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At large scales, particulate suspensions flow like homogeneous vis-
cous liquids, but at the particle scale the role of the local heterogene-
ity brought by the particles cannot be neglected. The volume fraction
also matters: in dense suspensions, particulate effects can be felt
across distances much larger than the particle diameter. Therefore,
whether a suspension should behave as a homogeneous or a hetero-
geneous fluid is a matter of scale. Here, we consider the canonical
situation of the pinch-off of suspension drops to study the behavior
of suspensions at different scales. Initially, the filament of suspen-
sion thins down like a homogeneous liquid until reaching a critical
thickness at which the thinning accelerates. Eventually, a region de-
void of particles appears, and the break-up occurs similarly to a ho-
mogeneous viscous liquid. Although this problem have been studied
for almost twenty years, the role of heterogenety in the acceleration
of the pinch-off is still not understood. We show that the onset of het-
erogeneity corresponds to the dislocation of the suspensions where
local fluctuations in particle concentration increase. We derive scal-
ing laws for the dynamics in the heterogeneous regime and develop a
model to predict the coherence length at which the discrete nature of
the particles appears and demonstrate that this length depends both
on the particle size and the volume fraction of the suspension. We
extend this approach to polydisperse suspensions. Our work sheds
light on the mesoscopic scale below which starts the heterogeneous
regime and a continuum approach is not valid anymore.
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Suspensions are ambivalent fluids. Depending on the length1

scale at which they flow, they can be considered homo-2

geneous or heterogeneous. At length scales much larger than3

the particle size, a suspension behaves like an effective viscous4

liquid whose viscosity η(φ) increases with the volume fraction5

of particles φ (1? ). However, below a certain length scale,6

fluctuations of particle concentration can strongly influence7

the flow, and the heterogeneous nature of the particles plays8

a crucial role. This change of scale naturally occurs during9

the breaking of a liquid into droplets: as a drop detaches10

from a nozzle, the neck that binds the drop to the nozzle11

thins down and eventually vanishes (2–4). In the capillary12

regime, the thickness of this liquid neck h(t) may undergo dif-13

ferent self-similar regimes (5): if the flow is capillary-inertial,14

h(t) ∼ (γ/ρ)1/3(tc − t)2/3, if the flow is capillary-viscous,15

h(t) ∼ γ(tc − t)/η. The neck finally breaks up in a finite-time16

singularity at time tc.17

In practical applications, the atomized fluids can be suspen-18

sions, containing dispersed particles. For example, in ink-jet19

printing (6, 7), bio-fluids printing (8), and spray painting, the20

fluids contain solid objects, that may be rigid (pigments) or21

not (cells), as well as polymers and other solutes. Therefore, as22

a liquid neck of such complex fluids thins down, its thickness23

successively goes through the length scales of each component.24

This reveals the heterogeneous nature of the fluid: the afore-25

mentioned self-similar regimes disappear and make way for 26

thinning regimes that are specific of the components. A well- 27

known example is the thinning of a thread of dilute polymer 28

solution (9): initially, the liquid neck thins down like an invis- 29

cid Newtonian fluid, following the power law h(t) ∝ (tc− t)2/3. 30

At a certain point, the polymer starts interacting with the 31

flow and the thickness h(t) decreases exponentially with time. 32

Adding solid particles to the polymer solution does not result 33

in a new thinning regime, but it significantly changes the 34

threshold from one regime to another (10). 35

Understandably, the complexity of the problem drastically 36

increases with the number of components, because it implies 37

an increase of the number of length scales. Also, each kind 38

of component (particles, polymers, cells, etc. . . ) may exist 39

in a range of sizes. To allow for a physical insight, we must 40

narrow the focus to a single kind of component. Therefore, in 41

order to isolate the viscous effects in the pinch-off of complex 42

fluid drops, we investigate non-Brownian, neutrally-buoyant 43

particles dispersed in a viscous liquid. 44

The seminal work of Furbank and Morris on the pinch-off 45

of suspension drops revealed a two-step mechanism (11). The 46

particles are initially homogeneously distributed in the neck. 47

Then, when the neck has thinned down to a few particle diam- 48

eters, the particle volume fraction φ fluctuates. It was later 49

shown that the homogeneous regime is similar to the thinning 50

of a viscous liquid of matching viscosity (12, 13). At some 51

point, the velocity profile in the neck becomes discontinuous 52

(14), and the thinning accelerates (15). This transition from 53

the homogeneous regime to the heterogeneous regime during 54

the generation of suspension drops occurs at a critical thick- 55

ness that increases with the particle diameter d, but which 56

is not necessarily of the same order of magnitude (12). After 57

some time, the neck becomes thinner than the particle diame- 58
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ter and reduces to the interstitial liquid (16). For bidisperse59

