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ABSTRACT: Biorefineries are designed to utilize a combination of various

technologies to transform biomass derived raw materials into different value- Surrogate Model =
added products. This strategy has been highlighted in the literature for
reducing waste, increasing profitability, and improving the process resilience
to uncertain biomass feedstocks. In this work, a two-stage stochastic
programming (TSSP) model is developed to maximize profit and minimize
emissions under different sources of uncertainties. Data-driven surrogate
models are built for biorefinery’s flexibility index (FI) to quantify and
improve its operational flexibility. The neural network with rectified linear
unit (ReLU) activation function is established as the appropriate surrogate
model because it closely approximates the flexibility index while retaining the
mixed-integer linear characteristics of the overall design formulation. C
Moreover, the stochastic programming demonstrates the magnitude of
environmental impact uncertainty quantitatively in each scenario using
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empirical price/demand/supply uncertainty information, which cannot be addressed by the traditional Pedigree-based life cycle

assessment (LCA) uncertainty analysis.

1. INTRODUCTION

Sustainable engineering solutions for environmental systems,
flexible manufacturing, and circular economy are among the
challenges and opportunities facing chemical engineers.' A
promising solution is to use biomass and replace fossil fuels for
chemical production to reduce greenhouse gas emissions due
to carbon sequestration during plant growth. Several efficient
and selective processes have been designed to produce p-
xylene from cellulose,” furfural,” other value-added products”
from hemicellulose, as well as phenols from lignin.> The
biorefinery concept is developed to enable the efficient use of
all biomass components to increase process economic viability.
The biorefinery design requires rationally choosing different
feedstocks, technologies, and products on the strategic and
operational levels, which is typically solved by a superstructure
optimization framework.”” Bartling et al. designed the
integrated poplar biorefinery that combined reductive catalytic
fraction, enzymatic hydrolysis, and fermentation.® The super-
structure formulation was also utilized for detailed technology
and module selection in the biorefinery that produces
advanced fuel from ethanol.”'® A greenhouse gas emission
comparison of different yellow poplar forest residuals as the
feedstock for integrated biorefinery operation was demon-
strated based on the process simulation.'' Dickson et al.
applied the macroalgae biorefinery superstructure model to
choose promising pathways, operating conditions, and waste-
water treatment network.'”
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Life cycle assessment (LCA) has been widely applied to
evaluate the environmental impacts of chemical production
and support sustainable process development. Nevertheless,
the parameters and data used for LCA are often susceptible to
uncertainties, which severely affect decision-making."> One
common LCA uncertainty evaluation method is performing
Monte Carlo simulation to propagate the parameter distribu-
tions, often from the Pedigree method."* Heijungs raised
concerns about the incompatibility of Pedigree-based distri-
butions with large-scale Monte Carlo simulation.'> Even
though the Pedigree method provides a good data quality
indicator, the reliability of probability distributions is
compromised due to the subjective rating of data quality.'®
The importance of using actual measurement or providing an
empirical basis for more accurate LCA uncertainty evaluation
has been emphasized in the literature.'®'” However, such
empirical LCA uncertainty data are scarce and time-consuming
to gather.'* Recently, technology choices and thus the material
flow rates under parameter uncertainties have been modeled in
consequential LCA with optimization tools.'® Nevertheless,

Special Issue: In Honor of Babatunde A. Ogunnaike

Received: August 19, 2022
Revised:  December 14, 2022
Accepted: December 28, 2022
Published: January 17, 2023

https://doi.org/10.1021/acs.iecr.2c02968
Ind. Eng. Chem. Res. 2023, 62, 2067—2079



Industrial & Engineering Chemistry Research

pubs.acs.org/IECR

this model uses the arithmetic mean of each linear
programming scenario solution for LCA calculation, which is
less effective than the two-stage stochastic programming with
recourse actions in capturing the actual plant and supply chain
behavior."

In addition to LCA uncertainties, there is also no surprise
that most of the data used for the early stage biorefinery design
come with significant uncertainties. Although pilot plant can
help reducing the process performance uncertainties during
scale-up, it is important to screen promising technologies in
the early stage to save time and resources. In this case,
benchtop experimental yields and separation efficiencies are
utilized to larger scale plants, which is subject to intrinsic
variations, inaccurate measurement, and unexpected scale-up
engineering problems.'**® The feedstock supply, composition,
and chemical prices are volatile and could affect plant
profitability.”' Ignoring these uncertainties may render the
designs and operations suboptimal or even infeasible.””*’
Stochastic programming is commonly used to incorporate
uncertain parameter distributions as scenarios.”* The deter-
ministic equivalent problem is then solved by optimizing the
expected values of the objective functions within the scenario
set.”® For example, Bhosekar et al. applied the two-stage
stochastic programming (TSSP) formulation for a biorefinery
superstructure optimization to illustrate the effects of
uncertainties on the trade-off between process profit and
emissions.”” Moreover, flexibility index analysis has been
established as a measure of the maximum parameter ranges
that a process can tolerate for feasible operation.”® The classic
definition of flexibility index is based on the maximum hyper-
rectangle inscribed in the feasible region, and the vertex
enumeration method has been applied to convex problems.”’
However, this method becomes less effective in high-
dimensional and general nonconvex problems.”” Therefore,
the active-set approach is developed to introduce binary
variables indicating whether the constraints are active so that
the problem could be solved more efficiently.”® The concept of
flexibility index has been applied to select the operating ranges
of processes” and to analyze the cost-flexibility trade-off of the
supply chain.”’ Zhang and Grossmann further demonstrated
the process design under uncertainty with flexibility constraints
using the idea of affinely adjustable robust optimization and
applied the new problem formulation for a petrochemical
complex case study.*

Surrogate-embedded optimization has been applied to many
process design and optimization problems. For instance,
Bhosekar and Ierapetritou utilized a support vector machine
(SVM) classifier to replace the feasibility constraints in the
vertex formulation of the process design problem.’® An
artificial neural network (ANN) model with hyperbolic tangent
activation function has also been embedded for compressors,
fermentation, and chemical process operation optimization.”'
The ANN model with sigmoid activation function was used as
the surrogate for different unit operation models based on
Aspen Plus simulation.”” Adaptive sampling strategy has been
implemented using both ANN and Kriging surrogate models
to optimize computationally expensive processes.’”** Kim and
Boukouvala extended Gaussian Process and ANN to mixed-
integer surrogate models by using one-hot encoding for
optimization.” Rectified linear unit (ReLU) is another widely
used ANN activation function that demonstrates the ability to
capture the nonlinearity of the model with low model
complexity.® Grimstad and Andersson demonstrated the
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MILP formulation of optimization problems using the ReLU
deep neural network to surrogate the nonlinear well perform-
ance and pressure drop functions.’”

