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At large scales, particulate suspensions flow like homogeneous vis-
cous liquids, but at the particle scale the role of the local heterogene-
ity brought by the particles cannot be neglected. The volume fraction
also matters: in dense suspensions, particulate effects can be felt
across distances much larger than the particle diameter. Therefore,
whether a suspension should behave as a homogeneous or a hetero-
geneous fluid is a matter of scale. Here, we consider the canonical
situation of the pinch-off of suspension drops to study the behavior
of suspensions at different scales. Initially, the filament of suspen-
sion thins down like a homogeneous liquid until reaching a critical
thickness at which the thinning accelerates. Eventually, a region de-
void of particles appears, and the break-up occurs similarly to a ho-
mogeneous viscous liquid. Although this problem have been studied
for almost twenty years, the role of heterogenety in the acceleration
of the pinch-off is still not understood. We show that the onset of het-
erogeneity corresponds to the dislocation of the suspensions where
local fluctuations in particle concentration increase. We derive scal-
ing laws for the dynamics in the heterogeneous regime and develop a
model to predict the coherence length at which the discrete nature of
the particles appears and demonstrate that this length depends both
on the particle size and the volume fraction of the suspension. We
extend this approach to polydisperse suspensions. Our work sheds
light on the mesoscopic scale below which starts the heterogeneous
regime and a continuum approach is not valid anymore.

Pinch-off | Suspensions | Interface | Singularity | Heterogeneity

S uspensions are ambivalent fluids. Depending on the length
scale at which they flow, they can be considered homo-
geneous or heterogeneous. At length scales much larger than
the particle size, a suspension behaves like an effective viscous
liquid whose viscosity 7(¢) increases with the volume fraction
of particles ¢ (17 ). However, below a certain length scale,
fluctuations of particle concentration can strongly influence
the flow, and the heterogeneous nature of the particles plays
a crucial role. This change of scale naturally occurs during
the breaking of a liquid into droplets: as a drop detaches
from a nozzle, the neck that binds the drop to the nozzle
thins down and eventually vanishes (2-4). In the capillary
regime, the thickness of this liquid neck h(t) may undergo dif-
ferent self-similar regimes (5): if the flow is capillary-inertial,
h(t) ~ (v/p)Y3(te — t)¥3, if the flow is capillary-viscous,
h(t) ~ v(tc — t)/n. The neck finally breaks up in a finite-time
singularity at time t..

In practical applications, the atomized fluids can be suspen-
sions, containing dispersed particles. For example, in ink-jet
printing (6, 7), bio-fluids printing (8), and spray painting, the
fluids contain solid objects, that may be rigid (pigments) or
not (cells), as well as polymers and other solutes. Therefore, as
a liquid neck of such complex fluids thins down, its thickness
successively goes through the length scales of each component.
This reveals the heterogeneous nature of the fluid: the afore-
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mentioned self-similar regimes disappear and make way for
thinning regimes that are specific of the components. A well-
known example is the thinning of a thread of dilute polymer
solution (9): initially, the liquid neck thins down like an invis-
cid Newtonian fluid, following the power law h(t) o (t. —t)%/2.
At a certain point, the polymer starts interacting with the
flow and the thickness h(t) decreases exponentially with time.
Adding solid particles to the polymer solution does not result
in a new thinning regime, but it significantly changes the
threshold from one regime to another (10).

Understandably, the complexity of the problem drastically
increases with the number of components, because it implies
an increase of the number of length scales. Also, each kind
of component (particles, polymers, cells, etc...) may exist
in a range of sizes. To allow for a physical insight, we must
narrow the focus to a single kind of component. Therefore, in
order to isolate the viscous effects in the pinch-off of complex
fluid drops, we investigate non-Brownian, neutrally-buoyant
particles dispersed in a viscous liquid.

The seminal work of Furbank and Morris on the pinch-off
of suspension drops revealed a two-step mechanism (11). The
particles are initially homogeneously distributed in the neck.
Then, when the neck has thinned down to a few particle diam-
eters, the particle volume fraction ¢ fluctuates. It was later
shown that the homogeneous regime is similar to the thinning
of a viscous liquid of matching viscosity (12, 13). At some
point, the velocity profile in the neck becomes discontinuous
(14), and the thinning accelerates (15). This transition from
the homogeneous regime to the heterogeneous regime during
the generation of suspension drops occurs at a critical thick-
ness that increases with the particle diameter d, but which
is not necessarily of the same order of magnitude (12). After
some time, the neck becomes thinner than the particle diame-
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ter and reduces to the interstitial liquid (16). For bidisperse
suspensions, the transition depends on the relative fraction of
each size of particles: the more large particles there are, the
earlier the heterogeneous regime (17).

Past studies have suggested that the heterogeneous regime
observed may be due to shear-thickening (18, 19), or to jam-
ming in the neck (20). However, these explanations are incom-
patible with the dilute and semi-dilute cases, in which even
one single particle is sufficient to trigger the acceleration of the
pinch-off (14). It was reported that concentration fluctuations
were amplified by the curvature gradient at the neck (21).
Unfortunately, capillary effects alone cannot explain why the
heterogeneous regime starts at thicknesses much larger than
the particle diameter (12, 22). Accordingly, the present study
aims to unify the different descriptions of suspension drop
pinch-off and to clarify the role of solid heterogeneities on
drop formation.