suspensions, the transition depends on the relative fraction of60

each size of particles: the more large particles there are, the61

earlier the heterogeneous regime (17).62

Past studies have suggested that the heterogeneous regime63

observed may be due to shear-thickening (18, 19), or to jam-64

ming in the neck (20). However, these explanations are incom-65

patible with the dilute and semi-dilute cases, in which even66

one single particle is sufficient to trigger the acceleration of the67

pinch-off (14). It was reported that concentration fluctuations68

were amplified by the curvature gradient at the neck (21).69

Unfortunately, capillary effects alone cannot explain why the70

heterogeneous regime starts at thicknesses much larger than71

the particle diameter (12, 22). Accordingly, the present study72

aims to unify the different descriptions of suspension drop73

pinch-off and to clarify the role of solid heterogeneities on74

drop formation.75

The transition to a heterogeneous regime where the particles76

impact the dynamics beyond a simple increase in viscosity is77

not specific to the pinch-off of suspension drop. Such behavior78

has also been reported for other flows of suspensions, dip-79

coating (23, 24), inclined plane (22), drop impact and sheet80

spreading (25), jet of suspensions (26), or spreading of a81

contact line (27). In all of these situations, the suspensions82

are found to behave either like homogeneous viscous liquids or83

like a heterogeneous media. The passage from one regime to84

another occurs at a specific length scale, which can be much85

larger than the particle diameter d and depends on the volume86

fraction φ and d. In the discussion, we use the results of the87

pinch-off dynamics to conceptualize the onset of heterogeneity88

in free surface flows of suspensions.89

We study the pinch-off of drops of suspensions, first90

monodisperse, then polydisperse. By considering the sta-91

bility of a concentration fluctuation at the neck, we identify92

a new specific thinning regime, that we call the dislocation93

of the suspension. We derive scaling laws that describe this94

accelerated regime and its duration; these scaling laws match95

experiments conducted with a wide range of particle diame-96

ters, volume fractions up to φ = 50%, and are applicable to97

monodisperse and polydisperse suspensions. Moreover, apply-98

ing this approach to results from the literature (13, 18, 19, 28)99

enables a global vision of the pinch-off mechanisms of drops100

of non-Brownian suspensions.101

Thinning Dynamics102

Figures 1(a)-(f) show examples of the pinch-off of drops with103

the pure silicone oil, further used as interstitial liquid, and104

suspensions of particles of diameter d = 140µm and increasing105

volume fractions φ = 2%, φ = 20%, and φ = 50%. The influ-106

ence of the diameter of the particles composing the suspension107

is also illustrated for a volume fraction of φ = 50% and par-108

ticles of diameters 20µm and 250µm particles, respectively.109

In the absence of particles, i.e., for the interstitial fluid only,110

the pinch-off dynamics illustrated in figure 1(a) shows that111

the neck that binds the drop to the nozzle thins down as112

gravity and capillary pressure pull on it, and stretches into113

a long filament. Eventually, the thinning accelerates in the114

region where this filament connects to the nozzle leading to115

the break-up of the filament.116

The initial thinning dynamics of the particulate suspensions117

is similar to the pure Newtonian liquid, although the dynamics118

is much slower due to the increase in viscosity induced by the 119

presence of particles. In the dilute regime, φ = 2% shown in 120

figure 1(b), the neck stretches into a slender filament, similarly 121

to the pure liquid case, but this filament is eventually dis- 122

turbed by the particles. Each particle trapped in the filament 123

leads to the formation of a satellite drop, typically when the 124

thickness of the filament is comparable to the particle size. 125

The satellite drops are separated by viscous filaments that 126

thin down with an associated dynamics similar to the pure 127

liquid case. At moderate volume fraction, e.g., φ = 20% illus- 128

trated in figure 1(c), the particles begin to slightly deform the 129

liquid-air interface before they are pulled apart. Eventually, 130

a thin filament free of particles connects the drop to the rest 131

of the liquid at the nozzle. The resulting long filament of 132

interstitial liquid is much thinner than the particle size and 133

free of particles. 134

For dense suspensions, here φ = 50% in figure 1(d)-(f), the 135

neck breaks faster, and the pinch-off dynamics depends on 136

the particle diameter. For the 20µm particles, illustrated in 137

figure 1(e), the neck stretches significantly, but its shape is very 138

different from the pure liquid case. The thinning dynamics 139

with large particles is highly accelerated, as illustrated with 140

the 250µm particles shown in figure 1(f). In all three dense 141

cases shown here, the penultimate picture reveals a very short 142

time during which the neck is made of interstitial liquid only. 143

However, the length of this filament without particles is much 144

shorter than the one observed for smaller volume fractions. 145

Another significant difference during the pinch-off dynamics is 146

the location where the break-up occurs. Indeed, the viscous 147

liquid always breaks up near the nozzle at the top of the 148

filament, whereas all suspensions break further away from the 149

nozzle, especially for small particles. Besides, the thinning of 150

suspensions is a localized phenomenon as shown by image cross- 151

correlation that enables to estimate the distance over which the 152

velocity profile evolves (see Supplementary Information (29)). 153

We find the velocity gradient to be negligible outside the 154

volume h3 around the neck (14). 155

At each time step, we extract the thickness of the neck at 156

the thinnest point h [see figure 1(a)]. The pinch-off of the 157

neck occurs at a finite-time t = tc, and we thus consider the 158

time to pinch-off, tc − t. Figure 2(a) reports the thinning 159

dynamics h(t) = f(tc− t) of suspensions of 140µm particles of 160

volume fractions φ ranging from 2% (purple) to 50% (yellow), 161

