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ABSTRACT

Aquifer storage and recovery (ASR) is an important water management approach to store excess surface water
into aquifers for later use. Quantitative evaluation of ASR performance is not a trivial task and yet becomes more
exacting when uncertainty analysis is added to the dimensionality of the problem. Inclusion of uncertainty into
the framework of scheduling optimal ASR operations also increases the level of complexity. This study integrates
a surrogate modeling approach coupled with a mixed integer nonlinear programming (MINLP) algorithm to
optimize multi-objective ASR operations. The uncertainties are analyzed based upon a thorough sampling of the
parameters space as well as a novel analysis of Pareto fronts and variograms of representative solutions. Knee
point of representative Pareto fronts is selected for in-depth analysis. As a solution to the dimensionality of the
problem, Artificial Neural Network (ANN) is employed to generate surrogate models for predicting groundwater
levels and injectate distribution within the aquifer during ASR operations. The computational complexity in
building a large number of ANNs and deriving of numerous Pareto fronts via solving the MINLP problem are
overcome by the assistance of parallel computing. The results show that optimal ASR operations are highly
influenced by hydraulic conductivity and longitudinal dispersivity. Higher hydraulic conductivity values lead to
a higher number of active stress periods during storage and recovery phases, which requires large volume of
extraction to recover the dispersed injectate. In contrast, higher ratios of longitudinal dispersivity to hydraulic
conductivity adversely impact the injectate recovery efficiency. Through meaningful representation of objective
function uncertainty by variograms, it is inferred that injectate recovery efficiency is more sensitive to longi-
tudinal dispersivity than hydraulic conductivity.

1. Introduction

(injection) is normally followed by the recovery phase (extraction). This
study focuses on optimal scheduling of ASR operations where the stor-

Aquifer storage and recovery (ASR) is an important water resource
management method that can be used to store excess surface water into
aquifers via artificial recharge (Forghani, 2018). The recharge can be
accomplished by using various systems such as injection wells, infiltra-
tion basins and infiltration galleries that can use excess surface water,
reclaimed water and stormwater, and water from other aquifers (Sheng,
2005; Dillon et al., 2009). There are two major phases in ASR operations:
1) storage phase, and 2) recovery phase. The ASR can be classified as a
category of managed aquifer recharge (MAR) (Maliva, 2014). In ASR,
the recharged water mixes with native water which is then extracted
from aquifer during the recovery phase. During ASR, the storage phase
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age and recovery phases are designed through injection of non-native
water into the aquifer and subsequent extraction of stored ground-
water from the aquifer using the same ASR well. Fig. 1 shows an ASR
operation well installed in a confined aquifer. As shown in the figure, the
process of water injection raises the groundwater level at the injection
point and around the well. The groundwater raise leads to the devel-
opment of an outward gradient from the ASR well. This mechanism can
be used to develop hydraulic barriers that can force brackish/saline
water away in aquifers (Shammas, 2008; Pyne, 2015). The rise in
groundwater level can also help alleviate land subsidence in coastal
areas where land loss is a core issue (Lu et al., 2011). In addition to
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Fig. 1. A schematic of an ASR well for one ASR cycle in (a) storage phase, and (b) recovery phase. GWL: groundwater level in the confined aquifer.

acting as a hydraulic barrier, an ASR well can be used for storing surface
water in aquifers during a wet season and the stored water can be later
utilized during the dry season (Forghani and Peralta, 2017). There are
other benefits from an ASR project such as agricultural water supply,
restoration of groundwater levels, and reduction of environmental ef-
fects of streamflow diversions (Pyne, 1995; Khan et al., 2008).

Planning and design of ASR operations normally involve a sensitive
balance between the amount of stored water and amount of withdrawn
water considering the cost of various operations (Uddameri, 2007).
There are many cost components to ASR operations which include
capital costs and maintenance/operation costs (Almulla et al., 2005),
and these costs may include the pumping cost, injection cost, and surface
water treatment cost (Triki et al., 2019). The ASR operations may also be
designed using multiple wells (Merritt, 1986). These wells could either
be single-purpose wells, where water is solely injected into the aquifer or
solely pumped out of the aquifer, or dual-purpose wells that are used for
both injection and pumping (Zuurbier et al., 2014; Sultana et al., 2015).
Although not the focus of this study, detrimental geochemical impacts of
injectate and mobilization of contaminants in the receiving aquifer must
be carefully considered during ASR operations (Sun et al., 2020; Fakh-
reddine et al.,, 2021). One of the operational aspects that has not
received much attention is the scheduling of injection and pumping of
these wells. The concept of an ASR cycle has been used for scheduling
injection and pumping activities (Merritt, 1986). The performance of an
ASR cycle can be quantitatively evaluated through the established
concept of recovery efficiency (Lowry and Anderson, 2006; Ward et al.,
2009; Lu et al., 2011; Guo et al., 2015; Forghani and Peralta, 2017). It is
worth emphasizing that utilization of groundwater and transport models
can facilitate measuring the ASR performance.

