ABSOLUTE CONTINUITY, LYAPUNOV EXPONENTS AND RIGIDITY
II: SYSTEMS WITH COMPACT CENTER LEAVES

A. AVILAY2, M. VIANA?, AND A. WILKINSON?

ABSTRACT. We explore new connections between the dynamics of conservative partially
hyperbolic systems and the geometric measure-theoretic properties of their invariant
foliations.

Our methods are applied to two main classes of volume preserving diffeomorphisms:
fibered partially hyperbolic diffeomorphisms and center-fixing partially hyperbolic sys-
tems. When the center is 1-dimensional, assuming the diffeomorphism is accessible, we
prove that the disintegration of the volume measure along the center foliation is either
atomic or Lebesgue. Moreover, the latter case is rigid in dimension 3 (this does not
require accessibility): the center foliation is actually smooth and the diffeomorphism is
smoothly conjugate to an explicit rigid model.

A partial extension to fibered partially hyperbolic systems with compact fibers of any
dimension is also obtained.

A common feature of these classes of diffeomorphisms is that the center leaves either
are compact or can be made compact by taking an appropriate dynamically defined quo-
tient. For volume preserving partially hyperbolic diffeomorphisms whose center foliation
is absolutely continuous, if the generic center leaf is a circle, then every center leaf is
compact.
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1. INTRODUCTION

Consider the volume preserving linear map defined on the 3-torus T3 by fo : (z,y, 2)
(2 + y,x + vy, z). It admits an invariant foliation by circles, namely the vertical circles
{(z,y) = const}, and this foliation is normally hyperbolic: there is an invariant normal
bundle to the foliation on which the dynamics is hyperbolic. Indeed, fy is one of the
simplest examples of a partially hyperbolic diffeomorphism and one whose properties have
been analyzed thoroughly.

It follows from the general theory of normally hyperbolic manifolds (Hirsch, Pugh,
Shub [19]) that every map in a C'! neighborhood of fy also admits an invariant foliation WW¢
whose leaves are smoothly embedded circles and which is the image of the vertical foliation
by a global homeomorphism. However, this center foliation is usually not transversely
smooth.

Indeed, Shub-Wilkinson [35] and, later Ruelle-Wilkinson [33] [34], considered volume
preserving perturbations of fp and found open sets of maps whose center foliations W¢
are not smooth and, in fact, exhibit the following bizarre behavior: there are full volume
subsets of T2 that intersect every leaf in a finite (bounded) number of points.

The mechanism in these papers behind this phenomenon of atomic disintegration of
the volume along the center leaves is non-vanishing of the center Lyapunov exponent. In
brief, for almost every point z € T3, the tangent direction to the center leaf is either
exponentially expanded or exponentially contracted by the dynamics:

o1
X(@) = Tim —1og | Do f" (@)l e || £ 0.

However, the center foliation may have atomic disintegration even when the center Lya-
punov exponent A¢ does vanish almost everywhere. Such an example has been given by
Katok (see [25]), and we also describe some generalizations in Section

The purpose of this paper, a follow-up to [6], is to investigate the measure-theoretical
properties of center foliations and, in particular, to understand when this and other forms
of pathological behavior may occur, within a general context of partially hyperbolic dy-
namics.

One property that is of special interest to us is absolute continuity which, in this paper
we take to mean that the volume has Lebesgue disintegration along the leaves, meaning
that a subset of T3 has full volume if and only if its intersection with almost every center
leaf has full volume inside the leaf. This is implied by (but somewhat weaker than) the
usual definition of absolute continuity, which requires that holonomy maps between cross-
sections to the foliation preserve the class of zero measure sets. When the leaves are
circles, vanishing of the center Lyapunov exponent is a necessary condition for absolute
continuity [35].
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Our first main result applies in particular to every volume preserving perturbation of
fo- More generally, it applies to partially hyperbolic diffeomorphisms in dimension 3
preserving a foliation by circles.

A diffeomorphism f is partially hyperbolic if the tangent bundle TM admits D f-
invariant splitting £ @ E¢ @ E" such that Df|g. is a uniformly contracting, D f|g.is
uniformly expanding, and Df|g. is dominated by both: vectors in E¢ are neither as
contracted as vector in E®, nor as expanded as vectors in E*. The stable and unstable
subbundles, F* and E“, are always uniquely integrable, that is, there exist unique folia-
tions W* and W" whose leaves are smoothly embedded manifolds tangent to £° and E“
at every point. Moreover, these foliations are f-invariant. A center foliation, tangent to
E€ need not exist although many interesting examples do have such foliations. A priori,
such a foliation need not be unique or invarant under the dynamics.

By a rotation extension we mean a diffeomorphism that acts by isometries on the fibers
of an invariant C'°° circle bundle.

Theorem A. Let M be a 3-manifold and let f : M — M be a partially hyperbolic, volume
preserving diffeomorphism. Assume that there exists an f-invariant foliation W€ with C!
leaves, all whose leaves are circles.

If W€ is absolutely continuous, then W€ is C°°; moreover, up to finite covering, f is
C™ conjugate to a rotation extension of a volume preserving Anosov diffeomorphism on

T2. That is, there exists a C> T-bundle
T < B 5 T?,
a lift of f to a finite cover (at most fourfold)
f:M— M
and a C* diffeomorphism h: M — B sending the leaves of We to fibers of B and such

that h o f oh™': B — B is a bundle isomorphism, rotating the fibers and covering an
area-preserving diffeomorphism of T?.

In fact, it suffices to suppose that the generic leaf of the center foliation is a circle: we
will show that in this and more general contexts, this condition implies that all the leaves
are circles (See Theorem D below).

To state the next result, we need to discuss the notion of accessibility. A partially
hyperbolic diffecomorphism f : M — M is accessible (or has the accessibility property) if
any two points in M can be joined by an su-path, which is a concatenation of finitely
many subpaths, each of which lies entirely in a single leaf of W?* or a single leaf of W".

The next result shows that for accessible circle extensions in dimension 3, the only way
for the center foliation of a perturbation to fail to be absolutely continuous is to have
atomic disintegration of volume.

Theorem B. Let M be a 3-manifold and let f: M — M be a partially hyperbolic, volume
preserving diffeomorphism. Assume that f is accessible and that it admits an f-invariant
foliation W¢ with C' leaves, all whose leaves are circles.
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If W€ is not absolutely continuous then there exists k > 1 and a full volume subset of
M that intersects every leaf of W€ in exactly k points.

In dimension 3, any perturbation of a circle extension of an Anosov diffeomorphism is
accessible unless it (or some finite-order quotient) is smoothly conjugate to the product
of an Anosov diffeomorphism with a rotation [12].

One ingredient in the proofs of Theorems [A] and [B] is a general result about fibered
partially hyperbolic diffeomorphisms with circle fibers, Theorem [C] which we state in
the next section. In this section we also state a result (Theorem @ that applies to skew
products with higher dimensional compact leaves. In Theorem [E]we show that for partially
hyperbolic diffeomorphisms preserving an absolutely continuous center foliation W€, if the
generic leaf is compact, then every leaf is compact.

Finally we describe a result (Theorem [F)) that applies to partially hyperbolic diffeomor-
phisms fixing the leaves of a 1-dimensional foliation.

2. FURTHER RESULTS

Throughout this paper, unless otherwise mentioned, M is a compact Riemannian man-
ifold without boundary and all diffeomorphisms are assumed to be partially hyperbolic
and C°° (C? will suffice in most cases, but we restrict to C to keep the statements clean)
and to preserve a C'™ volume measure, usually denoted by m.

When we say that “every perturbation” of a volume preserving diffeomorphism f :
M — M satisfies some property, we mean that there exists a C'-open neighborhood U of
f such that every g € U satisfies this property.

A dominated splitting for a C*° diffeomorphism h: M — M is a direct sum decomposi-
tion of the tangent bundle
TM=E'©E*®---oE"
such that

e the bundles E' are Dh-invariant: for every i € {1,...,k} and z € M, we have
Dyh(E'(z)) = E*(h(z)); and

e Dhlgi dominates Dh|gi+1: there exists N > 1 such that for any = € M and any
unit vectors u € BT (z) , and v € E¥(x):

1
1D (W)l] < 5 1Dk (v)].

The property of a splitting being dominated is independent of choice of metric and is
always continuous. If A’ is C' close to h with a dominated splitting, then A’ also has a
dominated splitting, which varies continuously with A’ in the C' topology.

A C' diffeomorphism f : M — M of a complete Riemannian manifold M is partially
hyperbolic if there is a dominated splitting TM = E* @ E€® E° and N > 1 such that for
any € M, and any choice of unit vectors v* € E*(x) and v* € E"(x), we have

maxc{]| Do f™ (%), Daf N (")} < 1/2.
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We will always assume the bundles E® and E" are nontrivial. If E¢ is trivial then f is
Anosov. As mentioned above, the bundles £° and E" are uniquely integrable, tangent to
foliations W* W with C'*° leaves. The leaves of these foliations are always contractible.

A partially hyperbolic diffeomorphism f is dynamically coherent if there exist f—invariant
center stable and center unstable foliations W and W, tangent to the bundles E¢ :=
E¢@® E° and E* = E° @ E", respectively; intersecting their leaves gives an invariant
center foliation W€ tangent to E°.

The foliations W* and W? of a partially hyperbolic diffeomorphism f: M — M induce
an equivalence relation on M: we say that x,y € M are in the same accessibility class if
they can be joined by an su—path, that is, a piecewise C'' path such that every piece is
contained in a single leaf of W? or a single leaf of W¥. Then f is accessible if M is an
accessibility class.

We say that a partially hyperbolic diffeomorphism f: M — M is center bunched if
there exists an integer k£ > 1 such that for every p € M:

1Dy f*IE* (|- (D 1B - 1Dy 1B < 1

and
I(DpfFIE*) 7| - 1Dy fHE| - I(Dp fHI1ES) M < 1.

In words, center bunching requires that the non-conformality of Df | E€ be dominated
by the hyperbolicity of Df | E* @ E°. Center bunching holds automatically if the re-
striction of Df to E¢ is conformal in some continuous metric; in particular, if E°¢ is
one-dimensional, then f is center bunched. Center bunching is a hypothesis in all results
in this paper but for this reason appears explicitly only the theorems where E° is poten-
tially higher-dimensional. In Section [3.9] we discuss a generalization of center bunching
called r-bunching.

In what follows, P(M ) denotes the space of C'*°, volume preserving, partially hyperbolic,
dynamically coherent, and center bunched diffeomorphisms of M, and P’ (M) denotes the
set of all f € P(M) with j-dimensional center distribution E*°.

Burns and Wilkinson [I3] have shown that any f € P(M) that is accessible is ergodic
with respect to m. More generally, if U is an open accessibility class for a C?, volume
preserving, center bunched, partially hyperbolic diffeomorphism f: M — M, then there
exists an ¢ > 1 such that f(U) = U and the restriction of f¢ to U is ergodic with respect
to volume on U.

2.1. Fibered partially hyperbolic systems. Our strategy for proving Theorems [A]
and [B] is to establish corresponding facts for a special class of dynamics that we call
fibered partially hyperbolic systems, a class of systems that we define in the sequel and
that includes an arbitrary perturbation of the map fy in the introduction.

The manifolds that we consider will be endowed with a continuous fiber bundle struc-
ture, a generalization of the familiar smooth fiber bundle structure. A continuous fiber
bundle with C' fiber is a continuous surjection 7: M — B, where M and B are smooth
manifolds, with the following properties. There exists a Riemannian manifold IV, an open
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cover {U,} of the base B, and a family of homeomorphisms h,, : Uy x N — 7~ (U,) such
that

(1) ho maps each {b} x N to the fiber 7—1(b);
(2) if Uy N Ug is non-empty then

hgohy' : (UyNUg) x N — (Us NUg) x N

has the form hgohyt(b, x) = (b, ¢p(x)), where ¢y, : N — N is a C! diffeomorphism
of N depending continuously on the base point b in the uniform C' topology, and
such that || Dgi!|| are uniformly bounded.

There is a natural notion of morphism between continuous fiber bundles with C" fiber:
a morphism between 7: M — B and 7n’: M’ — B’ is a homeomorphism f: M — M’
that sends the fibers of 7 to the fibers of 7/, and whose restriction to each fiber is a C!
diffeomorphism, varying uniformly continuously with the fiber. In the case where ™ = 7/,
we say that 7 is f-invariant. Two bundles 7: M — B and n’: M — B are isomorphic if
there is a morphism between them covering the identity on B.

A diffeomorphism f : M — M is a fibered partially hyperbolic system if it is partially
hyperbolic, with D f-invariant splitting £°® E°@ EY, and M admits an f-invariant struc-
ture 7 : M — B of continuous fiber bundle with C! fiber, such the fibers of 7 are tangent
to E°.

Remark 2.1. If f is a fibered partially hyperbolic system, and g is a C! perturbation of
f, then g is also a fibered partially hyperbolic system. More precisely, if f preserves the
bundle structure 7: M — B with fibers tangent to E°(f), then there is a g-invariant bundle
structure, m,: M — B and a morphism h between m and 7, such that m,oho f = mgogoh
(the fibers of 7, are then necessarily tangent to E(g)).

This follows immediately from the main structural stability result of [19] assuming that
that the center foliation for f is plaque expansive. This plaque expansivity was proved in
[29] and also implies that if f is a fibered partially hyperbolic system, then the f-invariant
fiber bundle structure tangent to E°¢ is unique: any two such f-invariant structures must
be isomorphic.

A fibered partially hyperbolic system is dynamically coherent (7, Theorem 1.26]).

To summarize, the set of fibered partially hyperbolic systems form a C'-open sub-
set of the partially hyperbolic, dynamically coherent diffeomorphisms, and g — Wy is
continuous on this set. We denote by Pg, (M) the set of C*° volume-preserving fibered
partially hyperbolic, center-bunched systems, and by Péb(M ) the set of f € Pg, (M) with
j-dimensional fiber. We note that Pgp(M) C P(M) and Péb(M) C P/(M).

In higher dimension, there is still a strong result for fibered systems if we assume the
fibers have dimension 1. We can also relax the accessibility assumption.

Theorem C. Let M be a manifold of dimension d > 3, and let f € Pfllb(M).
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(1) If W° is absolutely continuous, then there exists a continuous, volume-preserving
flow Yy on M commuting with f, and with the property that 11 = id. The contin-
uous vector field X generating 1 is tangent to the leaves of WE€. If f is accessible,
then X is C*° along the leaves of W°.

(2) Suppose that f has a nonempty open accessibility class U C M.

Then either
(a) m|U has atomic disintegration along the leaves of W€, or
(b) f is accessible and W€ is absolutely continuous.

We emphasize that Theorem [C] says that, while it is possible to be accessible and have
atomic disintegration, if there is a nontrivial accessibility class U ¢ {0, M} then the
disintegration of m|U must be atomic.

Part of Theorem [B| generalizes to fibered systems with higher dimensional compact
fiber. Here we need to add the hypotheses of vanishing of center Lyapunov exponents.
Let f: M — M be a partially hyperbolic diffeomorphism preserving the volume m, with
splitting TM = E* @ E° @ E°. We say that the center Lypapunov exponents of f vanish
if, for m-a. e. x € M and every v € E¢(z) \ {0}, we have

1
lim —log || Dy f"v|| = 0.
n—oo N

Interestingly, the presence of vanishing center exponents forces a rather rigid structure
upon the disintegration of Lebesge measure.

Theorem D. Let M be a manifold of dimension d > 3, and let f € Pgp(M). Assume
that f is accessible and that the center Lyapunov exponents of f vanish almost everywhere.
Then either:

(1) The disintegration of volume is atomic along the leaves of W€, or

(2) There exists an absolutely continuous foliation W with C' leaves that is f-
mwvariant, holonomy invariant, subfoliates W€, and all of whose leaves are compact
and diffeomorphic. In particular, if W = W€ then W€ is absolutely continuous.

If f is center r-bunched, for some r > 2, then W is a C"~' subfoliation of W°.

Topological considerations sometimes rule out possibilities in the conclusion of this
theorem. For example, if the leaves of W are homeomorphic to a surface other than the
torus, it follows that, under the hypotheses of Theorem either the disintegration of
volume is atomic or W€ is absolutely continuous. On the torus, other possibilities may
occur.

Ezample 2.2. Consider g : M x R/Z — M x R/Z a volume preserving, accessible, C*°
perturbation of an Anosov skew product with R/Z fiber for which the disintegration of
Lebesgue measure is atomic. Now construct a C*° skew product (isometric extension) on
M xR/Z xR/Z over g of the form gy(z,t,u) = (g(x,t),u+ ¢(x,t)). One can choose ¢ so
that g4 is accessible. In this case, the leaves of YW are circles.

2.2. Systems with mostly compact leaves. As mentioned in the introduction, the
hypotheses of Theorem [A] can be weakened in another direction. Rather than assuming
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that every leaf of the f-invariant foliation W€ is compact, it suffices to assume that the
generic center leaf is compact. By this we mean that for all points = in a dense G in M, the
leaf W¢(z) through z is compact. The following theorem applies to all partially hyperbolic
diffeomorphisms admitting an invariant center foliation with generic leaf compact.

Theorem E. Let M be a closed manifold of dimension d > 3, and let f € P(M). Assume
the center foliation W€ is leafwise absolutely continuous, the center Lyapunov exponents
vanish, and the generic center leaf is compact.

