

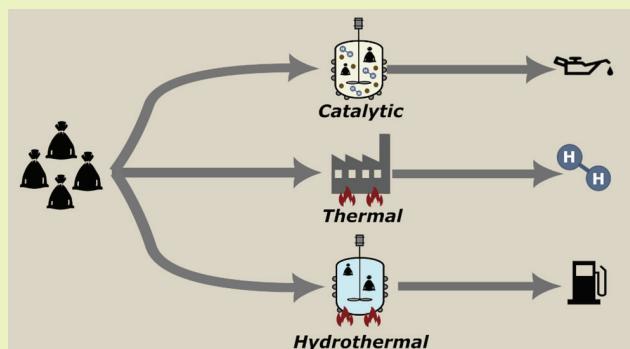
Techno-Economic and Life Cycle Analyses of Thermochemical Upcycling Technologies of Low-Density Polyethylene Waste

Borja Hernández, Pavel Kots, Esun Selvam, Dionisios G. Vlachos,* and Marianthi G. Ierapetritou*

Cite This: *ACS Sustainable Chem. Eng.* 2023, 11, 7170–7181

Read Online

ACCESS |


Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: In this study we compare techno-economics and life cycle assessment of thermochemical depolymerization technologies, including pyrolysis, gasification, hydrocracking, hydrothermal liquefaction, and hydrogenolysis, to generate various products from low-density polyethylene (LDPE) waste. We elucidate the effects of production scale, collection cost, and concentration of LDPE in plastic waste. Pyrolysis of LDPE to olefins followed by their conversion to lubricant oils is the most profitable technology. Hydrogenolysis, producing a small fraction of lubricant oils, becomes profitable at plant sizes above 25 kt/y and produces the lowest CO₂ emissions. Hydrocracking is the second most environmentally friendly technology but becomes economically competitive at sufficiently large scales, and the supply chain for collecting plastics is optimized. Gasification of LDPE to H₂ produces high emissions, and the price of H₂ of ~3 \$/kg is higher than current markets and recently announced goals. Similarly, hydrothermal liquefaction also gives high emissions, making carbon capture systems imperative for both technologies. Our results demonstrate that lowering the cost of sorting LDPE from plastic waste, collecting waste near big cities, building sufficiently large plants, and achieving high selectivity to value-added products are critical to successful plastic waste management.

KEYWORDS: plastics waste, upcycling, recycling, pyrolysis, gasification, hydrogenolysis, hydrocracking

Downloaded via UNIV OF KANSAS on July 6, 2023 at 15:42:11 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

recycled up to 3 times.¹⁶ Thermochemical recycling has the potential to produce monomers (recycling) and value-added products (upcycling), and such industrial plants exist.^{17,18} There are multiple thermochemical recycling technologies, but evaluation and guidance for selecting the best technology are lacking.

Pyrolysis is the most widely used thermochemical technology since it enables handling multiple plastic wastes,^{19–21} resulting in naphtha composed of paraffins, olefins, and aromatics. The product can be transformed into multiple final products (e.g., fuel oils,²² diesel,²³ power, or ethylene and propylene monomers²⁴). Gasification to syngas is another popular technology that is more profitable than pyrolysis for producing power.²⁵ However, several cleaning steps are required. For example, polyvinyl chloride (PVC)²⁶ and waste tire²⁷-generated pollutants are costly to remove.¹⁶ Technoeconomic analysis (TEA) has been performed for

Received: February 2, 2023

Revised: April 9, 2023

Published: April 21, 2023

ACS Publications

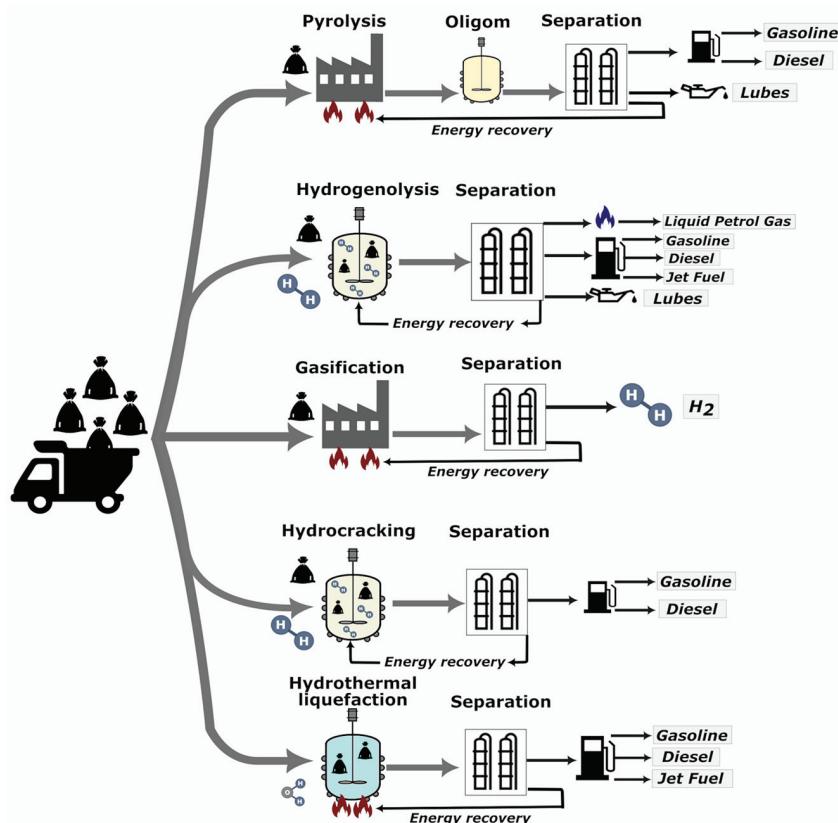


Figure 1. Summary of thermochemical technologies studied and their products.

Table 1. Summary of Depolymerization Technologies and Critical Operating Conditions

depolymerization technology	catalyst considered	temperature (°C)	pressure (bar)	reactor type
pyrolysis		550	1	fluidized bed
gasification		850	1	spouted bed with H ₂ O
HTL		400	7	batch, vessel
hydrocracking	HY and Pt/WO ₃ /ZrO ₂	250	30	batch, Parr
hydrogenolysis	Ru/WO ₃ /ZrO ₂	250	30	batch, Parr

sorted²⁸ and unsorted²⁹ plastic to produce power, hydrogen,³⁰ and methanol.³¹ Life cycle assessment (LCA) has also been performed for producing power³² and syngas.³³ Hydrothermal liquefaction (HTL) is also exploited for treating plastic waste using steam,^{19,34} but TEA and LCA for HTL have mainly focused on moist organic residues,³⁵ such as municipal organic residues,³⁶ biomass,^{37,38} and algae^{39,40} rather than plastics.

Recently, attention has shifted from high-temperature non-catalytic to low-temperature catalytic processes. For example, hydrotreating for naphtha obtained from pyrolysis to fuel oil has been evaluated.^{41–43} Single-step hydrocracking, which employs metal and acid functionalities, has also been demonstrated by applying H₂ at mild temperatures.⁴⁴ Hydrogenolysis, which uses mainly metal functionality, converts plastics into fuels or more valuable chemicals, such as lubricant oils, with potentially improved economics.⁴⁵

A common characteristic of catalytic technologies is their low temperature that can lead to significant energy savings and reduced CO₂ emissions. However, they all use significantly high pressure of H₂, whose production is carbon and energy intensive. Their platinum group metal (PGM) catalysts are costly and sensitive to contamination, unlike high-temperature pyrolysis. Given the disparity in operating conditions and

products, comparison of thermochemical technologies with the same methodology is crucial to provide a blueprint for technology selection and advances. This paper closes this gap by performing TEA and LCA of pyrolysis, gasification, HTL, hydrogenolysis, and hydrocracking. Figure 1 depicts the technologies, key steps, and final products. Specifically, we evaluate gasification to produce H₂ since it is a more valuable product than power, and H₂ production from low-carbon feedstocks is envisioned as a critical technology of the green energy future and industrial sustainability.¹² We compare pyrolysis and hydrogenolysis for the production of lubricants as an example of a value-added product (\$1.5–2/kg⁴⁶ vs ~\$1/kg¹⁵ for polyethylene). A summary of the technologies and processes evaluated are given in the following section. Finally, we compare the economic indicators and environmental impacts, in particular the CO₂ emissions, of all the technologies. Technologies producing highly valuable products, such as lubricants, like pyrolysis and hydrogenolysis, are the most profitable; meanwhile catalytic technologies like hydrocracking and hydrogenolysis are the most sustainable.

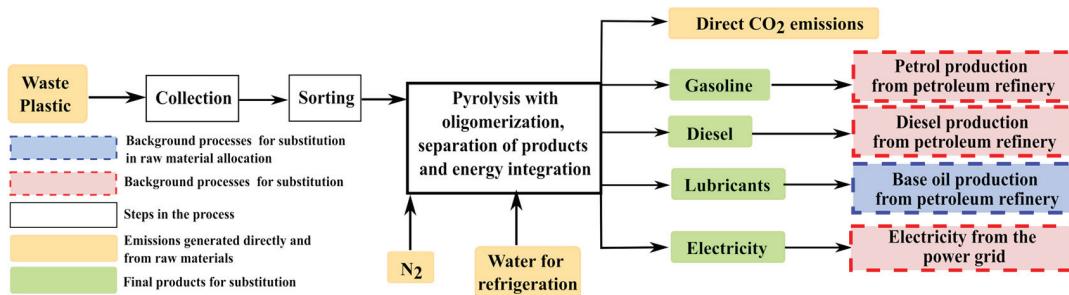
METHODOLOGY

Overview of Process Modeling and Technologies.