A successful integrated process design is expected to strike a
balance between high profit, low emission, and sufficient
flexibility. A TSSP model of the biorefinery design and
operation is first developed in this work to consider price and
biomass supply fluctuation. The e-constraint method is utilized
to convert flexibility index and global warmin§ potential
(GWP) objectives into the model constraints.”> We then
incorporate the process flexibility requirement into the
biorefinery design through surrogate-embedded TSSP and
illustrated the LCA uncertainty through the performance in
each sampled scenario. Since multiple plant configurations may
have the same flexibility index, direct enumeration of all
alternatives during the design stage is impossible. Three
different data-driven surrogate models are built for the
flexibility index constraints of the biorefinery, namely support
vector regression (SVR) with radial basis function (RBF)
features, third-order Lasso regression, and feed-forward neural
network with ReLU activation function. The ANN model with
ReLU activation function is able to achieve excellent
approximation while retaining the mixed-linear characteristic
of the model, which is well-suited for the biorefinery
multiobjective optimization problem.

2. PROBLEM FORMULATION

2.1. Multiobjective TSSP of Multifeedstock/Multi-
product Processes. 2.1.1. Parameter Uncertainties. The
process flowsheets of each candidate conversion technology
could be developed in Aspen Plus based on experimental data
or literature.”® The input and output flow rates, operating cost,
and capital investment of each block are extracted and scaled
to formulate the optimization objectives and constraints. The
optimization framework could also include other promising
biomass conversion routes and unit operations that are not
modeled in the Aspen Plus. Rigorous kinetic and differential
equation models or measurements on actual equipment could
provide the raw material flow rate, utility usage, and product
generation in those cases.”’ Both profitability and environ-
mental benefits are essential considerations for the design of
integrated processes with multiple feedstock and product
choices, which requires a biobjective optimization model.
More specifically, the decisions of the TSSP are made in two
stages. The first-stage design decisions, such as the technology
choices and capacities, are made before uncertainty realization.
After the actual feedstock supply and prices are observed, the
second-stage operational-level decisions are made for the
actual production activity and stream flow rates, ensuring
process feasibility and improving performance. On the one
hand, feedstock supply (e.g., biomass availability) and prices
are the uncertainty parameters considered in this TSSP
problem since empirical data, historical trends, or predictive
models could provide relatively reliable probability distribution
information for the modeling.

On the other hand, future product demands and the novel
technology conversion coeflicients are challenging to predict
since the market is still emerging, and the technologies are at
the early stage of their development. Although the TSSP
framework can include these demand and conversion
uncertainties in the process design using arbitrary assumptions
on the parameter’s probability distributions (e.g., uniform
distribution), it might lead to overly exaggerated LCA
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uncertainty. To avoid overestimating the magnitude of LCA
uncertainty, the nominal values of demand and conversion
coefficients are incorporated in the stochastic programming,
and their uncertainties are considered in the flexibility index
analysis.

2.1.2. Objective Functions. The superstructure optimization
problem aims to maximize the expected profit and minimize
the expected GWP while having a certain level of flexibility.
The expected profit includes the revenue of selling products/
byproducts minus both the first-stage annualized capital
investments (CAPEX) and second-stage feedstock and
operating costs (OPEX). The capital investment and fixed
operating costs (such as administration and maintenance)
demonstrate the famous “economy-of-scale” and follow the
power-law relationship.*”

a(m)

_ . Q(m)
CAPEX = m% Cy(m) X 2 o
aem |
OPEX(w) = ,E’A 0y(m) X 2
x(m, w)
+ Ry(m) X | ———=||Vw € Q
Q,(m) @

where Cy(m) is the known annualized capital cost basis of the
process at a plant scale of Qy(m), Q(m) is the actual designed
capacity of the process, and a(m) is the capital cost scaling
exponent for technology m € M. Oy(m) and Ry(m) are the
known fixed and variable operational costs, and B(m) is the
operating cost scaling exponent for technology m € M. The
actual production activity in the process unit m in scenario @ €
Q is denoted as x(m,w). The economic objective, total annual
profit, is calculated in eq 3.

Profit(w) = —CAPEX — OPEX(w)
+ Zﬂ(i, w) X pli, ) YV w € Q

i€l

©)

where p(i, @) is the purchase or selling price and p(i, @) is the
flow rate of the feedstock, intermediate, or product i € I in
scenario @ € €. The profit objective is then piece-wise
linearized using the function interpolation of grid points.*’
The environmental impacts are evaluated by the LCA with a
“cradle-to-gate” system boundary. Similar to the production
cost, the total GWP in eq 4 includes the emissions associated
with production activity, upstream raw material and utility
extraction, credit from selling byproducts, and plant con-
struction. This objective will focus on minimizing the overall
greenhouse gas emission among all production activities. The
GWP measures the contributions from all greenhouse gases,
including (CO,, CH,, N,0, and others).*" The global warming
effects of other greenhouse gases are normalized by that of
CO,. Next, the byproducts generated from the plant operation
are treated by the “avoided burden” method, which deducts
the emission of producing the byproducts (e.g., jet fuel,*
surfactants, and lubricants)* from the standalone facility.**
For instance, if biomass-based electricity or “green” hydrogen
are generated as byproducts in the biorefinery, then customers
could utilize them instead of purchasing from other suppliers
that consume coal or natural gas to manufacture electricity or
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hydrogen. In this way, the total emission is reduced because
the existing power plant will use less coal and has lower
greenhouse gas emissions as compared to the case without the
biorefinery. Thus, part of these suppliers’ production activities
and raw material usage is reduced, and environmental credit
should be given to the biorefinery for avoiding high-emission
activities.