Recovery efficiency is the fraction of injected water (injectate) being
extracted out of an aquifer during the pumping period. To calculate the
recovery efficiency, injectate needs to be tracked during the ASR cycle.
Solute transport models are normally coupled with groundwater flow
models to track the injectate (Lowry and Anderson, 2006). A basic
assumption employed in this approach is to assume a non-zero solute
concentration for injectate while considering a zero concentration for
native water in the aquifer (Forghani and Peralta, 2018). Previous
studies have shown that the density effect (buoyancy effect) can be
ignored as long as dispersive mixing is dominant and difference in
density between injectate and native water is not large (Pavelic et al.,

2006; Ward et al., 2007; Ward et al., 2009; Minsley et al., 2011). Hence,
groundwater models with constant fluid density is suitable for most ASR
operation assessments.

Hydrogeological parameters (such as hydraulic conductivity) in
groundwater flow models and transport parameters (such as dis-
persivity) in solute transport models introduce uncertainty into recovery
efficiency calculation. It is a common practice to generate realizations
based on probability distribution of various parameters and conduct
statistical analysis of model outputs for evaluating uncertainties (Fu and
Gomez-Hernandez, 2009; Refsgaard et al., 2012). Needless to say that
including history matching techniques for estimating parameters
significantly adds to computational burden of uncertainty quantifica-
tion. In presence of all of these complexities, numerous runs of
groundwater flow models and transport models become computation-
ally expensive. Uncertainty quantification can become intractable
without the aid of surrogate models, which mimics the behavior of flow
and transport models (Keating et al., 2010; Razavi et al., 2012). Su-
pervised artificial neural networks (ANN) have been demonstrated to be
powerful surrogate models for groundwater flow and transport models
(Yan and Minsker, 2006; Yan and Minsker, 2011; Luo and Lu, 2014). In
addition to ANN models, deep learning approaches have shown prom-
ising results for flow and transport models (Chen et al., 2021a). The deep
learning methods may also be utilized to generate subsurface structures
in case of availability of sufficient data (Zhan et al., 2022). Due to robust
and satisfying performance in groundwater and transport modeling, the
ANN models were adopted as a machine learning method for prediction
of groundwater levels and concentrations in this study (Nourani et al.,
2008; Barzegar et al., 2017; Bedi et al., 2020).

This study introduces a supervised learning method with an evolu-
tionary optimization algorithm to optimize ASR operations under
parameter uncertainty. The objectives of an ASR operation are (1) to
maximize the amount of injectate stored in the aquifer during the stor-
age phase and (2) to maximize the recovery efficiency during the re-
covery phase. To demonstrate the results of this bi-objective
optimization problem, where the objectives are conflicting, outcomes
are represented on Pareto fronts, where a trade-off between objectives
can be recognized (Reed et al., 2013; Reed and Kollat, 2013; Trindade
et al., 2017; Akhtar and Shoemaker, 2019; Wang et al., 2022; Bau and
Lee, 2011). Uncertainty of the Pareto front of the two objectives are
investigated by considering uncertainties in hydraulic conductivity and
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dispersivity. Other sources of uncertainties are not considered due to
extensive computational requirements. To optimize ASR operations
considering the uncertainties in these parameters, a supervised ANN
method is employed as a substitute for the groundwater and the trans-
port models.

This study is organized into six sections including this introduction
section. Section 2 describes the mathematical methodologies including
uncertainty assessment as well as the formulation of the optimization
problem. Section 3 introduces the study area. Section 4 provides the
specifics of the groundwater flow model, the transport model, the ANN
models, and the optimization model. Section 5 discusses the results.
Section 6 summarizes the key conclusions of this study.

2. Methodology
2.1. Formulation of ASR operation optimization

Performance of an ASR well is evaluated for an ASR cycle which
includes one storage phase and one recovery phase. Each phase involves
several individual pumping/injection stress periods. The storage phase
starts at tp and ends at t;. The recovery phase immediately follows the
storage phase and ends at t,. The injection rates are constrained between
I™" and ™™, and the pumping rates are constrained between Q™" and
Q™. The ASR well is allowed to be inactive for certain periods where
the injection/pumping rate is set to zero. The bi-objective ASR well
operation optimization problem can be defined as:

f
max f; = ZA,u,Ir (€]
=
2. Av,0,C
max f :72:” o Ot (2
Z,:[OA,M,I,C
Subject to
(L, A by < ™
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where A, is the time interval of stress period t (day). I; and Q; denote the
injection and pumping rates (m>/day), respectively, during the stress
period t. C; is the concentration of injectate in the aquifer at the end of
stress period t. C° is the initial injectate concentration. h; is the
groundwater level (m) at the end of stress period t. u; and v, are binary
variables to indicate injection and pumping activeness, respectively.
u, = 1 indicates that injection occurs with injection rate I, at stress
period t. v, = 1 indicates that pumping occurs with pumping rate Q, at
stress period t.