Then every center leaf is compact, with uniformly bounded volume, and the center foli-
ation W€ has finite holonomy. Moreover, if dim W?® = dim WY = 1, then W€ has finitely
many non-reqular leaves, and f is finitely covered by a fibered partially hyperbolic system.

Corollary 2.3. In Theorems[A| and[B| the hypothesis “there exists an f-invariant foliation
WE with C' leaves, all whose leaves are circles.” can be replaced by “there exists an f-
invariant foliation W€ tangent to E€, whose generic leaf is a circle.”

2.3. Center fixing dynamical systems. Our final series of main results concern a gen-
eralization of the setting in our previous paper [6].

We say that a partially hyperbolic diffeomorphism f : M — M is center fixing if it is
dynamically coherent and f(W¢(z)) = W¢(x), for each x € M. Center fixing diffeomor-
phisms arise naturally as elements of partially hyperbolic Lie group actions — to name two
examples, the R action of an Anosov flow and the ]R”fl‘ action of the diagonal subgroup
on a homogeneous space of SL(n,R). We denote by P/ (M) the set of all center fixing
elements of P7(M).

There is an analogue to Theorem E for center fixing diffeomorphisms.

Theorem F. Let M be a manifold of dimension d > 3, and let f € PéX(M).

(1) If W€ is absolutely continuous, then there exists a continuous, volume-preserving
flow ¥y on M such that f = 1. Orbits of ¥y are tangent to the leaves of W€. If
f is accessible, then 1y is C™° along the leaves of W€. If dim(M) = 3 (without the
assumptivon of accessibility), then 1y is a C*, volume preserving Anosov flow.
(2) Suppose that f has an nonempty open accessibility class U C M.
Then either
(a) m|U has atomic disintegration along the leaves of W€,
(b) W€ is absolutely continuous, or
(c) f is accessible.

Theorem generalizes the main results in our previous paper [6], in which we considered
perturbations of the time-one map of geodesic flows over negatively curved surfaces.

Corollary 2.4. Let M be a 3-manifold, and let pi: M — M be a C'°°, volume preserving
Anosov flow. Assume that @y is not the constant time suspension of an Anosov diffeomor-
phism. Suppose that f € Diff>*(M) is C'-close to p1. Then either

(1) m has atomic disintegration along the leaves of W€, or
(2) f embeds in a C*°, volume preserving Anosov flow.
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Proof. According to [12], since ¢; is not a constant time suspension, it is stably accessible;
hence f is accessible. Theorem [F] implies that either m has atomic disintegration, or f
embeds in a C*°, volume-preserving Anosov flow. O

We remark that Bonatti-Wilkinson [9] showed that in dimension 3, under the weaker
assumption that f: M — M is partially hyperbolic, transitive and dynamically coherent
and every closed center manfold is periodic, one obtains that there exists an n such that
fre PéX(M ) and the center foliation admits an expansive continuous flow. Recently,
Mario Shannon has announced a proof that expansive flows in dimension 3 are topolog-
ically conjugate to Anosov flows. Little is known about center-fixing systems in higher
dimension.

2.4. Structure of the paper. In Section [3| we give background on foliations, disinte-
gration of measure, absolute continuity, and normal hyperbolicity. Section is devoted
to the main technical result we use, an invariance principle of Avila-Santamaria-Viana
[4] whose origins go back to work of Ledrappier [22, 23]. In Section 4] we sharpen this
invariance principle so that it can be applied to analyze the disintegration of measures
along center foliations. Section [5| presents a result of Repovi-Skopenkov-Séepin [31] that
we will use, as in [30], to establish regularity of holonomy-invariant objects such as vector
fields and foliations.

The proofs of Theorems [A] [B] and [C] concerning systems with compact 1-dimensional
center foliation are in Section[6] Fibered systems with higher-dimensional compact center
are discussed in Section [7] in which Theorem |D] is proved. In Section [8| we prove Theo-
rem [E] the main result about center foliations with mostly compact leaves. Section [ is
devoted to center-fixing systems and is where we prove Theorem

Finally, in Section we discuss some open questions and construct examples.

3. BACKGROUND AND PRELIMINARIES
3.1. Topological preliminaries.

3.1.1. Foliations. Let M be a manifold of dimension d > 2. A foliation (with C" leaves) is
a partition F of the manifold M into C” submanifolds of dimension k, for some 0 < k < d
and 1 < s < oo, such that for every p € M there exists a continuous local chart

®:BY x B"% M (B} denotes the unit ball in R™)

with ®(0,0) = p and such that the restriction to every horizontal Bf x {n} is a C"
embedding depending continuously on 7 and whose image is contained in some F-leaf.
The image of such a chart ® is a foliation box and the ®(B¥ x {n}) are the corresponding
local leaves or plaques

A foliation F has uniformly compact leaves if there exists a constant C' > 0 such that
the restricted Riemannian volume of every leaf F is bounded by C, with respect to some
(any) Riemannian metric on M. If f is a fibered partially hyperbolic system, then the
leaves of W¢ are uniformly compact.
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To study the precise smoothness of the leaves of a normally hyperbolic foliation, we
refine the definition of normal hyperbolicity. For r > 1 we say that (f,F) is r-normally
hyperbolic if there exists k > 1 such that

sup | Dpf* ||| - [|(DpfHlrr) " <1, and sup [(Dpf*|pe) M| - | Dpf*|rrll” < 1.
p p

Note that 1-normally hyperbolic = normally hyperbolic, and r-normal hyperbolicity is a
C'-open condition.

3.1.2. Normal hyperbolicity. Suppose M is closed manifold, and let fi, fo € Diff(M).
Assume that Fy, F, are foliations of M with C! leaves and that f; and f, respectively
preserve JF1 and Fo.

Definition 3.1. A leaf conjugacy from (f1, F1) to (f2, F2) is a homeomorphism h : M — M
sending JF7 leaves diffeomorphically onto Fo leaves, equivariantly in the sense that

h(f1(Fi(p))) = fo(Fa(h(p))), VP € M.

Definition 3.2. Suppose f € Diff(M) and F is an f—invariant foliation of M with C!
leaves. F is normally hyperbolic if there exists a D f—invariant dominated splitting TM =
EY® E¢® E*, with at least two of the bundles nontrivial, such that D f uniformly expands
EY, uniformly contracts F*®, and such that TF = E°.

Note that a diffeomorphism with a normally hyperbolic foliation is partially hyperbolic,
with £¢ =TF, but, as remarked above, the converse does not hold in general: the center
bundle of a partially hyperbolic diffeomorphism is not necessarily tangent to a foliation,
let alone an invariant foliation.

3.1.3. Dynamical coherence. Throughout this section, f denotes a partially hyperbolic
diffeomorphism. Recall that f is dynamically coherent if there exist f-invariant foliations
W and W tangent to the bundles £ and E“, respectively. Intersecting the leaves of
W and W gives an f-invariant foliation W€ tangent to F°. Most of the facts here are
proved in [I9]. A more detailed discussion can be found in [13].

We first discuss the stability of dynamical coherence under perturbation. It is not
known whether every perturbation of a dynamically coherent diffeomorphism is dynam-
ically coherent, but in systems that are plaque expansive, dynamical coherence is stable.
Plaque expansiveness was introduced by Hirsch, Pugh, and Shub [19], who proved among
other things that any perturbation of a plaque expansive diffeomorphism is dynamically
coherent. Roughly, f is plaque expansive if pseudo orbits that respect local leaves of the
center foliation cannot shadow each other too closely (in the case of Anosov diffeomor-
phisms, plaque expansiveness is the same as expansiveness, which is automatic). Plaque
expansiveness holds in a variety of natural settings; in particular we have the following,
whose proof can be found in [15].

Theorem 3.3 (Foliation Stability and Holder continuity of the leaf conjugacy). Let M
be a closed manifold, and let (f, F) be an r-normally hyperbolic foliation of M, for some
r > 1, with Df-invariant splitting E* ® (TF = E°) & E*. Then the leaves of F are
uniformly C”, and we have the following.
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(1) Suppose that one of the following holds:
(a) the restriction D f|,r is an isometry, or
(b) the bundles E°* and E are C', or
(c) F is uniformly compact.
Then f is dynamically coherent, plaque expansive and r-normally hyperbolic with
respect to the foliations W, W and F = W N W,

(2) If (f, F) is plaque expansive then it is structurally stable in the following sense. For
each diffeomorphism g that C-approxzimates f, there exists a unique g-invariant
foliation F, (with C'—leaves) near F. The foliation Fy is normally hyperbolic,
plaque expansive, and (f,F) is leaf conjugate to (g,Fg) by a homeomorphism
h¢: M — M close to the identity.

Problem 3.4. Is every diffeomorphism f € P (M) plaque expansive?

3.2. Local and global holonomy maps. If f is dynamically coherent, then each leaf of
We is simultaneously subfoliated by the leaves of W¢ and by the leaves of W?. Similarly
W is subfoliated by W¢ and W*. This implies that for any two points x,y € M with y €
W, there is a neighborhood U, of z in the leaf Wi and a homeomorphism A3 , : Uy — Wy

with the property that h;  (z) = y and in general h;  (2) € W7 N WEC . We refer to h;
as a (local) stable holonomy map. We similarly define unstable holonomy maps between
local center leaves. We note that, because the leaves of stable and unstable foliation are
contractible, the local holonomy maps h}, , for x € {s,u} are well-defined and are uniquely
defined as germs by the endpoints x,y. An important fact that will be used repeatedly
is that if f is center bunched, then hj , is C1, locally uniformly in z,y. See [28, [36] and
Section [3.9] below.

We say that f admits global stable holonomy maps if for every x,y € M with y € W3
there exists a homeomorphism A3, : Wy — W with the property that h; ,(r) = y and
in general hjj’y(z) € W;NW,. Since global stable holonomy maps must agree locally
with local stable holonomy, we use the same notation hj , for both local and global. We
similarly define global unstable holonomy maps and say that f admits global su-holonomy
maps if it admits both global stable and unstable holonomy. Note that if f admits global
su-holonomy, then all leaves of W¢ are homeomorphic.

Lemma 3.5. Fibered partially hyperbolic systems have global su-holonomies.

Proof. Let f: M — M be a fibered partially hyperbolic system. Dynamical coherence
implies that the foliations W and W* project to topological foliations W% W?* on the
leaf space B = M /W¢ and the restriction of the projection M — B to any W*-leaf is a
homeomorphism (and these homeomorphisms vary continuously from leaf to leaf).

Dynamical coherence and unique integrability of the restriction of W* to W for * €
{u, s} imply that for any W*-path 4: [0,1] — B, and any & € M that projects to 5(0),
there is a unique lift of 4 to a W*-path v, [0,1] = M with 7,(0) = z. These lifts -, vary
continuously over y € W¢.
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Given z,2" € M with x,2" € Wy, any path v,: [0,1] — W connecting = to z’ projects
to a W*-path 4 in B. Fixing such a path and taking lifts v, over y € W defines a
*-holonomy map from WS to WS, by y — 7, (1). O

In contrast to the to fiber bunched maps, time-one maps of Anosov flows do not have
global su-holonomies, since their center leaves are not all homeomorphic.

3.3. Measure-theoretic preliminaries. We expand here on the discussion in Section 3
of our previous paper [6].

We begin with a general discussion of disintegration of measures. Let Z be a polish
metric space, let y be a finite Borel measure on Z, and let P be a partition of Z into
measurable sets. Denote by /i the induced measure on the o-algebra generated by P,
which may be naturally regarded as a measure on P.

A system of conditional measures (or a disintegration) of u with respect to P is a family
{pup}pep of probability measures on Z such that

(1) up(P) =1 for u-almost every P € P;
(2) Given any continuous function ¢ : Z — R, the function P + [ ¢ dup is measur-

able, and
/deu - /P (/ww) di(P).

3.4. Measurable partitions and disintegration of measure. It is not always possible
to disintegrate a probability measure with respect to a partition — we discuss examples
below — but disintegration is always possible if P is a measurable partition. We say that

P is a measurable partition if there exist measurable subsets Fy, Es, ..., E, ... of Z such
that
(1) P:{El,Z\El}\/{EQ,Z\EQ}\/--' mod 0.

In other words, there exists a full y-measure subset Fy C Z such that, for any atom P of
P, we have

PﬂF():EikﬂE;ﬂ-"ﬂFo

where EY is either E; or Z \ E;, for i > 1. Our interest in measurability of a partition
derives from the following fundamental result.

Theorem 3.6 (Rokhlin [32]). If P is a measurable partition, then there exists a system
of conditional measures relative to P. It is essentially unique in the sense that two such
systems coincide in a set of full fi-measure.

A basic family of examples of measurable partition is given by the following proposition.

Proposition 3.7. Let F be a foliation of M, and let i be a Borel probability measure on
M. Suppose for p-almost every x € M, the leaf Fy is compact. Then F is a measurable
partition.
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Proof. (A related result is proved in [5, Section 4.3].) Replacing M by some full y-measure
subset if necessary, we may suppose that every leaf is compact. Let X be a countable dense
subset of M. For each x € X and n > 1, define V(z, k) to be the of points y € M such
that the leaf F, intersects the closed ball of radius 1/k around z. We claim that V' (z, k)
is closed and, hence, measurable. Indeed, let y, be any sequence in V(x, k) converging
to some y € M, and let 2, € F,, N B(z,1/k). By compactness and continuity of the
leaves, F,, converges to F, in the Hausdorff topology and then z, € F,, must accumulate
on some z € F,. Since z also belongs to B(x,1/k), this implies that y € V(z, k). That
proves the claim. It is clear from the definition that each V(x, k) consists of entire leaves.
It is easy to see that for any two different leaves F; and F; there exists (x, k) such that
V(x,k) contains one of the leaves but not the other. First, take k large enough so that
2/k is smaller than the distance from Fj to F,. By density, we may find x € X such that
B(z,1/k) intersects Fi; clearly, it can not intersect Fo. This proves that the countably
family of partitions {V(z, k), M \ V(z, k)} generates the foliation. O

The lack of measurability of a partition can be just as interesting as the measurability.
A typically invoked example of a nonmeasurable partition is the partition of the 2-torus
into lines of irrational slope. More generally, the following is true:

Proposition 3.8. Let (1) be a p-preserving flow on Z and O be the partition of Z into
flow lines. If the flow is ergodic and p does not give full weight to a single orbit then O is
not measurable. More generally, if O is measurable, then p-almost every orbit of the flow
1s periodic.

Proof. Suppose measurable subsets Ej, j > 1 as in do exist. Each £ coincides mod 0
with a union of partition atoms, that is, with a ¢-invariant subset. Then, by ergodicity,
every F; has either zero or full measures. This implies that some partition atom (that is,
some orbit) has full measure, contradicting the hypothesis. This proves the first statement.
Now, assume O is measurable and let {p : O € O} be a disintegration. Then almost
every po is a probability measure supported on the orbit O and flow-invariant. Since there
are no flow-invariant finite measures on open orbits, it follows that almost every orbit is
closed, as stated. This completes the proof. O

In light of this, it is notable that it is possible to construct a foliation F with a dense
set of noncompact leaves that is a measurable partition with respect to volume.

Ezxample 3.9. Let f: M — M be a perturbation of the time-one map of an Anosov flow
on a 3-manifold so that volume has atomic center disintegration along Ws. Consider the
product f x f. The disintegration of volume along W4, ¢ is again atomic, with atoms

at points (f*(z), f(z)), where 2 is an atom for W5 and k,¢ € Z. Take any smooth
foliation of M x M with 5-dimensional leaves and intersect with Wi ¢ Typical choices
are “irrational” with respect to the lattice of atoms and thus the intersection gives a one-
dimensional foliation with dense leaves and atomic disintegration. This is a measurable
partition: just take a sequence of partitions nesting to points; at stage n take all leaves in
a partition element whose atom is contained in that element.



ABSOLUTE CONTINUITY, LYAPUNOV EXPONENTS AND RIGIDITY II 15

3.5. Disintegration of measure along foliations with noncompact leaves. The
disintegration theorem of Rokhlin [32] does not apply directly when a foliation has a
positive measure set of noncompact leaves. Instead, one must consider disintegrations
into measures defined up to scaling, that is, equivalence classes where one identifies any
two (possibly infinite) measures that differ only by a constant factor. Here we present this
theory in a fairly general setting. See also [21] § 4] and [24, § 3].

Let M be a manifold of dimension d > 2, and let m be a locally finite measure on
M. Let B be any (small) foliation box. Rokhlin [32] proved that there is a disintegration
{mB . x € B} of the restriction of m to the foliation box into conditional probabilities
along the local leaves, and this disintegration is essentially unique. The crucial observation
is that conditional measures corresponding to different foliation boxes coincide on the
intersection, up to a constant factor.

Lemma 3.10. [6, Lemma 3.2] For any foliation boxes B and B’ and for m-almost every
x € BN B, the restrictions of mE and mf/ to BN B' coincide up to a constant factor.

This implies that there exists a family {m, : x € M} where each m,, is a measure defined
up to scaling with m,(M \ F,) = 0, the function x — m, is constant on the leaves of F,
and the conditional probabilities mf along the local leaves of any foliation box B coincide
almost everywhere with the normalized restrictions of the m, to the local leaves of B. It
is also clear from the arguments that such a family is essentially unique. We call it the
disintegration of m and refer to the m, as conditional classes of m along the leaves of F .