Next, we provide an overview of the technologies, key steps, and main products. The operating conditions of the depolymerization technologies are summarized in **Table 1**. We employed Aspen Plus with Python using PolyNRTL for thermodynamics.⁴⁷ Heat integration was performed following the Synheat method in GAMS.⁴⁸ Details are given in the supplementary information (SI).

Pyrolysis. Although the product can be controlled by a catalyst,^{49–51} temperature^{20,21} and reactor type (e.g., fluidized beds,⁵² spouted beds⁵³ or microwave reactors^{54,55}), it is typically composed of alkanes, alkenes, and aromatics with a wide range of molecular weights. Among them, olefins and aromatics are the most valuable; aromatics are rarely higher than 10% and only over specific catalysts the selectivity can reach 60%.^{56,57} Olefins are produced in a higher percent and be isomerized to α -olefins to produce eventually final products such as surfactants, lubricants, and aldehydes. In this work, lubricants are selected as the target product following the work of Zhao et al.⁵² with a yield of ~60% to olefins in a non-catalytic fluidized bed at 550 °C and nitrogen as the heating carrier gas. The product is sent to a cyclone to remove the solids' traces and then to a cooler and a flash separator, where the liquid phase is recovered. The remaining gas containing the light olefins (C2–C4) is compressed, and the olefins are isomerized to higher olefins (C5–C10) using HZSM-5 zeolite at 70 bar and 200 °C.⁵⁸ The olefins from this light oligomerization reactor are mixed with the α -olefins obtained directly in the liquid fraction from pyrolysis oligomerizing them in a second oligomerization reactor over HZSM-5 at 20 bar and mild temperatures to obtain longer molecules, above C20.⁵⁹ The resultant lubricant oil (taken as group I or III), unreacted olefins, and paraffins (assumed as inert) are separated into lubricant oils, diesel, and gasoline, using a fractional tower.

Gasification. Gasification partially oxidizes the plastic waste with oxygen, air, or steam to produce synthesis gas (CO and H₂) with traces of light hydrocarbons (methane, ethane, and ethylene) and ash.^{60,61} Syngas can produce power, chemicals (methanol, ethanol, and dimethyl ether), or synthetic fuels. Given the recent emphasis on decarbonization and the use of low-carbon feedstocks, such as plastic waste, hydrogen is desirable. Steam is the best oxidizer for high-selectivity hydrogen and simplifies the separation.^{61,62} A spouted bed at 850 °C with olivine as a heat transfer agent was used for modeling the reactor obtaining syngas with an H₂:CO ratio of 2.2.⁶² The cleaned syngas was compressed and sent to a high-temperature water-gas-shift (WGS) reactor operating at 400 °C followed by a low-temperature bed working at 200 °C, over chromium iron oxide catalyst.^{63,64} Each bed is modeled being in chemical equilibrium using a custom model written in Python integrated through an iterative scheme with the Aspen flowsheet model. The product was cooled down and separated by a pressure swing adsorption (PSA). The PSA system has a recovery of 82.5% for H₂.⁶⁵ The hydrogen is not recovered, and the hydrocarbons are burned to produce heat that cover the energy demand in the gasification reactor.


Hydrothermal Liquefaction (HTL). HTL degrades the polymer in subcritical or supercritical water.¹⁶ The process is robust and applicable to mixed waste without sorting. The product contains paraffins, olefins, and aromatics that can

produce gasoline with a high octane number.⁶⁶ For LDPE, HTL operates at 400 °C and 7 bar in an inert N₂ atmosphere. The reaction takes 2.5 h resulting in naphtha fuel.⁶⁶ The process only requires the depolymerization reactors operating in semi-batch, a filter in each reactor, and a fractionation tower for separating the fuels. Jet, diesel, gasoline, and gases are separated. The gases partially provide the energy requirements of the HTL reactor.

Hydrocracking. Hydrocracking provides fuel of a narrower distribution⁶⁷ but employs hydrogen.⁶⁸ It can be directly applied to plastics⁴⁴ or used after pyrolysis to hydrotreat the oil and improve its quality. The two-step process has been deemed less cost-effective and is recommended only when the direct hydrocracking product quality needs improvement.⁶⁷ In this work, a single-step hydrocracking process, using a dual HY and Pt/WO₃/ZrO₂ catalyst,⁴⁴ has been adopted here. The plastic waste is fed into the reactor with H₂ at 250 °C and 30 bar for 2 h. The product obtained is filtered to remove the traces of solids and distilled to recover the fuel fractions. The gas fraction obtained is sent to PSA to recover and recycle H₂. The fraction not recovered in the PSA is sent with all the other gas hydrocarbons to a combined heat and power system to cover the energy of the plant and sell the rest to the network.

Hydrogenolysis. Hydrogenolysis generates more valuable products, such as group III lubricant oils⁴⁵ and fuel oils.^{69–71} Over a ruthenium/tungstated zirconia catalyst at 250 °C and 30 bar for 2 h, it produces lubricant oil at 15–20 wt %.⁷¹ The product can be separated by distillation into lubricant oils, jet fuel, diesel, gasoline, and gas. A higher amount of gasoline is recovered from the gas fraction using a debutanizer. Since hydrogenolysis is not as energy intensive as the other processes, liquid petrol gas (LPG) is also recovered using a depropanizer and a de-ethanizer. The remaining C2 and C1 fractions and the unreacted H₂ are sent to PSA. In PSA, H₂ is recovered and recycled to the hydrogenolysis reactor. The remaining H₂ with the C₂ and C₁ fractions are converted into heat and power.

Techno-Economic Analysis (TEA) and Life Cycle Assessment (LCA). *Techno-Economic Analysis (TEA).* TEA is performed using the discounted cash flow method to estimate the main product's minimum selling price (MSP), which is compared with the selling price of each product in the market. For comparing different technologies, the return on investment (ROI) and the internal rate of return (IRR) are used as economic metrics. An amortization period of 20 years is considered. In all the economic metrics, the co-products are assumed to be sold. A detailed description of the assumptions and costs is given in the SI. Scenario analysis is also performed to evaluate the effect of plant scale, plastic waste collection price, and sorting cost. Specifically, the plant scale was varied from 5 and 60 kt/y to reflect current and under-construction industrial facilities,¹⁹ with a nominal scale of 25 kt/y of LDPE, reflecting the biggest plant of waste plastic depolymerization in Europe. The price for collecting plastic waste in low and high-density population areas varies between \$0.1/kg and \$0.3/kg in Pennsylvania, Delaware, New Jersey, Maryland, and New York (see SI for further information).⁷² The literature values have been adjusted with the gross domestic product per person between Italy and US⁷³ and the consumer price indices between 2009 and 2021.⁷⁴ Finally, the LDPE is sorted from the plastic waste at 0.032 \$/kg of plastic.²⁸ Its nominal concentration in the plastic waste is 24%,³ resulting in a nominal sorting price of \$0.13/kg of LDPE. To account for

Figure 2. Environmental burdens for the pyrolysis of plastic waste. The product allocation approach only considers the substitution of the background systems for the co-products (red squares). The raw material allocation considers the substitution of the background systems for all the products (red and blue squares).

feedstock variability, the concentration has been varied between 15 and 30%, as higher LDPE concentrations have a lower cost of sorting. Due to the ability to handle mixed waste and plastics,¹⁹ HTL has also been evaluated without sorting.

Life Cycle Assessment (LCA). LCA is performed to evaluate the emissions and the highest contributors to the environmental impacts. Only materials used in continuous operation have been considered. Others related to the construction or infrastructure are not included. The impacts are calculated with Traci⁷⁵ and from Ecoinvent v.3.8 database. The analysis is based on bin-to-gate boundary without recycling outlet streams, where plastic waste is considered as a residue. Two approaches have been followed for performing the LCA:

- First, a product allocation is followed with a system expansion method. In this approach, only the co-products are assumed to substitute the same product from a petrol-based process (see red squares in Figure 2), obtaining credits. This allows the emissions to be allocated to the main product of each process and the comparison of the products from the processes studied here with products generated from a fossil-based source. However, this approach does not allow to compare processes since the products are different.
- A second system expansion approach substituting all the products (including the main product) by the emissions of a petrol-based one has been followed, in a similar way to consequential LCA. This allows a common framework for comparison of different processes. In this approach, the main product also substitutes the same product from a petrol-based source, and the emissions are allocated using waste LDPE as a functional unit. A summary of the boundaries is given in Figure 2 using pyrolysis as an example. In this second approach, the co-products (diesel and gasoline) substitute the background systems in red and the main product substitutes its background system in the blue square. The background systems used for substituting all the products are given in Table 2. More details about the boundaries used in each process are given in the SI.

RESULTS

TEA Results. The CAPEX, MSP of the main product vs literature values, ROI, and IRR are listed in Table 3. The MSP is compared to the reported values of the market (MSP market in Table 3).^{46,76,77} The IRR is compared with technical reports of market research companies.⁷⁸ Pyrolysis and hydrogenolysis making lubricant oils have a positive ROI. The remaining

Table 2. Products and Background Processes Used for Substitution^a

product	background process from ecoinvent
lubes	base oil production, petroleum refinery operation. Location: rest of the world
diesel and jet fuel	diesel production, low sulfur, petroleum refinery operation. Location: rest of the world
gasoline	petrol production, low-sulfur, location: rest of the world
H ₂	hydrogen production, gaseous, petroleum refinery operation. Location: rest of the world
electricity	market for electricity, medium voltage, location: US-RFC
LPG (butane fraction)	market for butane, location: global
LPG (propane fraction)	market for propane, location: global

^aAll the emission factors are taken from Ecoinvent.

technologies do not generate sufficient profits to recover the investment in 20 years. Gasification, hydrocracking, and HTL have an ROI < -100%; that is, the cost is higher than the profit. This emphasizes the importance of generating high-value-added products. In specialty chemicals, like lubricants, the IRR is between 13 and 17%; in commodity chemicals, like gasoline, a minimum IRR of 8% is required for economic viability. The IRR of pyrolysis above 17% indicates that it could be profitable compared to the current crude oil-based lubricants; meanwhile, hydrogenolysis with an IRR between -1.5 and 1.7% is not competitive for commodity chemicals; see Table 3. This is due to the higher yields achieved for lubricants as shown in Table 4.