Total GWP(w) = 2 np(m) X x(m, w)

+ 2 7)) X pli, @) + Y 7w (s) X y(s, )
i€l sES
+27rc(m)><Q(m) Vel
meM (4)

where 7, (m), m,(i), #(s), and m(m) are the greenhouse
emissions during the production stage (e.g, flue gas from
lignin combustion), upstream raw material i € I extraction,
electricity generation from energy source s € S and plant
construction, and y(s,w) is the electricity usage from energy
source s € S in scenario @ € Q. The water consumption
related to the process operation and biomass growth is
considered for LCA, but it does not contribute significantly to
GWP as compared to other chemicals and utilities (e.g,,
electricity and steam).

It is more common to normalize the total emissions by the
amount produced in LCA so that the same product from
different processes can be compared on the same basis. If the
LCA functional unit is chosen as 1 kg of chemical i € I
produced by the biorefinery, another bilinear constraint with
both continuous variables is introduced in eq 5.

Total GWP(w) = GWP(w) X p(i, w)

VYV w € Q, i€ Target Product (5)

2.1.3. Mass Balance. Based on the process simulation,
conversion coeflicients of each process unit could be collected
to build the relationship between inlet and outlet flow rates for
feedstocks, intermediates, and products i € L.

pliy ) = Y. v(i,m) X x(m, ) Vi€l w€Q
meM

(6)
when v(i, m) is the conversion coefficient that represents the
consumption/generation of products i € I using technology m
€ M. A negative p(i, ®) indicates i is a feedstock or
intermediate that has to be purchased from the suppliers, while
a positive p(i, @) means i is sold to the market. This
formulation is similar to the matrix-based LCA calculation,
which can readily expand and include more processes/
technologies as they become available or of interest.

It is a common practice in integrated chemical plants, such
as biorefineries, to incinerate residuals like lignin to generate
heat and electricity for other units. Thus, different external
electricity sources and the lignin-combustion unit are
considered in the mass balance as the operational limits on
electricity usage (eq 7).

—U X b(w) < p(“Electricity”, @) < U, X b(w)

Vwel (7)

where U, is the constant for the big-M constraints and b(®) is
the binary variable that decides whether to sell lignin-
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incinerated electricity or purchase electricity from different
sources s € S, including solar, wind, hydro, other biomass, and
natural gas.

Z y(s, w) + p(“Electricity”, ) — k(w) =0 Vw e Q

SES
(8)

where k(w) is the electricity sold to the market when excess
electricity is generated from combusting lignin. It is forced to 0
when b(w,) is 0 by the logic constraints (eqs 9 and 10).

kw) <UXblw) YweQ 9)

7(s, w) <y¥(s, w) x (1 —b(w)) VseS, wel
(10)

where y*(s, w) is the electricity availability from each source s
€ S. Other energy sources and the future electricity mix could
be incorporated by adding new elements and updating the y*(s,
) values.

2.1.4. First-Stage Design Constraints. The binary variable
y(m) is used to indicate whether technology m is chosen or
not. When this technology is chosen, its capacity is then
limited by the possible minimum and maximum capacities,

Q (m) and Q*(m).

y(m) x Q (m) < Q(m) <y(m) x Q' (m) VmeM
(11)

Additionally, some feedstocks (and technologies) may share
the same facility, which is captured by equating their capacities
in eq 12.

Qm)=Q(m) VYmmeM (12)
and m, m’ share the same facility.

2.1.5. Second-Stage Operating Constraints. There are also
bounds on operational decisions. For example, the feedstocks
flow rates could not exceed the maximum supply. The
maximum production rate should be less than the market
demands in each case. These requirements impose the lower
and upper bounds (p™(i, @) and p*(i, ®)) on the material flow
rates.

p o) <pli,w) <p'(iw) YieLLweQ (13)
Moreover, the actual production activity in each production
unit should not exceed its designed capacity. This constraint
(eq 14) connects the first- and second-stage decisions of the
TSSP.

x(m, w) <Q(m) VmeM, weQ (14)

2.2. Flexibility Index Optimization Using the Active-
Set Method. For a given plant configuration, a max-min-max
formulation is adopted to calculate the flexibility index. Here,
fi(d, z, 0) is obtained after substituting equality constraints and
eliminating the state variables in the inequalities. In this model,
d is the design variable (e.g., choice of technologies y(m) and
capacities Q(m)), 0 is the uncertain parameter that affects the
process feasibility (such as supply or demands, p~(i, 8) or p*(i,
0), and conversion coefficients, v(i, m, )), and z is the
recourse/control actions (e.g., production activity x(m, 6) and
material flow rates p(i, 0)).
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F =max
st. max w(d, 0) <0
0eT(5)

w(d, 0) = min maxfj(d, z, 0)
:

T(5) = {6: 0N — 6:A0” <O <OV + 6:00%)  (15)
w(d, 0) is the function testing the system’s feasibility when the
parameter takes the value 0 and the design is d. T(5) is the
hyperrectangular that allows uncertain parameters to vary
without correlation and @V is the nominal value of process
parameter. The interaction between different uncertain
parameters could be captured by ellipsoidal or diamond
shape uncertainty sets.*> The active-set method is proposed to
reformulate and efficiently solve the aforementioned bilevel
optimzigigion problem (eq 16), especially for nonconvex
cases.”’

0

min
H,z,&,sf,l/,yl_

F(d) =

s.t.s]-+f]_(d,z,¢9)=0 Vie]

%

J€J J€J

lj—)?SO,sj—U(l—yj)SO,

Zy}_=nz+l

j€J
T(O) = {0: O — 5007 < 0 < 0N + 5-A0™)

520;)?20,1;51- A>20 Vje]

) j =

(16)

where s; is the slack variable for each constraint f;, 4; is the
Lagrange multiplier, y; is the binary variable as an indicator for
whether the inequality constraint f; is active, U is the big-M
constraint, and n, represents the number of control variables.