in real-time in figure 2(a) and in rescaled time in figure 2(b). 162

In all plots, the time elapses from right to left. For comparison, 163

we reported in black the thinning dynamics of the pure liquid 164

without particles. 165

For the most dilute suspensions (φ = 2%, in purple), the 166

dynamic is barely distinguishable from that of the pure liq- 167

uid. The difference appears as soon as the volume fraction 168

is larger than 10% where the thinning dynamics observed is 169

slower. More generally, the larger the volume fraction φ of the 170

suspension, the longer the thinning and the later the pinch-off. 171

However, the shape of the thinning dynamics also changes with 172

the volume fraction. For the most concentrated suspensions 173

used here (φ = 50%, in yellow), the dynamics is slower but 174

continuously accelerated. Thus, the thinning of the suspension 175

is not simply faster but intrinsically different and driven by a 176

different physical mechanism. 177

Bonnoit et al. have shown that down to a certain neck 178

thickness, a particulate suspension behaves like a homogeneous 179
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Fig. 1. Time series of the pinch-off of drops of (a) interstitial liquid (silicone oil, no
particles), (b) φ = 2%, (c) φ = 20%, and (d) φ = 50% of d = 140µm particles,
(e) φ = 50% of d = 20µm particles, and (f) φ = 50% of d = 250µm particles.
The nozzle has an outer diameter of 2.75 mm and serves as a scale bar. Videos are
available in Supplementary Information (29).

liquid of matching viscosity (12). In addition, the thinning 180

dynamics of the suspension can be rescaled onto the dynam- 181

ics of another viscous liquid (17). The method consists in 182

stretching the time to pinch-off by a factor αη and shifting it 183

by the duration ∆t, thus changing tc − t to αη(tc − t) + ∆t. 184

For each suspension used in this study, we compute the values 185

of αη and ∆t so that the early thinning dynamics of the sus- 186

pension collapses onto the dynamics of the interstitial liquid. 187

Figure 2(b) shows the rescaled thinning dynamics obtained 188

with this method when varying the particle volume fraction φ. 189

Once the proper rescaling is applied, the thinning dynamics 190

for suspensions of varying volume fraction collapse onto that 191

of a homogeneous fluid, and the two dynamics match down to 192

a critical thickness h?, which depends on the particle size and 193

the volume fraction. When the neck becomes thinner than h?, 194

the thinning of the suspension accelerates and becomes faster 195

than for the equivalent liquid, as can be seen in figure 2(b). 196

The specific dynamics of the suspension when h < h? is 197

itself divided into two regimes, as illustrated in logarithmic 198

scale in figure 2(c) for a suspension of volume fraction φ = 40% 199

and particle size d = 140µm. Below the critical thickness 200

h?, there are two well-defined regimes, each captured by a 201

different power-law h(t) ∼ (tc − t)α. The latest regime, in 202

which h decreases linearly with time, is the viscous-capillary 203

regime known for the pinch-off of viscous liquids (30, 31). The 204

experiments reveal that there are no particles in the neck 205

anymore at this time. The experimental thinning rate in 206

this case is h(t)/(tc − t) = 0.08 m.s−1, and the theoretical 207

thinning rate (30) is 0.0304γ/ηf = 0.066 m.s−1 (ηf denotes 208

the viscosity of the interstitial fluid), which is slightly smaller 209

but in good agreement with our measurement. Therefore, we 210

can define a threshold thickness, h′, below which particles 211

do not influence the detachment of the drop anymore. The 212

existence of the two thresholds h? and h′ leads to the definition 213

of three regimes, shown in Figure 2(c): (I) for h(t) > h?, an 214

equivalent liquid regime, in which the suspension behaves like a 215

homogeneous liquid of matching viscosity, (II) for h′ < h(t) < 216

h?, a dislocation regime, during which the heterogeneity of 217

the suspension plays a crucial role, and (III) for h(t) < h′, the 218

interstitial regime, in which the neck is devoid of particles, 219

and the thinning is simply the thinning of the interstitial 220

regime. Besides, the transition from (I) to (II) corresponds to 221

a change in the evolution of the shape of the drop: for h > h? 222

the whole drop deforms, and for h < h? only the neck does 223

(see Supplementary Information (29)). The entry into the 224

dislocation regime marks the onset of heterogeneity, where the 225

discrete nature of the particles affects the dynamics beyond 226

simply increasing the macroscopic viscosity. 227

Onset of heterogeneity 228

Thinning dynamics. Deforming a dense suspension leads to 229

the rearrangement of the particles, which causes dissipation. 230

The local volume fraction of particles remains constant if the 231

particles are simply sliding or rolling along each other, and 232

fluctuates if they move away or towards each other. We hy- 233

pothesize that the detachment of a suspension drop accelerates 234

because particles start moving away from each other in the 235

vicinity of the neck and refer to this phenomenon as the dislo- 236

cation of the suspension ligament. The word dislocation is not 237

to be taken in its meaning of defect in a lattice, for there is 238

no order in the suspension but in its etymological meaning of 239
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Fig. 2. (a) Thinning dynamics of suspensions of 140µm particles dispersed in silicone oil at various volume fractions φ (colored symbols). The black symbols represent the
dynamics of the interstitial fluid (φ = 0). (b) Thinning dynamics in rescaled time. For each suspension, the time to pinch-off tc− t is shifted and stretched into αη(tc− t) + ∆t,
so that the dynamics overlaps with that of the interstitial fluid in the early thinning regime. The dynamics of the suspensions deviate from the interstitial liquid and accelerate at
the critical thickness h = h?, represented by the horizontal dashed lines for volume fractions φ = 20, 30, 45, and 50%. (c) Thinning dynamics in logarithmic scale, for
φ = 40% and d = 140µm. The neck undergoes three successive thinning regimes: (I) the homogeneous liquid regime, (II) the dislocation, where h(t) ∼ (tc − t)1/2, and
(III) the interstitial regime, where h(t) ∼ tc − t, similarly to a viscous liquid.