The transition to a heterogeneous regime where the particles
impact the dynamics beyond a simple increase in viscosity is
not specific to the pinch-off of suspension drop. Such behavior
has also been reported for other flows of suspensions, dip-
coating (23, 24), inclined plane (22), drop impact and sheet
spreading (25), jet of suspensions (26), or spreading of a
contact line (27). In all of these situations, the suspensions
are found to behave either like homogeneous viscous liquids or
like a heterogeneous media. The passage from one regime to
another occurs at a specific length scale, which can be much
larger than the particle diameter d and depends on the volume
fraction ¢ and d. In the discussion, we use the results of the
pinch-off dynamics to conceptualize the onset of heterogeneity
in free surface flows of suspensions.

We study the pinch-off of drops of suspensions, first
monodisperse, then polydisperse. By considering the sta-
bility of a concentration fluctuation at the neck, we identify
a new specific thinning regime, that we call the dislocation
of the suspension. We derive scaling laws that describe this
accelerated regime and its duration; these scaling laws match
experiments conducted with a wide range of particle diame-
ters, volume fractions up to ¢ = 50%, and are applicable to
monodisperse and polydisperse suspensions. Moreover, apply-
ing this approach to results from the literature (13, 18, 19, 28)
enables a global vision of the pinch-off mechanisms of drops
of non-Brownian suspensions.

Thinning Dynamics

Figures 1(a)-(f) show examples of the pinch-off of drops with
the pure silicone oil, further used as interstitial liquid, and
suspensions of particles of diameter d = 140pm and increasing
volume fractions ¢ = 2%, ¢ = 20%, and ¢ = 50%. The influ-
ence of the diameter of the particles composing the suspension
is also illustrated for a volume fraction of ¢ = 50% and par-
ticles of diameters 20pum and 250um particles, respectively.
In the absence of particles, i.e., for the interstitial fluid only,
the pinch-off dynamics illustrated in figure 1(a) shows that
the neck that binds the drop to the nozzle thins down as
gravity and capillary pressure pull on it, and stretches into
a long filament. Eventually, the thinning accelerates in the
region where this filament connects to the nozzle leading to
the break-up of the filament.

The initial thinning dynamics of the particulate suspensions
is similar to the pure Newtonian liquid, although the dynamics

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

is much slower due to the increase in viscosity induced by the
presence of particles. In the dilute regime, ¢ = 2% shown in
figure 1(b), the neck stretches into a slender filament, similarly
to the pure liquid case, but this filament is eventually dis-
turbed by the particles. Each particle trapped in the filament
leads to the formation of a satellite drop, typically when the
thickness of the filament is comparable to the particle size.
The satellite drops are separated by viscous filaments that
thin down with an associated dynamics similar to the pure
liquid case. At moderate volume fraction, e.g., ¢ = 20% illus-
trated in figure 1(c), the particles begin to slightly deform the
liquid-air interface before they are pulled apart. Eventually,
a thin filament free of particles connects the drop to the rest
of the liquid at the nozzle. The resulting long filament of
interstitial liquid is much thinner than the particle size and
free of particles.

For dense suspensions, here ¢ = 50% in figure 1(d)-(f), the
neck breaks faster, and the pinch-off dynamics depends on
the particle diameter. For the 20 um particles, illustrated in
figure 1(e), the neck stretches significantly, but its shape is very
different from the pure liquid case. The thinning dynamics
with large particles is highly accelerated, as illustrated with
the 250 pm particles shown in figure 1(f). In all three dense
cases shown here, the penultimate picture reveals a very short
time during which the neck is made of interstitial liquid only.
However, the length of this filament without particles is much
shorter than the one observed for smaller volume fractions.
Another significant difference during the pinch-off dynamics is
the location where the break-up occurs. Indeed, the viscous
liquid always breaks up near the nozzle at the top of the
filament, whereas all suspensions break further away from the
nozzle, especially for small particles. Besides, the thinning of
suspensions is a localized phenomenon as shown by image cross-
correlation that enables to estimate the distance over which the
velocity profile evolves (see Supplementary Information (29)).
We find the velocity gradient to be negligible outside the
volume h? around the neck (14).

At each time step, we extract the thickness of the neck at
the thinnest point h [see figure 1(a)]. The pinch-off of the
neck occurs at a finite-time ¢ = t., and we thus consider the
time to pinch-off, ¢t — t. Figure 2(a) reports the thinning
dynamics h(t) = f(tc —t) of suspensions of 140 pum particles of
volume fractions ¢ ranging from 2% (purple) to 50% (yellow),
in real-time in figure 2(a) and in rescaled time in figure 2(b).
In all plots, the time elapses from right to left. For comparison,
we reported in black the thinning dynamics of the pure liquid
without particles.