3.6. Foliations whose leaves are fixed under a measure-preserving homeomor-
phism. Now suppose the foliation F is invariant under a homeomorphism f : M — M,
meaning that f(F;) = Fj,) for every z € M. Take the measure m to be invariant under
f. Then, by essential uniqueness of the disintegration, f.(m;) = my, for almost every x.
We are especially interested in the case when f fixes every leaf, that is, when f(z) € F,
for all x € M. Then f.(m,) = my(,) for almost every x, which means that every repre-
sentative m, of the conditional class m, is f-invariant up to rescaling: f.(m,) = c¢m, for
some ¢ > 0. Actually, the scaling factor c is 1:

Proposition 3.11. [0, Proposition 3.3] Suppose that m is invariant under a homeomor-
phism f : M — M that fixes all the leaves of F. Then, for almost all x € M, any
representative my of the conditional class my is an f-invariant measure.

3.7. Absolute continuity. As above, let M be a Riemannian manifold. Let Ay, denote
the volume measure induced by the Riemann metric on a C' submanifold ¥ of M.

The classical definition of absolute continuity ([2], B]) goes as follows. A foliation F on
M is absolutely continuous if every holonomy map hy sy between a pair of smooth cross-
sections ¥ and ¥’ is absolutely continuous, meaning that, the push-forward (hy s)«Ay is
absolutely continuous with respect to Ays. Reversing the roles of the cross-sections, one
sees that (hy sy)«Ay is actually equivalent to Asy.

Here it is convenient to introduce the following weaker notion. We say that F is leafwise
absolutely continuous (or volume has Lebesgue disintegration along F-leaves) if, for any
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measurable set Y C M, we have m(Y) = 0 if and only if for m-almost every z € M the
leaf L through z meets Y in a zero Ap-measure set. In other words, for almost every leaf
L, the conditional measure my, of m along the leaf is equivalent to the Riemann measure
Az, on the leaf.

Lemma 3.12. [0, Lemma 3.4] If F is absolutely continuous then F is leafwise absolutely
continuous

The converse is false: one can destroy absolute continuity of holonomy at a single
transversal while keeping Lebesgue disintegration of volume (this is an exercise in Brin,
Stuck [11]).

Lemma 3.13. Let f: M — M be C? and partially hyperbolic. The foliations W*(f) and
WU(f) are absolutely continuous and, hence, volume has Lebesgue disintegration along
WE(f) and WY (f)-leaves.

Proof. This is a classical fact going back to Brin, Pesin [10]. O

We say that a foliation F is upper leafwise absolutely continuous if for m-almost every
x, we have my < A, where L is the leaf of F through x. Similarly F is lower leafwise
absolutely continuous if A\p, < mp for almost every L. Note that leafwise absolute con-
tinuity = upper leafwise absolute continuity + lower leafwise absolute continuity. In the
invariant ergodic case, lower leafwise absolute continuity is actually equivalent to leafwise
absolute continuity.

Lemma 3.14. If F is leafwise absolutely continuous and invariant under an ergodic dif-
feomorphism f then mp and Ap are equivalent for almost every leaf L.

Proof. Suppose some set Y meets almost every leaf L on a zero Ap-measure set. We may
suppose that Y is invariant because the restriction of f to leaves preserves the class of
zero measure sets, since f is smooth. If Y has full measure then its complement is a zero
m-measure that intersects leaves L in full A\p-measure subsets, a contradiction. U

Remark 3.15. For partially hyperbolic diffeomorphisms whose center leaves are circles
with bounded length, the center foliation cannot be upper leafwise absolutely continuous
unless the center Lyapunov exponent vanishes at almost every point. This follows from
the observation in [35] that if the center Lyapunov exponent is nonzero on some set A,
then A meets m-almost every leaf L = WY in a set of Ap-measure zero.

In the remainder of this section we focus on invariant foliations of C? partially hyperbolic
diffeomorphisms. Recall that W* and W?# are always absolutely continuous, by [10].

Lemma 3.16. Suppose f is C?, partially hyperbolic, and dynamically coherent. If W€ is
leafwise absolutely continuous, then so are W and W*.

Proof. Suppose that W€ is leafwise absolutely continuous. Let A be a zero measure set.
Since W? is absolutely continuous, there is a set B of full measure so that W, meets A in
a zero measure set, for every x € B. Since W¢€ is absolutely continuous, there is a set C
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of full measure so that Wy meets B in a set of full leaf measure, for every y € C. Let y
be a point in C. We claim that W;* meets A in a zero measure set. The reason is that
the restriction of W* to W,*® is an absolutely continuous foliation in the leaf Riemannian
metric on W;*. Hence if we unravel the definition of C' and apply Fubini’s theorem, we
get that the leaf measure of A in W;* is zero. O

Remark 3.17. W€ and W?* do not play symmetric roles in this argument. The reason the
restriction of W?* to W leaves is absolutely continuous is dynamical, and does not follow
a priori from the fact that W?* is leafwise absolutely continuous.

Problem 3.18. It is observed in [30] that the center foliation is absolutely continuous if the
center stable and the center unstable foliations are.

(1) Is the converse true, that is, does absolute continuity of the center imply absolute
continuity of the center stable and the center unstable?

(2) Is the converse to Lemma true, that is, does leafwise absolute continuity of
the center follow from leafwise absolute continuity of the center stable and the
center unstable?

Lemma 3.19. Let M be a compact Riemannian manifold of dimension d > 3, and let
f e P(M). Let my be a measure on a local leaf Wg’loc, and let B be the neighborhood of
q (W€ foliation box) obtained by first applying local s-holonomy to W, and then applying
local u-holonomy. Let {mg}qep be the family of measures supported on local W€ leaves
gwen by pushing forward my, first by local s holonomy and then by local u holonomy.

Suppose that {mg}eep is a disintegration of Lebesgue measure in B. Then W€ has
Lebesgue disintegration in B: for every q € B, the conditional measure mq is equivalent to

. 1 oy
the Riemann measure s on Wq ¢, and the densities

dm,
dXg

are positive, continuous on Wg N B, and vary continuously with q.

Proof. Fix a continuous Riemannian metric inducing the Lebesgue measure on M, such
that the stable, unstable and center bundles are orthogonal. For ¢ € B, denote by D*(q)

the intersection Wy e n .
We will show that

p(q) = lim logm,(B°(g,7)) — log Ay (B“(q,7))

r—0
exists and is uniformly continuous as a function of ¢ € B, as this implies that m, is
equivalent to Ay with
dmy
dAg
The open set U(q,r) in B formed by applying stable followed by unstable holonomy in 5
to the center ball B¢(¢,r) has volume proportional to m,(B(q,r)) by a constant that is

(q) = e”9,
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bounded independent of ¢,r. On the other hand, it is also given by the formula

/ / g5 / TS AN (2) XS (y) dAS (),
¢(q,r) 5(x) Du(y)

where J5 denotes the Jacobian of the stable holonomy We'°® — W and J¢* denotes

the Jacobian of the unstable holonomy W;S’IOC — WZCS’IOC, calculated with with respect to
the fixed Riemannian structure. Since the Jacobians are uniformly continuous, this gives
that p is the uniformly continuous function:

q+— log/ JS”C / J“jzcs ANy (2) dX;(y),
peg) " ey T
up to an additive constant. ]

3.8. Smoothness of foliations. A foliation is C" if there is a C" foliation atlas. Note
that the leaves of a C" foliation are uniformly C", but a foliation with C” leaves is not
necessarily a C" foliation.

A useful criterion for checking whether a foliation with C" leaves is C" is given by the
examining the holonomy maps. Here we describe a C'™ version of the ciriterion. The same
arguments yield a C" version of the criterion, with some modifications. The main tool is
the following.

Theorem 3.20 (Journé [20]). Let Fi and Fa2 be transverse foliations of a manifold M
whose leaves are uniformly C*°. Let ¥ : M — R be any continuous function such that the
restriction of ¥ to the leaves of F1 is uniformly C*° and the restriction of ¥ to the leaves

of Fo is uniformly C°°. Then i is C™.

This has the following corollary:

Corollary 3.21 (see [28]). A local foliation with uniformly C*° leaves and uniformly C'*
holonomies (with respect to a fized C* transverse local foliation) is a C™ local foliation.

Proof. Let F be a local foliation with uniformly C'°° leaves, and let 7 be a C'*° transverse
local foliation to F. By a C*° change of coordinates, we may assume that 7 is the foliation
by vertical coordinate planes in R™. Now, the standard rectification of F in R™ (via
holonomy between T -leaves) sends F-leaves to horizontal vertical planes. The assumption
that the leaves of F are uniformly C'* implies that the rectification is C*° along leaves of
F. The assumption that the holonomy maps between T-leaves are uniformly C'° implies
that the rectification is uniformly C'*° along vertical planes. Journé’s Theorem implies
that the rectification is C*°, so that F is a C'*° foliation. This proves the corollary. 0

A simple application of Corollary gives the following criterion for smoothness,
which will be applied to local center-stable, and center-unstable foliations of a partially
hyperbolic diffeomorphism.

Proposition 3.22. Let G; and Gy be local foliations whose leaves are C° and intersect
transversely in a local foliation F. Suppose there exist local foliations F1 and Fo with the
following properties
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(1) Fi is transverse to Gy and Fo is transverse to Gy,

(2) F1 C= subfoliates the leaves of Gi, and Fo C* subfoliates the leaves of Ga,

(8) F-holonomy between Fi-leaves is uniformly C*°, and F-holonomy between Fa-
leaves is uniformly C°.

Then F is a C* foliation, as are the restrictions of F to G1 and Go.

Proof. Since the leaves of F are uniformly C'*, to prove the proposition, by Corollary [3.21]
it suffices to show that the F holonomy maps are uniformly C°*°. To this end, fix a C°
local foliation 7 transverse to . Fix one leaf 7, and for ¢ € F,, consider the associated
family of F holonomy maps 4 : T, — Tq. We will use Theorem [3.20] to prove that 1, 4
is C'°°, uniformly in q.

To do this, we first show that the restriction of F to the leaves of G; is uniformly C*°,
and the restriction of F to the leaves of G is uniformly C°°. To see this, observe that by
assumption Fi is (uniformly) a C°° subfoliation of G;, and the F-holonomy maps between
F1 leaves are uniformly C*°. The leaves F are uniformly C'*°, since the leaves of G; and Gs
are. Corollary then implies that the restriction of F to the leaves of G; is uniformly
(C°°. Similarly, the restriction of F to the leaves of Go is uniformly C°.

Intersecting the leaves of 7 with the leaves of G, we obtain a foliation 77 with uniformly
C™ leaves that subfoliates both 7 and G;. Restricting our attention to the leaves of Gy,
since F is a O subfoliation of G;, we obtain that the F-holonomy maps between T;
transversals are uniformly C'°°. Similarly, intersecting the leaves of T with the leaves of
Go, we obtain foliation 75 with uniformly C*° leaves that subfoliates both 7 and Go; the
F-holonomy maps between 73 transversals are uniformly C'*°.

The foliations 7; and 7» transversely subfoliate the leaves of 7 and have uniformly C'*°
leaves. For a fixed ¢ € M, we have just shown that the holonomy map v, , defined above
is uniformly C*° along 7i-leaves and uniformly C*° along Tz-leaves. Now Theorem [3.20)
implies that 1), 4 is C°°, uniformly in ¢, completing the proof of Proposition 0

3.9. Bunching and smoothness of stable and unstable holonomies. Our final set
of preliminaries concerns the regularity of stable and unstable holonomy maps and the
related spectral property of r-bunching. Let f be a partially hyperbolic diffeomorphism.
For r > 0, we say that f is r-bunched if there exists an integer £ > 1 such that for every
pe M:

1Dy ¥ s |- Dy fFlee) I <1 I(DpfMlee) ™M - IDpf*leell” < 1,
1Dy f* s - (D f*|5e) Ml - 1Dy pell” < 1, and
I(Dpf* )~ D f* el - Dy f ) HI™ < 1.

Note that every partially hyperbolic diffeomorphism is r-bunched, for some r > 0. The
condition of 0-bunching is merely a restatement of partial hyperbolicity, and 1-bunching is
center bunching. The first pair of inequalities in this definition are r-normal hyperbolicity
conditions; when f is C" and dynamically coherent, these inequalities ensure that the
leaves of W W€ and W€ are C". Combined with the first group of inequalities, the



20 A. AVILA, M. VIANA, AND A. WILKINSON

second group of inequalities imply that £* and E° are “C" in the direction of E¢.” More
precisely, in the case that f is C"t! and dynamically coherent, the r-bunching inequalities
imply that the restriction of E* to W leaves is a C” bundle, and the restriction of £ to
We leaves is a C" bundle. Hence, if such a system is r-bunched, then the local stable and
unstable holonomies hj , are C" local diffeomorphisms. See Pugh, Shub, Wilkinson 128,
36).

Lemma 3.23. Suppose f € P(M) is such that Df|ge is an isometry for some choice of
Riemannian metric.

Then the leaves of W€, W and W are uniformly C* and the stable and unstable
holonomy maps between W¢-leaves are C°.

Proof. The assumption implies that f is r-bunched, for any r > 1. Now, as discussed
before, r-bunching contains r-normal hyperbolicity, which implies that the leaves of W€,
wetand W are C". See [19]. Moreover, r-bunching implies that W?* C"-subfoliates
We and WY C"-subfoliates W. See [28]. This gives the lemma. O

3.10. Lyapunov exponents and an invariance principle. In this subsection, we de-
scribe the main results we use concerning Lyapunov exponents and invariant measures of
diffeomorphism cocycles.

Let § : £ — & be a continuous diffeomorphism cocycle over f, in the sense of [4]
5]. This means that 7: &€ — M is a continuous fiber bundle with fibers modeled on
some Riemannian manifold and § is a continuous fiber bundle morphism over a Borel
measurable map f: M — M acting on the fibers by diffeomorphisms with uniformly
bounded derivative. Let {i be an §-invariant probability measure on £ that projects to
an f-invariant measure p. We denote by &, the fiber 7=!(z) and by F.: & — Ef(x) the
induced diffeomorphism on fibers.

We say that a real number x is a fiberwise exponent of § at & € £ if there exists a
nonzero vector v € T¢&x(¢) in the tangent space to the fiber at § such that

. 1
nh_)rgoglog HDggﬂ(U)H =X

By Oseledec’s theorem, this limit x (&, v) exists for fi-almost every £ € £ and every nonzero
v € Te€r(e), and it takes finitely many values at each such £. Let
X(§) = sup x(&§v) and x(§) = inf x(£v).

llv]|=1 llvl[=1

The following result follows almost immediately from Theorem II in [34] and uses no
assumptions on the base dynamics f : M — M other than invertibility. The hypothesis
on the fibers can be weakened, but the following statement is sufficient for our purposes.

Theorem 3.24. [34] Let § : € — & be a diffeomorphism cocycle over f. Assume that the
fibers of £ are compact. Assume that § preserves an ergodic probability measure i that
projects to an (f-invariant, ergodic) probability u on M and that f is invertible on a full
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pu-measure set in M. Let X_ be the set of £ € £ such that x(§) < 0 and X, be the set of
§ € € such that x(&) > 0.

Then both X_ and X4 coincide up to zero ji-measure subsets with measurable sets that
intersect each fiber of £ in finitely many points.

The next result, from [4, 5], treats the possibility that all fiberwise exponents vanish.
It admits more general formulations, but we state it in the context in which we will use
it, namely, when f is a partially hyperbolic diffeomorphism.

We say that § admits a *-holonomy for x € {s,u} if, for every pair of points x,y lying
in the same W~-leaf, there exists a Holder continuous homeomorphism Hy  : & — &,
with uniform Holder exponent, satisfying:

(i) Hy, =id,
(i) H:. = Hy,. o H3,,
(i) Sy © Hyy = Hia) p(y) © Sr and
(iv) (z,y) = Hy ,(§) is continuous on the space of pairs of points (z,y) in the same

local W*-leaf, uniformly on &.

The existence of a *-holonomy is equivalent to the existence of an §-invariant foliation
(with potentially nonsmooth leaves) of £ whose leaves project homeomorphically (in the
instrinsic leaf topology) to W*-leaves in M.

A disintegration {fi, : * € M} is x-invariant over a set X C M, % € {s,u} if the
homeomorphism H , pushes fi, forward to fi, for every z,y € X with y € W;. We call
a set X C M x-saturated, x € {s,cs,c,cu,u} if it consists of entire leaves of W*. Observe
that f is accessible if and only if the only nonempty set in M that is both s-saturated and
u-saturated is M itself.

Theorem 3.25. [4, Theorem C| Let § be a diffeomorphism cocycle on w: & — M over the
C?, volume preserving, center bunched, partially hyperbolic diffeomorphism f: M — M.
Assume that f is accessible and that § preserves a probability measure m that projects to
the volume m. Suppose that x(&) = x (&) = 0 for m-almost every & € £.

Then there exists a continuous disintegration {m3" : x € M} of m that is invariant
under both s-holonomy and u-holonomy.