The first objective (Eq. (1)) maximizes the amount of injectate into
the aquifer during the storage phase. The second objective (Eq. (2))
maximizes the injectate recovery efficiency during the recovery phase
(Forghani and Peralta, 2018). The two objectives conflict with each
other because fj is in the denominator of fy. Eq. (3) and Eq. (4) are
managerial constraints where the injection is not allowed when the
groundwater level is above a threshold h™** and pumping is prohibited
when the groundwater level is below a threshold h™". Eq. (5) and Eq. (6)
are bound constraints for injection rates and pumping rates,
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respectively, when the pumps are active. Eq. (7) guarantees at least one
active injection stress period and at least one active pumping stress
period. Since ASR sites are typically small, this study assumes that the
aquifer is homogeneous with respect to hydraulic conductivity and
porosity.

The ASR operation optimization problem contains both continuous
variables and binary variables. Consider the length of one ASR cycle to
be a year with 12 monthly stress periods. The first 6 months are for the
storage phase and the last 6 months are for the recovery phase as they
resemble two natural phases of wet season and dry season in a year.
There are 12 binary variables (u,v;), by which the schedule is deter-
mined. There are also 12 continuous variables (I,Q;), where the injec-
tion rates and pumping rates are assigned. The product of these binary
and continuous variables results in injection rate or pumping rate for
each stress period. Owing to the nonlinearity of the second objective
function and groundwater level constraints, the optimization problem
becomes a mixed integer nonlinear programming (MINLP) problem. The
non-dominated sorting genetic algorithm (NSGA-II) (Deb et al., 2002)
has been shown to be a promising approach for solving MINLP problems
(Pasandideh et al., 2015; Rabbani et al., 2019; Chen et al., 2021b; Yin
et al., 2020). The NSGA-II algorithm utilizes the standard GA processes
and can be summarized in 6 steps: 1) population initialization, 2) non-
dominated sorting, 3) crowding distance, 4) selection, 5) genetic oper-
ations (mutation and cross over), 6) and recombination and selection.
Although the NSGA-II algorithm is selected for this study, other evolu-
tionary methods, such as multi-objective particle swarm optimization
(MOPSO), with outputs of non-dominated fronts can also be employed.

2.2. Uncertainty in model parameters and LHS sampling

It is well known that the optimal solutions to ASR operations will be
impacted by various uncertainties that can include a wide range of
model parameter and model structure uncertainties. This study specif-
ically focuses on uncertainties in hydraulic conductivity values used in
the groundwater flow equation and dispersivity values used in the so-
lution transpose equation since the injectate plume is highly sensitive to
these two model parameters.

This study adopts the Latin hypercube sampling (LHS) method to
generate realizations of hydraulic conductivity and dispersivity values
to address the uncertainty issues. Since the core to a successful Monte-
Carlo simulation is the sampling method (Doucet et al., 2006), a bet-
ter exploration of the parameter space would help perform a more
thorough uncertainty assessment. Lack of a robust sampling method
could introduce a computational curse (Janssen, 2013), where the
computation time and the number of model runs for unnecessary
sampled points hinder the progress. Stratified sampling, where different
parts of a population is proportionally represented, is necessary for a
thorough probe of the sample space (Neyman, 1992; Imbens and Lan-
caster, 1996). In this study, pairs of parameters for hydraulic conduc-
tivity and longitudinal dispersivity are generated based on Latin
hypercube sampling (LHS), which is a stratified sampling approach
(Iman and Conover, 1982; Helton and Davis, 2003). An LHS process for
sampling two parameters is illustrated in the Supplementary Material
Fig. S1.

2.3. Supervised learning-based surrogate modeling method

Calculating groundwater level h; and concentration C, at the end of
each stress period for the ASR operation optimization problem can be
intractable if the groundwater flow equation and solution transport
equations are directly solved. This computational burden can be
resolved by using surrogate models to efficiently produce groundwater
levels and concentrations in the optimization framework. The applica-
tion of ANN in groundwater and solute transport modeling has been well
documented in Nourani et al. (2008), Barzegar et al. (2017), and Bedi
et al. (2020). Prediction accuracy can be improved through adaptive
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Fig. 2. Das characterization of knee point for a bi-objective Pareto front. The
extreme line L* passes through the extreme solution of s; with the lowest f;
value and of s, with the lowest f, value on the Pareto front.

design-based surrogate modeling approach that adaptively combines the
favorable characteristics of different surrogate models (Zhang et al.,
2012).