sudden separation. The dislocation mechanism begins when240

pulling particles apart becomes energetically favorable com-241

pared to rearranging them. In other words, dislocation is the242

growth of local fluctuations of the particle volume fraction.243

To describe the dislocation regime, we consider a liquid244

film of thickness a between two portions of suspension, which245

represents the local fluctuation of concentration in the neck.246

The viscosity of the suspension is denoted η; the viscosity of247

the interstitial liquid ηf. Pulling the two portions apart at248

the velocity ȧ dissipates the power ηfh
4ȧ2/a3 (see Materials249

and Methods). We assume that during the dislocation regime,250

a is of the order of magnitude of the particle diameter so251

that a ∼ d. By balancing the power associated with the252

capillary forces γh2/(tc− t) and the power associated with the253

viscous dissipation, we obtain the scaling law for the thinning254

dynamics in the dislocation regime:255

h(t) ∼ (tc − t)1/2
√

γ

ηf
d [1]256

Eq. [1] describes the evolution of the thickness of the neck as257

the capillary pressure makes particles move away from each258

other and captures well the dynamics in the regime (II) shown259

in Figure 2(c). We systematically observed this scaling law in260

all of our experiments for suspensions with volume fraction261

φ ≥ 20%. For dilute enough suspensions, there is a range262

of volume fractions in which the thinning of the neck shifts263

directly from the equivalent regime (I) to the interstitial regime264

(III). Therefore, the dislocation of the suspension only occurs265

for concentrated enough suspensions, and the corresponding266

minimum volume fraction ranges from less than 2% for 20µm267

particles to 20% for 500µm particles.268

Transitions between the different thinning regimes. Fig-269

ure 3(a) reports the evolution of the critical thickness h?270

at the transition between the equivalent fluid regime (I) and271

the dislocation regime (II) when varying the volume fraction272

φ for monodisperse suspensions with different particle diame-273

ters. The thickness h? increases both with φ and d. Indeed,274

the larger the particles, the larger the thickness h?, and the275

denser the suspensions, the larger h?. Interestingly, the het-276

erogeneities brought by the particles start occurring at a much277

larger length than the particle diameter. The critical thickness 278

of the transition between the dislocation regime (II) and the 279

interstitial regime (III), h′, depends on the particle diameter d 280

but not significantly on the volume fraction, as illustrated in 281

Figure 3(b). This observation is consistent with the concept 282

of dislocation since h? marks the onset of heterogeneity when 283

the suspension begins to dislocate, whereas h′ marks the end 284

of dislocation when the suspension in the neck is so dilute that 285

it cannot be considered a suspension anymore. 286

Eq. [1] provides a prediction of the critical thickness h? as 287

a function of the properties of the suspension. Assuming that 288

before dislocation, the dynamics result from the balance be- 289

tween gravity and the effective viscosity of the suspension, the 290

relevant time scale in the equivalent liquid regime (I) is given 291

by t? = η/(ρ g h?). By combining this viscous-gravitational 292

time scale with Eq. [1], we obtain h?/d ∼ ηr
1/3 (`c/d)2/3, 293

where `c =
√
γ/(ρg) is the capillary length (1.5 mm for the 294

silicone oil used here). We estimate the relative viscosity of 295

the suspension ηr(φ) = η(φ)/ηf using the Maron-Pierce cor- 296

relation (32), ηr(φ) = (1− φ/φc)−2, with φc ' 57.8% for the 297

suspensions used here (17). Finally, we obtain the evolution 298

of the critical thickness at the dislocation regime: 299

h?

d
∼
(
`c

d

)2/3
(

1− φ

φc

)−2/3

. [2] 300

Figure 3(c) compares the rescaled dislocation threshold 301

h?/d to the quantity (`c/d)2/3(1− φ/φc)−2/3, which includes 302

the two input parameters of our experiments: the particle 303

diameter d and the volume fraction φ. We report in this 304

figure the experimental results for all monodisperse suspensions 305

considered in this study. The experimental results collapse 306

onto a master line, which matches Eq. [2] with the prefactor 307

0.6. The prediction only fails for very dilute suspensions of 308

large particles, shown by the purple points at the bottom left 309

of figure 2(c). In this case, the concept of dislocation becomes 310

irrelevant since there is not enough particles in the neck to 311

consider it as homogenous even during the early stage of the 312

pinch-off. The observation that this approach fails only in 313

this most extreme situation emphasizes the robustness of the 314

model, despite the rough assumptions made previously. 315
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Fig. 3. (a) Critical thickness at the transition between the equivalent fluid regime (I) and the dislocation regime (II), h?, and (b) at the transition between the dislocation regime
(II) and the interstitial regime (III), h′, as a function of the volume fraction φ for monodisperse suspensions. (c) h?/d and (d) h′/d plotted following the prediction given by
Eq. [2] and Eq. [3], respectively. The different symbols represent different particle sizes, and the big diamonds represent experiments conducted with PEG. In (c) and (d), the
colors represent the volume fraction, from dilute (2%, purple) to dense (50%, yellow), and the lines have a slope one.