2.3. Multiobjective Integrated Process Design with
Surrogate Flexibility Constraint. Different surrogate
models for the flexibility index could be built based on
sampled data, which will serve as a simplified constraint of the
plant capacity design (eq 17). The surrogate model reduces the
optimization problem complexity and enables the biorefinery
design with flexibility requirements to be solved as a single-
level optimization problem.

£(d) ~ F(d) = 5

min
9,2,5,51,/1,,% (17)
The e-constraint method is applied to study the trade-off
between the maximum profit and the minimum GWP for
product i € I (or total annual GWP of the process) while
maintaining the required flexibility level, J;.

S QU ) (m0) EycalProfit(«)]

s.t. Constraints(1) — (14)

weoTotal GWP(w) <
Z(l)eﬂp(i) (,l)) B
E(d) > 6,

z
lE(uEQ[GWP(a))] =

(18a)
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After determining the highest and lowest GWP on the Pareto
curve by solving the profit maximization and GWP
minimization problem separately, the bilinear epsilon con-
straint (eq 18a) involving expected value among different
scenarios could be converted to a linear one (eq 18b).

Y, cqTotal GWP(w) < € X 2 cop(i, ®)

«

(18b)

The average total GWP could be another linear objective
function, which represents the lowest greenhouse gas emission
of all production operations in a biorefinery.

E,cqTotal GWP(w) < € (19)

Overall, the multifeedstock/multiproduct process design with
flexibility index requirement is shown in Figure 1. After the

we

Initial Design Candidate
L Multi-feedstock/Multi-product process designs by bi-objective TSSP )

b min(m), @mex(m)
p

Latin Hypercube Sampling of Designs
\Samp[ing the design space of technology’s capacities
Q Qsampled(m)

7
Solve Active-set Flexibility Index
Solving MINLP model for each sampled designs

@ [Qsampled (m)‘ 6sampled]
7
Build Surrogate Model
L Fitting to data-driven models: Lasso regression/SVR/ANN
{6~ Fom))

p
Process Design with Surrogate Flexibility Constraints
L Lasso regression/SVR/ANN surrogate as constraints in the TSSP

Figure 1. Proposed strategy for the surrogate-embedded process
design with flexibility requirement.

initial Pareto curve construction in the TSSP without any
flexibility consideration, the capacities of each recommended
design on the curve provide the reference ranges for capacity
sampling. The Latin hypercube sampling (LHS) is then
performed to create the data points for flexibility index
evaluation (active-set problem). The data sets are then split
into training and testing sets to build the data-driven surrogate
model that approximates the flexibility index response as a
function of each technology’s capacity. The surrogate model is
finally included in the original TSSP model as the flexibility
constraint to ensure the process has enough resilience.

This surrogate-embedded TSSP formulation could be
applied to a variety of process design problems with
feedstock/ﬁroduct/technology choices, including oil refinery
operation,”’ chemical conversion of waste 9plastic,48 biorefi-
neries,”” and other process superstructures.”

In particular, the integrated biorefinery design involves
emerging technologies in its superstructure with uncertainties
from various sources. The design of profitable, environmentally
friendly, and flexible biorefineries is also of practical
importance for the implementation of viable technologies
toward circular economy.’® Consequently, a biorefinery case
study is selected in section 4 to demonstrate the effectiveness
of the proposed method in handling supply, demand,
conversion, and price uncertainties.
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3. SURROGATE MODEL CONSTRUCTION FOR
FLEXIBILITY INDEX

The following three types of data-driven surrogate models are
deployed to replace the flexibility index calculation in the
superstructure optimization problem. The model fitting
performance is next compared based on the R* of both data
sets. The Scikit-learn®’ and TensorFlow>> Python machine
learning packages are used for the model training, and the
fitted parameters are then implemented in GAMS for
optimization. Cross-validation by grid search is utilized to
select the best performing hyperparameters for the surrogate
model.

3.1. Support Vector Regression (SVR) with Radial
Basis Function (RBF) Kernel. Similar to the SVM used in
classification problems, SVR models also have a simple
functional form and are easy to train. The RBF kernel is
based on the Euclidean distance between the point of interest
and the support vectors, as illustrated in eq 20.

ﬁRBF(x) = Z a, eleul 4y

sesv (20)

where v, is the sth support vector with a weight of a, y is the
kernel parameter, and b is a constant term. The hyper-
parameters of the kernelized soft-margin SVR, including the
tube size of the insensitive region (&) and the regularization
parameter of error outside the insensitive region (C), control
the trade-off between model fitting accuracy and the risk of
overfitting. The SVR model typically demonstrates good
performance for training on small-sized high-dimensional
data.>® Nevertheless, the general RBF kernel is nonconvex,
which adds computational complexity to the surrogate-
embedded optimization problem.

3.2. Lasso Regression Up to Third-Order Terms. As
one of the simplest surrogate models, linear regression with
polynomial features could be readily encoded in the
optimization software (eq 21a). However, the number of
terms grows rapidly as the variable dimension increases, which

is prone to overfitting.

z axit Z bixi2+ Z c,-x,-3+
: ' i i j>i
3 Y et X Yo e +d

i jF i j>i k>j

~3rd

F (x) = a. -x-xl-+

i,j0

(21a)

However, the bilinear and trilinear terms in I3 (x) are also
nonconvex and hinder the convergence of the final biorefinery
design MINLP. Thus, a simplified polynomial surrogate (eq
21b) without some nonconvex terms (xx” and xxp,) is
considered to improve the computational efficiency at the

expense of model accuracy.

£ (x) = Z ax+ 2 b+ Z e+
i i j>i

i i

@ xx; + d

(21b)

Moreover, the Lasso (L1) regularization is adopted to avoid
overfitting by penalizing the sum of absolute values of
coeflicients. This approach typically sets the coeflicients of
irrelevant terms to zero, which further reduces the model
complexity.

