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A B S T R A C T

Federated learning (FL) is a distributed machine learning technology for next-generation AI systems that
allows a number of workers, i.e., edge devices, collaboratively learn a shared global model while keeping
their data locally to prevent privacy leakage. Enabling FL over wireless multi-hop networks can democratize
AI and make it accessible in a cost-effective manner. However, the noisy bandwidth-limited multi-hop
wireless connections can lead to delayed and nomadic model updates, which significantly slows down the
FL convergence speed. To address such challenges, this paper aims to accelerate FL convergence over wireless
edge by optimizing the multi-hop federated networking performance. In particular, the FL convergence
optimization problem is formulated as a Markov decision process (MDP). To solve such MDP, multi-agent
reinforcement learning (MA-RL) algorithms along with domain-specific action space refining schemes are
developed, which online learn the delay-minimum forwarding paths to minimize the model exchange latency
between the edge devices (i.e., workers) and the remote server. To validate the proposed solutions, EdgeML
is developed and implemented, which is the first experimental framework in the literature for FL over multi-
hop wireless edge computing networks. EdgeML allows us to fast prototype, deploy, and evaluate novel FL
algorithms along with RL-based system optimization methods in real wireless devices. Moreover, a physical
experimental testbed is implemented by customizing the widely adopted Linux wireless routers and ML
computing nodes. Such testbed can provide valuable insights into the practical performance of FL in the field.
Finally, our experimentation results on the testbed show that the proposed network-accelerated FL system can
practically and significantly improve FL convergence speed, compared to the FL system empowered by the
production-grade commercially-available wireless networking protocol, BATMAN-Adv.
1. Introduction

Distributed machine learning, specifically federated learning (FL),
has been envisioned as a key technology for enabling next-generation
AI at scale. FL significantly reduces privacy risks and communication
costs, which are critical in modern AI systems. FL allows workers
(i.e., edge devices) to collaboratively learn a global model and main-
tains the locality of data to reduce the privacy vulnerability. The
workers only need to send their local model updates to the server,
which aggregates these updates to continuously improve the shared
global model. FL can greatly reduce the required number of com-
munication rounds for model convergence by increasing computation
parallelization, where more edge devices are involved as the workers,
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and by increasing local computation, where the worker performs multi-
ple iterations of model updates before sending the updated model to the
server. Through FL, edge devices can learn much more accurate models
with small local datasets. As a result, FL has demonstrated its success
for a variety of applications, such as on-device item ranking, content
suggestions for on-device keyboards, and next word prediction [1].

Recently, FL systems over edge computing networks have received
increasing attentions. With single-hop wireless connections, edge de-
vices can quickly reach the FL servers co-located with cellular base
stations [2–6]. Different from cellular systems with high deployment
and operational costs, wireless multi-hop networks, consisting of a
mesh of interconnected wireless routers, have been widely exploited to
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Fig. 1. Multi-Hop wireless edge computing networks.

build cost-efficient communication backbones, including wireless com-
munity mesh networks [7,8] (e.g., Detroit digital stewards network [9],
Brooklyn Redhook WiFi [10], NYC mesh [11], and Germany Freifunk
network [12]), high-speed urban networks (e.g., Facebook Terragraph
network [13] and London small cell mesh network [14]), global wireless
Internet infrastructures (e.g., SpaceX Starlink satellite constellation [15]
and Google Loon balloon network [16]), battlefield networks (e.g., ra-
jant kinetic battlefield mesh networks [17]), and public safety/disaster
rescue networks [18]. The edge computing devices interconnected by
the wireless multi-hop network constitute the multi-hop wireless edge
computing network (Fig. 1). Enabling FL over such computing networks
not only can augment AI experiences for urban mobile users, but
also can democratize AI and make it accessible in a low-cost manner
to everyone, including the large population of people in low-income
communities, under-developed regions and disaster areas.

1.1. Challenges in multi-hop federated learning

Despite its great potential advantages to democratize AI, multi-hop
FL, short for FL over multi-hop wireless edge computing networks, is
still an unexploited area. The classic FL systems use single-hop wireless
communications to directly connect to the edge servers or connect
to edge routers that then reach the remote cloud servers via high-
speed Internet core. In multi-hop FL networks, the end-to-end (E2E)
model updates between the server and workers need to go through
multiple noisy and bandwidth-limited wireless links. This results in
much slower and nomadic model updates due to much longer and
more random E2E delay. Such profound communication constraints
fundamentally challenge the efficiency and effectiveness of classic FL
systems as detailed below:

• Degraded scalability of FL over wireless multi-hop networks:
The FL algorithms generally adopt a server–client architecture,
where a central server collects and aggregates the model updates
of all workers. The routing paths towards the central server can be
easily saturated in wireless multi-hop networks due to the limited
network bandwidth. In addition, different from classic distributed
model training in data centers, FL exploits production networks
to carry on model training traffic between workers and the server.
Therefore, FL traffic has to compete with the background pro-
duction network traffic (e.g., Internet traffic) for limited network
bandwidth. As a result, when the number of workers or the
background traffic volume increases, network congestion will
deteriorate progressively, which critically degrades the benefits of
computation parallelization and slows down convergence speed.
2

Fig. 2. Overall architecture.

• Difficulties of model-based optimization for multi-hop FL
system: Presently, there are limited research efforts on optimizing
wireless FL systems. Existing efforts all focus on single-hop FL
over cellular edge computing systems [2,5,6]. With such assump-
tion, the impact of wireless communication control parameters
(e.g., transmission power) on the FL related metrics (e.g., model
update delay and loss reduction) can be formulated in an explicit
closed-form mathematical model, which greatly eases the FL sys-
tem optimization. Such model-based optimization is not feasible
in multi-hop FL, where the FL performance metrics (e.g., FL con-
vergence time) cannot be explicitly formulated as a closed-form
function of the networking control parameters, such as packet
forwarding decision at each router.

1.2. Our contributions

The objective of this work is to develop a novel network-accelerated
FL system over wireless edge by systematically and practically taming
the networking-induced delay as shown in Fig. 2. The overall of this
project is to support Networking for ML by utilizing FL and applying
multi-agent RL to improve network performance in term of delay and
throughput. Therefore, it can accelerate the FL training time.

• To the best of our knowledge, this is the first work in the literature
to reveal, formulate, and experiment on the inherent interplay
between multi-hop wireless networking and federated learning.

• To minimize the FL convergence time, we exploit multi-agent
reinforcement learning (MA-FL) for FL convergence optimization,
which minimizes the networked-induced latency by learning the
forwarding paths with the least delay for FL traffic flows. More-
over, our MA-FL agents are further optimized by action space
refined via domain-specific knowledge for fast online RL training.

• We develop and prototype EdgeML, which is the first experimen-
tal framework in the literature for FL over multi-hop wireless
edge computing networks. EdgeML thus enables fast prototyp-
ing, deployment, and evaluation of novel FL algorithms along
with machine learning-based FL system optimization methods in
real-life wireless devices.
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• We implement the first physical experimental testbed in the lit-
erature for studying and testing FL over multi-hop wireless edge
computing networks. The testbed is built on top of widely adopted
Linux-based wireless routers and Nvidia computing nodes. There-
fore, this testbed can provide valuable and broader insights into
the practical performance of FL in the field.

• We demonstrate via extensive experiments that the proposed
EdgeML outperforms the FL system empowered by the SOTA
production-grade wireless networking protocol and has the great
potential to effectively improve the convergence performance of
FL over wireless edge.

The rest of our paper is organized as follows: Section 2 outlines
nd discuss relevant case studies of FL, Section 3 explains the runtime
onvergence of federated learning. Then, Section 5 details our design
nd implementation of EdgeML framework, Section 7 shows our system
valuation using routing application as a case study. Finally, Section 8
oncludes our work.