2.4. Parameter and objective function uncertainties

To conduct in-depth uncertainty analysis, a representative solution
for each Pareto front that is obtained by solving Eq. (1) to Eq. (7) for
each set of parameters is selected in order to reduce computational re-
quirements. Let Z be the number of Pareto fronts, which is equal to the
number of discrete parameter pairs. At the first level, all the Pareto
fronts are ranked to determine the representative fronts. At the end all
the Pareto fronts will be ranked as the 1st, the 2nd, ..., the 7™ We name
the 1st, the (Z/Z)th, and the Z™ Pareto fronts as the superior front, the
median front, and the inferior front, respectively, and interpret them as
representative Pareto fronts that cover the entire range of Pareto solu-
tions. Analyzing entire Pareto fronts requires extensive computational
resources. To determine the ranks of the Pareto fronts, the non-
dominated sorting (Deb et al., 2002) is utilized. The ranking process is
performed as follows:

L. Label the solutions of a given Pareto front in order to distinguish
them from the rest of the Pareto fronts.

II. Run non-dominated sorting on the batch of all solutions of all
Pareto fronts to obtain non-dominated solutions.

III. Determine the Pareto front with the most non-dominated solu-
tions belonging to as the 1st rank Pareto front or the “superior
front”.

IV. By removing all solutions of the 1st rank Pareto front from the
batch, repeat steps II and III to determine the 2nd rank Pareto
front.

V. Repeat step IV to determine ranks for the 3rd, the 4th, ..., the zth
rank Pareto fronts.

At the second level, a representative solution is selected on each of
the superior front, the median front, and the inferior front. The concept
of the knee point, a point on non-dominated front for which a small gain
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in one objective costs a big loss on another objective, is applied to choose
the representative solutions (Zhang et al., 2014; Ramirez-Atencia et al.,
2017; Hamada and Chiba, 2017). There are optimization methods to
identify the knee point based on the trade-off characteristics of the
objective functions such as the hypervolume (Zhang et al., 2014), the
sum of objectives (Rachmawati and Srinivasan, 2006), the proper utility
(Shukla et al., 2013), and the angle-based knee point selection (Yue
et al., 2017). This study utilizes Das characterization (Das, 1999) to
identify the knee points of bi-objective Pareto fronts. The method is
predicated upon calculation of distance between a given solution on
Pareto front and the extreme line L*, as shown in Fig. 2. The extreme line
L* passes through extreme solutions (s; and s) of a given Pareto front
where f; and fy have their lowest values on the front. The basic
assumption of the Das characterization is that the knee point corre-
sponds to the maximum bulge (d4) of the Pareto front.

As the final step, a sensitivity analysis at knee points is performed to
find out how the ASR efficiency is affected through the parameter space
for varieties of injection rates and pumping rates. The second objective
function (fy) is the target random function. In this study, sensitivity of
the first objective is not of interest due to obvious relationship between
the first objective function and hydraulic conductivity (K) and as lon-
gitudinal dispersivity (ar) does not relate to the first objective function.
The sensitivity of the second objective function to parameters at knee
points is investigated through the variogram analysis of response sur-
faces (VARS) (Razavi and Gupta, 2016). K and ar are the focused
random variables for sensitivity analysis. In order to avoid the issue of
incompatible rates of variability for different parameters and to have a
unique range for which the impacts of different parameters can be
compared with each other, the parameters are scaled within their
maximum and minimum values (Razavi and Gupta, 2016). Hence, K and
ar are scaled by their upper and lower limits as K = (K — Knin)/
(Kmax — Kmin) and @r = (@r — a7 min)/ (07,max — QTmin). By scaling so, the
variograms (y) of f; at distance lags AK and Aar are defined as:

J(AK) = %E[fz(f + AK) — AR ®)

1(8) = SEf (@ + M) — (@) ©

where E is the expectation operator. The variograms will show the
variability of f, with respect to scaled lags of K and ar, which indeed
gives the flexibility of comparing f5 with respect to variations of the two
dimensionally different parameters.