3.3. Neural Network with ReLU Activation Function.
Neural network models demonstrate excellent fitting perform-

https://doi.org/10.1021/acs.iecr.2c02968
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Figure 2. Biorefinery superstructure for the case study.

ance for various data types and applications, especially when
data are abundant. For instance, the feed-forward ANN with
only one hidden layer has been proven to approximate any
smooth function with hi§h accuracy on a compact domain
given sufficient neurons.”” In the feed-forward ANN model,
the output vector of layer k is denoted as z¥). The first layer is
the input layer with z(!) as its input vector, and the last layer is
the output layer with a scalar 2™ as its output. For other layers
k> 2, 2% is calculated by applying the activation function to
the linear combination (with weights W*1 and constant
terms b*~V) of the outputs (z*"V) from the previous layer

(eq 22).
0= hk(W(kfl)z(kfl) + b(kfl)) (22)

The ReLU activation function, h,(x) = max (0, x), is selected
for the surrogate model. This piece-wise linear function could
be converted into mixed-integer linear constraints with the big-
M formulation (eq 23a—23e). Let # € {0,1} be a binary
variable, and U be the big-M constant:

-U-(1-n) <x< Uy (23a)
h(x) < Un (23b)
0 < Iy (x) (23¢)
x < hy(x) (23d)
h(x) <x+ U-(1 -1n) (23¢)

Finally, the prediction from the output layer is just the linear
combination without any activation function (eq 24):

L) (N ) (24)

4. CASE STUDY: INTEGRATED BIOREFINERY DESIGN
WITH FLEXIBILITY CONSTRAINTS

Biorefineries are designed to utilize various alternative
technologies and convert different feedstocks into valuable
products. The case study is modified from the aforementioned
process design, and simulation work as well as the biorefinery
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superstructure presented in Bhosekar et al.*® As illustrated by
the superstructure in Figure 2, sugar cane bagasse, corn stover,
as well as the poplar and willow wood are fed into the
biorefinery as the biomass feedstock. The willow is chosen as a
biomass feedstock instead of red oak because its yield
uncertainty data are available in the literature, which better
reflects the actual variability of biomass supply and the LCA
uncertainty.”® The biomass feedstocks are treated by the
molten salt hydrate hydrolysis (MSH) technologies to produce
important platform chemicals: furfural, hydroxymethylfurfural
(HME), and lignin.”> Biochar and antioxidant extractive are
also manufactured in the MSH process under different reaction
and separation conditions using the potato peel feedstock.”
Two reductive catalytic fractionation (RCF) processes, namely
the traditional RCF with methanol as the solvent and the
intensified reactive distillation-RCF (RD-RCF) with glycerin
as the solvent, could convert lignin into the targeted main
product, pressure-sensitive adhesive (PSA).”” Technical lignin
from other upstream treatments such as paper pulping could
be utilized in the same RCF units. If the lignin byproduct
exceeds RCF capacities, then it could also be burned to
generate electricity for the plant or sent to the solid waste
treatment facility at a higher cost. The cost of the power plant
is calculated based on the simulation in Athaley et al.,” and the
parameters are summarized in Table S1. Moreover, HMF and
furfural could further go through hydro-deoxygenation,
acylation, and cyclo-addition processes to synthesize a variety
of value-added products, including butadiene, jet fuel,
surfactant, lubricant, and p-xylene.”* It is noteworthy that
this superstructure does not contain all potential biomass
conversion routes. Many other HMF and furfural conversion
technologies could be considered in this framework when the
necessary input-output relationship, cost, and emission data are
compiled.**~°

Hydrogen gas is widely used in highly selective biomass
technologies. But the hydrogen gas transportation requires
pressurization or pipe construction, which could become a
limiting factor in remote areas where biomass feedstocks are
abundant. Thus, a new electrolysis process to produce “green
hydrogen” is added as an alternative. The on-site electricity
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and hydrogen generation units are expected to provide more
robustness to the plant such that the deficient electricity or
hydrogen supply in extreme cases still has its recourse action.
This biorefinery superstructure could easily include more
processes from simulation or literature as only the input—
output relationship, and the economic/environmental per-
formance are required. It is similar to the matrix-based LCA
framework, which shows the potential to be extended to more
general LCA studies.’"*

In the early stage process design, the chemical prices and
their uncertainties could be tracked through the historical
trend.”® However, it is challenging to measure and quantify the
biomass feedstock supply before the plant operation. Although
the regional biomass availability map at county scale resolution
provides valuable information for supply chain design, the
centralized large-scale biorefinery operation will rely on the
supply from specific districts.”* Consequently, the temporal
correlation of the biomass supply is more relevant to the
biorefinery operation. In this work, the yearly biomass yields
per acre were selected to provide a reasonable estimate for the
variability of raw material supply (Figure S1).°°° Recently,
different biogeochemical models®”*® and integrated biomass
supply and logistic models® have been developed to more
accurately predict feedstock availability. However, the
stochastic programming framework is capable of incorporating
more reliable uncertainty information in the future by sampling
representative scenarios from the models above or historical
data. The biomass composition variability was implicitly
considered in the changes of HMF/furfural/lignin conversion
coeflicients. The biorefinery is designed to treat different
biomass feedstock as a mixed stream. Thus, the model also
considers the composition variability in the ratio of different
feedstocks in the inlet stream. More sample collection,
characterization, and data acquisition are required to quantify
the magnitude of the composition variability in order to
construct uncertain scenarios.'"

The demands for the commodity chemical products
traditionally from petroleum feedstocks (e.g., jet fuel, lubricant,
and butadiene) are relatively stable and large due to the sheer
volume of the market.”” More valuable specialty chemicals
such as extractives and pressure-sensitive adhesives have niche
markets whose production may be severely affected by
demand.”"”* Since biomass-based products are still emerging
and the market is developing, historical data or accurate
models to describe the demand uncertainties are lacking.
Although many biomass-based products are developed to
substitute existing petrochemicals (same or similar molecules),
there are opportunities to create new products with better
performance or functions.”> Currently, most chemicals are
produced using several different routes and intermediates. It is
difficult to predict which biomass-based intermediate molecule
will be favored (with higher demand) in this competitive and
volatile market. For the specialty chemical end-products, the
customers’ behavior and preference are more challenging to
model, especially at the early stage. Product segmentation and
market penetration will affect how much biomass-based
products will take up in the existing market, which is also
evolving over the years.”* Another source of potential
uncertainty is the reaction yields and conversions as the
technology is still developing and the experimental measure-
ment is performed at bench-scale experiments. The mean
values and deviations (+15%) are thus assigned for the
flexibility index analysis to capture these sources of uncertainty.
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The summary of parameters used for the biorefinery
optimization is listed in Table S1—S4 and Figure SI. All
optimization models are implemented in GAMS 33.1 on a
computer with Intel Xeon E-2274G CPU @ 4.00 GHz 32 GB
RAM.