For the most dilute suspensions (¢ = 2%, in purple), the
dynamic is barely distinguishable from that of the pure lig-
uid. The difference appears as soon as the volume fraction
is larger than 10% where the thinning dynamics observed is
slower. More generally, the larger the volume fraction ¢ of the
suspension, the longer the thinning and the later the pinch-off.
However, the shape of the thinning dynamics also changes with
the volume fraction. For the most concentrated suspensions
used here (¢ = 50%, in yellow), the dynamics is slower but
continuously accelerated. Thus, the thinning of the suspension
is not simply faster but intrinsically different and driven by a
different physical mechanism.

Bonnoit et al. have shown that down to a certain neck
thickness, a particulate suspension behaves like a homogeneous

Virgile Thiévenaz et al.
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Fig. 1. Time series of the pinch-off of drops of (a) interstitial liquid (silicone oil, no

particles), (b) ¢ = 2%, (c) ¢ = 20%, and (d) ¢ = 50% of d = 140um particles,
(e) ¢ = 50% of d = 20um particles, and (f) ¢ = 50% of d = 250um particles.

The nozzle has an outer diameter of 2.75 mm and serves as a scale bar. Videos are
available in Supplementary Information (29).

Virgile Thiévenaz et al.

liquid of matching viscosity (12). In addition, the thinning
dynamics of the suspension can be rescaled onto the dynam-
ics of another viscous liquid (17). The method consists in
stretching the time to pinch-off by a factor as, and shifting it
by the duration At, thus changing tc. —t to a,(tc — t) + At.
For each suspension used in this study, we compute the values
of a;; and At so that the early thinning dynamics of the sus-
pension collapses onto the dynamics of the interstitial liquid.
Figure 2(b) shows the rescaled thinning dynamics obtained
with this method when varying the particle volume fraction ¢.
Once the proper rescaling is applied, the thinning dynamics
for suspensions of varying volume fraction collapse onto that
of a homogeneous fluid, and the two dynamics match down to
a critical thickness h*, which depends on the particle size and
the volume fraction. When the neck becomes thinner than h*,
the thinning of the suspension accelerates and becomes faster
than for the equivalent liquid, as can be seen in figure 2(b).

The specific dynamics of the suspension when h < h* is
itself divided into two regimes, as illustrated in logarithmic
scale in figure 2(c) for a suspension of volume fraction ¢ = 40%
and particle size d = 140um. Below the critical thickness
h*, there are two well-defined regimes, each captured by a
different power-law h(t) ~ (tc —t)®. The latest regime, in
which h decreases linearly with time, is the viscous-capillary
regime known for the pinch-off of viscous liquids (30, 31). The
experiments reveal that there are no particles in the neck
anymore at this time. The experimental thinning rate in
this case is h(t)/(tc —t) = 0.08 m.s™!, and the theoretical
thinning rate (30) is 0.0304v/n: = 0.066 m.s™" (1 denotes
the viscosity of the interstitial fluid), which is slightly smaller
but in good agreement with our measurement. Therefore, we
can define a threshold thickness, h’, below which particles
do not influence the detachment of the drop anymore. The
existence of the two thresholds h* and h’ leads to the definition
of three regimes, shown in Figure 2(c): (I) for h(t) > h*, an
equivalent liquid regime, in which the suspension behaves like a
homogeneous liquid of matching viscosity, (IT) for A’ < h(t) <
h*, a dislocation regime, during which the heterogeneity of
the suspension plays a crucial role, and (IIT) for h(t) < h’, the
interstitial regime, in which the neck is devoid of particles,
and the thinning is simply the thinning of the interstitial
regime. Besides, the transition from (I) to (II) corresponds to
a change in the evolution of the shape of the drop: for h > h*
the whole drop deforms, and for h < h* only the neck does
(see Supplementary Information (29)). The entry into the
dislocation regime marks the onset of heterogeneity, where the
discrete nature of the particles affects the dynamics beyond
simply increasing the macroscopic viscosity.

Onset of heterogeneity

Thinning dynamics. Deforming a dense suspension leads to
the rearrangement of the particles, which causes dissipation.
The local volume fraction of particles remains constant if the
particles are simply sliding or rolling along each other, and
fluctuates if they move away or towards each other. We hy-
pothesize that the detachment of a suspension drop accelerates
because particles start moving away from each other in the
vicinity of the neck and refer to this phenomenon as the dislo-
cation of the suspension ligament. The word dislocation is not
to be taken in its meaning of defect in a lattice, for there is
no order in the suspension but in its etymological meaning of
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Fig. 2. (a) Thinning dynamics of suspensions of 140pm particles dispersed in silicone oil at various volume fractions ¢ (colored symbols). The black symbols represent the
dynamics of the interstitial fluid (¢ = 0). (b) Thinning dynamics in rescaled time. For each suspension, the time to pinch-off t. — ¢ is shifted and stretched into o, (tc —t) + At,
so that the dynamics overlaps with that of the interstitial fluid in the early thinning regime. The dynamics of the suspensions deviate from the interstitial liquid and accelerate at
the critical thickness h = h*, represented by the horizontal dashed lines for volume fractions ¢ = 20, 30, 45, and 50%. (c) Thinning dynamics in logarithmic scale, for

¢ = 40% and d = 140um. The neck undergoes three successive thinning regimes: (I) the homogeneous liquid regime, (Il) the dislocation, where h(t) ~ (tc — t)

(I1) the interstitial regime, where h(t) ~ t; — t, similarly to a viscous liquid.

sudden separation. The dislocation mechanism begins when
pulling particles apart becomes energetically favorable com-
pared to rearranging them. In other words, dislocation is the
growth of local fluctuations of the particle volume fraction.