A slight modification of the proof in [4] gives

Theorem 3.26. Let § be a diffeomorphism cocycle on w: & — M over the C?, volume
preserving, center bunched, partially hyperbolic diffeomorphism f: M — M. Assume that
f has an open accessibility class U # 0, and let w = m( : U) be the conditional volume on

U:
m(ANU)

w(A) :=m(A:U) = (D)

Suppose that § preserves a probability measure i on € that projects to u and that x(§) =
X(&) =0 for fi-almost every & € £.
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Then there exists a continuous disintegration {i3" : x € U} of [ that is invariant under
both s-holonomy and u-holonomy.

Proof. One observes that the proof of that part (a) of [4, Theorem D], which is stated for
1 in the same measure class as volume, extends to p absolutely continuous with respect to
volume, provided that supp () is bisaturated. This is the case here, because p := m(- : U)
is supported on the closure of the accessibility class U, which is bisaturated. The conclusion
of (b) of [4, Theorem D] then holds if f is accessible on the support of p.

To see this, the main thing to note is that [4, Theorem 6.1] makes no assumption on
whether f preserves volume. In the application of [4, Theorem 6.1] to prove [4, Theorem
D], the function ¥ is defined by ¥(x) = m,, where m, is the disintegration of m along
the fibers of £. In the case where p is supported on an open accessibility class U, we fix
a disintegration of i along the fibers of £, and set

pr ifxelU
(2) U(z) = .
0 otherwise.

Similarly, [4, Theorem 4.1] makes no assumptions on volume-preservation of f. Thus
Theorem can be deduced from Theorems D and 4.1 in [4] in the same way that [4]
Theorem C] is deduced from Theorems D and 4.1 in [4], replacing the function ¥ there
with U defined by . O

4. A GENERALIZED INVARIANCE PRINCIPLE

In this section we prove an abstract criterion for holonomy invariance of probability
measures preserved by diffeomorphism cocycles with vanishing Lyapunov exponents. A
main novelty with respect to previous related results by Avila, Santamaria, Viana [4} [5]
is that we also deal with invariance under center holonomy, not only stable and unsta-
ble holonomies. Implications of this refined theory will be exploited in the forthcoming
sections.

4.1. c-holonomies. Let §: £ — £ be a continuous diffeomorphism cocycle over f. Recall
from Section that § admits % holonomy, for * € {s,u} if the foliation W* in M lifts
to an F-invariant foliation W* of € whose leaves are homeomorphic to the leaves of W*.
If § admits a *-holonomy then for any two points z,y in the same W* leaf, there is a
well-defined holonomy map H , between the fibers £* and £¥ satisfying the conditions
(i-iv) described in Section which gives an equivalent definition.

There is an analogous way to define c-holonomy, but a little more care must be taken
because the leaves of YW, unlike those of WW* and W", are not necessarily simply connected.
The notion of c-holonomy will be used to formulate a new version of Theorem for
cocycles admitting s, u and ¢ holonomies.

We say that § admits a c-holonomy if, for every path ~ : [0,1] — W¢(y(0)) lying in a
W leaf, there exists a Holder continuous homeomorphism HY : €, ) — &,(1) with uniform
Hoélder exponent, satisfying:
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(i) HE =id, where € is any constant path,
(ii) Hs,.,, = HS, o HY , where 1 - 72 denotes the concatenated path,
(iii) Hf = HY, whenever 71 and 72 are homotopic via an endpoint-fixing homotopy in
We(1(0)) (= We(12(0))),
(iv) Sy Hy = Hf,, o 3§ 0), and
(v) v+ HS(&) is continuous on the space of paths v whose image lies in a fixed local
We-leaf, uniformly on &.

We say that the c-holonomy is product type if HJ depends only on the endpoints of
7v; when this is the case, we denote HJ by H;(O)’,Y(l). In particular, if the leaves of W¢
are simply connected, then any c-holonomy is product type. Note that H¢ holonomy is
always product type when restricted to paths in the local W¢-foliation of any W¢-foliation
box B. We will denote by H;ﬁf the c-holonomy in B determined by a path from z to
y lying in the local leaf of W¢ in B. For short, we will refer to “local c-holonomy” and
use the notation Hg , when x and y lie in the same local W*leaf. Properties (i) - (iii)
of c-holonomy imply that c-holonomy is determined by local c-holonomy. The existence
of c-holonomy is equivalent to the existence of an F-invariant foliation (with potentially
nonsmooth leaves) of £ whose leaves project to W€ leaves in M if the holonomy is product
type, the c-leaves for § project homeomorphically to c-leaves for f; more generally, the
projection is a covering map.

We now state our general invariance criterion. Let § : &€ — & be a continuous diffeo-
morphism cocycle on a fiber bundle &€ — M. For % € {s,u,c}, we say that § admits *
holonomies over X C M if it admits local *-holonomies Hj , for every pair z,y € X.
Recall that a set X C M is x-saturated, x € {s,cs,c,cu,u} if it consists of entire leaves
of W* and essentially x-saturated if X coincides with some *-saturated up to zero volume
sets. Fix * € {s,u} and suppose X is a ck-saturated set over which § admits both x
and ¢ holonomies. We say that c-holonomy commutes with x-holonomy over X* if for any
We foliation box B, and two points x, 2’ € BN X lying in the same local W-leaf, we
have

* c,B _ c,B *
(3) HypoHyy=H,j0Hy,

where y is the point in BN X where the local W¢leaf of z intersects the local W*-leaf
of 2/, and %/ is the point where the local W*-leaf of  intersects the local W¢leaf of z’.

Let m denote the normalized volume measure on M, and let m be any probability
measure on & that projects down to m. A disintegration {m, : x € M} of m along &
fibers is c-invariant over a c-saturated subset X C M if the homeomorphism HYS pushes
M.y (o) forward to m., ) for every path 7 : [0,1] — W¢(y(0)). When X has full m-measure
we call the disintegration essentially c-invariant. Properties (i)-(iii) above imply that
c-invariance is equivalent to invariance under local c-holonomy.

Theorem 4.1. Fiz a diffeomorphism f € P(M). Let € be a fiber bundle defined over a
full measure, c-saturated subset O C M, and let § : £ — & be a continuous diffeomorphism
cocycle over flo. Assume that there exist cx-saturated, full measure subsets O C O, for
* € {s,u} such that § admits commuting ¢ and * holonomies in O°*.
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Let m be an §-invariant measure projecting down to normalized Lebesgue measure. As-
sume that the center foliation of f is leafwise absolutely continuous and that the fiberwise
Lyapunov exponents of § vanish m-almost everywhere. Suppose that m admits a disinte-
gration that is c-invariant over O°¢ = 0% N O,

Then m admits a disintegration that is continuous and *-invariant over O°¢ for all
x € {s,c,u}.

The conclusion means that (H} ,)«7i, = my for every z € O° and 2’ € W*(x) N O°.

4.2. Proof of the invariance theorem. Let us prove Theorem

Proof. Let {m$ : © € O°} be a c-invariant disintegration of 7 over the c-saturated set O°.
Consider any * € {s,u}. Clearly, m may be viewed as an F*-invariant probability measure
on £, with £¢ as a full measure subset. The hypothesis implies that the Lyapunov
exponents of §* vanish m-almost everywhere. Theorem [3.25| implies that m admits a
disintegration {m} : € O} that is x-invariant over a full m-measure subset O* C O*.
Since disintegrations are essentially unique, the set
Z ={x € 0°:mi =1m, =my}
has full m-measure. We will combine this fact with the leafwise absolute continuity as-
sumption, to obtain the conclusion of the theorem.

Let XS, A%, A" denote the Riemannian measures on the leaves of W¢, W< W
through any point z € M. All three foliations are leafwise absolutely continuous, by our
assumption and Lemma Leafwise absolute continuity of W¢ and W€ implies that

Z meets Wy in a set of full Aj-measure and meets W,* in a set of full AJ*-measure, for

almost every p € O°. Starting with the c-invariant family of measures mS on ngloc

define a family of measures v¥ on Wﬁs’loc by pushing 7S around by (local) s-holonomy.
This family is s-invariant, of course, and the assumption that the H¢ commutes with H*
ensures that it is also c-invariant. Since g = my for Aj-almost every x € W;;’IOC and

Ty is s-invariant and the restriction of W* to Wy® is absolutely continuous, we also have

U — 58 cs cs,loc U U cs
vy = my for AP¥-almost everywhere z € W, Then vy = my; for A7’-almost every on

T € W;S’loc because Z intersects the center-stable leaf on a full measure subset.

The intersection of O with the center-stable leaf also has full Aj*-measure, since O
is a u-saturated full m-measure subset of M and W" is absolutely continuous. Restricting
vy to this intersection and then pushing it around by wu-holonomy we extend v to a u-
invariant family on a whole neighborhood V' of the point p inside O®. The fact that
H¢ commutes with H" ensures that this extension remains c-invariant. Moreover, vY is
continuous, because of the continuity property (v) in the definition of holonomies. Finally,
since v, = My for A\j’-almost every z € W;* and m" is u-invariant and W*" is absolutely
continuous, we have vy = m} for m-almost every « € V. This also shows that v defines
a disintegration of m restricted to V'



ABSOLUTE CONTINUITY, LYAPUNOV EXPONENTS AND RIGIDITY II 25

In just the same way, we construct a continuous, c-invariant, and s-invariant disinte-
gration vy of the measure 7 restricted to a neighborhood V7 of p inside O®. Since dis-
integrations are essentially unique, these two continuous disintegrations v and v must
coincide at every point in the intersection V), of the domains. So,

My = Vy = V)
defines a disintegration of m as in the conclusion of Theorem [A.1]locally, on a neighborhood
Vp of p inside O°. The global definition is obtained by covering O¢ with such neighbor-

hoods. Continuity ensures that local definitions agree on the intersection of their domains.
The proof of the theorem is complete. O

4.3. An invariance theorem on open accessibility classes. There is an analogue of
Theorem for su-saturated sets — that is, accessibility classes — in place of c-saturated
sets.

Theorem 4.2. Fiz a diffeomorphism f € P(M), and suppose that f has an open acces-
sibility class U # (. Let p =m( : U), and fiz £ > 1 such that f(U) =U.

Let m: £ — M be a fiber bundle and let § : £ — & be a continuous diffeomorphism
cocycle over f admitting commuting ¢ and * holonomies.

Let [i be an F-invariant measure projecting down to p. Assume that

(1) p has Lebesque disintegration with respect to the partition
wenU :={WinU:zeU},

(2) the fiberwise Lyapunov exponents of § vanish [i-almost everywhere, and
(8) @i admits a disintegration {fi, : x € U} that is c-invariant over U, meaning that
for allz € U and 2’ € W¢

Joc:

(HE o)l = fiar-

Then fi admits a disintegration that is continuous and x-invariant over U for all x €
{s,c,u}.

Proof. The proof is the same, except we are in the simplified situation where O = M, and
we use Theorem [3.26] in place of Theorem [3.25 U

4.4. Center leaf fiber bundles. We describe a construction that will be used at some
key places in this paper. Let B be a topological space and N be a manifold. A continuous
fiber bundle with fiber N and base B is a continuous surjective map w : F — B together
with a family of homeomorphisms g, : Uy x N — 77 1(U,) (called a m-adapted atlas), where
{U,} is some open cover of B and every 7 o g, coincides with the canonical projection to
the first coordinate.

Proposition 4.3. Suppose that f € P(M) admits global su-holonomy. Then there exists
a continuous fiber bundle m : £¢ — M and a second projection map p : £¢ — M with the
following properties:

(1) p sends each E$ = 7w~ 1(z), x € M homeomorphically onto W¢;
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(2) the fiber bundle £ admits a canonical continuous section sending each x to p~!(z)N

ES;
(3) there is a canonical continuous map § : E¢ — E¢ satisfying moF = fonw and
pold =fop;

(4) the fiber bundle admits F-invariant stable, unstable and center foliations F*, x €
{s,u,c} projecting under 7 to the corresponding foliations W* in M. The u and s
holonomies are C' and commute with ¢ holonomy.

Proof. Let £¢ = {(x,y) C M x M : y € WS} and take 7 and p to be the first and second
coordinate projections. The topology on £€ is induced by the m-adapted atlas defined as
follows. Given any z € M and w in a small neighborhood U of x in M, define y to be
the point in Wy’ loc quu’loc and z to be the point in W;f loc Wf,jloc. Notice that y and z
depend continuously on w. Then hy = hy , o h3 , is a homeomorphism from Wy to Wy
that depends continuously on w. It follows that

gov U X WE = 77 HU),  (w,w') = (w, hy (W)

is a homeomorphism mapping each vertical {w} x W¢ to 7~ !(w). This proves that £°
is a continuous fiber bundle. It is clear that every fiber 771(z) = {2} x W¢ is mapped
homeomorphically to W¢ by the second projection p, as claimed in (1). The diagonal
embedding M — & defines a section as in (2), and the map § := (f, f) : £ — £° is a lift
of f as in (3). For each fixed z € M and y € W¢, the set

f(sx,y) = {(xlvy/) ‘ a’ e W;7 y/ € W:j N ch/},

is a continuous submanifold of £¢, and these submanifolds form an §-invariant stable
foliation that projects down to the stable foliation of f. Analogously, one obtains an
§-invariant unstable foliation FY.

To obtain a center foliation we set, for (z,y) € £
(Cx,y) = {($/7y) ’ S W:i}
Clearly the foliation F¢ is §-invariant and the leaves of F¢ project to the leaves of W¢.

The stable and unstable foliations of § define x-holonomy, of product type, for the
diffeomorphism cocycle:

Hy,:& — &, xandy in the same leaf of W*

for either x € {s,u}. Furthermore, for every x and y in the same local center leaf, let
HE, & — & be the map defined by po Hf = p, where p is the second projection
associated to §. It is clear that this c-holonomy is §-invariant and commutes with both
s-holonomy and w-holonomy. O

Lemma implies that any f € Pg,(M) admits global su-holonomy. In this context,
we obtain the following.

Theorem 4.4. Let M be a closed Riemannian manifold of dimension d > 3, and let
f € Pap(M). Let w:E° — M and projection p: E¢ — M be given by Theorem .
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Then for every subset U C M of positive measure, there exists a probability measure
my on E¢ with the property that for every measuable A C M :

m(U N A)

Ty (A) =m(A:U) = @)

and for m-almost every x € U,
Py =me( : U),

where {m¢, : x € M} is any disintegration of m along W€ leaves, and {(mf,), : © € M} is
any disintegration of my along E¢ fibers.

If U is f-invariant, then my is §-invariant, and the Lyapunov exponents of the dif-
feomorphism cocycle § with respect to my coincide almost everywhere with the center
Lyapunov exponents of f|U with respect to m.

Proof. Let {m$, : x € M} be a disintegration of m along center leaves, and let m be the
measure defined on £¢ by re-integration (recall p(€S) = WE):

(4) my(E) = / mS(p(E) : U)dm(z : U) for every measurable set E C E°.
X

In other words, m projects down to m(- : U) under 7 and admits {mS(-: U) : x € M} as
a disintegration along the fibers of £°¢.

It is also clear that /iy is §-invariant if U is f-invariant and that the Lyapunov expo-
nents of the diffeomorphism cocycle § with respect to my then coincide with the center
Lyapunov exponents of f O

Theorem 4.5. Let M be a closed manifold of dimension d > 3, and let f € Pg,(M).
Suppose that W€ is leafwise absolutely continuous and the center Lyapunov exponents of f
vanish m-almost everywhere. Then m admits some disintegration along center leaves that
s continuous and invariant under the holonomy maps of both the stable foliation and the
unstable foliation of f.

Proof. Let {m$ : x € M} be a disintegration of m along center leaves, and let m be the
measure given by Theorem with U = M. The Lyapunov exponents of the diffeomor-
phism cocycle § coincide with the center Lyapunov exponents of f and so, by assumption,
they vanish almost m-everywhere. Hence, we may use Theorem (with O = M) to
conclude that 7 admits some disintegration {r/, : * € M} along the fibers that is con-
tinuous and invariant under all three holonomies. By essential uniqueness, p.m, = m:, at
m-almost every point. Each 7, is a probability on £ and the property of c-invariance just
means that x — m, is constant on each center leaf. It follows that {m, = p., : x € M}
defines a continuous disintegration of m along center leaves. Finally, s-invariance and
u-invariance of {m, : © € M} translate to invariance of {m, : x € M} under stable and
unstable holonomy maps. The proof of the theorem is complete. O

Remark 4.6. The leafwise absolute continuity hypothesis is actually necessary in Theo-
rem
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Since for one-dimensional center, absolute continuity implies zero central exponents,
the following statement is contained in Theorem

Corollary 4.7. Let f : M — M be any element of ’Pfllb(M) whose center foliation is
absolutely continuous. Then m admits a disintegration along center leaves that is contin-
uwous and invariant under the holonomy maps of both the stable foliation and the unstable
foliation.

The next result addresses the case where f € Pg, (M) has a nontrivial open accessibility
class, in particular when f is accessible.

Theorem 4.8. Let M be a closed Riemannian manifold of dimension d > 3, and let
f € Pan(M). Suppose that there exists an open accessibility class U # O of f and that
the center Lyapunov exponents of f on U wvanish, m-almost everywhere (equivalently, on
a positive measure subset of U). Fixz £ > 1 such that fY(U) = U. Let w,p: £ — M, and
w =y be given by Theorem [{.4)

Then fi admits a F -invariant disintegration {fi5* : x € U} along the fibers of £¢ that is
invariant under s- and u-holonomies and continuous in x € U.