4.1. Data-Driven Surrogate Model for Flexibility
Index Evaluation. In this section, SVR, Lasso regression,
and ANN with ReLU are fitted to the same sampled data set of
flexibility index as a function of different design capacities. The
collected data set is shuffled and randomly split into the
training and validation sets to identify underfitting and
overfitting. Cross-validation is performed to determine the
optimal polynomial degree for the model fitting (Figure S2).
As the polynomial degree increases, the polynomial model fits
the training data with higher accuracy, while the testing data
has its peak at the third-order model. After that, overfitting
occurs, and the model has a worsening performance at
predicting unseen data. Thus, the third-order polynomial
model is chosen for the regression. Feature selection is also a
vital step in improving the data-driven model accuracy and
reducing the model complexity. Especially in the polynomial
regression and SVR models, the number of nonconvex terms
increases rapidly as the input dimension grows, rendering the
embedded optimization problem unsolvable in a reasonable
time. The univariate test with F-statistic in the Scikit-learn
Python package is implemented to remove three features that
have minimal contributions to the model performance: the
capacity of potato peel's MSH process, surfactant production,
and waste combustion. As shown in Figures S3, S4 and S6, S7,
the R* values in the training data set slightly decrease as these
three features are removed, but the testing data set’s R? values
increases, meaning both Lasso regression and SVR model
achieve better out-of-sample forecasting with fewer model
parameters. More details on different surrogate models’ fitting
performance could be found in the parity plots (Figures S3—
S8).

As compared in Table 1, the SVR model can capture the
nonlinearity of the flexibility index (FI) as a function of the
design capacities well (R* values higher than 0.93) due to the

Table 1. Summary of Surrogate Model Fitting and
Optimization Performance

SVR third-order Lasso ANN (ReLU
(RBF (no XXXy and activation
surrogate model kernel) x,x,zterms) function)
training R 93.7% 78.7% 99.7%
testing R* 93.4% 75.2% 99.7%
optimization model MINLP MINLP MILP
type
no. of constraints 12341 12341 12443
no. of continuous 6171 6171 6203
variables
no. of discrete 196 196 210
variables
solver BARON BARON CPLEX
max profit design 3600 s 1835 s 6.5 s
(8, = 0.5) solution
time
profit LB (M$/year)  47.3 45.8 47.9
profit UB (M$/year)  50.2 46.3 47.9
optimality gap (after ~ 5.7% 1.0% 0%
3600 s)
FI prediction error 4.0% 15.6% —-3.3%

(profit LB case)
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Figure 3. Pareto curve of the profittPSA GWP (left) and profit-total GWP trade-offs (right) and the flexibility index evaluated for each

recommended design.

excellent fitting ability of the RBF kernel.”> However, a total of
293 support vectors are needed to fit the model with such
accuracy. Therefore, the biorefinery design optimization with
SVR surrogate flexibility constraint (FI > & = 0.5) encounters
difficulties to find tighter upper bounds as this highly
nonconvex function is challenging to relax.

The third-order Lasso regression is capable of fitting the
general trend of the flexibility index but is less effective for the
validation data set even with all polynomial terms up to the
third-order (Figure S3). Since both bilinear and trilinear terms
are nonconvex, the optimization problem will run into a similar
convergence issue as the SVR model. Using third-order Lasso
regression without xx;” and xxx, terms, the surrogate’s fitting
performance drops, but the flexibility constraints become easier
to relax and provide tighter upper bounds. The optimality gap
is thus lower than the SVR flexibility surrogate, even though
the SVR model predicts the highest profit design’s flexibility
index more accurately than the Lasso regression model. The
solution quality of using third-order Lasso surrogated
constraint is also the worst ($ 45.8M/year profit) as it
overdesigns plant capacities, especially the MSH unit.

The feed-forward neural network surrogate with ReLU
activation function demonstrates very accurate model fitting
capability with R* of more than 99.7% with only two hidden
layers (10 and 4 neurons in each layer). Such high surrogate
model accuracy provides more confidence in the model when
substituted as the flexibility index constraints in the overall
process design optimization problem. When embedded into
the superstructure optimization model, each neuron only
introduces one extra integer variable in the ReLU function.
Negative or near-zero values in each ReLU layer do not cause
numerical errors or infeasibility, even in deep learning
models.>® Other activation functions, such as exponential
linear unit (ELU), scaled exponential linear unit (SELU), and
Gaussian error linear unit (GELU), could also be used.”® Since
the rest of the biorefinery design problem is linear with integer
variables, the ReLU ANN model does not change the MILP
model type and can be solved efficiently with the CPLEX
solver, unlike the SVR- or Lasso-embedded nonconvex models
that require global MINLP solver, such as BARON.

4.2. Profit-Emission Trade-Off of Biorefinery by TSSP.
The stochastic programming with environmental and econom-
ic objectives is performed using the e-constraint method, and
its Pareto curve is shown in Figure 3. After solving the
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maximum profit and the minimum emission optimization
problems separately, the upper and lower bounds of & are
determined. Ten instances with gradually increased equidistant
¢ are then incorporated as constraints (eq 18b or 19) to obtain
the Pareto optimum. The biorefinery configurations suggested
by each case are then sent to the active-set optimization
problem as a design variable, the flexibility index of which is
evaluated and shown in the z-axis of Figure 3.