To describe the dislocation regime, we consider a liquid
film of thickness a between two portions of suspension, which
represents the local fluctuation of concentration in the neck.
The viscosity of the suspension is denoted 7; the viscosity of
the interstitial liquid n¢. Pulling the two portions apart at
the velocity  dissipates the power nch*a®/a® (see Materials
and Methods). We assume that during the dislocation regime,
a is of the order of magnitude of the particle diameter so
that a ~ d. By balancing the power associated with the
capillary forces vh?/(t. —t) and the power associated with the
viscous dissipation, we obtain the scaling law for the thinning
dynamics in the dislocation regime:

h(t) ~ (te — )% [Ld 1]
Ui

Eq. [1] describes the evolution of the thickness of the neck as
the capillary pressure makes particles move away from each
other and captures well the dynamics in the regime (II) shown
in Figure 2(c). We systematically observed this scaling law in
all of our experiments for suspensions with volume fraction
¢ > 20%. For dilute enough suspensions, there is a range
of volume fractions in which the thinning of the neck shifts
directly from the equivalent regime (I) to the interstitial regime
(III). Therefore, the dislocation of the suspension only occurs
for concentrated enough suspensions, and the corresponding
minimum volume fraction ranges from less than 2% for 20 um
particles to 20% for 500 pm particles.

Transitions between the different thinning regimes. Fig-
ure 3(a) reports the evolution of the critical thickness h*
at the transition between the equivalent fluid regime (I) and
the dislocation regime (II) when varying the volume fraction
¢ for monodisperse suspensions with different particle diame-
ters. The thickness h* increases both with ¢ and d. Indeed,
the larger the particles, the larger the thickness h*, and the
denser the suspensions, the larger h*. Interestingly, the het-
erogeneities brought by the particles start occurring at a much
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1/2 ‘and

larger length than the particle diameter. The critical thickness
of the transition between the dislocation regime (II) and the
interstitial regime (II1), h’, depends on the particle diameter d
but not significantly on the volume fraction, as illustrated in
Figure 3(b). This observation is consistent with the concept
of dislocation since h* marks the onset of heterogeneity when
the suspension begins to dislocate, whereas A’ marks the end
of dislocation when the suspension in the neck is so dilute that
it cannot be considered a suspension anymore.

Eq. [1] provides a prediction of the critical thickness h* as
a function of the properties of the suspension. Assuming that
before dislocation, the dynamics result from the balance be-
tween gravity and the effective viscosity of the suspension, the
relevant time scale in the equivalent liquid regime (I) is given
by t* = n/(pgh*). By combining this viscous-gravitational
time scale with Eq. [1], we obtain h*/d ~ 1'% (£./d)*?,
where . = \/7v/(pg) is the capillary length (1.5 mm for the
silicone oil used here). We estimate the relative viscosity of
the suspension 7:(¢) = n(¢)/n¢ using the Maron-Pierce cor-
relation (32), 7:(¢) = (1 — ¢/pe) >, with ¢. ~ 57.8% for the
suspensions used here (17). Finally, we obtain the evolution
of the critical thickness at the dislocation regime:

IR ¢\ 5
dN(d> <_¢c> ' g
Figure 3(c) compares the rescaled dislocation threshold
h*/d to the quantity (£./d)?/*(1 — ¢/¢.) "3, which includes
the two input parameters of our experiments: the particle
diameter d and the volume fraction ¢. We report in this
figure the experimental results for all monodisperse suspensions
considered in this study. The experimental results collapse
onto a master line, which matches Eq. [2] with the prefactor
0.6. The prediction only fails for very dilute suspensions of
large particles, shown by the purple points at the bottom left
of figure 2(c). In this case, the concept of dislocation becomes
irrelevant since there is not enough particles in the neck to
consider it as homogenous even during the early stage of the
pinch-off. The observation that this approach fails only in
this most extreme situation emphasizes the robustness of the
model, despite the rough assumptions made previously.
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Fig. 3. (a) Critical thickness at the transition between the equivalent fluid regime (1) and the dislocation regime (Il), *, and (b) at the transition between the dislocation regime
(1) and the interstitial regime (1ll), A’, as a function of the volume fraction ¢ for monodisperse suspensions. (c) h* /d and (d) h’/d plotted following the prediction given by
Eq. [2] and Eq. [3], respectively. The different symbols represent different particle sizes, and the big diamonds represent experiments conducted with PEG. In (c) and (d), the
colors represent the volume fraction, from dilute (2%, purple) to dense (50%, yellow), and the lines have a slope one.