The excellent agreement between our experiments and the316

model demonstrates that the acceleration of the thinning for317

dense enough suspensions is indeed induced by the disloca-318

tion at the neck. Changing the solvent viscosity and wetting319

properties, from 0.12 Pa.s (silicone oil) to 2.6 Pa.s (PEG, dia-320

monds in figure 3(c)) does not affect the collapse of the data321

and the agreement between the model and the experiments.322

We were also able to extract the value h? from recent exper-323

iments performed by Moon et al. (13), which provided the324

thinning dynamics for suspensions of 10µm particles. The325

model presented in this paper also captures their experimental326

data (29).327

Similarly to Eq. [2], we can derive the threshold h′ between328

the dislocation regime (II) and the interstitial regime (III). The329

typical time scale at this transition is given by t′ ∼ ηf/(ρgh′).330

Combining this time scale with Eq. [1] yields:331

h′

d
∼
(
`c

d

)2/3
. [3]332

The corresponding experimental measurements of h′ plotted333

with respect to (`c/d)2/3 for different monodisperse suspen-334

sions are reported in figure 3(d). Once again, we obtain an335

excellent agreement between the model of Eq. [3] and the336

experimental results. The collapse of the data onto the pro-337

posed law provides a second proof that the acceleration of338

the thinning is caused by the dislocation. Similar to what339

was observed for h?, the prediction for h′ fails for very dilute340

suspensions of large particles. In these cases, it is notable that 341

h? and h′ are very close and smaller than the particle size 342

d. This means that the thinning switches directly from the 343

equivalent regime to the interstitial regime. Indeed, since not 344

enough particles are present in the neck, there is no dislocation 345

mechanism. 346

Polydisperse suspensions. Monodisperse suspensions, charac- 347

terized by a single length scale, the diameter d of the particles, 348

are valuable to study due to their simplicity. Nevertheless, 349

actual manufacturing applications or capillary processes pri- 350

marily involve polydisperse suspensions. In a polydisperse 351

suspension, each possible particle size is theoretically a rele- 352

vant length scale of the flow. As a first step, we consider the 353

dislocation of bidisperse suspensions. Bidisperse suspensions 354

contain a volume fraction of particles φ, split amongst φS 355

of small particles of diameter dS and φL of large particles of 356

diameter dL. We introduce the volume ratio of small particles 357

ξ = φS/φ, and the size ratio of particles δ = dL/dS (33). For 358

all of these suspensions and a volume fraction φ ranging from 359

0 to 50%, we observe a thinning dynamic similar to that of 360

the monodisperse case, with the three successive regimes. The 361

main difference is that the thresholds of the dislocation regime, 362

h?, and h′, now depend on the composition parameters, ξ, and 363

δ. 364

Polydisperse suspensions are defined by the size distribution 365

of their particles, which we can be described through a volume- 366
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different particle diameter. The colored symbols represent the results for the polydisperse suspensions, each symbol corresponding to a couple of particles sizes (see legend).
The colors represent the share of small particles in each suspension ξ from purple for ξ → 0 (large-particle dominated regime) to yellow for ξ → 1 (small-particle dominated
regime). The red crosses represent tridisperse suspensions containing one-third of 20µm, one-third of 140µm and one-third of 500µm particles. For all suspensions, the
volume fraction varies from 2 to 50%. The experiments represented by big diamonds are conducted in PEG, and all the other experiments are performed in silicone oil.