The cost breakdown of all technologies is shown in Figure 3A (details in the SI). In most cases, the main cost is the collection and sorting of plastics. Interestingly, due to the smaller scale of a recycling facility than typical industrial plant sizes, the amortization and other costs (labor, administration, and overhead) contribute significantly. Utility costs have a minor contribution since the gases generated in the conversion produce heat and power for the plant. Only in HTL, this contribution is slightly higher due to its high energy consumption. The cost of other raw materials is relatively low (<10%), except for hydrogenolysis and hydrocracking, since H₂ is more expensive than water or N₂ of other technologies. Overall, reducing collection costs and automating and streamlining plastics sorting, possibly by changing customer habits and setting up the necessary infrastructure, are crucial to plastics recycling. For example, more specialized recycling bins for various waste streams exist in some of the EU country airports and cities than in the US.

Table 3. Summary of TEA for Various Technologies for a Nominal Plant Size of 25 kt/y

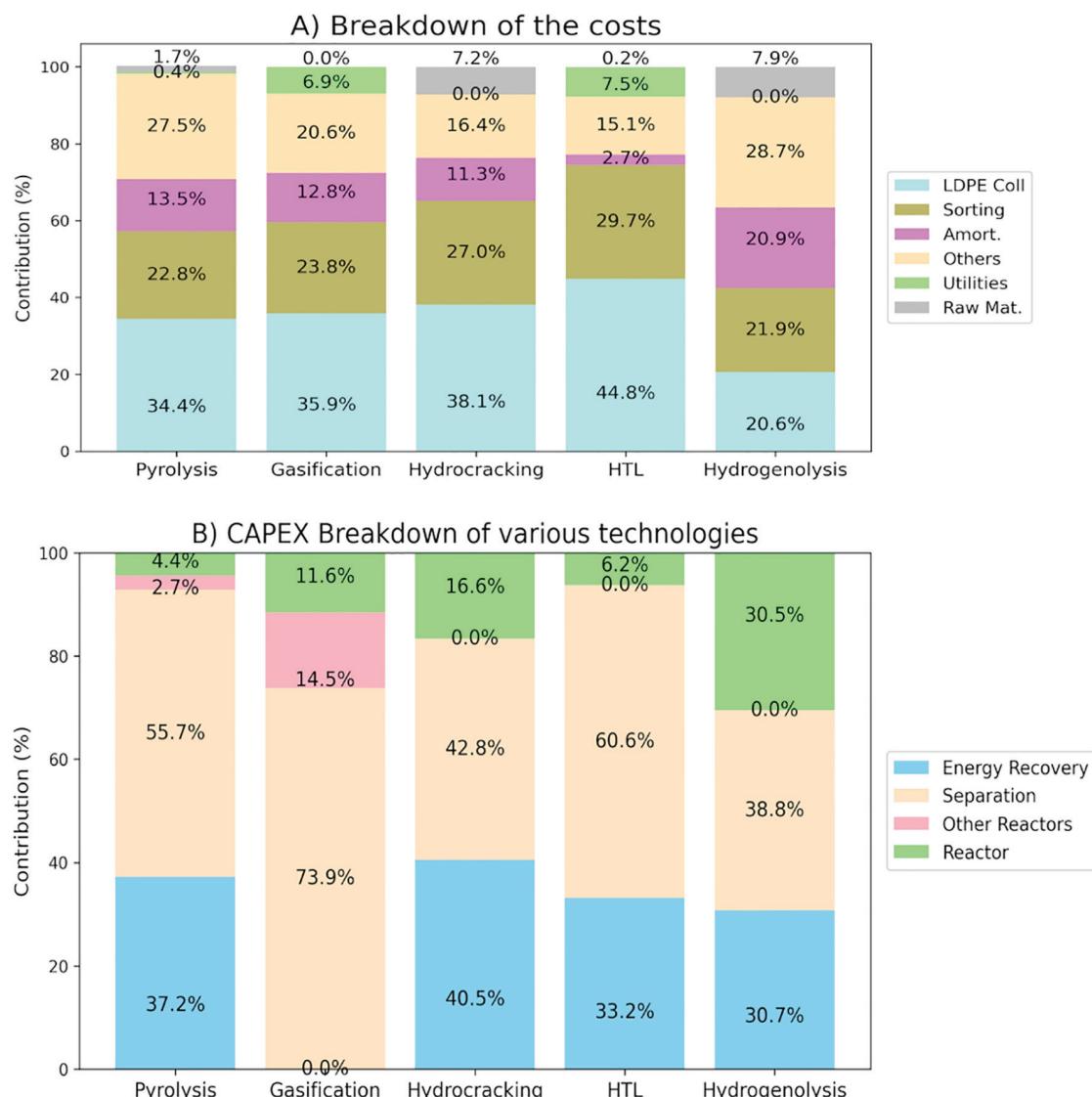
technology	CAPEX (MM\$)	MSP ^a (\$/kg)	MSP market ^b (\$/kg)	ROI (%)	IRR (%)	target product
pyrolysis	39.3	0.66	1.5–1.8	413–559	25.4–32.8	lubes GI-GIII
gasification	35.7	2.97	2.1	−175	Na ^c	H ₂
hydrocracking	44.8	0.74	0.57	−107	Na ^c	Gasoline
HTL	15.9	0.88	0.57	−237	Na ^c	Gasoline
hydrogenolysis	50.8	1.67	1.5–1.8	(−14)–19	(−1.5)–1.7	lubes GI-GIII

^aMSP is computed with IRR = 0% (minimum selling price without any benefit). ^bThe MSP of pyrolysis and hydrogenolysis is compared to lubricants (groups I and III for pyrolysis and group III for hydrogenolysis); gasification MSP to hydrogen; and HTL and hydrocracking MSP to gasoline. Values are defined in Section 2.3. ^cIRR < −100% cannot be computed.

Table 4. Summary of Yields to the Main Products and Co-Products for Each of the Technologies Studied

technology	product	yield (kg/kg _{LDPE})
pyrolysis	lubes	0.4896
	jet oil	0.0704
	diesel	0.1296
	gasoline	0.1360
gasification	H ₂	0.1795
hydrocracking	diesel	0.0297
	gasoline	0.7260
	electricity (kWh/kg _{LDPE})	0.1435
HTL	jet oil	0.2208
	diesel	0.3296
	gasoline	0.2988
hydrogenolysis	lubes	0.1935
	jet oil	0.0667
	diesel	0.1168
	gasoline	0.1866
	LPG	0.0752

Figure 3B shows the CAPEX breakdown for the various technologies. Unsurprisingly, separations are the main contributor, especially for gasification, due to using PSA to separate H₂. The energy recovery unit constitutes the second highest contributor, with turbines representing almost 20% of the CAPEX. Gasification is an exception due to having no energy recovery cost, as leftover gases are burnt directly in the gasification furnace. The reactor cost is low except for hydrogenolysis and to an extent hydrocracking due to operating at a higher pressure and using a relatively expensive (ruthenium-tungstated zirconia) catalyst. Operating at lower pressures and introducing non-platinum group metal (PGM) catalysts are opportunities for lowering the cost. This is further manifested in pyrolysis, which operates at 1 atm and exhibits a lower reactor cost. Narrowing the pyrolysis product distribution will reduce separation costs and make the technology even more competitive.


Different scenarios regarding the effect of plant size, LDPE concentration, and collection cost on ROI are considered. The results in Figure 4 illustrate the profound impact of these facets on ROI. The dominant factor is technology-dependent. The ROI of technologies making higher value products, such as pyrolysis, gasification, and hydrogenolysis, varies the most among scenarios. The second most relevant factor is the plastic waste price. In cities with concentrated plastic waste (e.g., Manhattan or Philadelphia), transportation and collection costs are lower, improving the ROI by up to 250% in HTL. Higher concentrations of LDPE in plastic waste reduce the sorting cost and give a higher ROI (Figure 4). Since HTL can treat heterogeneous waste without sorting (an LDPE

concentration of 100% is used), sorting is more relevant than the plant scale for sizes between 5 and 60 kt/y.

Figure 5 compares the MSP vs plant scale. At 5 kt/y, which corresponds to an existing operating plant in Spain,¹⁷ the technologies are not profitable and subsidies are needed. Pyrolysis is more profitable than hydrogenolysis, even in the case where hydrogenolysis generates better (grade III) lubricants. Hydrogenolysis has a higher amortization cost and nearly twice the MSP of pyrolysis. Gasification to H₂ is not profitable but can be at sufficient large scales with an optimized plastic waste collection. The price of H₂ is higher than steam reforming of methane, \$2.1/kg, but lower than electrolysis, \$4/kg.⁷⁷ This suggests that gasification combined with CO₂ capture could be valuable for transitioning to sustainable (brown) hydrogen production from low carbon feedstocks. Finally, production of fuels, such as gasoline, is not profitable. Hydrocracking shows a better economic performance at small scales but similar prices to HTL at large scales. Since HTL can manage waste mixtures at the industrial scale,¹⁹ it has an advantage.

LCA Results Following an Allocation to the Products.