3. Hypothetical ASR study site in Southwest Louisiana

Louisiana currently does not have an ASR site. However, the concept
of ASR can be used to mitigate groundwater problems in Louisiana’s
coastal zone, which is routinely impacted by flooding and salinization.
This study targets a potential ASR operation site based on the site se-
lection suitability analysis for Southwest Louisiana conducted by
LaHaye et al. (2021). The easy access to surface freshwater through local
streams and suitable hydrogeologic characteristics of the underlying
aquifer were the key criteria for selecting this potential ASR field
demonstration site. The geochemical impacts of injected water could be
investigated in future studies as water quality data become available.
Fig. 3 shows the location of the study area in the north of Vermillion
Parish, Louisiana. The model domain is 4 km by 4 km. The surface water
source for the ASR operation may come from Bayou Grand Marais. The
study area is covered by 27-meter thick clay layer at the top and is un-
derlain by the thick undifferentiated sand of the Chicot aquifer system
(Vahdat-Aboueshagh and Tsai, 2021). The undifferentiated sand is
heavily pumped for agricultural purposes, and a large cone of depression
has been created in the region (Fendick and Nyman, 1987; Lovelace
et al., 2004). The adjacency to the Gulf of Mexico also makes this region
prone to saltwater encroachment.
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Fig. 3. The ASR study area. (a) The location of the ASR project area and a potential ASR well in the Chicot aquifer. (b) The Chicot aquifer along the AA’ cross section.

The coordinates are in NAD83/UTM zone 15 N.

4. Modeling setup
4.1. Groundwater flow model

A MODFLOW groundwater model (Harbaugh, 2005) for the study
area was developed based on the hydrogeological information generated
from a previously developed groundwater model (Vahdat-Aboueshagh
et al. 2021). The model vertical extent is from land surface around 1 m
down to —260 m NAVD 88. The horizontal cells size is 25 m. The model
constitutes 24 layers with non-uniform thickness. The first layer and the
last layer are confining layers. For the year 2015, the groundwater level

of —9 m NAVD 88 was used as the constant-head boundary condition.
The initial groundwater level was —8.70 m NAVD 88. 12 monthly stress
periods were used for discretizing a one-year long ASR cycle. The ASR
well screen was assumed to be from elevation of —129 m to —140 m
NAVD 88.

Hydrogeologic properties of sand and clay were assumed to be ho-
mogeneous and isotropic. The specific storage and hydraulic conduc-
tivity values of sand are: 1.9 x 10™°> m ™! and 45.6 m/day, respectively
(Vahdat-Aboueshagh et al. 2021). Previous studies suggested that nat-
ural logarithm of hydraulic conductivity, In(K), for an aquifer follows a
normal distribution (Benson, 1993; Yeh and Liu, 2000; Zhao and Illman,
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Table 1
Data used in the simulation models, the ANN models and the optimization
model.

Journal of Hydrology 612 (2022) 128299

Sample o and K Generate /, and Q,

Data Value Range

Model top, m 1

Model bottom, m —260

Model area, m x m 4000 x 4000

Number of model rows 160

Number of model columns 160

Number of model layers 24

Screen location (row, column, layer) (68,85,13)

Log-hydraulic conductivity (InK), m/ 3.82 (mean) 0.74 (standard
day deviation)

Specific storage, m ! 1.9 x 107°

Porosity 0.3

Longitudinal dispersivity (ar), m 50.025 0.05 - 100 (uniform)

ag/ay 0.1

ay/ag 0.01

Initial groundwater level, m —8.70

Boundary groundwater level, m -9.00

Number of injection stress periods 6

Number of pumping stress periods 6

Co, mg/L 1000

hmin, m —10.70

Aumax, M ~6.70

Linin, m®/d 4000

Lnax, m*/d 40,000

Quin, m*/d 4000

Qumax, m*/d 40,000

Number of pairs of (InK,a;,) 100

Number of ANN models 1800

NSGA-II population size 120

NSGA-II generation size 480

2021). Vahdat-Aboueshagh et al. (2021) derived the mean and standard
deviation for In(K) to be 3.82 and 0.74, respectively, for the study site
after appropriate model calibration. The porosity of the aquifer was
assumed 0.3. Anisotropy and heterogeneity of hydraulic conductivity
and porosity may have effects on the solutions and were not explored in
this study. Future studies could assess these effects.

4.2. Transport model

This study employed the MT3DMS (Zheng and Wang, 1999) to track
the injectate in the aquifer during the ASR cycle. To distinguish injectate
from native groundwater, the injected water is assumed to contain an
imaginary conservative solute (Forghani and Peralta, 2017) with con-
centration of 1000 mg/l. Probably the most challenging parameter in
the contaminant transport models is the value of dispersivity (Burnett
and Frind, 1987a; b). Due to our lack of knowledge about the nature of
dispersive processes in groundwater systems (Frind et al., 1987), the
longitudinal dispersivity is indeed an important uncertain parameter. In
this study, the longitudinal dispersivity (a;) is assumed to be a constant
and assumed to follow a uniform probability distribution with a lower
and an upper bound of 0.05 m and 100 m, respectively (Xu and Eckstein,
1995; Schulze-Makuch, 2005). Assuming lower values of the longitu-
dinal dispersivity leads to sharp fronts with advection dominant
behavior, while the higher values leads to mixed plumes having
dispersion dominant behavior (Konikow, 2011). The horizontal trans-
verse dispersivity (ay) is assumed to be 0.1 of the longitudinal dis-
persivity and the ratio of vertical transverse dispersivity (ay) to
longitudinal dispersivity is assumed to be 0.01 (Zheng and Wang, 1999).