Proof. Let p = m( : U) = w1, and note that f* is ergodic with respect to jp. Let
{ps : © € M} be a disintegration of v along center leaves, and note that the disintegration
of fi along Efibers satisfies pyfi, = pS, for p-almost every z € U.

Note that the Lyapunov exponents of the diffeomorphism cocycle F with respect to fi
coincide with the center Lyapunov exponents of f|r7, which by ergodicity are constant
p-almost everywhere.

If the central exponent of f is zero on U, then the exponents of ¢ vanish fi- almost
everywhere. Theorem then gives a continuous disintegration {45 : x € U} of [i over
U that is invariant under both s-holonomy and w-holonomy. U

We deduce a complete converse to Theorem [£.5] when the center leaves are compact and
have dimension 1 (the statement does not extend to higher dimensional center foliations):

Corollary 4.9. Let M be a compact Riemannian manifold of dimension d > 3, and let
[ € Pl (M). Then the following are equivalent:

(1) W€ is leafwise absolutely continuous and the center Lyapunov exponent vanishes
m-almost everywhere;

(2) there exists a disintegration {mS : x € M} along center leaves satisfying the con-
clusions of Theorem [].5]

(3) for any disintegration {my : x € M} of m along center leaves, the measures my
and N\, are equivalent for m-almost every x.

Proof. Theorem [4.5]states that (1) implies (2). Lemma [3.19] gives that (2) implies (3). To
prove the remaining claim, suppose that (3) holds. Let {mS : x € M} be a disintegra-
tion of m along center leaves. The hypothesis that AS is equivalent to mS for p-almost
every x contains the conclusion that W€ is lower leafwise absolutely continuous. It also
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contains upper leafwise absolute continuity and, as observed in Remark this implies
the conclusion that the center Lyapunov exponent vanishes almost everywhere. O

Corollary 4.10. Let M be a compact Riemannian manifold of dimension d > 3, and let
[ € Pl (M). Then one of the following alternatives holds:

(1) W€ is upper leafwise absolutely continuous and the center Lyapunov exponent van-
ishes m-almost everywhere;

(2) the center Lyapunov exponent vanishes m-almost everywhere, and there exist A,
Z C M with m(A) > 0 and m(Z) = 0, such that, for every x € A, the leaf WS
meets Z in a set of positive A -measure;

(3) the center Lyapunov exponent does not vanish m-almost everywhere, and there is
B C M with m(B) > 0 that meets every leaf WS in a set of \S-measure zero.

When f is ergodic the sets A in (2) and B in (3) can be taken to have full measure.

Proof. The case when the center exponent vanishes almost everywhere and the center
foliation is upper leafwise absolutely continuous is alternative (1), of course. Suppose the
center exponent vanishes almost everywhere, but the center foliation is not upper leafwise
absolutely continuous. By definition, the latter means that there exists a zero volume
measure set Z that intersects WS on a positive Lebesgue measure subset, for all x in some
positive volume measure set A. This gives (2). Next, let B be the set of points where the
center Lyapunov exponent is different from zero and suppose B has positive volume. As
observed in Remark B must intersect every center leaf on a zero Lebesgue measure
subset. This gives alternative (3). Finally, up to replacing Z by the union of its iterates,
we may assume right from the start that Z is invariant under f. Then the set A of points
whose center leaves intersect Z on a positive Lebesgue measure subset is also invariant. It
is clear from the definition that B is also invariant under f. This implies the statements
for the ergodic case. The proof of the corollary is complete. O

5. HOMOGENEITY: A TOOL FOR ESTABLISHING SMOOTHNESS

Let P be a manifold without boundary. We say that a subset N C P is C" homogeneous
in P if for any two points p,q € N, there is a C" local diffeomorphism of P sending p to
q and preserving N. C'-homogeneous subsets of a manifold have a remarkable property:

Theorem 5.1. ([31], see also [36] ) Any locally compact subset N of a C* manifold P that
is C1 homogeneous in P is a C' submanifold of P.

For any integer k > 2, any C* homogeneous, C* submanifold of a C* manifold is a C*
submanifold.

The following proposition is an easy corollary of Theorem

Proposition 5.2. Let P be a manifold without boundary, and let F be a foliation of P.
Suppose that for some k > 2 and every p,q € P there exists a C* diffeomorphism sending
p to q and preserving the leaves of F. Then F is a C*~1 foliation with uniformly C*
leaves.
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Proof. Suppose that the leaves of f are m-dimensional. The hypotheses imply that the
tangent bundle T'F, viewed as a section of the Grassmann bundle of m-planes over P, is
C*=1 homogeneous. Theoremimplies that TF is C*~1, which gives the conclusion. [

We state and prove our first application of Theorem to fibered systems.

Proposition 5.3. Let M be a closed Riemannian manifold of dimension d > 3, and let
f € Pan(M). Suppose that there exists an open accessibility class U # O of f and that
the center Lyapunov exponents of f on U wvanish on a positive measure subset of U. Let
pw=m( :U), and fix £ > 1 such that f*(U) =U.

Let i := my be given by Theorem and let {p3* © x € U} be the & -invariant,
su-holonomy invariant, disintegration of i given by Theorem [{.8

Then for any x € U, the set supp it Np~Y(U) C EENp~L(U) is C! homogeneous. In
particular, for any £,& € p~H(U) N ES, there is an orientation-preserving, C* diffeomor-
phism He ¢ E5 — ES (a composition of s,u and ¢ holonomies in £¢) with the following
properties:

(1) Heg(§) = €

(2) (Heer)sity" = fig";

(3) if €& € supp f13", then He e (supp i) = supp iz
(4) if [ is r-bunched, then He ¢ is a C" diffeomorphism.

Proof of Proposition[5.3. Note that Pxfly" = pg for every y € supp pg and p-almost every
x, because p,fi5"* = u& almost everywhere, 5% is continuous in z, and pu$ = mS( : U) is
constant on every center leaf.

Fix # € U, and let 2,2’ € U be the p-projections of ¢,¢&" € p~(U). Since U is an open
accessibility class, there is an su-path v in U connecting z to z’. Since m maps leaves of
F* homeomorphically to leaves of W*(f), for * € {s,u}, we can lift v to an su-path in £°
connecting n = (2,2) ton = (/,2'). Let H : £, — £S5 be the su-holonomy map along this
su-path. Then H sends 7 to n’ and, since the disintegration {4s* : x € M} is invariant
under su-holonomy, it maps fi, to fiz.

Suppose first that = € supp S (this holds p-almost everywhere). Then the condition
¢ € supp jiy N p Y (U) means that z € supp ué N U, which implies pyji, = ps = pufis-
Analogously, 2’ € suppul NU and pyfiy = p§ = pifiy. Identifying the fibers £F,E5 to
&y through c-holonomy in £¢, we obtain a homeomorphism H¢e : £, — &, satisfying
properties (1)-(3).

The assumption on z is readily removed, as follows. Given any z € U let xy be any
point such that zg € supp pg, MU, and let v be an su-path in U connecting z to xg. The
su-holonomy Hy : & — &, along the 7-lift of v maps supp fi; to supp fig,. Let &y, & be
the images of &, &’ under Hy. Conjugating H, €0,6) by Hy we obtain a homeomorphism Hg ¢/
satisfying conclusions (1)-(3).

Since f is partially hyperbolic with 1-dimensional center it is center bunched, and so
the (globally defined) su-holonomy maps between W¢(f) leaves are C'. This implies that
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Heeris a C' diffeomorphism. Moreover, if f is r-bunched, then so is f, and the leaves
of W(f) and all holonomies are C"; in this case H¢ ¢ is a C" diffeomorphism, verifying
property (4). O
Corollary 5.4. For f € Pan(M), U and {a3" : © € U} as in Proposition the set
X, = supp 2t Np~1(U) is a C' submanifold (possibly 0-dimensional) of E$ N p~t(U).
The connected components of X, are diffeomorphic to each other, and for all x,y € U,
X is diffeomorphic to X,.

Proof. Proposition hows that for € U, the support of 3% is C'! homogeneous in
U, and so Theorem implies that it is a C! submanifold. Since any two points in U
are connected by an su-path, for z, 2’ € U, the support of 45 is C! diffeomorphic to the
support of i} O

We specialize to the 1-dimensional fiber case.

Theorem 5.5. For f € P}, (M), U and {i5" : x € U} as in Pmpositz’on either the
disintegration of 1 is atomic, or 13" projects to a measure on M with continuous density
A onWeNU.

Proof. (See [6l, Section 7.1]).

The support of 43" is either finite for all z € U or equal to p~H(U)NES. Suppose that
supp (454) = p~H(U) N &,, for all z € U.

For x € M, denote by A, the Riemannian measure on the fiber £, and denote by
B(&,r) the balll in &S centered at & of radius r, with respect to the p-pullback metric of
the Riemann structure on W¢(f),.

Lemma 5.6. For each x € U, the measure 5% is equivalent to the restriction A [p~1(U) N WE.

The limit i (B(E, )
_ i He\ DS, 7))
Aa(6) = lim T

exists for every x € U and ¢ € p~Y(U) N &S, is continuous in both x and &, and takes
values in (0,00).

Proof. For z € U and £ € E£Np~1(U) let
2, (6) = limsup L2BET) oy g B2 (BET))

r—0 A(B(§r) T r=0 Ag(B(& 7))
For ji,-almost every £ € £, we have

Az (§) = A,(8) € (0,00

Since supp (f5*) = p~1(U) N &S, Proposition implies that for any two points &, & €
U N &S, there is a diffeomorphism He g : E5 — EF preserving 5" and sending & to &
Since C' diffeomorphisms have continuous and positive Jacobians, it follows that for any

§&ep HU)NE:
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Thus A, = A, everywhere on £ N p~!(U); denote this function by A,.

Then 2" has a singular part with respect to A, if and only if there is a positive ji2"-
measure set X C p~1(U)NES such that, for £ € X, A,(€) = co. On the other hand, again
using the diffeomorphisms Hy ¢ we see that for every &,& € p~1(U) N ES:

Ar@) =00 > AE)=oc.

Hence if 43" had a singular part with respect to ., this would imply that A, = oo on
&S, contradicting the local finiteness of 5"*. Therefore 5" is absolutely continuous with
respect to A\,. Similarly, we see that )\, is absolutely continuous with respect to 5", and

so the two measures are equivalent.

For x € p~1(U), the function A: E$ N p~H(U) — (0,00) is a pointwise limit of the
continuous functions X
» (B r))

g
ST BED)

and hence is a Baire class 1 function; it follows that A has a point of continuity [26]
Theorem 7.3]. Again using Proposition we see that every point in p~!(U) is a point
of continuity of A, and so A is continuous on U. g

Recall that for almost every x € M, we have p, ;" = p,, where p, is a representative
of the disintegration of p =m( :U) on W(f),. The previous lemma thus implies that
pefis? is equivalent to Lebesgue measure on U N WE(f),, for almost every x.

O

6. CIRCLE BUNDLES: PROOFS OF THEOREMS [A] [B] AND [C]

6.1. Proof of Theorem @. Let M be a closed manifold of dimension d > 3, and let
f € P&, (M). We first prove part (1), which has no accessibility assumptions.

Proof of part (1) of Theorem |C| (Compare [6, Section 7.2].) Since W€ is absolutely
continuous and one dimensional, the center Lyapunov exponents for f vanish m-almost
everywhere [34]. Theorem then gives a continuous disintegration {m¢ : x € M} that
is invariant under W?* and W* holonomy in M.

Let 1, be the continuous flow on M tangent to the leaves of W¢ and uniquely defined
by the condition

my ([y:9:(y))°) =t mod 1,

forall z € M, y € WS and t € R, where [p, ¢)¢ denotes the oriented arc between p and ¢
on Wy. Note that 111 = 9t, so ¢ in fact defines an action of the circle R/Z on M.

The invariance properties of m$ translate into invariance properties of the flow:

e iy commutes with f, and
e 1, commutes with u, s and ¢ holonomy.

Lemma 6.1. The flow ¢ preserves the volume m.
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Proof. Fix t € R, and write dm = dm$ dm(x), where m is the projection of M to the leaf
space B = M /W€ Since v is tangent to the leaves of W, we have that (¢).m = m. For
any p, q € W¢ sufficiently close, we have:

mg ([p, ¥e(p)]°) + mG ([Ve(p), ¥e(@)]°) = mg ([p. a]°) + mg (la, ¥e(a)]%) ;
from the definition of vy, it follows that

mg ([vi(p), ¥e(q)]) = mg ([p, 4l°),

so that (i).mS = m$. Since dm = dmS dm(x), we obtain that ¢y preserves m.

Fix t € R. Since W¢(f) is leafwise absolutely continuous, and 1; is C! along the leaves
of W¢(f), the map 1, preserves the measure class of m. Hence 1y has a Jacobian with
respect to volume:

d *
Jac() = W),
Since 1y o f = f o1y, it follows that Jacyy,(f(t)) = Jac(ys;). This immediately implies that
(Yr)sm = m. O

Lemma |3.19| implies that the densities
A(x) = dmg /d\|we
vary continuously in . Thus we have a continuous vector field X on M given by
_ Xo(z)
A(z)”’

where X is the positively oriented unit speed vector field tangent to the W¢fibers of M.
The vector field X generates the flow 1);, and so v is C'! along the fibers of W°¢.

X (x)

The analogous properties holds for the vector field X; in particular:

e X is preserved by D f,
e X is preserved by the derivative of u, s holonomy.

To show C'*° smoothness along the leaves of W€ one first must establish that the leaves
of W¢ are C®°. A priori, these leaves have only finite smoothness determined by the C*
distance from f to ;. However in the case under consideration, in which volume has
Lebesgue disintegration along W¢ leaves, we have more information about the action of f
on center leaves.

In particular, since Df preserves a nonvanishing vector field X, it also preserves a
continuous Riemannian metric along the leaves of W°. Lemma [3.23] implies that the
leaves of W W and W¢ are C*°, and the W?*-holonomies and WW*-holonomies between
We¢-leaves are also C°.

Lemma 6.2. Assume that f is accessible. Then the function A given by Lemmal5.6 is C™
along leaves of W€, with derivatives varying continuously from leaf to leaf. Consequently
X is C™ along the leaves of W€, as is the flow .
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(&
x>

Proof. Fix x € M. For any y € WY and any diffeomorphism h of WY preserving m

have
Ay)
5 A, (h(y)) =~
) () = Fomtioe
If h is C*°, then so is the Jacobian Jac(h). Consider the graph of A,:
graph(Az) = {(y, A(y)) : y € Wy} C Wi xR
Since the function A is continuous, graph(A,) is locally compact. If h is an mé-preserving

C* diffeomorphism, then implies that the C*° diffeomorphism

(0:8) > (). o)

we

preserves graph(A,).

Combining this observation with accessibility of f and the fact that f admits global
su-holonomy, we obtain that for any pair of points ¢ = (y,A.(y)) and ¢’ = (v, AL(vy"))
in graph(A,), there is a C*° diffeomorphism of WS x R sending ¢ to ¢’ and preserving
graph(A;). That is, the locally compact set graph(A,) is C* homogeneous. Theorem
implies that graph(A,) is a C*° submanifold of WS x R. Thus A, is C* off of its
singularities (by “singularities,” we mean points where the projection of graph(A,) onto
WE fails to be a submersion). But if A, has any singularities, then it is easy to see that
every point in WS must be a singularity, which violates Sard’s theorem. Hence A, has no
singularities and therefore is C°°.

To see that the derivatives of A, vary continuously as a function of x, note that one
can move from the leaf WS to any neighboring leaf by a composition of local W" and W?*
holonomies. The derivatives of these holonomy maps very continuously with the fiber.
Equation implies that the fiberwise derivatives vary continuously. O

Proof of part (2) of Theorem

Proof. Let w,p: €6 — M, and pu := iy be given by Theorem[£.4] Denote by x¢ the central
exponent of § with respect to fi.

The case of nonvanishing exponents Suppose that x¢ # 0. Let
X ={zeU:x(z)=x"},

which is a full measure subset of U. Let X = p~!'(X), which is the set of £ € p~}(U)
where the fiberwise exponent of § is equal to x°.

Then [6, Theorem 4.1] implies that X’ coincides, up to zero fi-measure, with a measurable
set YV C £° meeting almost every fiber £, x € U in finitely many points. Setting ¥ =
p(Y) C U, we obtain a full measure subset of U that meets W, for almost every z € U,
in finitely many points. Hence case [2a] holds in Theorem [C]

The case of vanishing exponents
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If the central exponent of f is zero on U, then the exponents of F* vanish ji- almost
everywhere. Theorem then gives a continuous disintegration {45" : x € U} of fi over
U that is invariant under both s-holonomy and w-holonomy.

Theorem implies that either the disintegration of p is atomic or {i3* : = € U}
projects to a continuous disintegration {uS = p.(5*) : x € U} of p with continuous
density A on U. If the disintegration of u is atomic, then conclusion (a) holds.

In the latter case, arguing exactly as in the proof of part (1) of Theorem |C| we define
a flow vy on M such that

e 1), is supported in U and is tangent to the leaves of W€,
e 1), is generated by a nonsingular vector field X,
o (y)eps = us, forall z € U.