A summary of the GWP is provided in Table 5, when the emissions are allocated to the product. The comparison versus petrol-based products downgrades these plastic-based processes studied here. All the processes have slightly higher emissions than petrol. The conversion of LDPE, as a solid component with long chains, to lighter fractions requires higher energy and produces more CO₂ emissions than petrol (some of them also available in petrol). A more detailed breakdown of the emissions for each process is given in Figure 6. Pyrolysis shows lower emissions than hydrogenolysis, see Figure 6A, to produce lubricants since the yield achieved in the process is higher; see Table 4. Hydrogenolysis has been studied with H₂ from different sources: H₂ produced in a refinery with the carbon captured in other chemicals, H₂ from electrolysis based on renewable electricity, and H₂ produced by steam reforming of natural gas (see approaches in the supplementary); but in all cases, the emissions are higher than the ones from pyrolysis. The second analysis is performed for gasification where the high energy requirements result in high quantity of CO₂; see Figure 6B. The CO₂ emissions produced in generating H₂ by gasification to syngas are similar to the ones produced by means of natural gas reforming and by far higher than green and blue H₂. However, carbon capture systems can be also used to lower the emissions to values similar to H₂ produced within a refinery (carbon is captured in the production of the other chemicals of the refinery). The last product considered is gasoline. Contrary to lubricants, the catalytic technology based on hydrogen is more sustainable than the thermal technology, HTL. HTL requires high energy consumption for heating the water; see breakdown of Figure

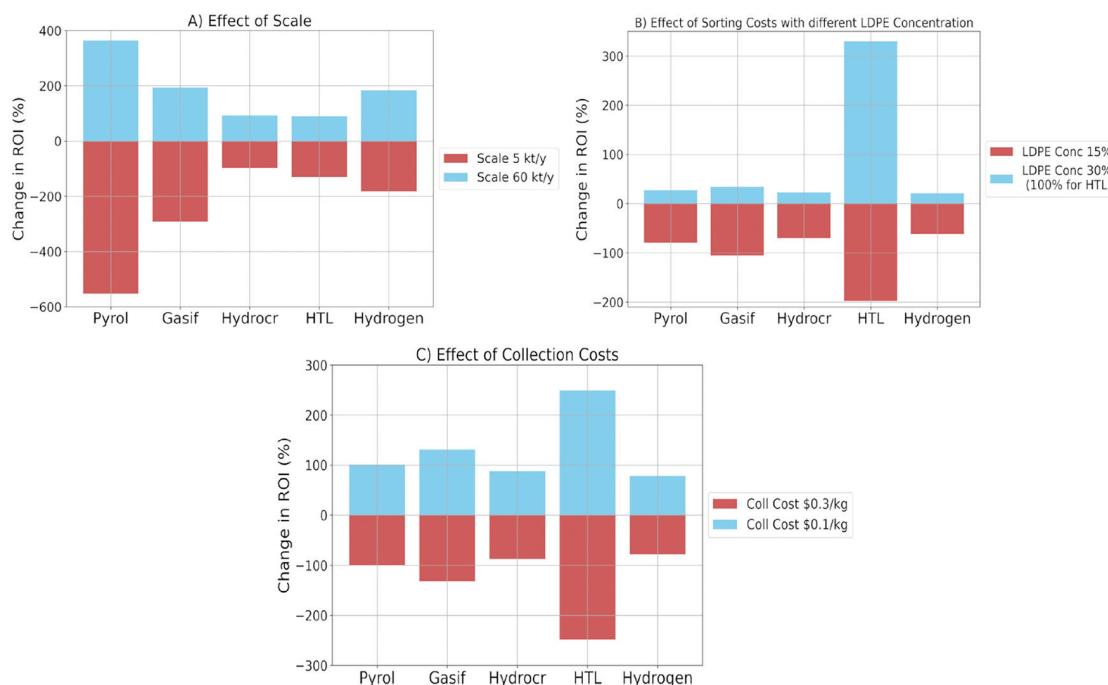


Figure 3. (A) Cost breakdown of various technologies. In the legend: “LDPE Coll” refers to the collection of LDPE, “Sorting” refers to sorting, “Amort.” refers to amortization costs of the depolymerization plant, “Others” include other costs like labor, overhead, and maintenance; “Utilities” involve the cost of utilities and “Raw Mat.” include the costs of all raw materials except LDPE. (B) CAPEX breakdown of various technologies. In the legend of (B) “Energy Recovery” refers to the energy recovery composed of a burner and/or a CHP with a turbine, “Separation” involves all the units required in the separation (e.g., distillation towers, PSA systems, and compressors), and “Reactor” refers to the depolymerization reactor and “Other Reactors” involve the WGS reactor after the gasification and the oligomerization reactors after the pyrolysis.

6C. Furthermore, hydrocracking also results in high yield of gasoline, resulting in lower emissions. Although hydrocracking has less credits from the co-products than HTL (other fuels in Figure 6C), it has a higher yield to gasoline and the emissions per kg gasoline are lower. In order to avoid this effect of the allocation, the result of a consequential approach substituting only the main product by its petrol-based equivalent is considered in the next section.

LCA Results Allocating the Emissions to the Raw Material. A summary of the environmental impact categories per kg of LDPE is provided in Table 6. This approach allows us to compare all the technologies and decide the best path for upcycling since all are referred to the same functional unit. More details about the breakdown and the categories considered are given in the SI. The results show that hydrogenolysis is the most environmentally friendly technology in all categories. On the contrary, gasification shows the

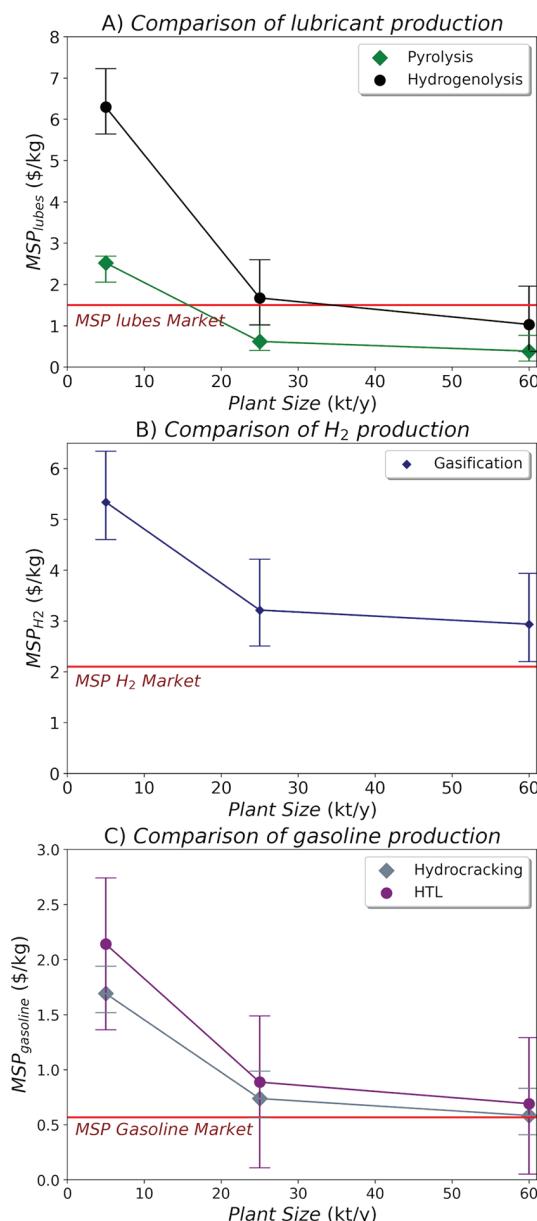
worst environmental performance, having positive indicators in all categories except ozone depletion, where more chlorofluorine emissions are reported from a petrol-based H₂. On the other hand, eutrophication has a positive contribution mainly due to plastic sorting that requires cleaning stages to remove the organic wastes using detergents and chemicals. Figure 7 shows the positive contributors that generate CO₂ emissions and the credits. Hydrogenolysis has the lowest CO₂ emissions mainly due to the high credits generated by selling the lubes and fuels (negative values of the bar plot). Together with hydrocracking, they operate at mild temperatures reducing the energy consumption and use gases to generate power and substitute fossil-based power of negative value in emissions. Pyrolysis also has significant credits due to producing lubricant oils and fuels instead of using fossil fuels. Although pyrolysis reduces the direct emissions by eliminating a very energy intensive raw material like H₂, it requires higher temperatures

Figure 4. Scenario analysis for the ROI of various technologies. Effects of (A) plant scale, (B) concentration of LDPE in the waste, and (C) collection cost of plastic waste. Pyrol. refers to pyrolysis, Gasif. refers to gasification, Hydrocr. refers to hydrocracking, HTL refers to hydrothermal liquefaction, and Hydrogen refers to hydrogenolysis.

