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Fig. 6. Ranks of Pareto fronts with respect to parameters in the ASR operations optimization study (a) Rank versus hydraulic conductivity (K). (b) Rank against the 
ratio of longitudinal dispersivity to hydraulic conductivity (α/K). 
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Fig. 11. (a) Box plots of groundwater level at the well, and (b) box plots of concentration at the well in the extraction period across the Pareto solutions.  
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Fig. 12. Variograms for hydraulic conductivity (K) and longitudinal dispersivity (α) of (a) the representative solution on the superior front, (b) the representative 
solution on the median front, and (c) the representative solution on the inferior front. 

H. Vahdat-Aboueshagh et al.                                                                                                                                                                                                                 



Journal of Hydrology 612 (2022) 128299

14

studies. 

CRediT authorship contribution statement 

Hamid Vahdat-Aboueshagh: Conceptualization, Methodology, 
Software, Validation, Formal analysis, Investigation, Visualization, 
Writing - original draft, Writing - review & editing. Frank T.-C. Tsai: 
Conceptualization, Methodology, Investigation, Resources, Data cura
tion, Supervision, Project administration, Funding acquisition, Writing - 
original draft, Writing - review & editing. Emad Habib: Funding 
acquisition, Conceptualization, Writing - original draft, Writing - review 
& editing. T. Prabhakar Clement: Funding acquisition, Conceptuali
zation, Writing - original draft, Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

This study was funded in part by the Louisiana Sea Grant College 
Program under U.S. Department of Commerce, the National Oceanic and 
Atmospheric Administration Award NA18OAR4170098 and the U.S. 
National Science Foundation EPSCoR Track-2 Program (Award No. 
2019561). The authors acknowledge the LSU High Performance 
Computing (HPC) for providing the project with supercomputer 
resources. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jhydrol.2022.128299. 

References 

Akhtar, T., Shoemaker, C.A., 2019. Efficient multi-objective optimization through 
population-based parallel surrogate search. arXiv preprint arXiv:1903.02167. 
https://doi.org/10.48550/arXiv.1903.02167. 

Almulla, A., Hamad, A., Gadalla, M., 2005. Aquifer storage and recovery (ASR): a 
strategic cost-effective facility to balance water production and demand for Sharjah. 
Desalination 174 (2), 193–204. https://doi.org/10.1016/j.desal.2004.08.042. 

Ampazis, N., Perantonis, S. J., 2000. Levenberg-Marquardt algorithm with adaptive 
momentum for the efficient training of feedforward networks. In Proceedings of the 
IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. 
Neural Computing: New Challenges and Perspectives for the New Millennium, 1, pp. 
126-131. DOI: 10.1109/IJCNN.2000.857825. 

Barzegar, R., Asghari Moghaddam, A., Adamowski, J., Fijani, E., 2017. Comparison of 
machine learning models for predicting fluoride contamination in groundwater. 
Stoch. Env. Res. Risk Assess. 31 (10), 2705–2718. https://doi.org/10.1007/s00477- 
016-1338-z. 

Bau, D.A., Lee, J., 2011. Multi-objective optimization for the design of groundwater 
supply systems under uncertain parameter distribution. Pacific J. Optim. 7 (3), 
407–424. 

Bedi, S., Samal, A., Ray, C., Snow, D., 2020. Comparative evaluation of machine learning 
models for groundwater quality assessment. Environ. Monit. Assess. 192 (12), 1–23. 
https://doi.org/10.1007/s10661-020-08695-3. 

Benson, C.H., 1993. Probability distributions for hydraulic conductivity of compacted 
soil liners. J. Geotechn. Eng. 119 (3), 471–486. https://doi.org/10.1061/(ASCE) 
0733-9410(1993)119:3(471). 

Bowden, G.J., Maier, H.R., Dandy, G.C., 2002. Optimal division of data for neural 
network models in water resources applications. Water Resour. Res. 38(2), pp.2-1. 
https://doi.org/10.1029/2001WR000266. 

Burnett, R.D., Frind, E.O., 1987a. Simulation of contaminant transport in three 
dimensions: 1. The alternating direction Galerkin technique. Water Resour. Res. 23 
(4), 683–694. https://doi.org/10.1029/WR023i004p00683. 

Burnett, R.D., Frind, E.O., 1987b. Simulation of contaminant transport in three 
dimensions: 2. Dimensionality effects. Water Resour. Res. 23 (4), 695–705. https:// 
doi.org/10.1029/WR023i004p00695. 

Chen, J., Dai, Z., Yang, Z., Pan, Y., Zhang, X., Wu, J., Reza Soltanian, M., 2021a. An 
improved tandem neural network architecture for inverse modeling of 
multicomponent reactive transport in porous media. Water Resour. Res. 57 (12) 
https://doi.org/10.1029/2021WR030595 e2021WR030595.  

Chen, Y.-H., Tsai, F.T.-C., Jafari, N.H., 2021b. Multi-objective optimization of relief well 
operations to improve levee safety. J. Geotech. Geoenviron. Eng. 147 (7) https://doi. 
org/10.1061/(ASCE)GT.1943-5606.0002532. 

Das, I., 1999. On characterizing the “knee” of the Pareto curve based on normal- 
boundary intersection. Struct. Optim. 18 (2), 107–115. https://doi.org/10.1007/ 
BF01195985. 

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T., 2002. A fast and elitist 
multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6 (2), 
182–197. https://doi.org/10.1109/4235.996017. 

Dillon, P.J., Pavelic, P., Page, D., Beringen, H., Ward, J., 2009. Managed aquifer 
recharge. An introduction waterlines report series, 13, pp.1-64. 
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