Without flexibility constraints, the design with the lowest
total GWP emission (eq 19) has very large capacities since this
configuration tries to utilize as much renewable biomass
feedstock as possible, as indicated by the high flexibility index
of all Pareto points. Nevertheless, the design that minimizes
GWP of the PSA (total greenhouse gas emission divided by the
total PSA production) has reduced capacities in each process
as it tries to avoid the unnecessary usage of biomass feedstock
that does not have the lowest greenhouse gas emission. On
average, the designs with PSA’s GWP as the second objective
produce 8—8.47 kt PSA/year, and the designs with total GWP
as the objective produce 8.45—15.56 kt PSA/year. The
transition from high-profit to low-emission designs on both
Pareto curves is achieved through selecting more expensive but
less carbon-intensive feedstocks (e.g., from poplar to willow)
and technologies/products (e.g,, from RCF to RD-RCF).

Among different raw material supplies, the most restricting
resources of the biorefinery operation are electricity and
hydrogen gas, despite their relatively insignificant contribution
to the cost. Thus, even if a bigger biorefinery is constructed
with added capacities in some unit processes, the flexibility
may not increase further as the operation at a higher flow rate
does not have enough electricity or hydrogen. Moreover, the
demand for most products is typically too high to make a
difference in the flexibility index. Nonetheless, the supply and
demand of the intermediates (HMF and furfural) are the main
limiting factors in many cases. For instance, if the furfural
production exceeds the market demand, treating the remaining
furfural after the sale will consume electricity and hydrogen
gas, which are also crucial in other processes.

Next, the flexibility constraint is added by using a 2-layer
ANN surrogate with the ReLU activation function. The ANN
prediction of the flexibility index based on the design capacities
is very close to the actual value before and after imposing the
flexibility constraint, as illustrated in Figure 4, which highlights

https://doi.org/10.1021/acs.iecr.2c02968
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the effectiveness of the ANN model in forecasting unseen

flexibility data.
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Figure 4. Pareto curve of the profit-PSA GWP trade-offs before and
after implementing the flexibility constraints.

Apart from providing robust biorefinery designs that handle
different sources of uncertainty, the profit and emission profile
of each sampled scenario in the two-stage stochastic
programming could also demonstrate the uncertainties of the
biorefinery’s economic and environmental performance. As
illustrated in Figure S, the variability in LCA results is the
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Figure S. Biorefinery’s GWP uncertainty ranges before and after the
flexibility constraint (FI > 0.5).

largest for designs in the middle of the profit-PSA GWP trade-
off curve, as a mix of different technologies and feedstocks are
used. The Pareto curve also helps to illustrate the marginal
LCA results (i.e., the nonlinear response of emission when
different amounts of product are generated).”” It is challenging
to quantify the LCA uncertainty and obtain such insights from
the conventional linear LCA framework that is primarily based
on matrix multiplication. Traditionally, the Pedigree method is
utilized to rate the LCA data reliability, completeness,
temporal, and geometric correlation, and technological
correlation from 1 to 5. These scores are then transformed
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into uncertainty factors between 1 to 2 and assigned as
geometric standard deviations for flow rate variability in Monte
Carlo simulation.'” Although this method could qualitatively
describe the quality of data used in LCA, the Pedigree
geometric standard deviations lack physical meanings and are
not representative of the actual flow rate/emission variability.
The optimization framework presented in this work, however,
emphasizes the technology/feedstock choices and actual flow
rate in each unit under various economic and operational
circumstances with an empirical basis.

A detailed comparison of design capacities on the Pareto
curves is illustrated in Table S5. As expected, designs C and D
have higher capacities than their profit- or emission-prioritized
counterparts (A and B). As the lowest GWP design (A)
already has relatively high capacities, the relative changes in
each unit are insignificant. The overdesigned capacities are
mainly on the biomass combustion unit that generates extra
electricity for the biorefinery when the electricity supply is tight
and the p-xylene production process reduces the risk of
producing too much HMF that exceeds the demand. However,
design D has a relatively large increase from design B in almost
all capacities, especially the MSH, RD-RCF, and p-xylene
production units. Noticeably, the electrolysis process that
generates H, on site is suggested for this maximum profit case
as hydrogen gas is expensive. As the RD-RCF process does not
consume hydrogen gas, the extra hydrogen could be utilized to
convert the HMF/furfural into more value-added chemicals. It
is a win-win situation where the intermediates’ demand limits
are avoided to maintain feasibility, and more valuable products
are generated to increase the profit. Figure S9 further
demonstrates that the electrolysis unit is not idle but actually
generates H, more than 60% of the time to provide a better
capability of intermediate conversion. The electrolysis process
not only increases the flexibility of the biorefinery in extreme
cases but also is economically favored in normal operation
once it is installed.

After increasing the capacities for a higher flexibility
requirement, the feedstock flow rates and production activity
in each unit are still quite close to the base-case operation
without flexibility constraints due to the unchanged back-
ground economic conditions (i.e., prices, supply, and demand).
Consequently, the performance change mainly comes from the
capital investment and emissions during the plant construction
stage. This is the price paid for the increased flexibility by
overdesigning the process capacities. Nevertheless, the installed
electrolysis facility in design D allows the production of cheap
on-site hydrogen gas and valuable furfural-based downstream
products, which offsets part of the capital cost and causes slight
changes in the shape of the Pareto curves. It is also possible
that different technologies are chosen after the constraints are
imposed due to their lower conversion/product demand
deviations or the capability of treating intermediates to avoid
producing more than the biorefinery could sell.

4.3. Multiobjective Optimization Using Surrogate
Flexibility Index Model. The e&-constraint optimization
method is applied in a nested way to solve the triobjective
problem (profit—GWP—flexibility index). In the outer loop,
the lower bound for flexibility index, 6y, is gradually increased
to determine the ranges of profit and GWP for the inner loop
iteration. Consequently, only one MINLP needs to be solved
in the outer loop when the lowest PSA GWP value is
determined. Then, all other é&-constraint cases are solved
efficiently as MILP by using eq 18b. The 3D Pareto curve

https://doi.org/10.1021/acs.iecr.2c02968
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(Figure 6) is obtained by solving the surrogate-embedded
flexibility constraint model in 18 min. Each design’s flexibility
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Figure 6. GWP—profit—flexibility trade-off surface constructed by
surrogate-embedded optimization.

on the curve is then evaluated by the active-set method, which
closely matches the ANN prediction. This performance again
demonstrates the ANN surrogate model’s excellent prediction
ability over a relatively wide range.

