitioning of evapotranspiration
	1 Introduction
	2 Materials and methods
	2.1 Study sites and EC measurements
	2.2 FVS partitioning of ET using multiple WUE algorithms, and sensitivity analysis
	2.3 Gap filling of partitioned outputs and determining T:ET ratios

	3 Results and discussion
	3.1 Seasonality of ET
	3.2 Sensitivity of WUE estimates to ci parameterizations
	3.3 Differences in the seasonality of T:ET with WUE algorithms and ci parameterizations
	3.4 Sensitivity of seasonal T:ET ratios to ci parameterizations
	3.5 Sensitivity of weekly T:ET ratios in response to rainfall and dry periods

	4 Conclusions
	Disclaimer
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Supplementary materials
	References