. Related work

In order to minimize the FL’s training time and speed up con-
ergence while taking into account the wireless edge’s limited re-
ources, [19] proposed a new algorithm that aims to accelerate the
onvergence rate for obtaining specialized machine learning models
hat achieve high test accuracy for all client groups. The approach
everages the devices’ heterogeneity to schedule the clients based on
heir round-the-clock latency and exploits the bandwidth reuse for
lients that consume more bandwidth to update the model.
An alternative strategy is to improve the communication stragglers’

ommunication overhead using cutting-edge communication technol-
gy rather than excluding them in order to solve the straggler problem
nd prevent potential learning performance loss [20]. Recent work [21]
roposed a two-tier architecture for relay-assisted FL and created a par-
ially synchronized parallel process in which models and local gradients
re relayed simultaneously and aggregated at relay nodes.
In practice, non independent and identically distributed (non-IID)

ata and heterogeneity of each worker pose serious challenges such
s model drift. To prevent the model shift, [22] proposed FedADC,
n accelerated FL algorithm with drift control, which uses momentum
GD optimizer at the server for acceleration, and it allows for tack-
ing the issues with a single approach without substantially changing
he FL framework. While the existing work deals with single-hop FL
ver cellular edge computing systems, our work aims to accelerate FL
onvergence over wireless edge by optimizing the more challenging
ulti-hop federated networking performance. Wireless multi-hop FL
uffers from profound communication constraints including noisy and
nterference-rich wireless links, which results in slow and nomadic FL
odel updates. For this, we formulate the FL convergence optimization
roblem as a Markov decision process (MDP) and suggest to solve
t online with multi-agent reinforcement learning (MA-RL) algorithms
long with domain-specific action space refining schemes. This enables
ffective online adaptive networking for wireless multi-hop FL.

. Runtime convergence of federated learning

.1. Federated learning via regularized local SGD

Federated learning methods are designed to handle distributed
raining of neural networks over multiple devices, where the devices
ave their local training data and aim to find a common model that
ields the minimum training loss. Such a scenario can be modeled as
he following distributed parallel non-convex optimization

min
𝑤

𝐹 (𝑤) =
𝑁
∑

𝜆𝑘𝐹 𝑘(𝑤), 𝐹 𝑘(𝑤) = 𝐸
[

𝑓 (𝑤𝑘; 𝑥𝑘)
]

(1)
3

𝑘=1
where 𝐹 (𝑤) is the global loss, 𝐹 𝑘(𝑤) is the local loss of device 𝑘, 𝑁
is the number of devices, 𝜆𝑘 = 𝑛𝑘

𝑛 and ∑𝑁
𝑘=1 𝜆

𝑘 = 1, where 𝑛𝑘 is the
number of training samples on device 𝑘 and 𝑛 =

∑

𝑘 𝑛
𝑘 is the total

number of training samples in network. The local loss 𝐹 𝑘(𝑤) is a non-
convex function over data distribution 𝑥𝑘 ∼ 𝒟𝑘, which is possibly
ifferent for different device 𝑘. The optimization problem in Eq. (1)
an be generalized by adding a quadratic regularization term in the
bjective function [23,24], i.e.,
𝑘(𝑤) = 𝐸 [𝑓 (𝑤𝑘; 𝑥𝑘)]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
loss

+ 𝜌 ∥ 𝑤𝑘 −𝑤𝐶
𝑡 ||

2

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
regularization

(2)

where 𝑤𝐶
𝑡 is the global model and 𝜌 is the penalty parameter that

determines how much deviations from the global model the local model
is allowed.

To solve the above optimization problem, FL methods follow a
common stochastic optimization technique, called local SGD, which
alternates between local SGD iterating and global model averaging for
multiple (server–worker communication) rounds, where the worker is
the device that participates in the collaborative model training. As
shown in Fig. 3, during each round, the worker tries to reduce its
local loss 𝐹 𝑘(𝑤) by performing 𝐻𝑘 mini-batch SGD iterations with each
iteration updating the model weights, following:

Local SGD Iterating:

𝑤𝑘 ← 𝑤𝑘 − 𝜂 1
𝐵

∑

𝑥𝑘∈ℐ𝑘

(

∇𝑓 (𝑤𝑘; 𝑥𝑘) + 2𝜌(𝑤𝑘 −𝑤𝐶
𝑡 )
)

(3)

whereℐ𝑘 is a subset (mini-batch) of the training samples on worker
𝑘 and 𝐵 = |ℐ𝑘

| is the size of the mini-batch. After finishing 𝐻𝑘 local
GD iterations, the workers send their local models {𝑤𝑘}𝑘≤𝐾 to the
entral server, which averages them and updates the global model
ccordingly

lobal Model Averaging: 𝑤𝑐 =
𝐾
∑

𝑘=1
𝜆𝑘𝑤𝑘 (4)

where 𝐾 is the number of devices selected to be the workers (𝐾 ≤ 𝑁 ,
thus 𝜆𝑘 is computed with 𝐾 devices). The new global model is sent to
the workers and the above procedure is repeated.

It is worthy to note that minimizing regularized loss ensures that the
local workers will not fall into the model update trajectories that are far
away from the current global model. Such practice can effectively pre-
vent the potential divergence caused by statistical heterogeneity [23]
and system heterogeneity [24]. On the one hand, the workers involved
in FL training tend to possess significantly diverse data samples so
that they follow unbalanced and non-IID data distribution, thereby
introducing statistical heterogeneity. On the other hand, the workers
generally possess diverse computation resources (e.g., CPU, GPU and
RAM). To mitigate the blocking effects of stragglers (slow workers)
and reduce computation-induced latency, each worker can perform
different number of local iterations 𝐻𝑘 according to its computation
constraint, which leads to system heterogeneity. When the penalty
parameter equals to zero, i.e., 𝜌 = 0 and all workers adopts the uniform
local updates, i.e., 𝐻𝑘 = 𝐻, ∀𝑘 ≤ 𝑁 , then the local SGD algorithm in
Eqs. (3) and (4) becomes the classic FedAvg algorithm [1].

3.2. Convergence of local SGD

3.2.1. Iteration convergence
Before local SGD is applied in FL settings, it already showed very

promising performances for distributed optimization in data center en-
vironments. The key advantage of local SGD is its low communication
overhead along with high convergence speed. Recent research shows
that for non-convex optimization with both IID and non-IID data, local
SGD can achieve fast 𝒪(1∕

√

𝐾𝑇 ) convergence [25,26], i.e., achieving
linear speedup w.r.t. the number of workers 𝐾, where 𝑇 is the total
number of iterations performed by each worker. This is the optimal
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Fig. 3. Federated learning via local SGD.
Fig. 4. We use Nvidia Xavier nodes to implement two workers and one server to train MNIST dataset for digit recognition task. To test the impact of wireless networking, we
use the exactly same parameters (e.g., initial model weights, number of rounds, number of local iterations, batch size, and learning rate) for FL over single-hop and multi-hop
wireless networks, respectively. (a. Network topology) for single-hop networks, we use IEEE 802.11ac for wireless connections. For multi-hop mesh networks, we use IEEE 802.11s
for multi-hop routing, which still uses IEEE 802.11ac for MAC/PHY functions. The testbeds are deployed in the first floor of the UNCC CS department with interferences from
co-existing campus WiFi networks (b. Runtime Convergence) The wireless multi-hop FL converges much slower with respect to the true training runtime (wallclock time) (c.
Iteration Convergence) The single-hop and multi-hop FL systems have the same iteration convergence performance.
convergence performance achieved by the celebrated parallel mini-
batch SGD methods [27,28], where each worker sends its model or
gradient to the server after each local SGD iteration is done. Therefore,
parallel mini-batch SGD achieves the optimal 𝒪(1∕

√

𝐾𝑇 ) convergence
at the cost of 𝑇 communication rounds. However, to achieve the same
convergence performance, local SGD only needs 𝒪(𝑇 3∕4𝐾3∕4) commu-
nication rounds [25,26]. In other words, local SGD can preserve the
fast convergence with significant less communication cost by putting
more computation loads on the workers, i.e., by letting workers perform
𝒪(𝑇 1∕4∕𝐾3∕4) local SGD iterations instead of one.

3.2.2. Runtime convergence of local SGD
Local SGD method (e.g., de-factor FL algorithm FedAvg) is gener-

ally implemented in a synchronous manner, where the SGD update
sequences on the workers are synchronized (by model averaging). In
other words, the server needs to wait for the model updates from all
workers and then it can perform model aggregation, after which the
workers can resume their local SGD updates for the next round. As a
result, if the actual training runtime (wallclock time) 𝑡 is used instead
of iteration index 𝑇 , the convergence of local SGD could be as poor as
𝒪(

√

𝜏𝑚𝑎𝑥∕
√

𝐾𝑡)(where each worker only performs one local iteration).
𝜏𝑚𝑎𝑥 is the delay of the slowest worker (straggler) to deliver its local
model to the server, which could be very small in high-speed data cen-
ter networks and wireless single-hop networks (e.g., WiFi or cellular).
In wireless multi-hop networks, 𝜏𝑚𝑎𝑥 becomes a more dominant factor
affecting the true runtime convergence due to the large, random and
heterogeneous E2E communication delays experienced by the workers.
As a result, the theoretically fast convergence of local SGD can be prac-
tically slowed down in wireless multi-hop networks. Such projection is
4

also verified through a simple experiment (Fig. 4). Moreover, the linear
convergence speedup by increasing the number of workers 𝐾 could also
be accompanied by the increased delay 𝜏𝑚𝑎𝑥 due to escalated network
congestion, which leads to convergence slowdown.