Table 5. Comparison of GWP by Allocating the Emissions to the Main Products versus the GWP of the Products from Fossil-Based Sources Reported by Ecoinvent

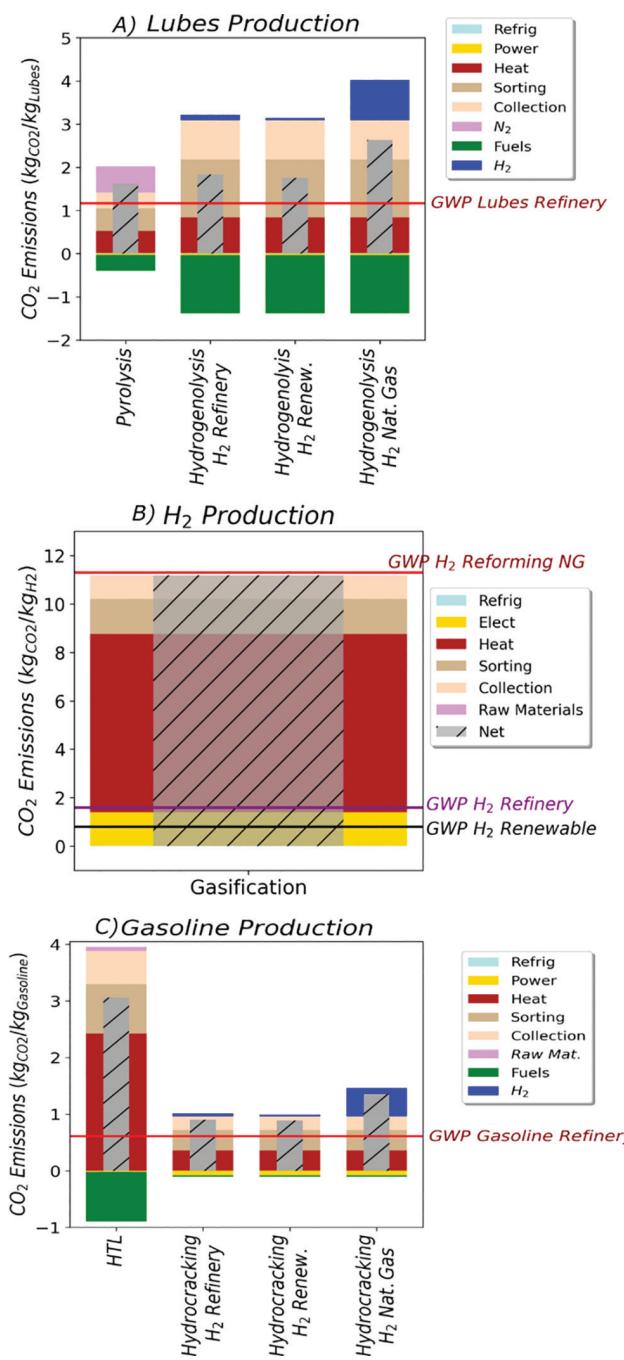
technology	main product	emissions of this work (kg _{CO₂} /kg _{product})	emissions petrol-based products (kg _{CO₂} /kg _{product})
pyrolysis	lubes	1.582	1.170
gasification	hydrogen	11.12	1.568
hydrocracking	gasoline	0.906	0.611
HTL	gasoline	3.372	0.611
hydrogenolysis	lubes	1.825	1.170

and N₂, whose production needs an energy intensive O₂/N₂ separation. As a result, the emissions of pyrolysis overcome the other two technologies. Reducing N₂ in fluidized bed reactors while maintaining fluidization is a challenge. One way for reducing the N₂ requirements is by separating the N₂ with PSA in the gas hydrocarbon outlet stream and recycling it to the pyrolysis reactor. This recycle reduces the emissions to 0.23 kg_{CO₂}/kg_{LDPE}, but it increases the MSP of lubricant base oils from \$0.66/kg_{lubes} to \$0.68/kg_{lubes} (see the *Supplementary Material*). The process with internal N₂ recovery has lower emissions than hydrogenolysis. Thus, pyrolysis apart from being more robust than hydrogenolysis, it could also lower the net emissions. HTL and gasification have the highest emissions due to their increased energy requirements. Gasification to H₂ with CO₂ released to the atmosphere gives the highest emissions, even higher than incineration; see Figure 8. It presents the net values of every technology compared with the emissions reported by Ecoinvent for incineration and landfilling (Landfill UB refers to the highest value reported for plastics in Ecoinvent and Landfill LB to the lowest value). The comparison shows that gasification and HTL also overcome the emissions generated by plastic landfilling. Thus, CO₂ capture and utilization or storage are imperative for gasification


and HTL to be environmentally relevant. More details about other environmental impacts are available in the *SI*.

CONCLUSIONS

We have compared TEA and LCA metrics of five thermochemical technologies for the depolymerization of LDPE waste to valuable products: three medium to high temperature, non-catalytic ones (gasification, HTL, pyrolysis), and two low temperature, high H₂ pressure, catalytic ones (hydrogenolysis and hydrocracking). We examined various products to assess the effect of product value: H₂ from gasification, lubricant oils from pyrolysis and hydrogenolysis, and fuels (gasoline as focus) from HTL and hydrocracking. We also assessed the impact of plant size, plastic waste collection, and sorting of plastic waste, as there is large uncertainty in these quantities at these early stages of technology development.


Pyrolysis to light olefins and their isomerization and oligomerization to lubricant oils is the most profitable technology. Additional final products made from olefins can also be explored given that they are platform molecules. Hydrogenolysis to lubricant oils is also potentially profitable. Gasification for the production of H₂ gives an estimated cost of ~3 \$/kg, which is higher than the Department of Energy (DOE)'s goal of \$1/kg.¹² HTL and hydrocracking are not viable for small plant scales due to producing low value products (fuels).

Aside from the specifics of technologies, the work revealed overarching recommendations. First, generating value-added products, as part of a product portfolio, is crucial for plastic management. Olefins are key in this regard as they are platform chemicals of the industry. Direct production of other valuable products, such as lubricants, is also desirable. Strategic decisions on product selection are necessary. Second, product selectivity is essential. In this work, the considered yield to

Figure 5. MSP vs the benchmark current prices. (A) Pyrolysis and hydrogenolysis are compared to grade I lubricants. (B) Gasification is compared to H₂ from steam reforming of methane. (C) Hydrocracking and HTL are compared to gasoline. Blue is below the current price of the product and red is above. The lowest bounds correspond to high density of plastic waste collection cost of \$0.1/kg and 30 wt % of LDPE in the plastic waste. Conversely, the highest bounds correspond to low density of plastic waste collection cost of \$0.3/kg and 10 wt % of LDPE in the plastic waste.

olefins and thus to lubricant oil was modest (pyrolysis) and low (hydrogenolysis). Clearly, more selective catalytic processes will profoundly improve the economics by making more value-added product and significantly reducing the separation costs that dominate the CAPEX. Catalysts undergo some deactivation, such as coking, but limited information is available regarding the mechanism and long-term stability. Furthermore, the best catalyst varies with plastic waste. For example, hydrogenolysis employs Ru over titania for polypropylene to make lubricants⁷⁹ and Ru on tungstated zirconia for polyethylene to make fuels.⁸⁰ The use of different

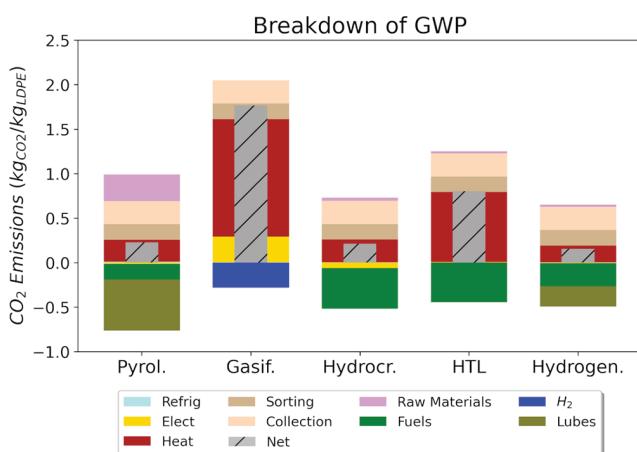
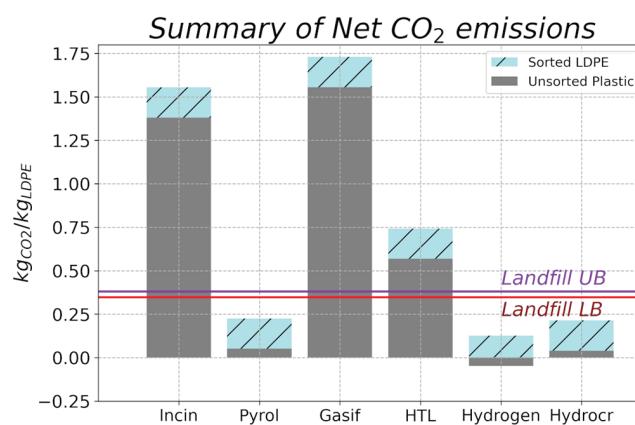


Figure 6. Results of the environmental impacts allocating the emissions to the products. (A) Breakdown of the GWP of pyrolysis and hydrogenolysis compared to petrol-based production of lubes. Hydrog. Ref assumes that the H₂ for hydrogenolysis is produced in the refinery as a byproduct where the carbon is captured. Hydrog. Renew. H₂ for hydrogenolysis produced from electrolysis supplied by wind power. Hydrog. No-CC assumes H₂ produced by steam reforming without carbon capture. (B) Breakdown of the GWP of gasification compared to H₂ by several methods (in a refinery with carbon capture (CC), by electrolysis and by steam reforming of natural gas without CC). (C) Breakdown of the GWP of HTL and hydrocracking compared to petrol-based production of gasoline. Hydrocr. Ref assumes that the H₂ for hydrocracking is produced in the refinery as a byproduct where the carbon is captured. Hydrocr. Renew. assumes the H₂ for hydrocracking produced from electrolysis supplied by wind power. Hydrocr. No-CC assumes the H₂ produced by steam reforming without carbon capture.

Table 6. Summary of Environmental Footprint of Various Technologies Allocating the Emissions to the Raw Material^a


technology	GWP	Acid.	Ecotox.	Eutroph.	O ₃ Dep.	Photo.
pyrolysis	0.225	-0.154	0.821	5.04×10^{-3}	-5.44×10^{-7}	5.99×10^{-5}
gasification	1.726	2.53×10^{-2}	0.862	5.55×10^{-3}	-1.66×10^{-7}	1.27×10^{-3}
hydrocracking	0.214	-0.114	-0.697	5.26×10^{-3}	-4.12×10^{-7}	-1.7×10^{-4}
HTL	0.743	-8.58×10^{-2}	0.769	5.14×10^{-3}	-4.71×10^{-7}	1.81×10^{-4}
hydrogenolysis	0.127	-0.102	0.719	5.39×10^{-3}	-3.35×10^{-7}	-1.91×10^{-5}

^aAll the cases include the emissions due to collection and sorting. GWP = Global Warming Potential in kgCO₂/kg_{LDPE}. Acid. = acidification potential in mols of H⁺ Eq./kg_{lubricant}. Ecotox. = ecotoxicity in kg 2,4-D,e/kg_{lubricant}. Eutroph. = eutrophication potential in kgN/kg_{lubricant}. O₃ Dep = ozone depletion in kg CFC-11-e/kg_{lubricant}. Photo. = photochemical oxidation potential in kg NO_xe/kg_{lubricant}.