4.3. LHS sampling and model runs

In this study, 100 pairs of hydraulic conductivity and longitudinal
dispersivity values were generated based on the LHS. Every pair was
used to build a groundwater flow model and a solute transport model.
Given a set of injection rates and pumping rates, the simulation models
took approximately 5 min on a single core of the LSU SuperMike-II

Y v

MODFLOW and MT3DMS models

Y

Simulate 4, and C,

Train and validate

———>»| ANN models

h, and C,;

-
I, and Q,

ASR bi-objective optimiztion
with NSGA-II

Pareto fronts

Statistical analysis of Pareto solutions

Fig. 4. Flowchart of methodology.
cluster to calculate groundwater level and concentration for 12 months.

4.4. ANN models development with parallel computing

For 12 stress periods, 1000 random sets of injection rates and
pumping rates (I; and Q) together with 1000 random sets of binary
values (u; and v,) were generated. The only consideration in sampling
sets of u; and v; is the one shown in Eq. (7). These sets along with 100
generated pairs of hydraulic conductivity and longitudinal dispersivity
were employed to train and validate ANN models for predicting
groundwater levels and concentrations for 12 months in the ASR oper-
ation optimization problem. All of the 10° MODFLOW and MT3DMS
models were run on 100 processers parallelly on the LSU SuperMike-II
cluster. Each processor ran 1000 pairs of MODFLOW and MT3DMS
models. The recorded groundwater levels from MODFLOW and con-
centrations from MT3DMS were input into ANN models.

We developed an ANN model for predicting groundwater level at the
end of each stress period, and another ANN model for predicting con-
centration at the end of each pumping stress period. Therefore, there are
a total of 1800 ANN models. A total of 100 parallel processors were
utilized in parallel mode. Eighteen (18) ANN models were trained on
each processor for predicting groundwater levels and concentrations for
each pair of hydraulic conductivity and longitudinal dispersivity. All the
ANNSs are feedforward networks with a single hidden layer of 5 neurons.
The training of the ANNs were performed in the parallel mode. The
Levenberg-Marquardt (LM) algorithm was utilized to minimize the
mean square error (MSE) cost function of the network (Ampazis and
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Fig. 5. Pareto solutions for the ASR operation optimization problem with uncertainties in hydraulic conductivity and longitudinal dispersivity values.

Perantonis, 2000; Singh et al., 2007).

The architectures of the ANN models were finalized through trial and
error (Razavi et al., 2012). The proportions of training data, testing data,
and validation data were determined as 70 %, 15 %, and 15 %,
respectively, which are in accordance with the numbers reported in
previous studies (Bowden et al., 2002; Shahin et al., 2004). The acti-
vation function of the hidden layer was set to the sigmoid function as it
has been proved to be the best performer in capturing non-linearity of
the modelled natural system (Nourani et al., 2008). The number of
epochs was 928 on average for different models. The error average in
groundwater level in different stress periods is less than 102 m in all the
training, testing, and validation sets. The great performance of the ANN
on groundwater level approximation has been reported frequently
(Nourani et al., 2008; Trichakis et al., 2011). The error average in
concentration in all the sets reduces continuously from 19 ml/lin the 7th
stress period to 7 ml/l in the last stress period. The relatively higher
concentration error in the 7th stress period is due probably to the
complex behavior of the aquifer in transitioning from injection to
pumping. However, the errors in concentration are all less than 2 %,
which is satisfactory.

4.5. Optimization model with parallel computing

For each pair of hydraulic conductivity and longitudinal dispersivity
values, the NSGA-II (Deb et al., 2002) was utilized to solve the bi-
objective MINLP problem (Eq. (1)-Eq. (7)). The hy.x and h.;, were
considered as 2 m above and 2 m below the initial groundwater head in
the aquifer, respectively, which guarantees that the groundwater level
will remain in the Holocene clay layer. The minimum injection rate and
minimum pumping rate were set to 4,000 m>/day (roughly 1 million
gallon per day). The maximum injection rate and maximum pumping
rate were set to 40,000 m®/day (roughly 10 million gallon per day). The
minimum and maximum rates were chosen based on pumping in the
study region. The population size of 120 and generation size of 480 were
set up for the NSGA-IIL. Parallel computations were performed to solve
the 100 ASR optimization problems simultaneously. Table 1 lists the

data used in the simulation models, the ANN models, and the optimi-
zation model. Fig. 4 shows the flowchart of methodology from sampling
parameters, to developing MODFLOW/MT3DMS models, to training/
validating ANN models, to solving the ASR operations optimization
problem, and to analyzing Pareto solutions.