Now consider the action of ¢, on a smgle leaf WS. If UNWE # WE, then restricting ¢ to a
connected component of UNWS # WS, we obtain an open mterval I c W with pS(1) <1
with a pS-preserving nonsingular flow. This is impossible, and hence U N WS = WE, for
all z € U. Since f admits global su-holonomy, the accessibility class U must meet every
leaf WS. We thus conclude that f is accessible, and so conclusion (b) holds. O

6.2. Proof of Theorem Let M be a 3-manifold, and suppose that f € Diff(M) is
partially hyperbolic and preserves a foliation by C! circles. Bohnet proved ([7]; see also

18 14]) that there is a finite cover (at most 4—fold) M of M such that the lifts of E¥, E
to M are orientable, a lift fe lef(M) of f, and a fibration 7 : M — T2 such that
Tof = Aom, where A € SL(2,Z) is hyperbolic. The fibers of 7 are the leaves of the
foliation WC, which is the lift of W¢. In particular, the lift f on M is a ﬁbered partially
hyperbolic system. Henceforth, we assume that M = M f=f, and W= we.

Assume the center is absolutely continuous. Then part (1) of Theorem |C| gives a flow
1y that is C' along the leaves of W¢. We show v is smooth. Note that we are not
assuming accessibility here, but we will use in an essential way the assumption that M is
3-dimensional.

The first step is to establish the smoothness of the foliation W°¢.

Proposition 6.3. Let M be a 3-manifold, and let f € Pgp(M). If W€ is leafwise absolutely
continuous and the center Lyapunov exponents of f vanish m-almost everywhere, then YW

158 C°°.

Proof. As noted above, since D f preserves the nonvanishing vector field X, Lemma [3.23
implies that the leaves of W (f), W(f) and W¢(f) are C*°, and the W?*( f)-holonomies
and W"( f)-holonomies between W¢( f)-leaves are also C°.

We next verify that the restriction of W€ to W¢-leaves and to W<-leaves is C'*°. Both
items will follow from the fact that W¢°holonomy preserves the disintegration of volume
along W* and W?* leaves.

The following lemma is well-known (see formula (11.4) in [§]):
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Lemma 6.4. For any foliation box B C M for W?#, there is a continuous disintegration
of m|p along leaves of W* (defined at every point p € B). These disintegrations are
equivalent to Riemannian measure in the W* leaves. The densities of the disintegrations
are C*° along leaves and transversely continuous. The same is true for YWU.

Lemma 6.5. For any foliation box B, any t € R, and any p € B, the time-t map 1, sends
the disintegration my of m | B along W* leaves at p to the disintegration mzt(p) of m|y,(5)
along W? leaves at (p).

Proof. Denote by {mj : p € B} the disintegration of m along W?(g) leaves inside the box
B. By Lemma @ the map p ~ mj) is continuous.

Fix t € R. Restricted to a W? leaf, ¢ is the YW¢-holonomy map between that leaf and
its image. Since v; preserves both m and the leaves of W?* | we obtain that

(6) ey = M)
for m-almost every p € M, where the disintegration on the right hand side takes place in

the box ¢ (B). Since p — my is continuous (on both sides of the equation) and ¢ is a
homeomorphism, equation @ holds everywhere.

Since t was arbitrary, this shows that between any two W?#-leaves, the WW¢-holonomy
map preserves conditional densities. O

Lemma 6.6. For everyt € R, the map 1, is uniformly C* along W?# leaves and uniformly
C*> along W* leaves.

Proof. Lemma [6.5] implies that 1, satisfies an ordinary differential equation along W?*
leaves with C'™ coeflicients, and so the solutions are C'™ and vary continuously with the
leaf. O

Returning to the proof of Proposition we have just shown that the WW°-holonomy
maps between W?-leaves and between W"-leaves are uniformly C*°. Applying Proposi-
tion [3.22| completes the proof of Proposition [6.3 O

Remark 6.7. For a general f € Pgp, (M), it is possible to show by similar methods that if W¢
is leafwise absolutely continuous and the center Lyapunov exponents of f vanish, then W¢
satisfies the stronger property of being absolutely continuous with bounded Jacobians: the
center holonomy maps between any two smooth transversals have Jacobian with respect
to volume that is bounded above and below.

6.2.1. The conjugacy is as smooth as the foliation. Finally, we prove
Proposition 6.8. Let f € Pfllb(M), where dim M = 3. If W¢ is a C*° foliation, then f

is C*° conjugate to a circle extension of a volume preserving Anosov diffeomorphism.

Proof. the assumption that W€ is C*° implies that the bundle projection M — B = M /W*
is C*°. Using the C'*° flow v, we endow this bundle with a T-structure on the fibers in
which f acts as a translation on the fibers.
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To this end, let {U,} be an open cover of B, and let hy : U, x St — 77 1(U,) be C®
foliation charts for M — B. Define new charts hy : Uy x T — 71 (U,) by

ha(b,t) = i (ha(b,0)).
Note that if U, N Ug is non-empty then

hgohyl: (UyNUs) x T — (Uy NUg) x T

is of the form hg o hy'(b,t) = (b,t + 04,), which gives B the structure of a T bundle
over B. Since f commutes with 1), these charts, f acts by a translation on the T-fibers,
projecting to a diffeomorphism f: B — B.

Write dm = mg dm(z), where {m : x € M/W¢°} is the smooth disintegration of m
along W€ leaves, and m is pushforward of m under M — B. Clearly the map f is a C
Anosov diffeomorphism, preserving m, which is smooth measure on B. O

This completes the proof of Theorem [C] We end this section with some remarks about
the case where center exponents vanish and atomic disintegration holds.

6.2.2. Remarks about atomic disintegration. Suppose f € P&b(M ) is accessible and the
center Lyapunov exponents vanish. In the case of atomic disintegration, one can show
(using similar methods to the Lebesgue disintegration case) that there is a C! volume-
preserving homeomorphism t: M — M commuting with f such that ¢* = id, where k
is the number of atoms in the disintegration. Thus typically one should expect that the
number of atoms to be 1 (one can make this notion of typicality precise using codimension
arguments). One might ask where this atom lies in W¢.

Lemma 6.9. If k =1 then my = 6, for every y € M.

Proof. Let my = d4(,). By definition mg = m, for m-almost every w, that is, for y-almost
every leaf and mS-almost every point in the leaf. In particular, for p-almost every leaf we
have mg = my = d4(,) for some point x in the leaf. Since mg is a disintegration, the point
Z = ¢(x) depends only on the leaf. Then E = ¢(M) is a full m-measure set, because it
has full mg-measure on almost every leaf, restricted to which m, = §,. In particular, F is
dense, and so, by continuity, m, = d, for every y. O

More generally, we have:

Lemma 6.10. There exists y — (y1 =y, Y2, ..., Yx) continuous with y; # y; for all i # j
such that my, = ¢ Z§:1 dy; -

We can then prove the assertion above, which is the following proposition.

Proposition 6.11. Let M be a closed manifold of dimension at least 3, and let f €
Péb(M ). Suppose that f is accessible and that the center Lyapunov exponents vanish
almost everywhere. If the disintegration of volume is atomic along W€, with k > 1 atoms
per W€ leaf, then there exists a homeomorphism : M — M, commuting with f and fizing
the leaves of W€, such that Y% = id.

If dim M = 3, then 1 is a C'*% diffeomorphism, for some a € (0,1).
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Proof. Let y — (y1 = y,y2,-..,Yx) be given by the previous lemma, and let ¢ : M — M
be defined by ¥ (y1) = y2 (cyclically). Then ¢ is a homeomorphism, it commutes with f, it
fixes the center leaves, it preserves volume. Moreover, it is C1T® on center leaves, because
center bunching implies that the J"holonomy is C'*® on W leaves, and the WS-
holonomy is C'*t® on W¢ leaves. The graph of 1 is C''*®-homogeneous and is therefore
Cl-i—oz. O

Finally, we remark that if f € P} (M) has an open accessibility class U ¢ {0, M}, and
the exponents of f vanish on U, then the atomic disintegration {mS : x € U} of m|y has
the property that for every x € M, every interval in U N WS contains exactly one atom.
This implies in particular that U NW consists of finitely many intervals (the number does
not depend on x), each with the same mass in the disintegration of volume. The details
of the argument are left to the reader.

6.3. Proof of Theorem Let M be a 3-manifold, and suppose that f € Diff(M) is
partially hyperbolic and preserves a foliation by C?! circles. As in the proof of Theorem
after taking a finite cover, we may assume that f € Pgp(M). Then Theorem [B| follows
immediately from case (ii) of Theorem

7. HIGHER CENTER DIMENSION: PROOF OF THEOREM

Here we prove Theorem

Let f € Pg,(M), and assume that f is accessible and that the center exponents of f
vanish. Let {mS} be a disintegration of volume along center leaves and 7: £¢ — M, p be
given by Proposition Let m be a measure on £°¢ with w7 = m and p,(my) = mS for
m-almost every x € M and any disintegration {1, : x € M} along fibers of £¢.

Let {m3" : x € M} be the continuous, holonomy-invariant disintegration of m given by
Theorem [.8] and for € M, let X, C £ be the support of m3". Since f is assumed to
be accessible, Theorem implies that X, is a C'*® submanifiold of £, for every z € M
and the connected components of X, are diffeomorphic to each other.

Lemma 7.1. For almost every x € M and every y € p(X,;), we have p«my = mg. That
is, pxy" is constant on p(Xz).

Proof. We start by noting that since m;" is a disintegration of m, we have that p,m3" =
mS and p(supp (m3*)) = supp (m$) at m-almost every point # € M. That is, for m-
almost every z, and mg-almost every y € Wy, we have p.m " = mg = mg and p(Xy) =
supp (my,) = supp (mg). Hence for m-almost every z and a dense set of y € supp (mg),

we have p.m," = mg and p(X,) = supp (mg). The left hand side of the latter equation

x
depends continuously on y € M, and the right hand side is constant on W¢. Thus
for m-almost every z and every y € supp (mg) = P(X;), we have p.n;* = mg (and

p(Xy) =supp (m$)). The lemma is proved. O
Lemma 7.2. For x,2’ € M, p(X,) and p(X,/) are either disjoint or coincide.



ABSOLUTE CONTINUITY, LYAPUNOV EXPONENTS AND RIGIDITY II 39

Proof. Suppose that for some z, 2" € M, we have p(X,) Np(X,/) # (. Using accessibility
and applying su-holonomy to X, and X,/, we may assume that x is m-typical, and by
Lemma in particular that for y € p(Xy), we have p.my" = mg. Thus for y € X, N Xy,
p(Xy) = p(Xz). Reversing the roles of x,z’, we obtain that p(X,) = p(X,), and so

p(Xz) = p(Xa'). O

The collection W := {p(X,) : # € M} is a continuous family of compact, C'*+
submanifolds on M, tangent to the leaves of YWW¢, and preserved by both s and « holonomies.
It is thus a foliation of M that subfoliates W°.

Lemma 7.3. The foliation W is leafwise absolutely continuous.

Proof. The proof is similar to the proof of Theorem

For x € M, denote by A, the Riemannian measure on X, and denote by B(&,r) the
ball in £ centered at & of radius r, with respect to the p-pullback metric of the Riemann
structure on W(f),.

Lemma 7.4. For each x € M, the measure mJ" is equivalent to the restriction Ay. The

limit o (B(ET))
m r
A, — lim 22—\ /)
© = B N(BE)
exists for every x € M and £ € X, is continuous in both x and £ € X, and takes values
in (0,00).

Proof. For x € M and £ € X, let
B,(6) = timsup 2 e A (€) = liminf

r—0 Az(B(€7))’ = r=0 A (B(§,7))
For m -almost every £ € X, we have

Ay (§) = A,(8) € (0,00

Since supp (") = X,, Proposition implies that for any two points £,& € X,,
there is a diffeomorphism He ¢ : X, — X, preserving 3" and sending & to &’. Since Ct
diffeomorphisms have continuous and positive Jacobians, it follows that for any &, & € X,

A6 =D0:(8) = ALE)=A(8).
Thus A, = A, everywhere on X,; denote this function by A,.

Then m;" has a singular part with respect to A; if and only if there is a positive mj"-
measure set B C X, such that, for £ € B, A,(§) = co. On the other hand, again using
the diffeomorphisms He ¢ we see that for every £, £ € X,:

Ay(§) =00 <= AL{¢)=o00.

Hence if m5"* had a singular part with respect to A, this would imply that A, = oo on
X, contradicting the local finiteness of mJ". Therefore mS" is absolutely continuous with
respect to A;. Similarly, we see that A, is absolutely continuous with respect to m3*, and
so the two measures are equivalent.
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For x € M, the function A,: X, — (0,00) is a pointwise limit of the continuous

functions

g (B(E, 7))
Ae(B(§;7))
and hence is a Baire class 1 function; it follows that A, has a point of continuity [26]
Theorem 7.3]. Again using Proposition we see that every point in M is a point of
continuity of x — A, and so A is continuous on M. 0

&

Now for almost every x € M, we have p,m3* = mS, and so Lemma [7.4] implies that
p«m3t is equivalent to Lebesgue measure on p(X,) = WS¢, for almost every x. Thus W

is leafwise absolutely continuous. O

Lemma 7.5. If f is k-bunched, for some k > 2, then the restriction of W to W¢-leaves
is uniformly C*=1,

Proof. Fix x € M and consider the leat W¢. The restriction of W to W¢ is a subfoliation
invariant under su-holonomy in M. Since f is k-bunched and accessible, the holonomy
acts C* and transitively on W¢. Proposition implies that W is a C*~! subfoliation
of We.

O

8. SYSTEMS WITH MOSTLY COMPACT LEAVES: PROOF OF THEOREM [E]

Let f be a C? volume preserving, partially hyperbolic, dynamically coherent diffeomor-
phism of a closed manifold M.

Theorem 8.1. Assume the center foliation of [ is leafwise absolutely continuous, the
center leaves are compact for all points in a dense G, and the center Lyapunov exponents
vanish m-almost everywhere. Then all leaves are compact and have bounded Riemannian
volume.

Before proving Theorem [8.1] we discuss some preliminary facts about the leafwise prop-
erties of foliations.

8.1. Foliations with the generic leaf compact. Recall that if F is a foliation of a
manifold M, then we say that the generic leaf of F is compact if there exists a dense G
subset C' C M such that for every = € C, the leaf F, is compact.

Lemma 8.2. Let F be a foliation of M with C* leaves. If the generic leaf of F is compact,
then there exists an open and dense, F-saturated set O C M restricted to which F is a

fiber bundle.

Proof. Consider the function ¢ : z +— vol(F,) assigning to each point the volume (pos-
sibly infinite) of the leaf through it. Since the leaves are a locally continuous family of
submanifolds, the function ¢ is lower semi-continuous:

lim inf vol(F,,) > vol(F,)
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for any sequence (z,,), converging to some point z € M. Hence, there exists a residual
subset R of M such that every x € R is a continuity point for ¢. Notice that ¢ is constant
on F-leaves and the set of continuity points is F-saturated. So, we may take R to be
F-saturated. Intersecting with the dense G5 in the statement, we may have assume that
every leaf through R is compact. Then F is a fiber bundle on an (open) neighborhood of
every leaf through R. The union of such neighborhoods is a set O as in the statement. [

Proposition 8.3. If f is partially hyperbolic, volume preserving, and dynamically coher-
ent, and the generic leaf of W is compact, then the set O in Lemma is f-invariant
and has full volume. Moreover, for almost every x € M the stable and unstable leaves of
x are contained in O.

Proof. Invariance follows replacing O by its f-orbit, if necessary. Now let i be an ergodic
component of the volume measure. The conditional probabilities along (local) unstable
leaves of the measure p and of the volume measure itself coincide p-almost everywhere.
This is because the o-algebra of measurable invariant sets is contained in the o-algebra of
measurable sets consisting of entire unstable leaves (cf. also [I, Lemma 6.2]). Since the
unstable foliation is absolutely continuous, it follows that for almost every ergodic compo-
nent p its conditional probabilities along unstable leaves are equivalent to the Riemannian
measure on the leaf. In particular, the support of almost every ergodic component is u-
saturated and, by a dual argument, s-saturated. It follows that the w-limit set of Lebesgue
almost every x € M contains some su-saturated set. Then the c-saturate of w(z) has non-
empty interior, and so it intersects the dense set O. Since O is c-saturated, open, and
invariant, it follows that x € O. This proves O that has full volume. Finally, since O
is open and invariant, we have that W; and W) are contained in O whenever z € O is
recurrent. This completes the proof of the proposition. O

8.2. Foliations whose leaves have bounded volume. Let F be a foliation on some
manifold M and L be some compact leaf. Let X be a cross-section to the foliation at some
point p € L. The holonomy group of L is the group of germs at p of the projections along
F-leaves from X back to itself. The choice of p and X is irrelevant because different choices
give rise to groups that are isomorphic. The following result is contained in Theorem 4.2
of Epstein [17]:

Theorem 8.4. Let F be a foliation of a manifold M whose leaves are all compact, with
bounded volume. Then every center leaf has finite holonomy group.
We use this to show

Theorem 8.5. Let f be a partially hyperbolic, dynamically coherent diffeomorphism with
dim E° = dim E* = 1 and whose center leaves are compact with uniformly bounded volume.

Then there exists a covering map T : M — M (at most 4-to-1) such that the lift of the
center foliation to M is a fiber bundle, and f lifts to a fibered diffeomorphism on M.