Figure 7. Breakdown of CO₂ emissions of (A) pyrolysis, (B) hydrogenolysis, (C) HTL, (D) hydrocracking, and (E) gasification. Legend: Refrig represents the emissions generated by refrigerating water, Heat represents the emissions for generating heat and the emissions in the energy recovery for heat and power production, Sorting represents the emissions associated with the sorting of LDPE and its transport to the plant, Raw Mat corresponds to the other raw materials used (N₂, H₂, and water), Power corresponds to the emissions due to electricity from an external source, Collection represents the emissions generated in collecting the plastic waste, Fuels represent the credits obtained by substituting petrol-based Fuels, Lubricants represent the credits obtained by substituting petrol-based lubes, and H₂ represent the credits by substituting H₂ generated with steam reforming of natural gas.

catalysts implies that the plastics need to be separated, increasing the cost; meanwhile, non-catalytic processes, such as gasification, HTL, and non-catalytic pyrolysis can deal with these mixtures. Further development of catalysts and catalytic processes is therefore needed focusing on catalyst stability and product selectivity. Third, the plant scale plays a significant role. In the case of value-added products, even modest scales can give profitable plants. Larger plants are desired but bring higher risk. It is important to build demonstration plants and de-risk the technologies. Fourth, and rather unexpected, collection and sorting of plastic waste are the most influential factors in terms of economics. Waste treatment near large cities, which produce most of it, can significantly reduce the collection and transportation cost. Highly concentrated polyethylene streams, aided by the industry, commercial users, and consumers with the right infrastructure, can have a significant impact on the economics of plastic recycling. Improving these technologies to treat mixed waste will reduce the sorting cost and is an essential direction of future catalysis and separation research. Along these lines, integrating waste collection with supply chain optimization can provide

Figure 8. Comparison of CO₂ emissions against landfill and incineration. The technologies are compared with and without the emissions due to sorting. Landfill LB (low bound) represents the lowest emissions in a Landfill, according to Ecoinvent (0.27 kgCO₂/kg_{LDPE}), Landfill UB (upper bound) represents the highest emissions for landfilling the plastic based on Ecoinvent (0.45 kgCO₂/kg_{LDPE}). Incin refers to incineration, Pyrol. refers to pyrolysis, Gasif. refers to gasification, Hydrocr. refers to hydrocracking, HTL refers to hydrothermal liquefaction, and Hydrogen. refers to hydrogenolysis.

significant insights into determining the location, technology, and geographical area for profitable plants. The hydrogenolysis and hydrocracking reactor cost is a significant fraction of CAPEX. Eliminating PGMs and reducing the H₂ pressure are obvious catalysis challenges and opportunities.

In terms of CO₂ emissions, hydrogenolysis and hydrocracking are the most environmentally friendly, followed by pyrolysis. Although pyrolysis reduces emissions from using H₂, it often employs N₂ with an energy consumption 40 times higher than the H₂ required in hydrocracking and hydrogenolysis. Reducing the nitrogen in the pyrolysis is therefore very desirable. Another alternative is to reduce emissions in heat production. Carbon capture technologies can be used by maintaining conventional heating, but the substitution of heat by electricity-based heating (e.g., electric boilers or furnaces) or reactors supplied with electricity such as microwaves⁵⁵ is crucial to exploit. Electrification can be powerful in all depolymerization technologies reducing emissions from 0.2 kgCO₂/kg_{LDPE} up to 1.2 kgCO₂/kg_{LDPE} in more emission intensive processes like HTL and gasification.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acssuschemeng.3c00636>.

Detailed description of the processes modeled, description of the assumptions in the technoeconomic analysis,

estimation of the capital costs of reactors, estimation of the capital costs in the pressure swing adsorption units, detailed description of the assumptions in the LCA, boundaries of the LCA and estimation of the direct emissions by burning, and detailed results for economic and environmental assessment (PDF)

AUTHOR INFORMATION

Corresponding Authors

Dionisios G. Vlachos — Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States; Center for Plastics Innovation, University of Delaware, Newark, Delaware 19716, United States; orcid.org/0000-0002-6795-8403; Email: vlachos@udel.edu

Marianthi G. Ierapetritou — Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States; Center for Plastics Innovation, University of Delaware, Newark, Delaware 19716, United States; orcid.org/0000-0002-1758-9777; Email: mgi@udel.edu

Authors

Borja Hernández — Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States; Center for Plastics Innovation, University of Delaware, Newark, Delaware 19716, United States

Pavel Kots — Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States; Center for Plastics Innovation, University of Delaware, Newark, Delaware 19716, United States; orcid.org/0000-0003-3582-4600

Esun Selvam — Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States; Center for Plastics Innovation, University of Delaware, Newark, Delaware 19716, United States

Complete contact information is available at:
<https://pubs.acs.org/10.1021/acssuschemeng.3c00636>

Author Contributions

B.H.: Data Curation, Formal Analysis, Investigation, Methodology, Software, Validation, Visualization, Writing - original draft, and Writing - review and editing. P.K.: Formal Analysis, Investigation, Validation, and Writing - review and editing. E.S.: Formal Analysis, Investigation, Validation, and Writing - review and editing. D.G.V.: Conceptualization, Formal Analysis, Funding Acquisition, Project Administration, Supervision, and Writing - review and editing. M.G.I.: Conceptualization, Formal Analysis, Funding Acquisition, Project Administration, Supervision, and Writing - review and editing.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the National Science Foundation grants No. OIA – 2119754 and No. 2134471. P.K. and E.S. provided insights into the plastics recycling technologies, products, and yields and were funded as part of the Center for Plastics Innovation, an Energy Frontier Research Center funded by the US Department of Energy,

Office of Science, Office of Basic Energy Sciences under award number DE-SC0021166.

REFERENCES

- (1) Rochman, C. M.; Browne, M. A.; Halpern, B. S.; Hentschel, B. T.; Hoh, E.; Karapanagioti, H. K.; Rios-Mendoza, L. M.; Takada, H.; Teh, S.; Thompson, R. C. Classify Plastic Waste as Hazardous. *Nature* **2013**, *494*, 169–171.
- (2) Ellen-MacArthur-Foundation. *The New Plastics Economy: Rethinking the Future of Plastics*, 2016. Available in: <https://ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics> (last accessed December 1, 2022).
- (3) Environmental Protection Agency, U.; of Land, O. Management, E.; of Resource Conservation, O. Advancing Sustainable Materials Management: 2018 Tables and Figures Assessing Trends in Materials Generation and Management in the United States, 2018.
- (4) Geyer, R.; Jambeck, J. R.; Law, K. L. Production, Use, and Fate of All Plastics Ever Made. *Sci. Adv.* **2017**, *3*, No. e1700782.
- (5) Lebreton, L.; Andrade, A. Future Scenarios of Global Plastic Waste Generation and Disposal. *Palgrave Commun.* **2019**, *5*, 6.
- (6) Environmental Protection Agency, U.; of Land, O.; Management, E.; of Resource Conservation, O. Advancing Sustainable Materials Management: 2017 Fact Sheet Assessing Trends in Material Generation, Recycling, Composting, Combustion with Energy Recovery and Landfilling in the United States, 2017.
- (7) Milbrandt, A.; Coney, K.; Badgett, A.; Beckham, G. T. Quantification and Evaluation of Plastic Waste in the United States. *Resour., Conserv. Recycl.* **2022**, *183*, No. 106363.
- (8) EIA. *Energy Consumption by Sector, Monthly*, 2022. Available in: https://www.eia.gov/totalenergy/data/monthly/pdf/sec2_3.pdf (last accessed December 31, 2022).
- (9) American Iron and Steel Institute. *AISI Releases Annual Statistical Report for 2021*, 2022. Available in: <https://www.steel.org/2022/09/aisi-releases-annual-statistical-report-for-2021/> (last accessed December 31, 2022).
- (10) United States Environmental Protection Agency. *Paper and Paperboard: Material-Specific Data | US EPA*. <https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/paper-and-paperboard-material-specific-data> (accessed March 18, 2023).
- (11) Ashby, M. F. *Materials and the Environment: Eco-Informed Material Choice*, 2nd ed.; 2013.
- (12) US Department of Energy. *Industrial Decarbonization Roadmap* DOE/EE-2635, 2022. Available in: <https://www.energy.gov/eere/doe-industrial-decarbonization-roadmap> (last accessed: December 3, 2022).
- (13) The White House. *U.S. Innovation to Meet 2050 Climate Goals: Assessing Initial R&D Opportunities*, 2022.
- (14) Larrain, M.; Van Passel, S.; Thomassen, G.; Van Gorp, B.; Nhu, T. T.; Huysveld, S.; Van Geem, K. M.; De Meester, S.; Billen, P. Techno-Economic Assessment of Mechanical Recycling of Challenging Post-Consumer Plastic Packaging Waste. *Resour., Conserv. Recycl.* **2021**, *170*, No. 105607.
- (15) RecycleInMe. *Current LDPE - Film Prices - US Plastic Prices*, 2022. Available in: <https://www.recycleinme.com/scrapresources/DetailedPrice?psect=2&cat=US%20Plastic%20Prices&subcat=LDPE%20-%20Film&cnty=us> (last accessed December 31, 2022).
- (16) Dogu, O.; Pelucchi, M.; Van de Vijver, R.; Van Steenberge, P. H. M.; Dhooge, D. R.; Cuoci, A.; Mehl, M.; Frassoldati, A.; Faravelli, T.; Van Geem, K. M. The Chemistry of Chemical Recycling of Solid Plastic Waste via Pyrolysis and Gasification: State-of-the-Art, Challenges, and Future Directions. *Prog. Energy Combust. Sci.* **2021**, *84*, No. 100901.
- (17) Plastic-Energy. *Plastic Energy Completes €145 Million Fundraise to Accelerate Global Expansion of Recycling Technology and Plants*, 2021. Available in: <https://plasticenergy.com/plastic-energy-completes-e145-million-fundraise-to-accelerate-global-expansion-of-recycling-technology-and-plants/> (last accessed December 31, 2022).
- (18) Quantafuel. *Third Quarter 2021 Consolidated Financial Statements* Quantafuel ASA, 2021.