5. Results and discussion
5.1. Optimal solutions under uncertainty

The results of 100 Pareto fronts given 100 pairs of hydraulic con-
ductivity and longitudinal dispersivity are shown in Fig. 5. The Pareto
fronts with the 1st rank (the superior front), the 50th rank (the median
front), and the 100th rank (the inferior front) and their knee points were
determined and shown in the figure. The injectate amount (f;) of Pareto
fronts ranges between the minimum amount of 1.2 x 10° m® and 6.9 x
10° m? that is close to the maximum amount based on the upper limit
(Eq. (5)). This means that almost the maximum amount of injection may
be exploited in some parameter sets. The injectate recovery efficiency
(fp) varies between 0.1 and 5.1, which falls within the mathematical
range of [0,6] for objective 2 based on the lower and upper limits (Eq.
(5) and Eq. (6)). fy > 1 indicates that the amount of extraction is higher
than the amount of injectate in order to achieve a higher recovery effi-
ciency because of the injectate dispersion in the aquifer (Thomas et al.,
2000). The diversity of the solutions of a Pareto front decreases as from
the higher rank to the lower rank of Pareto fronts as the superior, me-
dian, and inferior fronts demonstrate. In other words, the higher the
rank of a Pareto front, the more diverse the ASR scheduling becomes.

To further investigate the effect of the parameters on the Pareto
fronts, Fig. 6a shows a general increasing trend in hydraulic conduc-
tivity (K) towards higher ranks of Pareto fronts. Since Pareto fronts with
higher ranks have wider f; and f; values, Fig. 6a indicates that an aquifer
with a higher hydraulic conductivity field can give broader ASR oper-
ation options because of lower fluctuations in groundwater level under
higher injection and pumping rates. On the contrary, lower ratios of
longitudinal dispersivity to hydraulic conductivity a;/K (Fig. 6b) result
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in Pareto solutions with higher ranks. The ratio a;/K was chosen since it
adequately represents the ratio of the injectate amount to the extraction
amount in fy (Eq. (2)). High value of a;/K implies lower values of K
which leads to a lower amount of injectate (reduction in f;) and lower
pumping rates and leads to lower ranks of Pareto fronts. On the other
hand, lower value of a;, corresponds to lower spread of injectate (smaller
bubble) with high concentration (Ward et al., 2007), which leads to high
ranks of Pareto fronts. To complement the analysis, the upper limit value
of f, on each Pareto front with respect to corresponding a;/K is shown in
Fig. 7. This result is consistent with previous analyses that higher a;/K
tents to produce low-rank Pareto fronts, which have lower values of the
uppe{ limit of f;. The upper limit of f; approaches 0 when a;/K > 4
day~

5.2. Uncertainties in ASR scheduling

Fig. 8a shows the operation occurrence probability for each stress
period. The operation occurrence refers to occurrence of either injection
or pumping in a single stress period. The probability is the average of u,
or v, for each stress period over 12,000 Pareto solutions. On average, the
occurrence probability increases from 0.33 in the storage phase to 0.53
in the recovery phase indicating that the number of pumping operations
is greater than the number of injection operations. In both phases the
operation occurrence probability increases towards the end of the phase.
The variation of the operation occurrence probability in the recovery
phase is less than that in the storage phase. In other words, pumping
occurrence is steadier throughout the entire recovery phase while in-
jection occurrence is more likely near the end of the storage phase. The
low injection occurrence probabilities in the 1st and the 2nd stress pe-
riods indicate high certainty that the beginning of the storage phase is
not recommended to store water into the aquifer. In opposition, the
pumping occurrence probabilities close to 0.5 in the 8th and the 9th
stress periods indicate the most uncertain stress periods as scheduling
pumping in those periods are less predictable.

The average injection rate and the average pumping rate for each
stress period over the 12,000 Pareto solutions are provided in Fig. 8b.
The similar pattern for the operation occurrence probability indicates
that the higher the number of operations, the higher the volume of
injectate or extraction. The average injection rate is 5,200 m>/day and
the average pumping rate is 7,200 m®/day. This significant difference
stems from the fact that injectate disperses in the aquifer as time passes
(Thomas et al., 2000). Hence, more miscible water needs to be extracted

to achieve a higher ASR efficiency.