averaged particle diameter d̄. For a bidisperse suspension, this367

quantity is d̄ = ξdS + (1 − ξ)dL. The choice of the volume-368

averaged diameter over the number-averaged diameter will369

be justified in the last section. In addition to the particle370

size distribution, polydisperse suspensions also differ by their371

lower viscosity for a given particle volume fraction than a372

monodisperse suspension. Indeed, the polydispersity of the373

particles enables a more efficient filling of the space, described374

by a larger value of the critical volume fraction φc(ξ, δ). The375

viscosity of a polydisperse suspension can be computed from376

the jamming fraction of a polydisperse sphere packing, using377

the Maron-Pierce correlation (17, 32), ηr ∼ (1− φ/φc(ξ, δ))−2,378

where the critical volume fraction φc is estimated through379

the model of Ouchiyama and Tanaka (34). From there, we380

compute h? and h′ using d̄ and φc(ξ, δ) in Eqs. [2]-[3].381

Figure 4(a) reports the evolution of h?/d̄ and figure 4(b)382

the evolution of h′/d̄, compared to the predictions of Eqs. [2]-383

[3]. The colored symbols represent the bidisperse suspensions,384

and their color indicates the volume ratio of small particles385

ξ. The red crosses represent experiments performed with386

tridisperse suspensions composed of one-third of 20µm, one-387

third of 140µm, and one-third of 500µm particles, and a total388

particle volume fraction φ ranging from 2% to 50%. The389

black open symbols represent the monodisperse suspensions,390

already shown in figures 3(c)-(d). We show all experiments391

on the same graph to highlight the universality of our model392

beyond the simplest monodisperse case usually considered in393

the literature.394

For polydisperse suspensions, the critical thickness defining395

the thresholds of the dislocation regime, h?, and h′, collapse396

onto the same master line as the monodisperse suspensions.397

The limitations are the same as in the monodisperse case.398

More specifically, dilute suspensions of large particles do not399

dislocate because there are too few particles in the neck. The400

collapse of h′ versus d̄ shown in figure 4(b) is even more ap-401

parent. Indeed, using a polydisperse suspension allows tuning402

the volume-average diameter, and these experiments clarify403

the dependence of h′ on the particle diameter. Therefore, it404

appears that the dislocation regime only depends on the size405

distribution through the volume-averaged diameter d̄ and the 406

critical volume fraction φc(ξ, δ). 407

Discussion 408

Coherence length. A notable feature in the pinch-off of suspen- 409

sion drops is that the threshold to the heterogeneous regime 410

h? can be much larger than the diameter of the particles d 411

and also depends on the volume fraction φ. Indeed, a classical 412

interpretation of the transition between a homogeneous and a 413

heterogeneous regime is that the equivalent fluid regime stops 414

when the scale of the flow (here the neck width h) becomes 415

comparable to the particle size (11, 15). Such an interpretation 416

would lead to h? ∼ d, with a proportionality factor of order 417

one. However, our experiments demonstrate that although for 418

dilute suspensions, h? is indeed of the order of the particle 419

diameter, it becomes much larger than d at larger volume 420

fractions. For instance, for φ = 50%, we measure h? = 1.6 421

mm for 140µm particles, which is more than eleven times the 422

diameter of the particles d. With 20µm particles, we measure 423

h? = 1.24 mm, 62 times larger than the particle diameter. 424

More generally, Figure 3(c) shows that the ratio h?/d varies 425

over two orders of magnitude and strongly depends on the 426

volume fraction. The polydisperse suspensions exhibit the 427

same trend, as reported in Fig 4(a). Therefore, the heteroge- 428

neous structure of dense suspensions plays a role at a scale 429

much larger than the particle diameter. A similar feature has 430

been previously reported for the free-surface flow of dense 431

suspensions on an inclined plane. Indeed, Bonnoit et al. (22) 432

have defined a mesoscopic length scale that increases with the 433

volume fraction and diverges at the critical volume transition 434

φc. The critical thickness h? reported in this study is similar 435

and corresponds to the limit of the homogeneous regime, at 436

the onset of heterogeneity. In the present case, this length 437

would also diverge when φ→ φc. 438

Physically, the length h? can be seen as the coherence 439

length of the interactions through which momentum diffuses. 440

As a particle undergoes a fluctuation of its position, it exerts a 441

force upon its neighbors through the lubrication film between 442
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them. If there are contacts between particles, they transmit443