(19) Li, H.; Aguirre-Villegas, H. A.; Allen, R. D.; Bai, X.; Benson, C. H.; Beckham, G. T.; Bradshaw, S. L.; Brown, J. L.; Brown, R. C.; Cecon, V. S.; Curley, J. B.; Curtwiler, G. W.; Dong, S.; Gaddameedi, S.; García, J. E.; Hermans, I.; Kim, M. S.; Ma, J.; Mark, L. O.; Mavrikakis, M.; Olafasakin, O. O.; Osswald, T. A.; Papanikolaou, K. G.; Radhakrishnan, H.; Sanchez Castillo, M. A.; Sánchez-Rivera, K. L.; Tumu, K. N.; Van Lehn, R. C.; Vorst, K. L.; Wright, M. M.; Wu, J.; Zavala, V. M.; Zhou, P.; Huber, G. W. Expanding Plastics Recycling Technologies: Chemical Aspects Technology Status and Challenges. *Green Chem.* **2022**, *24*, 8899–9002.

(20) Lopez, G.; Artetxe, M.; Amutio, M.; Bilbao, J.; Olazar, M. Thermochemical Routes for the Valorization of Waste Polyolefinic Plastics to Produce Fuels and Chemicals. A Review. *Renewable Sustainable Energy Rev.* **2017**, *73*, 346–368.

(21) Singh, R. K.; Ruj, B. Time and Temperature Depended Fuel Gas Generation from Pyrolysis of Real World Municipal Plastic Waste. *Fuel* **2016**, *174*, 164–171.

(22) Fivga, A.; Dimitriou, I. Pyrolysis of Plastic Waste for Production of Heavy Fuel Substitute: A Techno-Economic Assessment. *Energy* **2018**, *149*, 865–874.

(23) Ghodrat, M.; Abascal Alonso, J.; Hagare, D.; Yang, R.; Samali, B. Economic Feasibility of Energy Recovery from Waste Plastic Using Pyrolysis Technology: An Australian Perspective. *Int. J. Environ. Sci. Technol.* **2019**, *16*, 3721–3734.

(24) Gracida-Alvarez, U. R.; Winjobi, O.; Sacramento-Rivero, J. C.; Shonnard, D. R. System Analyses of High-Value Chemicals and Fuels from a Waste High-Density Polyethylene Refinery. Part 1: Conceptual Design and Techno-Economic Assessment. *ACS Sustainable Chem. Eng.* **2019**, *7*, 18254–18266.

(25) Antelava, A.; Jablonska, N.; Constantinou, A.; Manos, G.; Salaudeen, S. A.; Dutta, A.; Al-Salem, S. M. Energy Potential of Plastic Waste Valorization: A Short Comparative Assessment of Pyrolysis versus Gasification. *Energy Fuels* **2021**, *35*, 3558–3571.

(26) Borgianni, C.; De Filippis, P.; Pochetti, F.; Paolucci, M. Gasification Process of Wastes Containing PVC. *Fuel* **2002**, *81*, 1827–1833.

(27) Oboirien, B. O.; North, B. C. A Review of Waste Tyre Gasification. *J. Environ. Chem. Eng.* **2017**, *5*, 5169–5178.

(28) Volk, R.; Stallkamp, C.; Steins, J. J.; Yogish, S. P.; Müller, R. C.; Stafp, D.; Schultmann, F. Techno-Economic Assessment and Comparison of Different Plastic Recycling Pathways: A German Case Study. *J. Ind. Ecol.* **2021**, *25*, 1318–1337.

(29) Arena, U.; Di Gregorio, F.; Amorese, C.; Mastellone, M. L. A Techno-Economic Comparison of Fluidized Bed Gasification of Two Mixed Plastic Wastes. *Waste Manage.* **2011**, *31*, 1494–1504.

(30) Al-Qadri, A. A.; Ahmed, U.; Abdul Jameel, A. G.; Zahid, U.; Usman, M.; Ahmad, N. Simulation and Modelling of Hydrogen Production from Waste Plastics: Technoeconomic Analysis. *Polymer* **2022**, *14*, 2056.

(31) Singh, A.; Afzal, S.; Nicholson, S.; Beckam, G. T. *Techno-Economic Analysis of Waste Plastic Gasification to Methanol Process*, 2022. Available in: <https://www.nrel.gov/docs/fy22osti/82636.pdf> (last accessed December 31, 2022).

(32) Bora, R. R.; Wang, R.; You, F. Waste Polypropylene Plastic Recycling toward Climate Change Mitigation and Circular Economy: Energy, Environmental, and Technoeconomic Perspectives. *ACS Sustainable Chem. Eng.* **2020**, *8*, 16350.

(33) Demetrious, A.; Crossin, E. Life Cycle Assessment of Paper and Plastic Packaging Waste in Landfill, Incineration, and Gasification-Pyrolysis. *J. Mater. Cycles Waste Manage.* **2019**, *21*, 850–860.

(34) Licella-Holdings. *A Bridge to a Lower Carbon Future*, 2019.

(35) Wilson, B. *Hydrothermal Liquefaction for Conversion of Mixed Plastic Waste to Fuel*, 2020. Available in: <https://eprenewable.com/wp-content/uploads/2020/06/HTL-Process-Description-06192020.pdf> (last accessed December 31, 2022).

(36) Aierzhati, A.; Watson, J.; Si, B.; Stablein, M.; Wang, T.; Zhang, Y. Development of a Mobile, Pilot Scale Hydrothermal Liquefaction Reactor: Food Waste Conversion Product Analysis and Techno-Economic Assessment. *Energy Convers. Manage.* **2021**, *10*, No. 100076.

(37) Pedersen, T. H.; Hansen, N. H.; Pérez, O. M.; Cabezas, D. E. V.; Rosendahl, L. A. Renewable Hydrocarbon Fuels from Hydrothermal Liquefaction: A Techno-Economic Analysis. *Biofuels, Bioprod. Bioref.* **2018**, *12*, 213–223.

(38) Nie, Y.; Bi, X. Life-Cycle Assessment of Transportation Biofuels from Hydrothermal Liquefaction of Forest Residues in British Columbia. *Biotechnol. Biofuels* **2018**, *11*, 23.

(39) Chen, P. H.; Quinn, J. C. Microalgae to Biofuels through Hydrothermal Liquefaction: Open-Source Techno-Economic Analysis and Life Cycle Assessment. *Appl. Energy* **2021**, *289*, No. 116613.

(40) Taimbú, C. A.; Martín, M.; Grossmann, I. E. Process Optimization for the Hydrothermal Production of Algae Fuels. *Ind. Eng. Chem. Res.* **2019**, *58*, 23276.

(41) Zhao, X.; You, F. Waste High-Density Polyethylene Recycling Process Systems for Mitigating Plastic Pollution through a Sustainable Design and Synthesis Paradigm. *AIChE J.* **2021**, *67*, No. e17127.

(42) Shelley, M. D.; El-Halwagi, M. M. Techno-Economic Feasibility and Flowsheet Synthesis of Scrap Tire/Plastic Waste Liquefaction. *J. Elastomers Plast.* **1999**, *31*, 232–254.

(43) Al-Salem, S. M.; Papageorgiou, L. G.; Lettieri, P. Techno-Economic Assessment of Thermo-Chemical Treatment (TCT) Units in the Greater London Area. *Chem. Eng. J.* **2014**, *248*, 253–263.

(44) Liu, S.; Kots, P. A.; Vance, B. C.; Danielson, A.; Vlachos, D. G. Plastic Waste to Fuels by Hydrocracking at Mild Conditions. *Sci. Adv.* **2021**, *7*, 8283–8304.

(45) Cappello, V.; Sun, P.; Zang, G.; Kumar, S.; Hackler, R.; Delgado, H. E.; Elgowainy, A.; Delferro, M.; Krause, T. Conversion of Plastic Waste into High-Value Lubricants: Techno-Economic Analysis and Life Cycle Assessment. *Green Chem.* **2022**, *24*, 6306–6318.

(46) Sullivan, T. *Group I Prices Diverge from Group II, III*, 2021. Available in: https://www.lubesngreases.com/lubereport-emea/4_46/group-i-prices-diverge-from-group-ii-iii/.

(47) Somoza-Tornos, A.; Gonzalez-Garay, A.; Pozo, C.; Graells, M.; Espuña, A.; Guillén-Gosálbez, G. Realizing the Potential High Benefits of Circular Economy in the Chemical Industry: Ethylene Monomer Recovery via Polyethylene Pyrolysis. *ACS Sustainable Chem. Eng.* **2020**, *8*, 3561–3572.