The sampling and flexibility index evaluation steps are
decoupled from the surrogate-embedded optimization. Hence,
more efficient flexibility index solution algorithms or parallel
computing will improve computational time significantly.
Additionally, uncertainty sets that represents the parameter
interactions in flexibility index analysis or other measures of
the system flexibility could be included.*>”® Although the
ANN model fits the flexibility index with satisfactory accuracy
throughout the variable range in this case study, it is possible to
develop separate models for low and high flexibility index
regions when an overall model does not capture the entire
region.

Another implication from this work is that some high-
dimensional and nonlinear functions, such as flexibility index,
could be approximated effectively by a mixed-integer surrogate
model (ANN with ReLU activation function) without
introducing too much complexity. Misener and Floudas
demonstrated the approximation of nonlinear functions
based on the interpolation of grid points, but the formulation
is comglicated for input variables with dimensions higher than
three.”” As illustrated in eqs 23a—e, the ANN surrogate with
ReLU activation function is relatively easy to encode in
optimization software, which shows the potential for other
applications.

5. CONCLUSIONS

Opverall, a centralized biorefinery superstructure optimization is
formulated to simultaneously minimize the GWP based on life
cycle assessment (LCA) and maximize profit. The price and
biomass supply uncertainties are utilized to generate scenarios
in the two-stage stochastic programming. At the same time, the
resilience of biorefinery in the face of biomass-based product
demands and reaction conversion variability is quantified by
the flexibility index analysis. This analysis is suited for an early
stage biorefinery evaluation with mixed forms of uncertain
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information, including probability distributions, historical data,
and ranges. Moreover, the ANN with ReLU activation function
is shown as an appropriate surrogate model for flexibility index
due to its accurate fitting ability and the mixed-integer linear
formulation. It could then be incorporated into the biorefinery
superstructure optimization to solve the design with flexibility
constraints and even the profit—GWP—flexibility triobjective
optimization.

This superstructure optimization is also compatible with the
current matrix-based LCA framework consisting of the
technological matrix and emission matrix. This model is not
only able to guide the optimal biorefinery design and operation
under different levels of price, supply, and demand
uncertainties but also quantitatively translates them into the
uncertainty of product emissions. This optimization-based
LCA uncertainty quantification method provides the empirical
foundation for material flow rate variability that the traditional
Pedigree and Monte Carlo method lacks.'”
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B NOMENCLATURE

Sets/Indices

i€l raw material, intermediate or products

j €] inequality constraints in the flexibility index analysis
m € M technologies

® € Q scenarios
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T hyperrectangle set of parameters in the flexibility
index analysis
Parameters

a(m)
p(m)

capital cost scaling exponent for technology m € M
operating cost scaling exponent for technology m €
M

7" (s, w) electricity availability from each source s € S in
scenario @ € Q
oL lower bound of flexibility index requirement
€ constant used in the e-constraint method
o nominal point of parameter
A@*, A~ positive and negative expected deviation of
parameter
u(i, ®)  purchase or selling price of i € I in scenario @ € Q
v(i, m)  conversion coefficient of products i € I using
technology m € M
z. (m) greenhouse emissions of plant construction (tech-
nology m € M)
z, (S) greenhouse emissions of electricity generation from
energy source s € S
mp (m)  greenhouse emissions during the production stage
(technology m € M)
7, (i) greenhouse emissions upstream raw material i € I
extraction
p~ (i, ) lower bounds of flow rate; supply of raw material i
el
p* (i, w) upper bounds of flow rate; demand of product i € I
n, number of control variables in the flexibility index
analysis
C, (m)  annualized capital cost basis at a plant scale of Q,
(m)
O, (m)  fixed operational cost basis at a plant scale of Q,
(m)
Qy (m)  plant scale as the basis for costing
Q (m) minimum capacities of technology m € M
Q' (m) maximum capacities of technology m € M
Ry (m)  variable operational basis at a plant scale of Q, (m)
U, U big-M constants
Variables
b(w) zero if electricity is sold and one if purchased
in scenario w € Q
d design variables in the flexibility index
analysis
k(w) amount of electricity sold to the market in
scenario @ € Q
5 slack variable for each constraint f;
x(m, w) the actual production activity of technology
m € M in scenario w € Q
y(m) zero when technology m is not chosen and
one when chosen
Y zero when inequality constraint fl is inactive
and one when active
z recourse/control actions in the flexibility
index analysis
(s, o) electricity usage from energy source s € S in
scenario w € Q
) flexibility index
0 uncertain parameters in the flexibility index
analysis
4; Lagrange multiplier for each constraint f;
p(i, ®) flow rate of i € I in scenario w € Q
CAPEX annualized capital cost
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GWP(w) global warming potential of producing 1 kg
product i € I

OPEX(w) total operating cost in scenario @ € £

Profit(w) total annual profit in scenario @ € Q

Q(m) actual designed capacity in the biorefinery for

technology m € M
total global warming potential of biorefinery
in scenario ® € Q

Total GWP(w)

Expressions

fj (d, 2,0) inequality constraints after eliminating state varia-
bles by substituting equality constraints

74 function to indicate constraint violation in the
original model

F flexibility index as a function of design variables

F surrogate model for the flexibility index

Abbreviations

ANN artificial neural network

BARON  branch and reduce optimization navigator

CPLEX IBM ILOG CPLEX solver

GWP global warming potential

HMF hydroxymethylfurfural

LCA life cycle assessment

LHS Latin hypercube sampling

MILP mixed integer linear programming

MINLP  mixed integer nonlinear programming

MSH molten salt hydrate

PSA pressure-sensitive adhesive

RBF radial basis function

RCF reductive catalytic fractionation

RD - RCF reactive distillation—reductive catalytic fractiona-
tion

ReLU rectified linear unit

SVM support vector machine

SVR support vector regression

TSSP two-stage stochastic programming
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