The excellent agreement between our experiments and the
model demonstrates that the acceleration of the thinning for
dense enough suspensions is indeed induced by the disloca-
tion at the neck. Changing the solvent viscosity and wetting
properties, from 0.12 Pa.s (silicone oil) to 2.6 Pa.s (PEG, dia-
monds in figure 3(c)) does not affect the collapse of the data
and the agreement between the model and the experiments.
We were also able to extract the value h* from recent exper-
iments performed by Moon et al. (13), which provided the
thinning dynamics for suspensions of 10um particles. The
model presented in this paper also captures their experimental
data (29).

Similarly to Eq. [2], we can derive the threshold A’ between
the dislocation regime (II) and the interstitial regime (III). The
typical time scale at this transition is given by ¢’ ~ n¢/(pgh’).
Combining this time scale with Eq. [1] yields:

1% L. 2/3

d”~ (d) ' 1)
The corresponding experimental measurements of h’ plotted
with respect to (£c/d)?/? for different monodisperse suspen-
sions are reported in figure 3(d). Once again, we obtain an
excellent agreement between the model of Eq. [3] and the
experimental results. The collapse of the data onto the pro-
posed law provides a second proof that the acceleration of
the thinning is caused by the dislocation. Similar to what
was observed for h*, the prediction for h’ fails for very dilute

Virgile Thiévenaz et al.

suspensions of large particles. In these cases, it is notable that
h* and h’ are very close and smaller than the particle size
d. This means that the thinning switches directly from the
equivalent regime to the interstitial regime. Indeed, since not
enough particles are present in the neck, there is no dislocation
mechanism.

Polydisperse suspensions. Monodisperse suspensions, charac-
terized by a single length scale, the diameter d of the particles,
are valuable to study due to their simplicity. Nevertheless,
actual manufacturing applications or capillary processes pri-
marily involve polydisperse suspensions. In a polydisperse
suspension, each possible particle size is theoretically a rele-
vant length scale of the flow. As a first step, we consider the
dislocation of bidisperse suspensions. Bidisperse suspensions
contain a volume fraction of particles ¢, split amongst ¢g
of small particles of diameter ds and ¢r, of large particles of
diameter dy,. We introduce the volume ratio of small particles
& = ¢s/, and the size ratio of particles § = dr./ds (33). For
all of these suspensions and a volume fraction ¢ ranging from
0 to 50%, we observe a thinning dynamic similar to that of
the monodisperse case, with the three successive regimes. The
main difference is that the thresholds of the dislocation regime,
h*, and h’, now depend on the composition parameters, &, and
é.

Polydisperse suspensions are defined by the size distribution
of their particles, which we can be described through a volume-
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Fig. 4. (a) Critical thickness between the equivalent fluid regime (I) and the dislocation regime (ll) rescaled by the volume-averaged particle diameter, h*/d_, reported following
the prediction given by Eq. [2]. (b) Critical thickness between the dislocation regime (Il) and the interstitial regime (1ll) rescaled by the particle diameter, k.’ /d, plotted following
the prediction of Eq. [3]. In both figures, the black open symbols correspond to the monodisperse suspensions presented in figure 3, each symbol shape corresponding to
different particle diameter. The colored symbols represent the results for the polydisperse suspensions, each symbol corresponding to a couple of particles sizes (see legend).
The colors represent the share of small particles in each suspension & from purple for & — 0 (large-particle dominated regime) to yellow for & — 1 (small-particle dominated
regime). The red crosses represent tridisperse suspensions containing one-third of 20 pum, one-third of 140 pm and one-third of 500 pm particles. For all suspensions, the
volume fraction varies from 2 to 50%. The experiments represented by big diamonds are conducted in PEG, and all the other experiments are performed in silicone oil.

averaged particle diameter d. For a bidisperse suspension, this
quantity is d = &€ds + (1 — &)dr.. The choice of the volume-
averaged diameter over the number-averaged diameter will
be justified in the last section. In addition to the particle
size distribution, polydisperse suspensions also differ by their
lower viscosity for a given particle volume fraction than a
monodisperse suspension. Indeed, the polydispersity of the
particles enables a more efficient filling of the space, described
by a larger value of the critical volume fraction ¢¢(&,d). The
viscosity of a polydisperse suspension can be computed from
the jamming fraction of a polydisperse sphere packing, using
the Maron-Pierce correlation (17, 32), 1 ~ (1 — ¢/¢e(€,8)) 2,
where the critical volume fraction ¢. is estimated through
the model of Ouchiyama and Tanaka (34). From there, we
compute h* and k' using d and ¢.(,d) in Eqgs. [2]-[3].

Figure 4(a) reports the evolution of h*/d and figure 4(b)
the evolution of h'/d, compared to the predictions of Egs. [2]-
[3]. The colored symbols represent the bidisperse suspensions,
and their color indicates the volume ratio of small particles
&. The red crosses represent experiments performed with
tridisperse suspensions composed of one-third of 20 um, one-
third of 140 pm, and one-third of 500 um particles, and a total
particle volume fraction ¢ ranging from 2% to 50%. The
black open symbols represent the monodisperse suspensions,
already shown in figures 3(c)-(d). We show all experiments
on the same graph to highlight the universality of our model
beyond the simplest monodisperse case usually considered in
the literature.