Proof. By Theorem the assumption implies that the holonomy group of every leaf is
finite. Let w# : M — M be the covering map that orients both the stable foliation and the
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unstable foliation: each point of M is a triple (x,€g,€,) with x € M and €5 and ¢, are
orientations of the stable and unstable directions, and 7 is just the projection to the first
coordinate. Endow M with the smooth structure obtained from M by pull-back under 7.
Then the natural lift f : M — M of f is a diffeomorphism. The covering space M needs
not be connected, if either the stable foliation or the unstable foliation are orientable.
However, the connected components are canonically identified through diffeomorphisms

(7) (x, €5, €y) ~ (T, L€g, Te€y).

Thus, it is no restriction to suppose M is connected: just replace it by any connected
component and replace f by its composition with an appropriate identification map as
in . It is clear that the invariant foliations of f lift to f-invariant foliations WC, Wws )
VNV“, WCS,/VWC“ on the covering space. Moreover, the leaves of We are compact and the
leaves of W?® and W*" have dimension 1. Consider any leaf L and let pE L. By dynamical
coherence, each element of the holonomy group defines a germ of orientation-preserving
homeomorphisms on the stable leaf )7\//5 . Since the holonomy group is finite, this germ
must have finite order. In dimension 1 this implies that the germ is the identity. The
same argument proves that every element of the holonomy group is the identity along the
unstable leaf VNV;;‘ Hence, by product structure, the holonomy group is trivial, for every

leaf L of WE. Equivalently, the center foliation WE is a fiber bundle, as we wanted to
prove. O

8.3. Proof of Theorem Having made these preliminary observations, we now return
to the proof of Theorem

Proof. Recall from Section that there is an open and dense subset O C M so that the
restriction of W¢ to O is a fiber bundle.

The invariance principle (Theorem [4.1) with O¢ = O = O = O implies that there
exists a continuous disintegration {m, : x € O} of m into probabilities measures supported
in W with € O. Moreover, for each x € O and y € W*(z), with * € {s,u}, we have
that m; is pushed forward by hy , to my.

Lemma 8.6. For any x,y € O, if x is connected to y by an su-path in M, then m, pushes
forward to my under the corresponding composition of holonomies.

Proof. The conclusion obviously holds if the corners of the su-path lie in O. But because O
is open and dense, any su-path can be approximated arbitrarily well by a path with corners
in O. Continuity of the disintegration then implies the result for arbitrary su-paths. 0O

Corollary 8.7. There exists a disintegration {m, : x € M} of volume into measures my
in M such that

(1) my is constant on every center leaf and is absolutely continuous with respect to the
Riemannian measure along WE;
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(2) for any C > 0, there exists ¢ > 0 such that for any su-path of length < C
from x to y, the corresponding holonomy h sends the restriction my | B(x,€y) to
My|h(Be(,c0))s

(8) my, depends continuously on x in the following local sense: for every € sufficiently
small, the function x — my(Be(x)) is continuous (B denotes the Riemannian ball
of radius €);

(4) for every e > 0 there exists 6 > 0 such that for every center ball B, C WS of radius
€, we have mz(Be) > 0;

(5) there exists § > 0 such that 6 < mz(WS) <1 for every x.

Proof. As O is open, dense and c-saturated, every point in M may be connected to a
point in O by a 2-leg su-path of arbitrarily small length. For any y € WS we define m,
on a small ball B(y) around y by connecting y to some z € O by such a path and and
then pulling m, back under stable and unstable holonomies. Lemma ensures that
this is consistent. By construction, m, is constant on the center leaf WWS. Moreover, it
is absolutely continuous, since m, is absolutely continuous and the stable and unstable
holonomies are absolutely continuous (indeed, C! in the fiber bunched case at hand).

Claim (2) also follows from the construction.

Now we prove claim (3). Continuity in the center direction follows, simply, from the
fact that the boundary of B.(z) has zero measure (because m, is absolutely continuous).
Then transverse continuity follows from the holonomy invariance in claim (2), using once
more that boundaries have zero measure.

Claim (4) follows from compactness, the continuity property in (3), and the fact that
the measure of balls never vanishes: otherwise, by holonomy invariance, it would vanish
on a whole open set, contradicting the fact that the m, are a disintegration of Lebesgue
measure.

Concerning claim (5), notice first that m,(W5) < 1 for every x € M: If there existed
L c WS with my(L) then by considering a short two-leg su-path we could map this to
some L’ inside a leaf WS C O, getting a contradiction. g

Parts (3) and (5) of Corollary imply that the center leaves have bounded volume.
This completes the proof of Theorem O

Finally, we prove Theorem [E]

Proof of Theorem [E. Suppose that f satisfies the hypotheses of Theorem [E] By Theo-
rem all center leaves are compact and they have bounded volume. Then, by Theo-
rem every center leaf has finite holonomy. Moreover, if dimW?* = dimW*"* = 1, we
can use Theorem there exists m : M — M such that the lift of the center foliation to

M is a fiber bundle, and f lifts to a diffeomorphism on M. This completes the proof of
Theorem [El O
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9. CENTER FIXING MAPS: PROOF OF THEOREM |E|

The proof is similar in structure to the proof of [0, Theorem A], where the same result
is shown for perturbations of the time-one map of the geodesic flow on a negatively curved
surface. The difficulty is constructing a fiber bundle in which one can carry out the
arguments. We indicate where the appropriate modifications occur.

9.1. Setting up a fiber bundle. As before, let f € P(M) with leafwise absolutely
continuous center foliation, and let m denote the volume measure. Here we provide a
setup for the application of the invariance criterion in Theorem 4.1 under the assumption
that f € Pg (M). Recall this means that the center is one-dimensional and all center
leaves are fixed by the diffeomorphism:

dimEZ =1 and f(W;) = W5, for every x € M.

Each center leaf WY is either a circle or an injectively immersed copy of the real line. In
the latter case, we denote by [y, z] the closed leaf segment determined by any two points
y, z € WS and similarly define the half-open segment [y, z) (here we do not assume that
W¢ is orientable, but in the course of the proof, we will show this).

We now construct a circle bundle £¢ over M admitting s, u and ¢ holonomies, a diffeo-
morphism cocycle §¢ : £¢ — £¢ covering f and an F-and c-invariant probability measure
m, covering m. Roughly, the fiber of £¢ over z will correspond to WS/ f, and the condi-
tional measures m, will be the probability measures whose W¢-lifts are representatives of
the disintegration of Lebesgue. In practice, there are issues, such as closed W¢-leaves and
potential fixed points for f, that complicate the construction, which we now address.

Since the leaves of W¢ can be both circles and lines, there is no global su-holonomy;,
and the construction in Proposition no longer produces a fiber bundle in the present
setting. We remedy this problem by working instead in the continuous line bundle E*°.

Regarding the fiber ES over x as the universal cover W¢, we will construct a lift § :
E¢ — E° of f and compatible holonomies on E°. We will also construct a special bundle
map & on E° covering the identity, and commuting with § and the holonomies. The
bundle £¢ will be constructed as the quotient E¢/&.

For each x € M, the manifold WY carries an induced Riemannian structure and hence
has a “center exponential map” exp¢ : ES — WS which is a covering map, sending 0 to x
and the point t € ES = R to the point a signed distance ¢ from x on W¢ (in the induced
metric). We define § to be the lift of the action of f by exp®; it is the unique continuous
map fixing the 0 section of E° and satisfying (exp?(w))_1 o %x = foexpl at every x € M
(note that this map is well-defined for points with compact center leaves, since every circle
homeomorphism has a unique lift to the universal cover once the image of a single point
— in this case, the image of 0 € ES — is specified.)

We now address the issue of defining holonomies for § and a special map & on E°¢. Let
O C M be the set of points in M with open (i.e., noncompact) center leaves. The next
lemma implies that O is a dense, full-volume subset of M.
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Lemma 9.1. For f € PéX(M), the set of compact center leaves is countable, and so is
the set of center leaves containing fized points.

Proof of Lemma[9.1]. Let Ly be any compact center leaf, and suppose it is accumulated
by compact center leaves L, with bounded length. Since L¢ is normally hyperbolic, there
exists d > 0 such that every L, has some forward or backward iterate at distance > §
from Lg. That cannot be, because every L, is fixed under f. This contradiction proves
that the set of compact leaves with length bounded by any large constant is discrete and,
hence, finite. Thus, the set of compact center leaves is countable, as stated in the first
part of the lemma.

The claim in the second part uses the same kind of argument. Let pg be a fixed point
contained in some center leaf Ly and suppose it is accumulated by fixed points p, in center
leaves L,, distinct from Ly. By normal hyperbolicity, each p,, has some iterate at distance
> ¢ from pg, but that cannot be, because f(p,) = pn. This contradiction proves that any
fixed point close to pg must be contained in the same local center leaf. It follows that at
most countably many leaves contain fixed pints, as claimed. O

The center exponential map gives a natural means to define c-holonomies on E°. Let
v be a path lying in the leaf W¢(y(0)), and let 5 be the unique lift of v to Ei(l) under
(expi(l))_1 with 7(0) = 0. Setting HS(0) = (1) determines a unique continuous map
HE E,Cy(o) — Ei(l) satisfying expi(l) : HY = expi(o). It is clear tl.lat. this c.onstruction
depends only on the leafwise homotopy type of the path v and that it is continuous. The
restriction of ¢-holonomy to O is of product type: for z € O and y € Wy, the map Hf  is
just the diffeomorphism (exp;)*l oexps. Clearly c-holonomy is %—invariant on O; since O
is dense, this invariance extends to all of M.

We next define &. Since f is center fixing, for each z € O, the restriction of f to
W¢ lifts to a unique diffeomorphism &, = (expS)™! o f oexp’ : ES — E¢. Note that
by construction Hy 06, =&,0H, for every x € O. This defines a bundle map &,
covering the identity, over O. We use the next lemma to extend & to continuous bundle
over all of M. For x € M, let {(x) denote the length of the central segment [z, f(x)],
which vanishes precisely when x is fixed by f. Note that ¢ is a continuous function on O.
We have:

Lemma 9.2. If f € P} (M), then there exists 5o > 0 such that {(z) > &, for every
x € 0.

Proof of Lemma9.9. Recall that since E° is one-dimensional, the local stable and unstable
holonomy maps between center manifolds are uniformly C'. Hence there exists a constant
co > 1 such that for * € {s,u}, and for any z,2’ with 2’ € Wi the derivative of Wy o
lies in [cy ', co)-

There exist positive constants k € N and R € R such that for every x,y € M, there is a
sequence of points g, x1, ... T, with 2,41 € ng’loc, for a; € {s,u}, and z}, € Wg’R, where
Wg’R denotes the ball of radius R in Wy. Fix such k and R.
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Since £ is not identically 0, there exists a point zop € M with W{  open, such that
0(x0) > 0; let £y = £(xp). Let y be any point whose center leaf is open, and fix a sequence
{®0, ..., = y} as above. Consider the arc [zo, f(7o)] of Wy, connecting zq to f(zo),
parametrized as a unit-speed path ~p. The image of 7o under W*!-holonomy hgi , is a
nonsingular path v, in Wy, from z1 to hgl, (f(x)) = f(z1).

T,r1

Inductively, we set 7; = hg? |, o7;—1. Then 74 is a nonsingular path from zy, to f(zy);
since the center leaf of y = xj, is open, it follows that ¢(y) is equal to the length of 4. It
follows that if ¢y is sufficiently small (for example ¢y = O(c, k)), then the length of g is
less than or equal to c’§€0. Since y was arbitrary, this implies that sup, ian;,R L(y) < cé’fo.

Hence ¢y cannot be arbitrarily small, for then every open center leaf in M would have a
fixed point for f, contradicting Lemmal[9.1] By the same token, if ¢ vanishes on some open
center leaf, then every open center leaf in M has a fixed point for f. It follows that £ is
bounded below on open center leaves. O

Since ¢(x) > §p > 0 for all points with open center leaf, there is an orientation on the
open W€ leaves so that [z, f(z)) is positively oriented. This orientation is preserved by
f and by su-holonomy and so extends continuously to compact leaves and thus to the
bundle £¢. It follows that &,(v) —v > dy > 0, for all v € ES and € O. Note also that &
is continuous over the set of points with open center leaves (though a priori not uniformly
continuous, as we have not shown that ¢ is bounded above). To extend & to M we use
the stable holonomy maps.

Let y be a point with compact center leaf. To define &,, we note that for any such
s,loc

y and any z € W, " different from y, the leaf WY is open (since normal hyperbolicity
forbids one compact center leaf from lying in the local stable manifold of another compact
leaf). Fix such an z; since Wy is f-invariant, and x lies in the stable manifold of Wy, we
may assume that the positive arc [r,00) of W lies in the local stable manifold of Wy;
then the stable holonomy A} , onto Wy is defined on [z, 00) and is a local homeomorphism.
The image of the interval [0, &,(0)) under the covering map exp$ is the path [z, f(x)) in
Ws. The image of this path under h; , is a path in Wy from y to f(y). We lift this path
by (expg)_1 to a path from 0 to t' € Ey, and we set ®,(0) = t’. This choice of &,(0)
determines a continuous map &, on all of Ey satisfying expy &, = fo expy, via the usual
lifting procedure. Observe that, since ® is continuous over the set of points with open
center leaves, this definition of &, does not depend on the choice of x € Wj’loc and is
continuous at y along W.

Since & is continuous over the set of points with open center leaves, and & is continuous
along W?#-leaves, this defines a continuous bundle map & : ¢ — E° covering the identity
on M; it has the two key properties that expS o®, = foexpt and &,(v) —v > dy > 0, for
all z € M and v € E¢(x). In particular, it follows that

ES = | |[®5(0),657(0)),
keZ

for each x € M. Since & is continuous and commutes with c-holonomy on the dense set
O, it commutes with c-holonomy everywhere on M.
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We next describe how to define s- and u-holonomy maps on E¢, commuting with F and
® and compatible with c-holonomy. Suppose x € M and y € W;’loc, for x € {s,u}. We
define a map Hy , : Ef — Ej as follows. We first define Hy , on the interval [0, 8,(0)) in
Eg. For t € [0,86,(0)), the image of [0,%) under the covering map expj is a path in Wy,
from z to expg(t). The image of this path under holonomy A}, to Wy is a path from y
to A, (expS(t)). We lift this path by (exp$)~! to a path from 0 to ¢’ € ES, and we set
H;y(t) =t'. Since f commutes with WW* holonomy, which is a local homeomorphism, the
interval [0, &,(0)) is mapped by Hj , homeomorphically onto the interval [0, &,(0)).

We extend the definition of Hy , to all of Ef = LI, [®%(0),85+1(0)) by setting Hy, =
&k o H; oG % on [65(0),8571(0)). Then H, is a homeomorphism onto

| |[®k0), 85 (0)) = EX.
k

This defines Hy , for x € {s,u}; by construction, H;  commutes with J and & and is
compatible with c-holonomy.

Now let £¢ = E€/® be the quotient of E¢ under the action of &. Since & fixes the
fibers of ¢ and has no fixed points, £ is still a fiber bundle over M, whose leaves are
all circles. We also get that § projects down to a diffeomorphism cocycle § : £¢ — £¢ and
the holonomies of § project down to compatible holonomies of §.

The next step is to construct a o-finite measure m¢ on E¢ whose restriction to a &
fundamental domain is a probability measure that projects down to m. The measure
m¢ is both §- invariant and c-invariant. Let {m;} be a disintegration of m along center
leaves, which is defined on a full volume c-saturated set which we denote by M¢. For each
x € M°N O, choose a representative m, of the conditional class m, normalized by

(8) ma([z, f(2))) = 1.

This choice of normalization immediately implies that

By Proposition implies that
(10) my(ly, f(y))) =1 for every ye W,

so that we have
(11) my =m, for every ye W;.

Pushing m,, forward by exp¢ ! gives a measure m¢ on E¢, and letting m¢ = mSdm(x) we
obtain an invariant (by @)) and c-invariant (by ) measure for §.

By the choice of normalization in , m¢ is the lift of a probability measure m on £°¢
which is ¢- and §-invariant.

The induced Riemannian metric on W€ leaves pulls back via expS to a Riemannian

metric on ES, with respect to which the Lyapunov exponent of any z € E¢ under %
coincides with that of exp$(z) under f.
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9.1.1. Application of the invariance principle.

Lemma 9.3. If the center Lyapunov exponent vanishes m-almost everywhere then there
is a continuous disintegration {mS : x € M} of m® along E€ fibers, which is cF-invariant,
and s,u and c-holonomy invariant.

Proof. By assumption the center Lyapunov exponents of § are zero for m%a.e. z (by
construction of m¢).

Let S C £° be the “half-closed” set bounded by the zero-section of E° and its image
under &, including the former and excluding the latter. Since S is precompact, the quotient
map E¢ — £° has bounded derivative at S, hence the Lyapunov exponents of 7 (which
is the push-forward of m¢|S by the quotient map) are also zero. Applying Theorem
now yields that there is a holonomy-invariant disintegration m, of m along the fibers of
E°¢ over M. O

9.2. Proof of part (1) of Theorem We assume that W¢ is leafwise absolutely
continuous, which implies as in [6] that the center Lyapunov exponents vanish m-almost
everywhere. Then Lemma 9.3|gives a holonomy-invariant disintegration m, of m along the
fibers of £¢ over M. This lifts to a family of Radon measures m§ on E° that is invariant
under F, G, and s, u and ¢ holonomies.