4. Optimizing FL convergence via reinforcement learning

4.1. Problem formulation

Our overall objective is to minimize the run-time convergence time
to achieve the desired FL accuracy. Towards this goal, the optimal
strategy is to minimize the worker–server delay of the slowest worker,
which experiences the maximum delay among all workers. However,
in highly dynamic wireless environments, the role of the slowest one
can be randomly switched among different workers as time proceeds. In
this paper, we sought a sub-optimal solution, where we minimize the
average end-to-end (E2E) delay between all workers and the server.
However, even for such sub-optimal solution, we cannot apply the
classic model-based optimization because the server–worker E2E delay
cannot be explicitly formulated as a closed-form function of the rout-
ing/forwarding decisions [29]. As a result, a model-free optimization
strategy based on multi-agent reinforcement learning is much more
desirable, where each wireless router exploits its instantaneous local
experiences to collaboratively learn the delay-minimum routing paths
between the workers and the server.

In particular, this problem can be formulated as the multi-agent
Markov decision processes (MA-MDP), which can be solved by multi-
agent reinforcement learning algorithms. Given the local observation
𝑜 , which is the source IP and destination IP of the incoming FL
𝑖



Computer Networks 219 (2022) 109396P. Pinyoanuntapong et al.

s
w

packet, each router or agent 𝑖 selects an action 𝑎, i.e., the next-hop
router, to forward this packet, according to a local forwarding policy
𝜋𝑖. After this packet is forwarded, the router 𝑖 receives a reward 𝑟𝑖,
which is the negative one-hop delay between router 𝑖 and the selected
next-hop router. The packet delivery delay 𝑑𝑖,𝑖+1 is the time interval
between the time when packet arrives at router 𝑖 and the time when
the packet arrives at the next-hop router 𝑖 + 1. The packet delivery
delay 𝑑𝑖,𝑖+1, which includes the queuing delay, processing delay and
transmission delay, is a random value measured in real-time by in-
network telemetry module introduced in the next section. The return
𝐺𝑖 =

∑𝑇
𝑘=𝑖 𝑟𝑘 is the total reward from intermediate state 𝑠𝑖 to final

state 𝑠𝑇 , where 𝑠𝑖 and 𝑠𝑇 are the states when a FL packet arrives at
the relay router 𝑖 and destination router 𝑇 , respectively. Let 𝑠1 be the
initial state when a FL packet enters the network from its source router.
The source/destination router is the router that a worker or the server
is attached to. The objective is to find the optimal policy 𝜋𝑖 for router 𝑖
o that the expected return 𝐽 (𝝅) from the initial state (i.e., E2E server–
orker delay) is optimal, where 𝐽 (𝝅) = 𝐸[𝐺1|𝝅] = 𝐸[

∑𝑇
𝑖=1 𝑟𝑖|𝝅] where

𝝅 = 𝜋1,… , 𝜋𝑁 .

4.2. Convergence optimization via multi-agent reinforcement learning

To solve the above MA-MDP problem, we exploit the multi-agent
reinforcement learning, where the routers (agents) distributively learn
the optimal target forwarding policy 𝝅 to minimize the average server–
worker delay. To implement the multi-agent reinforcement learning
algorithm, we adopt a distributed actor–critic architecture similar to
asynchronous advantage actor–critic (A3C) [30,31], where each router
individually runs a local critic and a local actor,

Local critic for policy evaluation
The performance of the policy 𝜋 is measured by the action-value

𝑞𝜋𝑖 (𝑠, 𝑎), which is an E2E TE metric. The action-value 𝑞𝜋𝑖 (𝑠, 𝑎) of router
𝑖 can be written as the sum of 1-hop reward of router 𝑖 and the
action-value of the next-hop router 𝑖 + 1, i.e.,

𝑞𝜋𝑖𝑖 (𝑠, 𝑎) = 𝐸
[

𝑟𝑖 + 𝑞𝜋𝑖+1𝑖+1 (𝑠′, 𝑎′)
]

. (5)

By applying exponential weighted average, the estimate of 𝑞𝜋𝑖𝑖 (𝑠, 𝑎),
denoted by 𝑄𝜋𝑖

𝑖 (𝑠, 𝑎), can be updated based on 1-hop experience tuples
(𝑠, 𝑎, 𝑟𝑖, 𝑠′, 𝑎′) and the estimate of 𝑞

𝜋𝑖+1
𝑖+1 (𝑠′, 𝑎′) of next-hop router, denoted

by 𝑄𝜋𝑖+1
𝑖+1 (𝑠′, 𝑎′), i.e.,

𝑄𝜋𝑖
𝑖 (𝑠, 𝑎) ← 𝑄𝜋𝑖

𝑖 (𝑠, 𝑎) + 𝛼[𝑟𝑖 +𝑄𝜋𝑖+1
𝑖+1 (𝑠′, 𝑎′) −𝑄𝜋𝑖

𝑖 (𝑠, 𝑎)] (6)

where 𝛼 ∈ (0, 1] is the learning rate.

Local actor for policy improvement
Based on critic’s inputs, the local actor improves the local policy,

which aims to maximize the cumulative sum of reward 𝐽 (𝝅). This
can be done by applying greedy policy, where each router 𝑖 greedily
improve its current policy 𝜋𝑖, i.e., select the action with the maximum
estimated action-value,

𝜋𝑖(𝑠) ← argmax
𝑎

𝑄𝜋𝑖
𝑖 (𝑠, 𝑎).

Besides greedy policy, we also exploit two near-greedy policies to en-
courage exploration. The first one is 𝜀−greedy policy with exponential
decay. With such policy, the router selects the greedy action defined in
Eq. (6) with probability 1−𝜀(𝑡) and select other actions with probability
𝜀(𝑡). The 𝜀 decays exponentially as time proceeds, i.e., 𝜀(𝑡) = 𝜀0𝛽𝑡, where
0 < 𝜀0 < 1 and 0 < 𝛽 < 1. The second near-greedy policy is softmax-
greedy policy, where each action 𝑎 is selected with a probability 𝑃 (𝑎)
according to the exponential Boltzmann distribution,

𝑃 (𝑎) =
exp(𝑄𝜋𝑖

𝑖 (𝑠, 𝑎)∕𝜏)
∑ 𝜋𝑖

. (7)
5

𝑏∈𝒜𝑖
exp(𝑄𝑖 (𝑠, 𝑏)∕𝜏)
where 𝜏 is the temperature. The actions performed by the router are
generated according to the behavior policy, which is either same as the
target policy 𝜋𝑖 or similar to the target policy but more exploratory (on-
policy learning). For off-policy learning, the target policy is generally
the greedy policy and the behavior policy is generally near-greedy to
enable explorations.

4.3. Loop-free action space refining

The MA-RL routing is one kind of the distributed routing algorithms.
However, the key idea of RL is to improve the policy by learning
from experiences including failures. Therefore, an agent can freely
explore and learn all possible routing paths including the ones with
loops, where the data packets continue to be routed within the network
in an circle. Our experiments show that the routing loops can have
a catastrophic impact on a RL-based networking, such as the slowly
converged routing policy and TCP disconnections between the server
and workers. To address this problem, we propose a action space
refining algorithm, which aims to construct the loop-free action spaces
for each router in such a way that the routers can independently and
distributively explore any forwarding action (i.e., the next-hop router)
from such refined action space, while avoiding generating routing paths
with loops. The refined action space is defined with respect to each
pair of ingress and egress routers. The ingress router is the router from
which the FL traffic flow enters the network and the egress router is
the router from which the FL traffic leaves the network. Therefore, the
maximum number of action spaces constructed on each router is equal
to 2𝑁 , where N is the total number of routers in the network. The action
space refining algorithm works as shown in Fig. 5. First, build the global
network topology. Then, find all the loop-free paths between the ingress
router and egress router by applying iterative depth-search-first (DSF)
traversal or K-shortest path finding algorithms (with sufficiently large
K). Next, for each router, there may exist multiple paths traversing it
and its action space is a set of the next-hop nodes of all the traversing
paths. It is easy to prove that employing such refined and loop-free
action spaces, our MA-RL forwarding scheme will surely learn the
routing paths without loops.