For polydisperse suspensions, the critical thickness defining
the thresholds of the dislocation regime, h*, and h’, collapse
onto the same master line as the monodisperse suspensions.
The limitations are the same as in the monodisperse case.
More specifically, dilute suspensions of large particles do not
dislocate because there are too few particles in the neck. The
collapse of h' versus d shown in figure 4(b) is even more ap-
parent. Indeed, using a polydisperse suspension allows tuning
the volume-average diameter, and these experiments clarify
the dependence of h’' on the particle diameter. Therefore, it
appears that the dislocation regime only depends on the size
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distribution through the volume-averaged diameter d and the
critical volume fraction ¢.(¢,0).

Discussion

Coherence length. A notable feature in the pinch-off of suspen-
sion drops is that the threshold to the heterogeneous regime
h* can be much larger than the diameter of the particles d
and also depends on the volume fraction ¢. Indeed, a classical
interpretation of the transition between a homogeneous and a
heterogeneous regime is that the equivalent fluid regime stops
when the scale of the flow (here the neck width h) becomes
comparable to the particle size (11, 15). Such an interpretation
would lead to h* ~ d, with a proportionality factor of order
one. However, our experiments demonstrate that although for
dilute suspensions, h* is indeed of the order of the particle
diameter, it becomes much larger than d at larger volume
fractions. For instance, for ¢ = 50%, we measure h* = 1.6
mm for 140 um particles, which is more than eleven times the
diameter of the particles d. With 20 um particles, we measure
h* = 1.24 mm, 62 times larger than the particle diameter.
More generally, Figure 3(c) shows that the ratio h*/d varies
over two orders of magnitude and strongly depends on the
volume fraction. The polydisperse suspensions exhibit the
same trend, as reported in Fig 4(a). Therefore, the heteroge-
neous structure of dense suspensions plays a role at a scale
much larger than the particle diameter. A similar feature has
been previously reported for the free-surface flow of dense
suspensions on an inclined plane. Indeed, Bonnoit et al. (22)
have defined a mesoscopic length scale that increases with the
volume fraction and diverges at the critical volume transition
¢c. The critical thickness h* reported in this study is similar
and corresponds to the limit of the homogeneous regime, at
the onset of heterogeneity. In the present case, this length
would also diverge when ¢ — ¢..

Physically, the length h* can be seen as the coherence
length of the interactions through which momentum diffuses.
As a particle undergoes a fluctuation of its position, it exerts a
force upon its neighbors through the lubrication film between
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them. If there are contacts between particles, they transmit
the momentum directly. Other forces can also act on the
particles. For instance, for dilute suspension, the viscous drag
on the particle should also be taken into account. If the
particles are small enough, they will be subject to Brownian
motion and van der Waals forces. The coherence length can
then be seen as the typical length over which a fluctuation will
be damped. Therefore, a stress applied on the suspension will
be distributed across a volume defined by the coherence length.
In the present configuration, during the detachment of the
drop, the curvature of the neck generates a capillary pressure
gradient between the neck and the rest of the suspension. The
resulting stress will be distributed across the suspension if
the neck is thicker than the coherence length. However, if
the neck is thinner than the coherence length, a fraction of
the suspension may experience larger local stress, which pulls
the particles apart from each other and lead to the break-up
through a dislocation. Therefore, here the coherence length
controls the stability of the suspension against a concentration
fluctuation.

Here, the words fluctuation and coherence length are meant
to suggest an analogy with statistical mechanics, even if it is
only a rough sketch. As the suspension flows, each particle
creates a local disturbance, and one can imagine an ideal state
of local equilibrium where the distance between particles is
maximum so the global dissipation is minimum. Deviations
from this ground state would be caused by the preparation
of the suspension and by the constraints applied on the sus-
pension (shape of the container, stress, body force). There
are similarities with this approach and the Edwards ensemble
(35, 36), in which the volume fraction of granular media plays
the role of energy. For suspensions, volume fraction is directly
linked to the rate of dissipation (by the viscosity), which is
the quantity that should be minimized.

The correlation length also applies to polydisperse suspen-
sions, although the range of sizes of the particles makes the
interactions between particles more complex. Assuming that
the volume of the lubrication film around a given particle
is directly proportional to the volume of that particle, the
lubrication pressure between small particles and between large
particles is of different magnitude. This explains why h* is
relatively much larger for 20 pm particles than for larger par-
ticles [figure 2(c)]. Indeed, for smaller particles, the relative
lubrication pressure between them is stronger, and therefore
a perturbation may spread further. Therefore, the coherence
length should depend not only on the number of interactions
but also on the relative force of these interactions. As a result,
the relevant length scale of polydisperse suspensions is the
volume-averaged diameter rather than the number-average
diameter. Similarly, the Ouchiyama-Tanaka model (34) with
which we compute ¢. for the polydisperse suspensions is based
on a volume average of the local volume fraction. There-
fore, the pinch-off dynamics, particularly the transition be-
tween the different regimes, of a polydisperse suspension can
be inferred from the volume-averaged particle diameter and
volume-averaged volume fraction.