The relationship between the hydraulic conductivity and the ASR
schedule is also investigated as shown in Fig. 9. The steady increase of
number of active stress periods as the values of K increases is consistent
with the previous discussions that an aquifer with a higher hydraulic
conductivity field can give broader ASR operation options. The percent
of the Pareto solutions shows a decreasing trend as the number of active
stress periods expands. More than 50 % of the Pareto solutions have less
than 6 active stress periods and only less than 10 % of the Pareto solu-
tions have more than 9 active stress periods. Further analysis of Pareto
fronts obtained by the method in this study could be performed
considering risk-tolerant or risk-averse polices in future studies (White
et al., 2022).

The hydraulic conductivity also affects the amount of injectate and
extracted water during ASR operations. Fig. 10 shows increasing
average volumes of injection and extraction for every Pareto front with
increasing hydraulic conductivity. The gap between the volumes of
extracted water and injected water widens as the hydraulic conductivity
increases due to higher dispersion of injectate. At higher hydraulic
conductivity, the injectate travels further away from the ASR well,
which allows higher injectate volumes and leads to a bigger stored
bubble (Ward et al., 2007). Consequently, the wider bubble causes
higher pumping rates in order to maximize the recovery (Lowry and
Anderson, 2006).

5.3. Variation of groundwater level and concentration

Variation of groundwater levels at the ASR well across all the Pareto
solutions in each stress period is shown in Fig. 11a. The last two stress
periods (stress period 5 and 6) of the storage phase have the largest
variation in groundwater level while the least groundwater level vari-
ation corresponds to the first two stress periods. These variations in
groundwater level align with the probability of operation occurrence for
stress periods explained in Fig. 8a. The recovery phase has relatively
small groundwater level variation. Nevertheless, the range of ground-
water level increases towards the end of the recovery phase.

Concentration and its variation at the ASR well in the recovery phase
decrease with time as shown in Fig. 11b. Moreover, the maximum
concentration of each stress period reduces monotonically from the
beginning to the end of the recovery phase. The maximum concentration
of the last stress period is 450 mg/! indicating that concentration at the
ASR well is less than half of its initial concentration at the end of ASR
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regardless of the scheduling and injection and pumping rates.

5.4. Variogram of f2 at knee points

To extend the uncertainty analysis, the uncertainty of the second
objective function (f) with respect to uncertainty K and o was
expressed via variograms at the knee points of the superior front, median
front, and inferior front as shown in Fig. 12. The values of K and oy were
uniformly sampled from their corresponding parameter ranges. The
meaningful distance lag is up to 50 % of the parameter range (Razavi
and Gupta, 2016). According to the variograms, a;, uncertainty has more
effect on the f; uncertainty, compared to the effect of K uncertainty on
the fs uncertainty in all three knee points. It is concluded that based on

Journal of Hydrology 612 (2022) 128299

the given ranges of parameters, recovery efficiency is most sensitive to
ar.

6. Conclusions

This study formulates and solves a multi-objective MINLP optimi-
zation problem under uncertainty to optimally schedule operations for a
one-year ASR operation cycle of injection and pumping. The incorpo-
ration of the ANN surrogate modeling into the MINLP shows promising
results and very satisfying computational performance. Through anal-
ysis of the Pareto fronts, it was revealed that the efficiency of ASR is
highly affected by the longitudinal dispersivity. Better performance of
ASR in terms of the amount of injectate is achieved with higher values of
hydraulic conductivity. Better performance of ASR in terms of injectate
recovery efficiency is achieved with higher ratios of longitudinal dis-
persivity to hydraulic conductivity.

Investigating the schedule of ASR across Pareto solutions showed
that injection near the end of the storage phase and pumping near the
end of the recovery phase are likely to be robust policies. The pumping
events tend to spread over the recovery phase while the injection events
are mostly likely to occur at the end of the storage phase. The Pareto
solutions for robust policies demonstrate that more than 50 % of the
optimal solutions include a schedule with less than 6 active stress pe-
riods (either injection or pumping) over a 12-stress-period cycle. In
robust policies, the volume of extracted water mostly exceeds the vol-
ume of injectate in optimal solutions and the gap between the volumes
increases with higher values of hydraulic conductivity. This difference is
attributable to the expansion of stored bubble with lower injectate
concentration in aquifers with high hydraulic conductivity.

The analysis of the groundwater levels variation showed that the
variation in the groundwater levels is the most at the end of injection
period which is due to higher uncertainties associated with the end of
the storage phase. The variation of injectate concentration diminishes
with time through the recovery phase due to either pumping or dilution
with the native groundwater.

The proposed method in this study can be applied to ASR scheduling
problems with more than one cycle and may be researched in future
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