the momentum directly. Other forces can also act on the444

particles. For instance, for dilute suspension, the viscous drag445

on the particle should also be taken into account. If the446

particles are small enough, they will be subject to Brownian447

motion and van der Waals forces. The coherence length can448

then be seen as the typical length over which a fluctuation will449

be damped. Therefore, a stress applied on the suspension will450

be distributed across a volume defined by the coherence length.451

In the present configuration, during the detachment of the452

drop, the curvature of the neck generates a capillary pressure453

gradient between the neck and the rest of the suspension. The454

resulting stress will be distributed across the suspension if455

the neck is thicker than the coherence length. However, if456

the neck is thinner than the coherence length, a fraction of457

the suspension may experience larger local stress, which pulls458

the particles apart from each other and lead to the break-up459

through a dislocation. Therefore, here the coherence length460

controls the stability of the suspension against a concentration461

fluctuation.462

Here, the words fluctuation and coherence length are meant463

to suggest an analogy with statistical mechanics, even if it is464

only a rough sketch. As the suspension flows, each particle465

creates a local disturbance, and one can imagine an ideal state466

of local equilibrium where the distance between particles is467

maximum so the global dissipation is minimum. Deviations468

from this ground state would be caused by the preparation469

of the suspension and by the constraints applied on the sus-470

pension (shape of the container, stress, body force). There471

are similarities with this approach and the Edwards ensemble472

(35, 36), in which the volume fraction of granular media plays473

the role of energy. For suspensions, volume fraction is directly474

linked to the rate of dissipation (by the viscosity), which is475

the quantity that should be minimized.476

The correlation length also applies to polydisperse suspen-477

sions, although the range of sizes of the particles makes the478

interactions between particles more complex. Assuming that479

the volume of the lubrication film around a given particle480

is directly proportional to the volume of that particle, the481

lubrication pressure between small particles and between large482

particles is of different magnitude. This explains why h? is483

relatively much larger for 20µm particles than for larger par-484

ticles [figure 2(c)]. Indeed, for smaller particles, the relative485

lubrication pressure between them is stronger, and therefore486

a perturbation may spread further. Therefore, the coherence487

length should depend not only on the number of interactions488

but also on the relative force of these interactions. As a result,489

the relevant length scale of polydisperse suspensions is the490

volume-averaged diameter rather than the number-average491

diameter. Similarly, the Ouchiyama-Tanaka model (34) with492

which we compute φc for the polydisperse suspensions is based493

on a volume average of the local volume fraction. There-494

fore, the pinch-off dynamics, particularly the transition be-495

tween the different regimes, of a polydisperse suspension can496

be inferred from the volume-averaged particle diameter and497

volume-averaged volume fraction.498

Our pinch-off experiments with bidisperse suspensions re-499

veal that they followed dynamics similar to monodisperse500

suspensions, meaning that pinch-off does not filter particles501

by size. The dislocation model enables to understand why:502

despite the size difference, the movement of small particle503

remains strongly correlated to that of large particles, and 504

they are not easily separated. This good agreement of our 505

model with the bidisperse suspensions enable us to neglect self- 506

filtration (37, 38) as a mechanism for the accelerated pinch-off. 507

Two-particle interaction. Contrarily to h?, the length h′ does 508

not depend much on the volume fraction φ [figure 3(c)]. From 509

a neck thickness h(t) = h′ and smaller, the neck reduces to a 510

filament of interstitial liquid, without any particle in it. Just 511

before this transition, the neck contains two particles, and 512

the film between them experiences all of the stress acting on 513

the neck. Thus, h′ can be interpreted as the thickness that 514

balances the viscous interaction between the last two particles 515

of the neck and the driving force of the thinning (capillarity 516

and the weight of the drop in the present case). 517

Multiple dislocations. Various studies on the pinch-off of sus- 518

pension have reported qualitatively similar results. In par- 519

ticular, the pinch-off of suspension drops from other studies 520

should also be explained by the mechanisms and scaling law 521

presented in this work (18, 19). In both studies, the thinning 522

of the suspension was empirically interpreted in terms of non- 523

Newtonian rheology. We demonstrate in the following that 524

the concept of dislocation can explain these results without 525

involving a non-Newtonian rheology. 526

Roché et al. studied the thinning of corn-starch suspen- 527

sions in water, with an average particle diameter of 14µm 528

(18). For φ = 37%, they observed a long filament that would 529

eventually destabilize into “jammed” regions where the strain 530

rate was zero and “flowing” regions where the thinning con- 531

tinues. They measured the wavelength between two flowing 532

regions as 700µm, although the theory of the Rayleigh-Plateau 533

instability predicts 7 mm. Applying Eq. [2] to their con- 534

figuration (d = 14µm, `c = 2.7mm for water), we obtain 535

628µm < h? < 875µm in their range of volume fraction 536

(23% < φ < 39%). Thus, if the length of the neck is much 537

longer than h? when h(t) = h?, several dislocations can happen 538

simultaneously, and h? is then the wavelength of the desta- 539

bilization. Although the authors considered the regions not 540

thinning as jammed, it does not necessarily need to be the case 541

and the thinning simply continues where the viscosity is the 542

lowest, i.e., in the dislocating regions. Pan et al. (19) studied 543

denser suspensions of smaller particles (1.3µm ≤ d ≤ 10µm, 544

with 55% ≥ φ ≥ 59%). The thinning dynamics of their aque- 545

ous suspensions are similar to those of our viscous liquids, 546

however they did not observe dislocation. In their configu- 547

ration, the coherence length of their suspensions, calculated 548

through Eq. [2], is a few millimeters depending on the jam- 549

ming fraction. The filament is then always shorter than the 550

wavelength of the destabilization and is therefore stable. 551

Dislocation of capillary bridges. In a recent study, Château et 552

al. observed the pinching and break-up of capillary bridges 553

of suspensions (28). Although their configuration is different 554

from a pending drop, they also reported a deviation from the 555

homogeneous liquid regime but did not provide a model to 556

explain the variations of h?. The scaling law for the thinning 557

regime (Eq. [1]) matches their data for φ > 20%, whereas a lin- 558

ear law fits better for φ ≤ 20% (29). Therefore, it seems that 559

by plotting the last moments of the dynamics, Château et al. 560

were observing the interstitial regime for φ ≤ 20% and the dis- 561

location regime for φ > 20%. In the latter case, the interstitial 562
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regime may have been too short to be observed. However, their563