Our pinch-off experiments with bidisperse suspensions re-
veal that they followed dynamics similar to monodisperse
suspensions, meaning that pinch-off does not filter particles
by size. The dislocation model enables to understand why:
despite the size difference, the movement of small particle

Virgile Thiévenaz et al.

remains strongly correlated to that of large particles, and
they are not easily separated. This good agreement of our
model with the bidisperse suspensions enable us to neglect self-
filtration (37, 38) as a mechanism for the accelerated pinch-off.

Two-particle interaction. Contrarily to h*, the length k' does
not depend much on the volume fraction ¢ [figure 3(c)]. From
a neck thickness h(t) = h’ and smaller, the neck reduces to a
filament of interstitial liquid, without any particle in it. Just
before this transition, the neck contains two particles, and
the film between them experiences all of the stress acting on
the neck. Thus, A’ can be interpreted as the thickness that
balances the viscous interaction between the last two particles
of the neck and the driving force of the thinning (capillarity
and the weight of the drop in the present case).

Multiple dislocations. Various studies on the pinch-off of sus-
pension have reported qualitatively similar results. In par-
ticular, the pinch-off of suspension drops from other studies
should also be explained by the mechanisms and scaling law
presented in this work (18, 19). In both studies, the thinning
of the suspension was empirically interpreted in terms of non-
Newtonian rheology. We demonstrate in the following that
the concept of dislocation can explain these results without
involving a non-Newtonian rheology.

Roché et al. studied the thinning of corn-starch suspen-
sions in water, with an average particle diameter of 14um
(18). For ¢ = 37%, they observed a long filament that would
eventually destabilize into “jammed” regions where the strain
rate was zero and “flowing” regions where the thinning con-
tinues. They measured the wavelength between two flowing
regions as 700um, although the theory of the Rayleigh-Plateau
instability predicts 7 mm. Applying Eq. [2] to their con-
figuration (d = 14pm, ¢, = 2.7mm for water), we obtain
628um < h* < 875um in their range of volume fraction
(23% < ¢ < 39%). Thus, if the length of the neck is much
longer than h* when h(t) = h*, several dislocations can happen
simultaneously, and h* is then the wavelength of the desta-
bilization. Although the authors considered the regions not
thinning as jammed, it does not necessarily need to be the case
and the thinning simply continues where the viscosity is the
lowest, i.e., in the dislocating regions. Pan et al. (19) studied
denser suspensions of smaller particles (1.3 um < d < 10 pm,
with 55% > ¢ > 59%). The thinning dynamics of their aque-
ous suspensions are similar to those of our viscous liquids,
however they did not observe dislocation. In their configu-
ration, the coherence length of their suspensions, calculated
through Eq. [2], is a few millimeters depending on the jam-
ming fraction. The filament is then always shorter than the
wavelength of the destabilization and is therefore stable.

Dislocation of capillary bridges. In a recent study, Chateau et
al. observed the pinching and break-up of capillary bridges
of suspensions (28). Although their configuration is different
from a pending drop, they also reported a deviation from the
homogeneous liquid regime but did not provide a model to
explain the variations of h*. The scaling law for the thinning
regime (Eq. [1]) matches their data for ¢ > 20%, whereas a lin-
ear law fits better for ¢ < 20% (29). Therefore, it seems that
by plotting the last moments of the dynamics, Chateau et al.
were observing the interstitial regime for ¢ < 20% and the dis-
location regime for ¢ > 20%. In the latter case, the interstitial
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regime may have been too short to be observed. However, their
empirical scaling for h* differs from ours, probably because
the flow is different.

Conclusion

The pinch-off of a drop of particulate suspension undergoes
three regimes: first, the equivalent liquid regime, followed
by a dislocation regime, and finally, the interstitial regime.
In the first regime, the drop of suspension behaves like a
drop of a homogeneous liquid of matching viscosity, and the
particles simply rearrange when the drop deforms: this is the
equivalent liquid regime. Below a certain thickness of the
neck, h*, the particles cannot simply rearrange themselves and
start moving away from each other: the suspension dislocates.
Finally, when particles are too far from each other to interact,
the neck reduces to a filament of interstitial liquid. This
is the interstitial regime, identical to the viscous-capillary
regime observed during the pinch-off of a viscous liquid. This
last transition occurs at the thickness h’, representing the
interaction range between two particles.

The dislocation of the suspension is caused by the amplifi-
cation of a fluctuation of local volume fraction. We obtained
in this study a scaling law for this regime, h(t) ~ (tc — t)*/?,
as well as for the critical thickness h* and h’. These predic-
tions captured all experiments, including those performed with
polydisperse suspensions. The critical length A* translates the
balance between the driving force of the interactions between
the particles. This length corresponds to a coherence length
of the suspension under the stress caused by capillary pressure
and the weight of the falling drop.

Although our experiments considered the detachment of a
drop, the concepts of coherence length and dislocation devel-
oped here go beyond this particular situation and should apply
to other suspension flow. Notably, the flow of suspensions
on an inclined plane exhibits a similar length scale, much
larger than the particle diameters, and defines the threshold
from the effective liquid regime to an intermediate regime (22).
Therefore, it appears that the onset of heterogeneity in the
flows of suspensions is controlled not directly by the size of
the particles, but by the reach of the long-range interactions
between them.