It is worth to note that the action space refining algorithm is
only performed by a network controller which has the global network
topology. The implementation details are shown in the next section.

5. EdgeML design and prototyping

5.1. EdgeML overall design

Existing FL experimental frameworks (e.g., TensorFlow Federated
(TFF) [32], PySyft [33], LEAF [34], and FedML [35]) only support ex-
periments of federated learning without taking into account the impacts
of wireless federated networking. What is more important, they did not
support the reconfiguration of the network stack and did not allow us to
incorporate new networking schemes. Therefore, they are not suitable
to study the interplay between federated networking and federated
computing. In addition, the frameworks mentioned above were highly
dependent on WebSockets for their communication, which leads to
a reactive disconnection between the worker and server when their
links experience a short-lived delay. Moreover, except FedML, these
frameworks cannot be readily deployed on the physical edge devices
without cumbersome modifications. To address the above challenges,
we develop and prototype EdgeML, which is the first experimental
framework for wireless multi-hop FL. The full pipeline of prototyping,
deployment, and evaluation is expected to be easily performed with
real wireless devices given the EdgeML framework.

EdgeML has two unique features. The first feature is its modularity
for both communication and computation functions. This facilitates
the simultaneous evolutions of federating computing and federated
networking solutions and allows us to evaluate the complex FL system
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Fig. 5. Loop-free action space (AS) refining. There exist two loop-free paths between the ingress router and egress router. For each router, we refine the action space (AS) for
each router in the network that two routing paths traverse through. The RL algorithm will explore the actions in the refined action space to learn loop-free routing paths.
Fig. 6. Architecture of EdgeML framework.
under diverse network and computation conditions. Second, EdgeML
is a highly programmable experimentation platform that can be easily
deployed on real wireless systems. With these two features, we can
design and deploy new FL algorithms along with customized datasets,
preprocessing schemes, and training pipelines. Simultaneously, we can
innovate on various networking mechanisms and test their impact
on the performance of federated learning systems. EdgeML will be
open-sourced after we make it well documented.

As shown in Fig. 6, EdgeML consists of two key components: feder-
ated computing, which customizes and configures FL-related functions
(e.g., FL training algorithm setup including node role selection, model
selection, and dataset preparation) and federated networking, which
is a distributed AI-oriented wireless network operating system. Feder-
ated networking is responsible for providing fast wireless networking
connections between the aggregator and workers. What is more im-
portant, federated networking system is designed in nature to facilitate
AI-empowered networking optimization, including customizable actor–
critic RL agent for instantiating a variety of AI-enabled routing algo-
rithms, in-band telemetry that enables cost-efficient data collections
for online RL training, and programmable routing table (datapath) for
real-time RL policy executions.

Each EdgeML component follows a layered design. In particular, FL
engine consists of three layers. (1) FL Datasets layer stores the datasets
for federated training (2) FL compute layer provides vital functions to
train the model and save the models and (3) FL communicate layer
6

establishes logical and reliable connections between workers and aggre-
gator by using the proposed EdgeML communication protocol (EdgeML
COMM). Federated Networking design is composed of 3 layers. (1)
Dataplane incorporates SDN software switch with our proposed in-band
telemetry scheme to enable programmable packet forwarding, while
simultaneously providing low-cost real-time collection and reporting
of network state measurements. (2) Network Core provides essential
networking services and functions. such as topology discovery, network
state database, and traffic flow management. (3) RL application layer
hosts the actor–critic RL agent to enable delay-optimal routing between
the aggregator and the workers.

5.2. Federated computing

5.2.1. FL datasets
Federated learning is based on the well-established machine learn-

ing technique with a key significant difference in how the data is used
to train the models. One of the FL technique’s primary objectives is
to protect the user’s privacy by avoiding sharing data from the origin
device. Firstly, without reinventing the wheels, we leverage the existing
datasets hosted by Tensorflow TFDS [36] and LEAF [34], both of which
are well known in the FL community. We also provide extended APIs
to incorporate custom datasets specific to the experimenter to integrate
within our FL framework.
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Dataset-setup
In our FL training pipeline, the first step is to distribute the datasets

to different workers in the training process. To do so, the experimenter
has to specify three primary parameters, which are (1) Number of
workers involved and (2) the Data distribution type - I.I.D or non-I.I.D
and (3) Dataset name and the repository of the dataset (TFDS, LEAF,
or CUSTOM). Next, our EdgeML Datasets module will split the dataset
respectively such that data is readily available for training. Data for
the worker is selected at the beginning of the FL training procedure. In
this data staging process, the user can further preprocess the data using
EdgeML’s builtin functions to encode, normalize, and standardize the
data. Such synthesized data is then gathered into batches by the batch
size specified during the initial training epoch. Furthermore, batches
are converted to a Tensorflow-accelerated data pipeline to avoid the
IO bottleneck, thereby accelerating the runtime of each epoch.

Pipeline
In the FL training process, the experimenter can choose the data for

training in an arbitrary fashion for each global round. For each global
round, the aggregator may specify the class and number of samples
used for the current epoch. With such flexibility in the training process,
we provide a highly customizable pipeline for consuming data during
the training process with two sub-modules including data filtering and
sampling. At each round of global training step, the aggregator can pass
parameters such as the data class to filter and sampling technique for
the training process. In this case, the sampling procedure will determine
whether the entire filtered data should be used or have to be sub-
sampled to limit the number of samples consumed for the training step.
To simplify the above-mentioned process, we consider all datasets will
contain a META which provides the key statistics about the dataset,
such as the number of classes and the number of samples for each class
and in total.

5.2.2. FL compute
Our motivation for designing EdgeML compute module is to provide

an extensible processing stack such that it is easy to customize the
training pipeline without being limited to the communication protocol.
Compute module is comprised of 3 stages of processing: (1) Training
Coordinator, (2) Model Repo, and (3) Training engine. In the following
section, we will briefly describe the functionality of each stage.

Training coordinator
Federated learning involves nodes with two types of roles, server/

aggregator and worker. The key functionality of training coordinator
is to set up the Federated computing framework based on the role
such that the worker nodes execute model training and server nodes
perform only model aggregation and model evaluation. In addition,
it also handles the complete training cycle by setting up the training
engine and storing and retrieving models from the Model Repo.

Model Repo
Federated training procedure mandates frequently exchanging

model under training between worker and the aggregator. Some FL
algorithms require the model of current round to be updated using the
models from the previous training rounds. To facilitate such procedure,
we implemented a Model Repo that stores the global and local models
for a specified time duration. Each model is time-stamped before
writing to the Repo so that it is easy to distinguish the current model
and historical models.
7

Algorithm 1 Local SGD - Aggregator
Input: maxround rm, worker epoch Hk, k ≤ N , batch size B
utput: Global Model 𝑊 c

AGGREGATOR PROCESS
1: Initialize Worker Registry: 𝑅
2: Initialize Current Model Queue: 𝑄𝑓𝑟𝑒𝑠ℎ
3: Initialize Worker State Queue: 𝑄𝑠
4: WORKER NODE REGISTRATION
5: for round 𝑟 ≤ 𝑟m do
6: if r = 1 then
7: Initialize : wc
8: for k in 𝑅 in parallel do
9: 𝑢𝑝𝑑𝑎𝑡𝑒𝑊 𝑜𝑟𝑘𝑒𝑟 ← 𝑤c

10: 𝑄s ← 𝐺𝐿𝑂𝐵𝐴𝐿_𝑀𝑂𝐷𝐸𝐿_𝑅𝐸𝐶𝑉 (𝑘)
11: end for
12: else
13: Wait local models from workers
14: for k in 𝑅 in parallel do
15: Ask workers to start training :
16: Q𝑓𝑟𝑒𝑠ℎ ← w𝑘 ← train(k,Ht,B)
17: local model received from worker :
18: 𝑄s ← 𝐿𝑂𝐶𝐴𝐿_𝑀𝑂𝐷𝐸𝐿_𝑅𝐸𝐶𝑉 (𝑘)
19: end for
20: Perform Model Aggregation
21: 𝑤𝑐