empirical scaling for h? differs from ours, probably because564

the flow is different.565

Conclusion566

The pinch-off of a drop of particulate suspension undergoes567

three regimes: first, the equivalent liquid regime, followed568

by a dislocation regime, and finally, the interstitial regime.569

In the first regime, the drop of suspension behaves like a570

drop of a homogeneous liquid of matching viscosity, and the571

particles simply rearrange when the drop deforms: this is the572

equivalent liquid regime. Below a certain thickness of the573

neck, h?, the particles cannot simply rearrange themselves and574

start moving away from each other: the suspension dislocates.575

Finally, when particles are too far from each other to interact,576

the neck reduces to a filament of interstitial liquid. This577

is the interstitial regime, identical to the viscous-capillary578

regime observed during the pinch-off of a viscous liquid. This579

last transition occurs at the thickness h′, representing the580

interaction range between two particles.581

The dislocation of the suspension is caused by the amplifi-582

cation of a fluctuation of local volume fraction. We obtained583

in this study a scaling law for this regime, h(t) ∼ (tc − t)1/2,584

as well as for the critical thickness h? and h′. These predic-585

tions captured all experiments, including those performed with586

polydisperse suspensions. The critical length h? translates the587

balance between the driving force of the interactions between588

the particles. This length corresponds to a coherence length589

of the suspension under the stress caused by capillary pressure590

and the weight of the falling drop.591

Although our experiments considered the detachment of a592

drop, the concepts of coherence length and dislocation devel-593

oped here go beyond this particular situation and should apply594

to other suspension flow. Notably, the flow of suspensions595

on an inclined plane exhibits a similar length scale, much596

larger than the particle diameters, and defines the threshold597

from the effective liquid regime to an intermediate regime (22).598

Therefore, it appears that the onset of heterogeneity in the599

flows of suspensions is controlled not directly by the size of600

the particles, but by the reach of the long-range interactions601

between them.602

In conclusion, two length scales that depend on the particle603

diameter d and the volume fraction φ characterize the capillary604

flow of suspension: the reach of the interactions between605

two particles and the coherence length of these interactions606

across the suspension. Since the interactions occur because of607

external stress, these length scales themselves depend on this608

applied stress. Future studies will apply these concepts to other609

systems involving suspensions, such as the formation of thin610

films (23, 24), and the fragmentation of suspension ligaments611

and sheets (25). In addition, beyond polydisperse suspensions,612

the dislocation of other kinds of complex suspensions, for613

example made of non-spherical particles such as fibers, or614

even active particles, should be considered. We expect that615

exploring different flows will enable a better comprehension616

of the interactions between particles that can lead to more617

predictive manufacturing processes.618

Materials and Methods619

620

Particulate suspensions. The suspensions are made of polystyrene 621

particles (DynoSeeds from Microbeads) with measured diameters of 622

21.6± 0.9µm, 80.3± 5.0µm, 144.2± 8.3µm, 249.0± 4.2µm, and 623

578.1± 10.1µm. These particles are referred in the article as 20µm, 624

80µm, 140µm, 250µm, and 500µm, respectively. The roughness of 625

the particles is of order 100nm (39) and their density in the range 626

ρ = 1050− 1060 kg/m3. The particles are dispersed in a density- 627

matched interstitial liquid to prevent buoyancy effects. We primarily 628

use AP100 silicone oil (from Sigma Aldrich) of shear viscosity 629

ηf = 120 mPa.s and surface tension γ = 24 ± 2 mN/m at 20◦C, 630

which perfectly wets the particle. We also conduct experiments 631

with particles dispersed in PEG (Poly(ethylene glycol-ran-propylene 632

glycol) monobutyl ether, Sigma Aldrich), for which ηf = 2.5 Pa.s 633

and γ = 45 mN/m. The molar weight being as low as 3900 g/mol, 634

this solvent can be considered Newtonian. For both interstitial 635

liquids used in this study, the settling time of the particles is much 636

longer than the time scale of the experiments so that the suspensions 637

can be considered as neutrally buoyant. 638

The bidisperse suspensions are composed of the same interstitial 639

fluid (silicone oil AP100) and made using a couple of particle sizes 640

(dS, dL) chosen amongst (20 µm, 80 µm), (20 µm, 140 µm), (20 µm, 641

250 µm), (80 µm, 140 µm), (80 µm, 250 µm). In these experiments, 642

we also vary the volume fraction of small particles ξ = φS/(φS +φL). 643

The tridisperse suspensions contains one-third of 20 µm particles, 644

one-third of 140 µm, and one-third of 500 µm. 645

Pinch-off experiments. The suspensions are transferred to a syringe 646

and then manually extruded through a nozzle of outer diameter 647

2.75mm (for wetting liquids, the outer diameter is the relevant 648

length scale). The extrusion is conducted slowly to avoid any 649

inertial effects. The experiments are recorded using a high-speed 650

camera (Phantom VEO 710) equipped with a macro lens (Nikon 651

Micro-Nikkor 200mm AI-S). To resolve perfectly the contour of 652

the drop and the filament, we place a LED panel (Phlox) behind 653

the experimental setup. The time-evolution of the contour of the 654

drop and the minimum diameter of the filament h(t) are extracted 655

through custom-made routines using ImageJ and Python. 656

Rescaling and relevant lengths. To measure h?, we rescale the time 657

as αη(tc − t) + ∆t, and find the critical thickness at which the 658

rescaled dynamics of the suspension deviates from the dynamics of 659

the interstitial liquid. The stretching parameter αη accounts for the 660

viscosity difference between the suspension and the Newtonian liquid 661

used for comparison. The time-shift ∆t accounts for the acceleration 662

of the thinning due to the presence of the particles. Previous work 663

at constant volume fraction φ suggested that αη can be seen as 664

the viscosity ratio between the suspension and the comparative 665

Newtonian liquid ηr = η/ηf (17). However, the present study shows 666

that this result does not hold if the difference in viscosity between 667

the suspensions and the viscous liquid used for comparison is too 668

large. Although αη follows the same divergence as the viscosity, the 669

evolution of αη over a broad range of volume fraction φ does not 670

quantitatively match the viscosity of the suspensions measured with 671

a rheometer. The length h? is the thickness at which the rescaled 672

dynamics of the suspension deviates from that of the interstitial 673

fluid. We defined it systematically as the point where the thinning 674

rate dh/dt of the suspension differs by more than 5% from that of 675

the interstitial liquid. The length h′ (smaller than h?) is defined 676

as the thickness at which the thinning dynamics of the filament 677

becomes linear, i.e., follows a capillary-viscous regime. 678

Dislocation. To describe the dislocation regime, we consider the 679

stretching of a liquid film of thickness a between two portions of 680

suspension, pulled apart at the velocity ȧ. We estimate the power 681

dissipated in the flow within. Assuming the suspension on each 682

side of the film is much more viscous than the interstitial liquid 683

(ηr � 1) we approximate the flow as that of two plates pulled 684

apart. The liquid film is then set between two cylindrical plates of 685

diameter h, respectively, at positions z = 0 and z = a. By solving 686

the Stokes equation in the lubrication approximation, we obtain 687

the axial velocity gradient: 688

∂ur

∂z
= 3

ȧ

a3 r(2z − a). [4] 689

We integrate the velocity gradient over the volume of the film and 690

obtain the order of magnitude for the power of viscous dissipation 691
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in the neck:692

Pdis =
∫∫∫

Ω
ηf

(
∂ur

∂z

)2
dΩ ∼ ηf

h4

a3 ȧ
2. [5]693
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