Continuity of the foliation W€ implies that a small enough interval (—e, €) in E° projects
under exp® to a local center manifold in M. The c-invariance of the measures m¢ implies
that there is a coherent projection to a continuous family of Radon measures mS on
the leaves of W€ invariant under f and su-holonomy. In any local foliation chart, these
measures restrict to a disintegration of m, and for any open leaf of W€ we have that

mglz, f(z)) = 1.
As in Section [6.1] we define a local flow v; on M via the relation

ma ([y, ¥:(y))) = ¢,

for t € (—e,€). This extends to a global flow in the obvious way, and by construction
we have ¢ = f. The proof now proceeds exactly as the proof of part (1) of Theorem
in Section [6.1] where the arguments establishing the properties of i; are entirely local in
nature (see also [6], where the same thing is proved assuming accessibility).

9.3. Proof of Part (2) of Theorem [F} We prove part (2) of Theorem [F] Suppose U # 0
is an open accessibility class for f € Pg (M).

9.3.1. The case of nonvanishing exponents. Suppose that x¢ # 0. Let

X ={z€U:x)=x},
which is a full measure subset of U. Let X = (exp®)~}(X) C E°, which is the set of
¢ € (exp®)~1(U) where the fiberwise exponent of § is equal to x¢; it is clearly F and
G-invariant. Let X’ be the projection of X to £. Then [6l Theorem 4.1] implies that A’

coincides, up to zero ji-measure, with a measurable set )’ C £° meeting almost every
fiber £, x € U in finitely many points. Pulling back to E°, we obtain an JF-invariant
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measurable subset ) C E° whose projection to M has full measure in U and that meets
each E° fiber in finitely many G-orbits. Setting Y = exp())) C U, we obtain a full measure
subset of U that meets W,, for almost every x € U, in finitely many f-orbits. Hence
case [2al holds in Theorem [F]

9.3.2. The case of vanishing exponents. As in the proof of part 2 of Theorem [C| we deduce
that either the restriction of m to U is atomic, or there is a flow v; supported in U and
nonsingular in U, tangent to the leaves of W€ and preserving the restriction m|y. This
implies that for every x € U, we have WS N U = W¢. Thus U is c-saturated. But U is an
accessibility class, and so is u and s-saturated. It follows that U = M and f is accessible.

10. EXAMPLES AND QUESTIONS

We have seen that there is a dichotomy for some conservative, accessible systems with
one-dimensional center: either the center is absolutely continuous or the disintegration
of Lebesgue measure along the center foliation is atomic. While these results are quite
general, some interesting questions remain, which we pose here.

10.1. Zero exponents and atomic disintegrations. Let us discuss an example of A.
Katok showing that the center foliation may fail to be absolutely continuous and, in fact,
the disintegration of Lebesgue measure along center leaves may be atomic even when the
center Lyapunov exponents vanish.

Let {f; : T?> — T? : t € R/Z} be a smooth family of area preserving Anosov diffeomor-
phisms with the following property: for all s, t € R/Z with s # t, the diffeomorphisms
fs and f; are conjugate by a homeomorphism hg; : T? — T? near the identity, but they
are not smoothly conjugate. One can obtain such a family by, for example, smoothly
perturbing a linear Anosov diffeomorphism in a neighborhood of a fixed point. It follows
from [I6] that hs+ is not absolutely continuous, in fact there is no absolutely continuous
conjugacy between fs and fy, if s # t.

Define f: T2 x R/Z — T? x R/Z by f(z,t) = (fi(z),t). Then f is partially hyperbolic
and preserves the Lebesgue measure A3 on T? x R/Z. The leaf of the center foliation
through each (z,s) € T? x R/Z is the smooth curve

WE, ) = {(hee(2),t) : t € R/Z}.

It is easy to see that the center Lyapunov exponent of f vanishes almost everywhere. Let
Z be the set of points (x,s) € T? x R/Z such that z is Ag-regular for the diffeomorphism
fs and the Lebesgue measure Ay on T2. Observe that Z has full Az-measure.

Lemma 10.1. The set Z meets each leaf of W€ in at most one point. Hence, any dis-

integration of m along the leaves of W€ is atomic, supported on a single point in each
leaf.

Proof. Let (z,s) € Z, and fix t # s. The measures Ay and (hs¢)«(A2) are both ergodic for
ft. Since hg; is not absolutely continuous, these measures are therefore mutually singular.
Since x is regular for fs and the measure Ay, it follows that h,¢(x) is regular for f; and the
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measure (hst)«(A2). So, hsi(x) cannot be regular for f; and the measure Ay. This means
that (hs¢(x),t) ¢ Z, for all t # s or, in other words, Wiy NZ = {(z,s)}. This proves
the first statement in the lemma. The second one is a direct consequence, because the set

Z has full measure. O

One can also give an explicit description of the disintegrations m; and m¥ that appeared
in the proof of the invariance theorem. Define Z% to be the set of (x,s) such that x is
a forward-regular point for fs; and Ay, and define Z* to be the set of (x,s) such that x
is a backward-regular point for fs and Ay. Then Z% = Z% = Z mod0, all three sets are
f-invariant, the set Z9 is W¥-saturated, and the set Z% is W -saturated. Arguing as in
the proof of Lemma [10.1] it is easy to see that Z° meets each leaf of W€ in at most one
point, as does Z". Hence, for almost every point x € M /W€, there exists p € M such that
Z5NWS = {p}; for such z, we set m3, = d,. The measures mY are defined analogously.
Then z — mj, is s-invariant, and x — m{ is u-invariant. While the two functions coincide
almost everywhere, Lemma [3.19| implies that there is no disintegration = — m, that is
simultaneously s-invariant and w-invariant (at all points, not just almost all). So, the
conclusion of Theorem [4.5] does not hold in this case.

10.2. Non-accessible ergodic cases. The preceding discussion leads us naturally to the
following question.

Problem 10.2. Let f : M — M be an ergodic (but not accessible), C? volume preserving
perturbation of an Anosov skew product with circle fiber. Is it possible for the disintegra-
tion of Lebesgue along the center foliation to be continuous (i.e. nonatomic), but singular
with respect to Lebesgue measure on the leaves?

If such an example exists, it must have jointly integrable stable and unstable foliations:

Proposition 10.3. Let M be a manifold of dimension d > 3, and let f € Pflib(M) or
f e ’P&X(M). If the disintegration of Lebesque along the center foliation is continuous
but singular with respect to Lebesque, then the stable and unstable foliations are jointly
integrable.

Proof. The accessibility classes consist of either compact su-leaves or connected open sets
bounded by compact su-leaves. Suppose there is a nonempty open accessibility class. Then
part (2) of Theorems [C| and [F|imply that either the disintegration contains atoms, or f is
accessible and the center foliation is leafwise absolutely continuous. Since both possibilities
are excluded by the hypotheses, it follows that the stable and unstable foliations are jointly
integrable. U

Hence there is a natural class of examples in which to consider this question, which
are related to the example mentioned in Section Let f: T? — T? be a C* Anosov
diffeomorphism. Then there is a neighborhood U of the identity in DiffS°(T?) such that,
for any C*° map ¢ : R/Z — U:

(1) for each t € R/Z, the map fy := ¢ o f is an area-preserving Anosov diffeomor-
phism, topologically conjugate to f;
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(2) for any a € R/Z, the map g4 : T? x R/Z — T? x R/Z given by:
9p.a(@,t) = (for(2),t + Q)

is partially hyperbolic, dynamically coherent and topologically conjugate modulo
Wc(g¢,a) to f

For a fixed C* map ¢ : R/Z — U, consider the family {gy o }acr/z defined above; it is a
partially hyperbolic, volume preserving skew product over a rotation by « (in the second
factor). While singular continuous center decomposition of Lebesgue might occur in this
family of examples, it turns out that the generic example has Dirac disintegration:

Proposition 10.4. There is a residual subset R C C*(R/Z,U) x R/Z such that for
(¢, ) € R, the map g¢.o is ergodic (and nonaccessible), and the disintegration of Lebesgue
along center leaves of g o 18 Dirac.

Proof. The strategy is to establish first that for the generic ¢, and any rational p/q, the
disintegration of volume along W¢(gy, /q) leaves is Dirac; for generic ¢, this property then
passes to a residual set of irrational «, for which g  is also ergodic (though nonaccessible).

Lemma 10.5. For each p/q € QN [0,1] there is a residual subset R

p/q Of the space
C>(R/Z,U) such that for ¢ € R, the disintegration of Lebesgue along center leaves of
9e.p/q 18 Dirac.

Proof. For a fixed ¢ € C*(R/Z,U), and p/q € Q, consider the map G,/ = gZ) o/ the
center foliation for this is the same as the center foliation for g4, /,. This map takes the
form Gy p,/q(w,t) = (Fgpq.(2),t), where

Ffb,p/q,t = f¢,t+(q—1)p/q o f¢,t+p/q o for-

Since G¢7p/q(ac,t) is partially hyperbolic, the maps Fy,/, s are Anosov, for all s € R/Z.
The leaf of W¢(Gy /) through (z,0) is the curve (Hy p,/q.+(7),t)icr/z, Where Hy /g 4 i the
conjugacy between Fy /., and Fy, /. + given by structural stability (unique the homotopy
class of the identity on T?).

Moreover, the disintegration of Lebesgue measure along W(G,,/,) is Dirac if and only

if for almost every ¢ € R/Z and every s # t, the map Hyprasi = Hgppjgi© H_l/q < 1s not

p/q é,

C! (note that Hy /g5 18 the conjugacy between Iy /g s and Fy,/q)-

Lemma 10.6. For any p/q € Q, there is a residual subset ﬁp/q C C*®(R/Z,U) such that

for every ¢ € ﬁp/q, for every s € R/Z, if Hyp,/q.64 18 Cl, thent = s+ kp/q, for some
0<k<yq.

Proof. Fix p/q € Q. To simplify notation, in the proof we suppress the p/q subscripts
in F, G and H. We first note that if Hy; is C! for some ¢ € C*(R/Z,U), then the
eigenvalues of the derivatives of the maps Fy ; and Fy; must coincide at all corresponding
periodic orbits. Let {x41}r>1 be an enumeration of the periodic points for Fyo with
per(z4 i) = me g, and for t € R/Z, let x4 = Hy(241) be the corresponding periodic
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orbit for Fy ;. Denote by A4 1 the larger eigenvalue of D%,k,thlf’k- If Hy,; is C', then
Apks = Agjot, for all k> 1.

Let K = {I}r>1 be a sequence of compact intervals in R/Z with the following proper-
ties:

e diam([;) — 0 as k — oo,
® Upsi, Ik =R/Z, for all ko > 1.

For I,J € K, and k > 1, let &y, C C*°(R/Z,U) be the set of all ¢ such that, for every
s € I, and for every ¢ € U?;é(J—i—jp/q):

Ab ks 7 Akt
The set &1 j, is clearly open in C*°(R/Z,U). Let
q—1
D(I) ={J € K : diam(J) < 1/q and I | J(J + jp/q) = 0}.
j=0
It is straightforward to check that for I € KC and J € D(I), the set &5 = Ukzl Erk is
open and dense in C*(R/Z,U). Let

7%p/q:r] ﬂ Erg-

Ik JeD(K)

Then T:’,p/q is residual in C*°(R/Z,U). Suppose that ¢ € ﬁp/q. Fix s € R/Z and t €

R/Z\U?;é{s +jp/q}. Then there exist intervals I € KC and J € D(I) such that s € I and

t € J. Since ¢ € ﬁp/q C &r1,7, there exists a k > 1 such that Agp s # A k- Then Hy g, is
not C1. O

Remark 10.7. The same type of argument shows that, for the generic ¢, there is no C*
conjugacy at all between Fy s and Fy,, if t € R/Z\ Ug;(l){s + jp/q}. We next treat the
case where t = s + jp/q, for some 0 < j < g — 1; here, a C'' conjugacy between Fy s and
Fy+ cannot be avoided: they are always conjugate by the map fy(4—1)p/¢° " [4s+ip/q-
What can be avoided generically is a C' conjugacy that is isotopic to the identity map on
T2, as the next lemma shows.

Lemma 10.8. For each p/q € Q, there is a residual subset R/, C ﬁp/q such that for
every s € R/Z and 0 < k < q — 1, there is no C conjugacy between Fos and Fy o1 kp/q

that is isotopic to the identity. In particular, for ¢ € R

p/q> the conjugacy Hg s+ is not ct
for s #£t.

Proof. The set D of Anosov diffeomorphisms of T? with trivial centralizer is C°°-open and
dense; that is if ' € D and F'G = GF, for some C* diffeomorphism G, then G = F™, for
some integer m € Z. See Palis and Yoccoz [27]. From this it follows easily that there is an
open and dense set O/, C C*(R/Z,U) such that for each ¢ € O, /,, and each t € R/Z,
the map Fy; has trivial centralizer.
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Fix ¢ € O,/ and suppose that for some s € R/Z and t = s + jp/q, with 0 < j < g —1,
the map Hy s, is C*. Then Hy g, is in fact C°° [16]. On the other hand, Fy.s is conjugate
to Iy by the map H(’b’&t = fot(q=1)p/q © " © fo,s+jp/q- Hence the C°° map Hg,s,th:,;,t
commutes with the Anosov diffeomorphism Fy ;.

Since ¢ € O/, the map Fy; has trivial centralizer, and so there exists an integer m
such that Hé),s,tH;;,t = Fj’,. Since Fy is isotopic to f? and H:j),s,tde,;,t is isotopic to
f477, this implies that j = 0, and so s = t. Hence Hy 4 is not Clif s # t. We conclude

=0,,NR O

the proof by setting R 0/q:

p/q p/q

This completes the proof of Lemma [10.5 O

Let Ro = (1,/4eq Rp/q and notice it is a residual subset of C*(R/Z,U). For ¢ €
C>®(R/Z,U), consider the map g4 o, for some o € R/Z. Condition 2. on U implies that
the quotient space T3/W¢(gy.o) is the 2-torus T2. Denote by 7y : T3 — T? the quotient
map. Let g o = (T a)s«m. The following lemma is easy to check:

Lemma 10.9. The disintegration of m along W¢(gg ) leaves is Dirac almost everywhere
if and only if A(p, o) =0, where

Ara) = / / g dmg (@) dmgep®) | duga(),
T2 \ V7, (p) X7y L (P)

and mg o p is the disintegration of m on the leaf W¢(gg.o) over p.

Let {P,}n>0 be a nested sequence of finite (mod 0) partitions of T? into open sets,
generating the Borel g-algebra. Consider the sequence of functions

{An : CF(R/Z,U) x R/Z = [0,1]}n>0
given by:

An(d0) = 3 pga(P)? ( / s gy U0 ) dm<y>).
7T¢’a Xﬂ—(;&,a

PcPy,
We claim that A,, is continuous and A,, — A pointwise. Continuity follows from the fact
that the foliation WW(ge o) depends continuously on (¢, «). The pointwise convergence
follows from Rokhlin’s theorem: for p4 o-almost every p € T2, we have:
-1
m(- | 7T¢,a(7)n(p))) — Mp,ap
in the weak* topology, where P, (p) denotes the atom of P,, containing p.
We conclude using the following lemma.
Lemma 10.10. Let X be a Baire space and let {A, : X — [0,1]},>0 be a sequence

of continuous functions such that A, — A pointwise. Then A~1(0) is a Gs. Hence, if
A(x) =0 for a dense set of x, then A=1(0) is residual in X.
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Proof. Fix £ > 0 and for n > 0 let
U ={z:Ay(x) <e, for some m > n}.

Clearly U is open for each n,e. The conclusion follows from the fact that A=1(0) =
mm,n>0 U{I/m

Since A vanishes on the dense set Rg x Q/Z, it follows that R = A~1(0) is residual in
C*(R/Z,U) x R/Z. Lemma then implies that for (¢,a) € R, the disintegration of
m along W¢(ggs ) leaves is Dirac. This completes the proof of Proposition m O

10.3. Generic accessible systems. Another relevant question concerns the number of
atoms that can occur in a generic accessible system with atomic disintegration along center
fibers.

Problem 10.11. Let f be an accessible, C2, volume preserving perturbation of an Anosov
skew product with circle fiber. Suppose that the center Lyapunov exponents are nonvan-
ishing (i.e. either positive almost everywhere or negative almost everywhere).

Is it possible for such a system to have Dirac disintegration, that is, exactly one atom
per (almost every) center leaf? Generically, is the disintegration Dirac?

Is the number of atoms per leaf unbounded in any neighborhood of the skew product?

Note that when the center exponents vanish in such an example, we generically have
Dirac disintegration. Also, it is possible to have more than one atom per leaf and non-
vanishing center exponents, at least when the example admits a smooth symmetry (see
[34] for an example). In dimension 3, if the center exponents vanish, then a disintegration
with one atom per leaf forces a smooth symmetry in the system (Proposition . In
higher dimensions, there is a continuous, measure-preserving symmetry. More generally,
we ask:

Problem 10.12. Let f : M — M be an accessible, C?, volume preserving perturbation of
an Anosov skew product with circle fiber. If the disintegration of Lebesgue on the center
foliation is atomic with k atoms, then must there exist a (continuous or even smooth) map
® : M — M, preserving Lebesgue, such that ® o f = f o ® and ®* = Id?
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