𝑡 ←
∑𝑅

𝑘=1 𝜆
𝑘𝑤𝑘

22: Send updated global model to workers :
23: for k in 𝑅 in parallel do
24: 𝑢𝑝𝑑𝑎𝑡𝑒𝑊 𝑜𝑟𝑘𝑒𝑟 ← 𝑤𝑐

25: 𝑄s ← 𝐺𝐿𝑂𝐵𝐴𝐿_𝑀𝑂𝐷𝐸𝐿_𝑅𝐸𝐶𝑉 (𝑘)
26: end for
27: end if
28: end for
29: return W c

Algorithm 2 Local SGD - Worker
Input: workerid k, worker epoch Hk, batch size B
Output: Local Model 𝑤k

Initialize Status Queue: 𝑄𝑤
Initialize Dataset Store: 𝐷𝑆
REGISTER(workerid)
FUNCTION train(k,Hk,B)

3: 𝑄𝑤 ← 𝑇𝑅𝐴𝐼𝑁𝐼𝑁𝐺_𝑆𝑇𝐴𝑅𝑇𝐸𝐷
while i < Hk do
for bs in Ds do

6: 𝑤𝑘 ← 𝑤𝑘 − 𝜂 1
𝐵
∑

𝑥𝑘∈ℐ𝑘
(

∇𝑓 (𝑤𝑘; 𝑥𝑘) + 2𝜌(𝑤𝑘 −𝑤𝐶
𝑡 )
)

end for
end while

9: 𝑄𝑤 ← 𝑇𝑅𝐴𝐼𝑁𝐼𝑁𝐺_𝐹𝐼𝑁𝐼𝑆𝐻𝐸𝐷
return 𝑤𝑘 to AGGREGATOR

Training Engine
The operations of the Training Engine will vary based on the role

of the node. To further simplify the context of EdgeML Compute, we
describe the functions of EdgeML Compute based on the node’s role
in the training process, and the sequence of communication among
the nodes are shown as the sequential flow in Fig. 7. The detailed
operations of FL training are shown in Algorithms 1 and 2.

EdgeML aggregator node is the central node that controls the life
cycle of FL training. The aggregator has a crucial role in initiating, co-
ordinating, and monitoring the FL training cycle. Before beginning the
FL training cycle, each worker should register their IDs, a combination
of IP and port numbers to the aggregator’s worker registry built into
the EdgeML Communicate End-point router module. This registry is
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Fig. 7. EdgeML communication protocol.
constructed using a hash map that stores worker ID as the key and their
communication HTTP/GRPC end-point as the value. Only registered
workers can participate in the training cycle. The aggregator performs
a two-stage process to launch the FL training sequence: (1) Construct
the model and upload it to the workers (2) Launch the training with
the user-supplied training configuration. In the following section, we
briefly discuss the two-stage process:

• Stage-1: Our EdgeML compute module provides in-built models
for image classification tasks using convolutional neural network
(CNN). Besides, users can easily modify the in-built models and
integrate their customized loss functions. Each model will then
be trained with the user’s choice of optimization algorithms.
Currently, EdgeML compute module provides in-built support
for the regularized local SGD algorithm by default, which can
be considered as the generalized FedAvg. This newly created
model is then shared with the workers for training. To send
the model, the aggregator revisits the worker registry to obtain
each worker’s HTTP/GRPC end-points. If the worker successfully
received the model, then the corresponding worker state will be
updated based on the message from the worker with the context
𝐺𝐿𝑂𝐵𝐴𝐿_𝑀𝑂𝐷𝐸𝐿_𝑅𝐸𝐶𝑉 .

• Stage-2: To begin the FL training cycle, user needs to supply the
following parameters at the minimum: global rounds, local rounds
per node, dataset repo and dataset, model to train, and data par-
tition type. The global round controls the total number of rounds
workers will use to train the shared model, and local rounds
define the number of epochs each worker will use to update the
local model. Since our EdgeML framework hosts datasets from
a variety of repo’s, users should specifically mention the dataset
and the repo used for the experiment. With the user-supplied pa-
rameters, a training cycle is constructed where a cycle is defined
as (1) launching a global round (2) wait to receive models from
all workers and updates the state of the corresponding worker
to 𝐿𝑂𝐶𝐴𝐿_𝑀𝑂𝐷𝐸𝐿_𝑅𝐸𝐶𝑉 . (3) perform model aggregation, and
(4) finally share the aggregated model with the workers. This
cycle will terminate once the required number of global rounds
are reached or when the target accuracy is achieved.

EdgeML worker node operates on the request of the aggregator
ode. EdgeML aggregator interacts with the worker node to initiate
8

the training sequence by sharing the global model and initial training
parameters. The model received from the aggregator node will be
stored as a global model into the model repo. Worker node loads the
global model and creates its copy of the local model by cloning. This
local model is then used to train over multiple epochs with the supplied
optimization algorithm to minimize the local loss function. Finally, the
updated model is shared with the aggregator.

5.2.3. FL communication
The reliability of the FL system is heavily dependent on the robust

communication stack for collaborative learning. As more research ef-
forts are focused on improving the overall FL system performance by
improvising computation, little to no effort has been targeted towards
optimizing the communication layer. We believe the lack of a flexible
platform is one of the inherent challenges to pursue research in this
venue. Extendability and ease of programmability as the objective, we
adopted modular design which consists (1) Send and Recv (2) End-point
router and (3) FL-Transport Layer as the submodules. In the following
section, we will briefly discuss the functionality of the modules as
mentioned earlier:

Send and Recv
FL communication module interacts with other modules within the

federated computing framework using send and recv submodules. The
key objective of these submodules is to serve as a interface between
communication and compute layer. While the operation of this submod-
ule is much simpler for the worker’s role, it is quite complex for the
aggregator’s role as it requires non-blocking communication sessions
for scalability. To realize non-blocking and parallel communication
sessions, we developed this submodule using asynchronous python
library ASYNCIO [37] and FastAPI [38].

End-point router
EdgeML platform exposes functions for EdgeML Compute and

dataset layers through an End-Point router (EPR). This routing layer
routes messages from external nodes to the respective processing func-
tion to handle data pipeline, model training, and model exchange. Since
each EdgeML node provides some service in addition to consuming a
service, EPR is designed to function in a dual role such as a server
and client. In the client role, the EdgeML node can send registration
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requests, upload local models, and reply to the aggregator’s status
query. On the other hand, it accepts requests from the aggregator to
preprocess the dataset, launch training, and receive a global model in
the server role. To adopt a synergy in EdgeML nodes, we proposed a
communication protocol. The general idea of the EdgeML communica-
tion protocol (EdgeML COMM) is to define the messages that should be
exchanged between the aggregator and worker nodes. Besides, the pro-
tocol also defines the status flags that should be set by each node based
on the role type and its current status. The communication flow of
our EdgeML COMM is shown in Fig. 7. Following the EdgeML COMM,
the aggregator node first initializes the port for accepting connections
from the worker. Besides, the connection state tracker is initialized
to keep track of the nodes communicating with the aggregator. After
this phase, worker nodes register their IP address and device ID to
the worker registry within the connection state tracker module. Once
the aggregator has received the training resources, it will initialize
the global model and share it with all the workers within the worker
registry. If the workers successfully receive the model, a notification
will be sent to the aggregator. If the aggregator determines that it has
the required number of workers for the training phase, the training
request is dispatched to all workers with the batch size and number of
rounds. On receiving training requests, the worker initiates a training
round and updates the local model to the aggregator at the end of the
training.

FL-transport layer
EdgeML nodes on Wireless multi-hop networks are prone to experi-

encing dynamic network conditions that might cause unreliable trans-
port layer operation. With modularity at the core of the EdgeML frame-
work design, we let programmers freely define the underlying transport
layer mechanism for the EdgeML COM API. While the EPR submodule
exposes EdgeML Compute and dataset layers’ functions, these APIs
are accessible based on the transport layer of FL (FL-Transport). With
service-based architecture as the design principle behind FL-transport’s
transport layer, we have adopted two communication mechanisms
(1) HTTP- REST API and (2) GRPC.