In conclusion, two length scales that depend on the particle
diameter d and the volume fraction ¢ characterize the capillary
flow of suspension: the reach of the interactions between
two particles and the coherence length of these interactions
across the suspension. Since the interactions occur because of
external stress, these length scales themselves depend on this
applied stress. Future studies will apply these concepts to other
systems involving suspensions, such as the formation of thin
films (23, 24), and the fragmentation of suspension ligaments
and sheets (25). In addition, beyond polydisperse suspensions,
the dislocation of other kinds of complex suspensions, for
example made of non-spherical particles such as fibers, or
even active particles, should be considered. We expect that
exploring different flows will enable a better comprehension
of the interactions between particles that can lead to more
predictive manufacturing processes.

Materials and Methods
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Particulate suspensions. The suspensions are made of polystyrene
particles (DynoSeeds from Microbeads) with measured diameters of
21.6 +£ 0.9 pm, 80.3 £ 5.0 um, 144.2 £ 8.3 um, 249.0 £ 4.2 um, and
578.14+10.1 um. These particles are referred in the article as 20 um,
80 um, 140 pm, 250 pm, and 500 pm, respectively. The roughness of
the particles is of order 100nm (39) and their density in the range
p = 1050 — 1060 kg/m3. The particles are dispersed in a density-
matched interstitial liquid to prevent buoyancy effects. We primarily
use AP100 silicone oil (from Sigma Aldrich) of shear viscosity
ne = 120 mPa.s and surface tension v = 24 + 2 mN/m at 20°C,
which perfectly wets the particle. We also conduct experiments
with particles dispersed in PEG (Poly(ethylene glycol-ran-propylene
glycol) monobutyl ether, Sigma Aldrich), for which n; = 2.5 Pa.s
and v = 45 mN/m. The molar weight being as low as 3900 g/mol,
this solvent can be considered Newtonian. For both interstitial
liquids used in this study, the settling time of the particles is much
longer than the time scale of the experiments so that the suspensions
can be considered as neutrally buoyant.

The bidisperse suspensions are composed of the same interstitial
fluid (silicone oil AP100) and made using a couple of particle sizes
(ds, dr,) chosen amongst (20 pm, 80 pm), (20 pm, 140 pm), (20 pm,
250 pm), (80 pm, 140 pm), (80 pm, 250 pm). In these experiments,
we also vary the volume fraction of small particles & = ¢s/(¢ps + ¢r).
The tridisperse suspensions contains one-third of 20 pm particles,
one-third of 140 um, and one-third of 500 pum.

Pinch-off experiments. The suspensions are transferred to a syringe
and then manually extruded through a nozzle of outer diameter
2.75mm (for wetting liquids, the outer diameter is the relevant
length scale). The extrusion is conducted slowly to avoid any
inertial effects. The experiments are recorded using a high-speed
camera (Phantom VEO 710) equipped with a macro lens (Nikon
Micro-Nikkor 200mm AI-S). To resolve perfectly the contour of
the drop and the filament, we place a LED panel (Phlox) behind
the experimental setup. The time-evolution of the contour of the
drop and the minimum diameter of the filament h(t) are extracted
through custom-made routines using ImageJ and Python.

Rescaling and relevant lengths. To measure h*, we rescale the time
as ap(tc —t) + At, and find the critical thickness at which the
rescaled dynamics of the suspension deviates from the dynamics of
the interstitial liquid. The stretching parameter o, accounts for the
viscosity difference between the suspension and the Newtonian liquid
used for comparison. The time-shift At accounts for the acceleration
of the thinning due to the presence of the particles. Previous work
at constant volume fraction ¢ suggested that oy, can be seen as
the viscosity ratio between the suspension and the comparative
Newtonian liquid n = n/n¢ (17). However, the present study shows
that this result does not hold if the difference in viscosity between
the suspensions and the viscous liquid used for comparison is too
large. Although a, follows the same divergence as the viscosity, the
evolution of o over a broad range of volume fraction ¢ does not
quantitatively match the viscosity of the suspensions measured with
a rheometer. The length h* is the thickness at which the rescaled
dynamics of the suspension deviates from that of the interstitial
fluid. We defined it systematically as the point where the thinning
rate dh/dt of the suspension differs by more than 5% from that of
the interstitial liquid. The length A’ (smaller than h*) is defined
as the thickness at which the thinning dynamics of the filament
becomes linear, i.e., follows a capillary-viscous regime.

Dislocation. To describe the dislocation regime, we consider the
stretching of a liquid film of thickness a between two portions of
suspension, pulled apart at the velocity a. We estimate the power
dissipated in the flow within. Assuming the suspension on each
side of the film is much more viscous than the interstitial liquid
(nr > 1) we approximate the flow as that of two plates pulled
apart. The liquid film is then set between two cylindrical plates of
diameter h, respectively, at positions z = 0 and z = a. By solving
the Stokes equation in the lubrication approximation, we obtain
the axial velocity gradient:

oup _38

Oz a3
We integrate the velocity gradient over the volume of the film and
obtain the order of magnitude for the power of viscous dissipation

r(2z — a). 4]
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