(48) Yee, T. F.; Grossmann, I. E. Simultaneous Optimization Models for Heat Integration—II. Heat Exchanger Network Synthesis. *Comput. Chem. Eng.* **1990**, *14*, 1165–1184.

(49) Lee, K. H.; Jeon, S. G.; Kim, K. H.; Noh, N. S.; Shin, D. H.; Park, J.; Seo, Y.; Yee, J. J.; Kim, G. T. Thermal and Catalytic Degradation of Waste High-Density Polyethylene (HDPE) Using Spent FCC Catalyst. *Korean J. Chem. Eng.* **2003**, *20*, 693–697.

(50) Miidad, R.; Barakat, M. A.; Aburiazaiza, A. S.; Rehan, M.; Nizami, A. S. Catalytic Pyrolysis of Plastic Waste: A Review. *Process Saf. Environ. Prot.* **2016**, *102*, 822–838.

(51) Al-Salem, S. M.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A Review on Thermal and Catalytic Pyrolysis of Plastic Solid Waste (PSW). *J. Environ. Manage.* **2017**, *197*, 177–198.

(52) Zhao, D.; Wang, X.; Miller, J. B.; Huber, G. W. The Chemistry and Kinetics of Polyethylene Pyrolysis: A Process to Produce Fuels and Chemicals. *ChemSusChem* **2020**, *13*, 1764–1774.

(53) Orosco, S.; Alvarez, J.; Lopez, G.; Artetxe, M.; Bilbao, J.; Olazar, M. Pyrolysis of Plastic Wastes in a Fountain Confined Conical Spouted Bed Reactor: Determination of Stable Operating Conditions. *Energy Convers. Manage.* **2021**, *229*, No. 113768.

(54) Zhou, N.; Dai, L.; Lyu, Y.; Li, H.; Deng, W.; Guo, F.; Chen, P.; Lei, H.; Ruan, R. Catalytic Pyrolysis of Plastic Wastes in a Continuous Microwave Assisted Pyrolysis System for Fuel Production. *Chem. Eng. J.* **2021**, *418*, No. 129412.

(55) Selvam, E.; Kots, P. A.; Hernandez, B.; Malhotra, A.; Chen, W.; Catala-Civera, J. M.; Santamaria, J.; Ierapetritou, M.; Vlachos, D. G. Plastic Waste Upgrade to Olefins via Mild Slurry Microwave Pyrolysis over Solid Acids. *Chem. Eng. J.* **2023**, *454*, No. 140332.

(56) Sun, K.; Themelis, N. J.; Bourtsalas, A. C. Thanos; Huang, Q. Selective Production of Aromatics from Waste Plastic Pyrolysis by

Using Sewage Sludge Derived Char Catalyst. *J. Cleaner Prod.* **2020**, *268*, No. 122038.

(57) Sun, K.; Huang, Q.; Chi, Y.; Yan, J. Effect of ZnCl₂-Activated Biochar on Catalytic Pyrolysis of Mixed Waste Plastics for Producing Aromatic-Enriched Oil. *Waste Manage.* **2018**, *81*, 128–137.

(58) Hsia Chen, C. S.; Heights, B.; Tabak, S. A. *Production of Lubricant Range Hydrocarbons From Light Olefins*. US Patent US4568786A, Mobil Oil Corporation, New York, 1985.

(59) Knifton, J. F.; Sanderson, J. R.; Dai, P. E. Olefin Oligomerization via Zeolite Catalysis. *Catal. Lett.* **1994**, *28*, 223–230.

(60) Sidek, F. N.; Abdul Samad, N. A. F.; Saleh, S. Review on Effects of Gasifying Agents, Temperature and Equivalence Ratio in Biomass Gasification Process. *IOP Conf. Ser.: Mater. Sci. Eng.* **2020**, *863*, No. 012028.

(61) Lopez, G.; Artetxe, M.; Amutio, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Recent Advances in the Gasification of Waste Plastics. A Critical Overview. *Renewable Sustainable Energy Rev.* **2018**, *82*, 576–596.

(62) Erkiaga, A.; Lopez, G.; Amutio, M.; Bilbao, J.; Olazar, M. Syngas from Steam Gasification of Polyethylene in a Conical Spouted Bed Reactor. *Fuel* **2013**, *109*, 461–469.

(63) Rhodes, C.; Hutchings, G. J.; Ward, A. M. Water-Gas Shift Reaction: Finding the Mechanistic Boundary. *Catal. Today* **1995**, *23*, 43–58.

(64) Krause, T.; Souleimanova, R.; Krebs, J.; Castagnola, M. Water Gas Shift Catalysis. *Annual Progress Report, U.S. Department of Energy. Hydrogen, Fuel Cells, and Infrastructure Technologies Program*, 2004.

(65) Reddy, S.; Vyas, S. Recovery of Carbon Dioxide and Hydrogen from PSA Tail Gas. *Energy Procedia* **2009**, *1*, 149–154.

(66) Jin, K.; Vozka, P.; Kilaz, G.; Chen, W. T.; Wang, N. H. L. Conversion of Polyethylene Waste into Clean Fuels and Waxes via Hydrothermal Processing (HTP). *Fuel* **2020**, *273*, No. 117726.

(67) Munir, D.; Irfan, M. F.; Usman, M. R. Hydrocracking of Virgin and Waste Plastics: A Detailed Review. *Renewable Sustainable Energy Rev.* **2018**, *90*, 490–515.

(68) Scherzer, J.; Gruia, A. J. *Hydrocracking Science and Technology*; CRC Press, 1996.

(69) Rorrer, J. E.; Beckham, G. T.; Román-Leshkov, Y. Conversion of Polyolefin Waste to Liquid Alkanes with Ru-Based Catalysts under Mild Conditions. *J. Am. Chem. Soc.* **2021**, *1*, 8–12.

(70) Rorrer, J. E.; Troyano-Valls, C.; Beckham, G. T.; Román-Leshkov, Y. Hydrogenolysis of Polypropylene and Mixed Polyolefin Plastic Waste over Ru/C to Produce Liquid Alkanes. *ACS Sustainable Chem. Eng.* **2021**, *9*, 11661–11666.

(71) Wang, C.; Xie, T.; Kots, P. A.; Vance, B. C.; Yu, K.; Kumar, P.; Fu, J.; Liu, S.; Tsilomelekis, G.; Stach, E. A.; Zheng, W.; Vlachos, D. G. Polyethylene Hydrogenolysis at Mild Conditions over Ruthenium on Tungstated Zirconia. *J. Am. Chem. Soc.* **2021**, *1*, 1422–1434.

(72) Lombrano, A. Cost Efficiency in the Management of Solid Urban Waste. *Resour. Conserv. Recycl.* **2009**, *53*, 601–611.

(73) [Countryeconomy.com](https://countryeconomy.com). Country Comparison Italy vs United States. Available in: <https://countryeconomy.com/countries/compare/italy/usa> (last accessed March 12, 2023).

(74) U.S. Bureau of Labor. CPI Inflation Calculator, 2023. Available in: https://www.bls.gov/data/inflation_calculator.htm (last accessed March 12, 2023).

(75) Bare, J. TRACI 2.0: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts 2.0. *Clean Technol. Environ. Policy* **2011**, *13*, 687–696.

(76) US EIA. Gasoline and Diesel Fuel Update. Available in: <https://www.eia.gov/petroleum/gasdiesel/> (accessed January 2022).

(77) IEA. The Future of Hydrogen – Analysis - IEA. <https://www.iea.org/reports/the-future-of-hydrogen> (accessed March 12, 2023).

(78) Miremadi, M.; Musso, C.; Oxgaard, J. *McKinsey on Chemicals*. Available in: https://www.mckinsey.com/%7E/media/mckinsey/dotcom/client_service/chemicals/pdfs/chemical_innovation_an_investment_for_the_agr_eashx#:~:text=However%20returns%20are%20high%20because,a

bout%2018%20to%2023%20percent (last access December 31, 2022).

(79) Kots, P. A.; Liu, S.; Vance, B. C.; Wang, C.; Sheehan, J. D.; Vlachos, D. G. Polypropylene Plastic Waste Conversion to Lubricants over Ru/TiO₂Catalysts. *ACS Catal.* **2021**, *11*, 8104–8115.

(80) Wang, C.; Yu, K.; Sheludko, B.; Xie, T.; Kots, P. A.; Vance, B. C.; Kumar, P.; Stach, E. A.; Zheng, W.; Vlachos, D. G. A General Strategy and a Consolidated Mechanism for Low-Methane Hydrogenolysis of Polyethylene over Ruthenium. *Appl. Catal., B* **2022**, *319*, No. 121899.

□ Recommended by ACS

Single-Phase Recycling of Flexible Polyurethane Foam by Glycolysis and Oxyalkylation: Large-Scale Industrial Evaluation

Joungyun Ko, Kilwon Cho, *et al.*

JUNE 28, 2023

ACS SUSTAINABLE CHEMISTRY & ENGINEERING

READ

Sensitivity Analysis of Thermal Degradation of Plastic Waste Using Statistically Assumed Exponential Factors and Activation Energies

Rao Adeel Un Nabi, Abdulnour Ali Jazem Ghanim, *et al.*

APRIL 04, 2023

ACS OMEGA

READ

Technical, Economic, and Environmental Comparison of Closed-Loop Recycling Technologies for Common Plastics

Taylor Uekert, Alberta C. Carpenter, *et al.*

JANUARY 12, 2023

ACS SUSTAINABLE CHEMISTRY & ENGINEERING

READ

Pursuing the End-of-Life Tire Circularity: An Outlook toward the Production of Secondary Raw Materials from Tire Pyrolysis Oil

Felipe Campuzano, William L. Roberts, *et al.*

JUNE 20, 2023

ENERGY & FUELS

READ

Get More Suggestions >