HTTP-REST API: The widely used service-based infrastructure pro-
ocol, HTTP- REST API operates on the principle of standard re-
uest/response format. Our HTTP- TCP REST API is constructed on
op of the TCP protocol stack. Therefore, we extend REST APIs pro-
rammability to configure the number of TCP streams, session control,
nd keep alive. To simplify the payload transport, we utilized JSON
essage format to transport the FL model. In addition to the FL model,
he user can easily extend the API to add additional attributes such
s the timestamp of the model and the total time take to complete
raining by defining new key/value pair before JSON encoding. To
implify the implementation efforts, we adopted a range of frameworks
uch as FastAPI [38], Asyncio [37] and HTTPx [39] for building
he communication protocol. FastAPI framework facilitates application
evelopers to implement REST API for functions that can be invoked
y remote nodes using HTTP as the transport protocol. Asyncio and
TTPx enable the developers to implement asynchronous HTTP clients
o that the aggregator can communicate with all workers within the
luster concurrently. While server function within the aggregator and
orker is built around FastAPI and HTTPx, client functions are built on
op of AiOHTTP and Asyncio.
GRPC: Google Remote Procedure Call [40] is a high performance

framework for calling remote methods by passing parameters alike
local functions. The core idea of the GRPC framework is to define
a service that will implement the interfaces which can be called by
the remote entities to execute an operation. In EdgeML framework,
we leveraged GRPC as the communication channel between the server
and all workers. Besides, the dual message format is supported over
the channel such using either JSON or Protocol buffers. While JSON
encodes messages as texts, protocol buffers use a compiler to transcode
structured data into serialized byte streams. In addition, there exists
native support for asynchronous execution, HTTP2, and data compres-
sion, which significantly reduce the overall traffic volume in wireless
9

multi-hop FL.
5.3. Federated networking

In the previous section, we detailed our design and implementation
of federated computing. The key objective of our work is to improve
the convergence time of federated learning systems by optimizing
communication delay over multi-hop wireless networks. To tame the
network latency and to implement reinforcement learning routing mod-
ule, first we need a platform that enables visibility of per-packet
networking statistics (such as delay) for RL training. In addition, we
need to realize distributed and programmable network control so that
the MA-RL policies can be learned, deployed, and executed in a real-
time fashion. To satisfy the above two requirements, we developed a
federated networking subsystem by enhancing and customizing WiNOS,
a distributed wireless network operating system proposed in our pre-
vious work [41]. The federated networking subsystem is composed
of three layers (1) Dataplane, (2) Network Core services, and (3) RL
Applications. Compared with WiNOS, the new enhancements include
the redesigned dataplane and upgraded core services to support multi-
radio networking, customized in-band telemetry processing to support
federated networking, and the new RL application with domain-specific
action space refining. The details of some important components of
federated networking system are introduced as below.

5.3.1. Telemetry-enabled dataplane
The crucial function of dataplane is to forward packets in-line

with the native Linux wireless MAC80211 network stack and to pro-
vide programming primitives to control packet forwarding. To enable
programmable packet forwarding on wireless multi-hop networks, we
leveraged OpenFlow-based Datapath to send and receive data packets.
Our datapath is developed using OpenFlow Software switch, namely
Ofsoftswitch13 [42]. Dataplane functionality is pivotal for realizing
AI-enabled forwarding schemes. Nowadays, dataplanes are not only
designed to handle packet forwarding, but they also gather vast amount
of data for network monitoring using SNMP, sFLOW, Collectd, and
many more. However, existing solutions do not support actionable data
sampling or measurement schemes that can be rapidly exploited for
routing schemes with delay minimization as the objective. In addition,
they require additional channel resources and fail to capture real-time
delay of packets.

With an AI-enabled platform as the core of our system design, we
proposed and developed a real-time in-band network telemetry module.
The primary objective of our telemetry solution is to collect real-
time experience of packets, such as per-hop delay over each traversing
link or end-to-end link, in a cost-efficient manner. Towards this end,
we have developed and implemented a distributed in-band telemetry
system [41], where each router runs its own telemetry module built
on the top of OpenFlow processing pipeline. Our in-band telemetry
system consists of a new telemetry packet header, two new packet
matching actions (i.e., PUSHINTL and POPINTL) and the telemetry
processor. To assist AI-enabled federated networking, we reconfigure
the telemetry processor so that whenever a FL packet passes through
the router, the router will recognize such packet and insert a timestamp
(i.e., the time instance when FL packet arrives at the router) into the
telemetry packet header. Then, by using the PUSHINTL action, the
router performs packet encapsulation by adding the telemetry packet
header into the FL packet. After receiving such FL packet, the next-
hop router decapsulates the FL packet via POPINTL action and retrieves
the timestamp. The difference between the timestamps of the sending
router and receiving router is the one-hop packet delivery delay. The
key advantage of our in-band telemetry is that the routers are able to
use data packets to carry measurement data with minimum cost, where
the measurement data or experience are the keys for training RL agents.
In this work, the in-band telemetry system is tested and optimized so
that the extra delay induced by the telemetry processing operations is

negligible.
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Fig. 8. MultiFlow table.
Last, wireless networks have another dimension of control on PHY,
such as the channel and power, that may significantly affect its overall
performance. We have extended programmability to control PHY using
NetLink interface from the controller. Each RF hardware on the router
is attached as a virtual port on the datapath and link layer discovery
such as neighbor peering is handled by MAC80211 stack.

5.3.2. Network core services
OpenFlow-enabled controller provides core services for interacting

with the datapath and to develop network applications for orchestrat-
ing the packet handling behavior. Our core services include OpenFlow
Manager based on RYU controller, telemetry manager, network state,
and telemetry database based on MangoDB [43], and radio interface
manager based on NetLink library. OpenFlow manager is responsible
for providing the required APIs or handlers to monitor and control the
datapath in realtime by adding/removing entries into OpenFlow table

Standard packet forwarding behavior such as receiving and for-
warding packets over ports can be realized using a single flow table.
However, the complexity of the flow table increases exponentially when
handling telemetry packets due to the nature of sequential process-
ing of flow table instructions. Hence, we leveraged multi-flow table
based flow instructions for handling packet forwarding as shown in
Fig. 8. First, table-0 instructions will identify the presence of telemetry
by matching the ether_type and then relevant action is performed.
Second, table-1 will handles ARP requests/reply and finally table-2
flow instructions perform the actions for forwarding the packets to the
output port. Telemetry manager instructs and gathers the packet flow
monitoring metrics from the telemetry enabled datapath. Our network
state database provides RPC based interfaces for data access within the
kernel layer and also provides access interfaces via Northbound API’s
for network applications, such as reinforcement learning based routing
algorithms.

Line-speed Action-state Value Estimation: The key challenge to imple-
ment reinforcement routing algorithms is how to estimate the action-
state values (i.e., Q values) without inducing so much control overhead.
In particular, estimating Q values relies on the measurement of per-
hop per-packet delay as shown in Eq. (6). Directly requesting the delay
information from the neighboring router could introduce significant
overhead to the bandwidth-limited wireless channel. Therefore, it is
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necessary to redesign the way of exchanging information among neigh-
bors. We design the line-speed Q value estimation for each router 𝑖,
which aims to realize Q estimation at the line speed, i.e., the speed at
which packets come in the router. The local 𝑄𝑖 estimation of router 𝑖
is directly coming from its next-hop neighbor. The motivation of such
design is based on the fact that the action-state value 𝑄𝑖 of router 𝑖 is
estimated based on the per-packet reward (per-packet delay) 𝑟𝑖 and the
action-state value 𝑄𝑖+1 of the next-hop router 𝑖+ 1. Both 𝑄𝑖+1 and per-
packet reward 𝑟𝑖 is immediately available at next-hop router 𝑖+1 where
𝑟𝑖 is obtained via the in-band telemetry introduced above. Therefore, it
is more cost-effective to let next-hop router 𝑖 + 1 estimate the action-
state value 𝑄𝑖 of the current router 𝑖 via exponential moving average.
The estimated action-state value 𝐸(𝑟𝑖 + 𝑄𝑖+1) is sent back by the next-
hop router 𝑖+1 to current router 𝑖 periodically (e.g., every five seconds).
Such a scheme allows the action-state value to be updated at the line
speed, while orderly reducing the control overhead.

5.3.3. RL application
RL routing solution is developed as a network application that can

access and pass messages using core services REST API. The first step
to implement an Actor–Critic RL algorithm (Section 4) is to build the
Q-table based on the local topology information retrieved from the
network state database as shown in Fig. 9. Following this, we can
initiate the Q-table using the estimated Q-values 𝐸(𝑟𝑖 +𝑄𝑖+1) stored in
the database. Actor disseminates the routing control decisions following
the critics and policy 𝜋 to the OpenFlow manager. OpenFlow manager
translates the RL decisions into actionable OpenFlow datapath instruc-
tions for orchestrating the packet forwarding behavior. To accelerate
the RL policy convergence, the loop-free action space is calculated by
the action space refining application (Section 4.3). This application is
running on the network controller, which has the global network topol-
ogy readily available via the topology discovery module. Our topology
discovery module can operate in either a centralized or distributed
manner. The centralized approach directly uses the link layer discovery
protocol (LLDP) that is initialized and coordinated by the network
controller. For the distributed approach, each router discovers its one-
hop neighbors via IEEE 802.11 local topology discovery scheme and
the local typologies from all the routers are then aggregated by the
network controller to form the global topology. It is worthy to note
that both the network controller and wireless routers employ the same
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Fig. 9. RL Application with tabular Q estimation.
federated network subsystem shown in Fig. 6, except that the network
controller runs an additional action space refining application. This
implementation enables online reinforcement learning which updates Q
table in real-time. Therefore, it does not require to train in a simulated
environment before deployment to real physical wireless routers.

Besides the Q table, we can also adopt different function
approximations such as neural networks for non-linear Q value
approximations especially when more network states are utilized,
such as traffic matrix and queue lengths. However, this can raise
additional concerns related to computation requirements for deploy-
ment. Adoption and investigation of different nonlinear function
approximation is out-of-scope of this paper, leaving them as a future
work.

6. System implementation

6.1. Overall implementation

We prototype our EdgeML system with a mesh topology as shown
in Fig. 10. This testbed consists of 10 Nvidia Jetson Xavier nodes,
each of which is connected to one Gateway 5400 multi-radio wireless
router. Each Nvidia Jetson node serves as federated computing node
which handles the federated learning training. In addition, the network
core and RL-app of federated networking subsystem are also hosted
on Nvidia Jetson node. On the other hand, Gateworks routers serve as
federated networking node that only hosts a dataplane submodule. The
dataplane is orchestrated using OpenFlow protocol by the network core
services hosted on Nvidia jetson node. Such decoupled system design
allows resource-rich Nvidia nodes to handle the computation-intensive
FL operations and RL-based networking intelligence while keeping the
operations of resource-limited routers simple and fast.

6.2. Federated networking subsystem implementation

Our multi-radio wireless federating networking nodes (Gateway
routers) are off-the-shelf small-factor single-board computers which
support Linux operating systems with multiple PCIe slots for adding
wireless radio cards. In our testbed, we deployed Ubuntu 20.04 as
the operating system and 3 x Compex WLE900VX-I wireless cards to
enable multi-radio wireless nodes. Each wireless radio is set to operate
on 5 GHz channels and 20 MHz channel width in 802.11ac operating
mode with 15 dBm transmission power. As a result, each wireless
router in our testbed can reach roughly 40 Mbps aggregated data
rate from three radio cards. On top of the node operating system, we
deploy a dataplane submodule that facilitates a software bridge with a
programmable packet handling routine (i.e OpenFlow Flowtable). All
11
three wireless cards were configured to operate on disjoint channels,
and then they were added to OpenFlow bridge as OpenFlow ports. Since
our router is embedded hardware with limited computation power and
cpu cores, the timely availability of CPU processing cycle is essential for
seamless performance. Hence, in our testbed, we explicitly define CPU
cores for the OpenFlow process by using Linux Taskset functionality.
It is worth to note that our proposed experiential framework is relying
on OpenFlow/SDN programmable routing table to implement the RL
routing policy. Therefore, there will be additional computation costs
with the trade-off for fully programmable network stacks.

6.3. Federated computing subsystem implementation

A federated computing system is deployed in Nvidia Jetson Xavier
node with has 16 GB combined RAM for GPU and CPU. Jetson nodes
come with Ubuntu 20.04 operating systems and TensorFlow packages
as part of the hardware. In our testbed, each jetson node can host
different number of FL worker nodes. Since the primary goal of our
experiment is to study the impact of wireless networking on FL, we en-
abled isolation only at the network level using network namespace. The
main advantage of such approach is that, within the single hardware we
can deploy multiple workers with isolated TCP/IP layer. Fig. 11 shows
the schematic of the namespace virtualizated network for worker on
each jetson node. On each jetson node, we create a virtual bridge using
Linux brigde-utils and then we create namespaces for each worker.
Following that, the interfaces from the namespace is added to the newly
created bridge using virtual ethernet pairing. At this point, all workers
within each jetson node can communicate independently. To facilitate
external connectivity, nodes master ethernet interface is also added
to the same bridge. Finally, each worker can be launched from their
respective namespace by executing the API scripts.

7. Experimental evaluation

We conduct extensive experiments to evaluate the effectiveness of
our proposed networked-accelerated FL system on our physical testbed.
We will compare the performance of our proposed RL-based federated
networking with widely-adopted production-grade wireless networking
protocol BATMAN-ADV [44] under a variety of settings by varying the
number of workers, the percentage of stragglers, and worker location
distributions (see Table 1).
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Fig. 10. EdgeML - Testbed topology and node view.
Fig. 11. Federated computation - Namespace isolation.
7.1. Experiment setup

Model and Dataset: Our experiments consider image classification
tasks on FEMINIST and CIFAR-10 datasets. Two different models are
12
used in the training experiments—a shallow two layers of CNN model
and MobileNet, whose weights are updated using federated learning.

• FEMNIST CNN: We first use FEMNIST, the federated version
of MNIST [45] on the LEAF [34] character recognition task,



Computer Networks 219 (2022) 109396P. Pinyoanuntapong et al.

m
p
p
t
I
R
a
o
a
c

R

b
a
w
B
7
B
t

I

t
t
n
R
a
a
p
c
n
l
t

Table 1
FL hyperarameters.
Parameter FEMNIST CNN CIFAR-10 MobileNet

Number of global rounds 30 70–80
Number of local iterator 10 10
Batch size 32 100
Learning rate 0.01 0.1
Model size 5.8 MB 7 MB

where LEAF is a benchmarking framework for federated learning.
FEMNIST consists of handwritten digits (10), uppercase (26), and
lowercase (26) letters leading to a total of 62 classes with each
image having 28 × 28 pixels. The whole dataset is partitioned
into 3550 data portions/users with Non-IID data distribution. In
our experiments, we sub-sampled the dataset by 0.02%, yielding
71 users.
Initially, we evenly distribute these users among three edge
routers R9, R10, and R2 as shown in Fig. 10. For each router, we
assign three active workers with each active worker consisting of
7–8 users, and one of the 7–8 users will become the active worker
at each global round/epoch of federated training. We employ a
convolutional neural Network (CNN) model during testing. The
CNN model has two convolution layers, with 32 and 64 filters
respectively. Each convolutional layer was followed by a 2 × 2
max pooling layer. The convolutions were followed by a fully
connected layer with 128 units with ReLU activation. A final fully
connected layer with softmax activation was used as the final
output layer. The model has a size of 5.8 MB.

• CIFAR-10 MobileNet: To demonstrate the feasibility of a real-
world scenario, we introduce the CIFAR-10 dataset [46] and the
MobileNet model [47]. CIFAR-10 has 10 classes, 50,000 train-
ing samples, and 10,000 testing samples. We used the Dirichlet
distribution Dir(𝛽) to build Non-IID heterogeneous partitions for
all workers. The value of beta is 0.5, determines the degree of
heterogeneity. To train the CIFAR-10 dataset, we use a MobileNet
model, a class of efficient network architectures for low power
computing devices such as the Nvidia Jetson Xavier platform.
To deploy multiple models in resource-constrained hardware, we
reduced the width size of the model to be thinner with a width
multiplier (𝛼) of 0.5, and set the input resolution of the network
to 224. Our model has a size of 7 MB.

Baseline Federated Networking Protocol: To compare the perfor-
mance of our proposed RL based routing for federated learning, we
chose the state of the art mesh routing protocol, BATMAN-Adv [44]
as the baseline. BATMAN-adv is implemented as a layer 2 proactive
routing protocol based on distance vector and radio link based reliabil-
ity as the routing metric. In addition, each node only maintains route
information to the next node by which the final destination can be
reached. Since each node only requires next hop information towards
the destination node, global exchange of routing information is not
necessary. From the aforementioned operation of BATMAN-adv, we
identified it as the best candidate for comparison as the operation of our
RL routing scheme also utilizes only next hop nodes information. More-
over, to the best our knowledge, BATMAN-Adv is the only multi-radio
mesh routing protocol that works out of the box on Linux systems as it
is embedded within the Linux kernel for optimized operation. During
the experiments, we directly use the production-grade BATMAN-Adv
protocol provided by Linux system.
RL-based Federated Networking Protocols: We study two online
learning RL-based networking algorithms including on-policy greedy
algorithm and on-policy softmax algorithm. As introduced in Section 4,
on-policy greedy algorithm uses greedy policy for both target policy
and behavior policy. For on-policy softmax, both target policy and
behavior policy use softmax-greedy policy defined in Eq. (7).
13
Hyperparameters: For FL, we use the batch size of 100 and learning
rate of 0.1. For MA-RL, we use the learning rate of 0.7 for both RL
approaches and temperature 𝜏 is set to be 2 for on-policy softmax. We
did hyperparameter search for 𝜏 and it shows that different values of 𝜏
do not lead to significantly different performance.

7.2. Main results

FL iteration and wall-clock convergence
As shown in Figs. 12 and 13, all three federated networking proto-

cols lead to the same iteration convergence performance in the sense
that they achieve the same loss or validation accuracy after running the
same number of epochs. This is as expected because they use the same
underlying federated training algorithm. However, RL-based federated
networking protocols can achieve much better wall-clock convergence
performance, compared with the baseline protocol. This is because RL
algorithms can minimize the per-epoch duration by learning the delay-
minimum forwarding paths for model exchange between the server and
workers.

Effect of stragglers on FL convergence
In this evaluation, we show that by performing regularized model

updates, FL convergence performance is improved in presence of het-
erogeneous workers under both RL-based federated networking and
baseline approach. We study the effect of stragglers (or computation-
ally-slow workers) that use heterogeneous or different numbers of local
epochs, which is smaller than the non-stragglers that use the maximum
number of local epochs. Such heterogeneous setup will lead to model
divergence because of varying number of local updates by workers.
Then, the straggler effect is evident from the noisy updates when the
model is unregularized (i.e., 𝜇 = 0). When the local model updates are
regularized (i.e., 𝜇 > 0), the convergence is less noisy and prevents the
odel divergence. We trained the FL model under different straggler
ercentages including 50% and 90%, It is shown in Fig. 14 that less
ercentage of stragglers leads to less noisy local model updates and
hus leads to faster convergence especially at initial training epochs.
n addition, wall clock time is significantly reduced by 50 min when
L algorithms is used for routing even in presence of stragglers. By
pplying regularized SGD, better convergence performance can be
bserved when the number of training epochs increases, even though
t the initial training stage, regularized SGD converges slower than the
lassic SGD.

esults of loss convergence on CIFAR-10 and MobileNet
Fig. 15 presents the performance comparison of CIFAR-10 and Mo-

ileNet with different routing algorithms in terms of loss convergence
nd wall clock convergence time. The results become more promising
ith a larger model size, which lead to higher FL traffic in the network.
oth RL routing solutions reach the same loss convergence by around
0 and 79 min, respectively, approximately 35 min faster than the
ATMAN-Adv baseline routing, which takes almost 110 min to achieve
he same loss convergence.

mpact of worker location distribution
In Fig. 16, we investigate how worker location distribution affects

he FL convergence performance. We study the total FL convergence
ime, FL computing time, and FL networking time by varying the
umber of workers that are connected to the three edge routers (R9,
10, R2). We study three node distributions (3-3-3, 2-5-2, 2-4-3) with
total number of 9 workers. It is evident that the RL-based feder-
ted networking can consistently outperform the baseline networking
rotocol under different node distributions and achieve up to 25%
onvergence speedup, compared with the baseline. Moreover, when the
etwork becomes congested, RL-based federated networking protocols
ead to a higher performance gain because they can learn to maximize
he network resource utilization to better distribute FL flows among
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Fig. 12. Loss convergence comparison of BATMAN-Adv, on-policy greedy, and on-policy softmax with 9 workers.
Fig. 13. LEAF and 2-CNN: Validation Accuracy convergence comparison of BATMAN-Adv, On-policy greedy, and On-policy softmax with 9 workers.
Fig. 14. LEAF and 2-CNN: Loss Convergence Time after 170 global rounds under
ifferent routing protocols.

ll available forwarding paths. This advantage is shown under 2-5-2
orker distribution, where the router R10 needs to serve 5 workers,
hich induces higher FL traffic volume and a higher level of network
ongestion around router R10. In this case, on-policy softmax policy
eads to the 25% speedup, which is the maximum one among the three
ode distributions. Regarding RL-based approaches, on-policy softmax
utperforms on-policy greedy for all three cases. This is due to the fact
hat on-policy softmax can proportionally distribute the traffic flows
mong the available forwarding paths according to the E2E delay of
14
Fig. 15. CIFAR-10 and MobileNet: Loss Convergence Time after 70 global rounds under
different routing protocols.

each path. Such approach could be more effective to distribute the traf-
fic loads. In addition, it is observed that the majority of total run time
came from communication time while the computation time (around
8 min) only contributes to a small portion of the total training time.
Therefore, optimizing the federated networking performance is very
beneficial to accelerate FL convergence in multi-hop edge computing
networks.
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Fig. 16. LEAF and 2-CNN: Total convergence time comparison of Batman-adv routing
black), On-policy greedy (gray), On-policy softmax (light blue), and Computation time
red hatched) under different worker location distributions after 80 global rounds. (For
nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

Fig. 17. LEAF and 2-CNN: Total convergence time comparison of Batman-adv routing
black), On-policy softmax (light blue), by varying total number of workers and location
fter 20 global rounds. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

calability analysis
In Fig. 17, we evaluate the FL convergence time by varying the

umber of workers attached to five edge routers (R9, R10, R2, R3,
8) with a total number of workers (9, 10, 11, 12, 13, 14). As the
umber of workers increases, the convergence time of both RL-based
pproach and baseline protocol increases. This is because as more work-
rs participate, the total FL traffic volume injected into the network
ncreases and gradually approach the maximum network capacity. This
eads to prolonged E2E delay and model training time. However, as
hown in Fig. 17, RL-based approach keeps outperforming the baseline
cheme consistently and reduce the total time by 23%. That is, it is
ble to learn the delay-minimum forwarding paths even if the network
ecomes congested.
We only experimented with 6 and 9 workers for CIFAR10 and Mo-

ileNet because of resource-constrained hardware, as the Nividia Jetson
15
Fig. 18. CIFAR-10 and MobileNet: Total convergence time comparison of Batman-adv
routing (black), On-policy softmax (light blue), by varying total number of workers
after 70 global rounds. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

node can only support up to 3 workers per device. As shown in Fig. 18,
we observed the similar trend as the number of workers increases, the
convergence time of all routing algorithms also increases. However,
the RL-based method continues to outpace the baseline scheme, which
resulted in a 30% reduction in overall time, while achieving the same
level of loss and a final accuracy of 68%.

8. Conclusion and future work

This paper proposes network-accelerated FL over wireless edge
by optimizing the multi-hop federated networking performance. We
first formulate the FL convergence optimization problem as a Markov
decision process (MDP). To solve such MDP, we propose the multi-
agent reinforcement learning (MA-RL) algorithm along with loop-free
action space refining schemes so that the delay-minimum forward-
ing paths are learned to minimize the model exchange latency be-
tween edge workers and the aggregator. To fast prototype, deploy,
and evaluate our proposed FL solutions, we develop EdgeML, which is
the first experimental framework in the literature for FL over multi-
hop wireless edge computing networks. Moreover, we deploy and
implement a physical experimental testbed on the top of the widely
adopted Linux wireless routers and ML computing nodes. Such testbed
can provide valuable insights into the practical performance of FL
in the field. Finally, our experimentation results show that our RL-
empowered network-accelerated FL system can significantly improve
FL convergence speed, compared to the FL systems enabled by the
production-grade commercially-available wireless networking protocol,
BATMAN-Adv. Besides the RL tabular approach, we can also adopt
neural networks for non-linear Q value approximations especially when
more network states are utilized, such as traffic matrix and queue
lengths. Incorporating neural network function approximation and its
distillation for the computation-efficient deployment will be our next
step.
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