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Abstract: Vision ray techniques are known in the optical community to provide low-uncertainty
image formation models. In this work, we extend this approach and propose a vision ray
metrology system that estimates the geometric wavefront of a measurement sample using the
sample-induced deflection in the vision rays. We show the feasibility of this approach using
simulations and measurements of spherical and freeform optics. In contrast to the competitive
technique deflectometry, this approach relies on differential measurements and, hence, requires
no elaborated calibration procedure that uses sophisticated optimization algorithms to estimate
geometric constraints. Applications of this work are the metrology and alignment of freeform
optics.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The precise, contact-free, and full-field measurement of freeform optics is a challenge in modern
metrology [1]. A popular solution is a full-field interferometry that enables measurements with a
repeatability of a few nanometers for both the form and mid-spatial frequency (MSF) regime.
For freeform optics, the complex freeform surface of the sample may have high surface slopes
that necessitate the use of computer-generated holograms (CGHs) to provide a stable reference
wavefront that serves as an optical null [2]. However, the cost of CGHs is relatively high, and the
measurement uncertainty is highly dependent on calibration errors and misalignments. These
costs may limit the practical applicability of interferometry to high-volume measurements or
high-performance applications where the budget is justified.

Coordinate measuring machines (CMMs) provide point-wise measurements over large measure-
ment volumes and handle steep surface slopes. For contact probes, the measurement is independent
of the sample alignment and provides true measurements of power, coma, astigmatism (see
discussion in [3-6]). CMMs are well-established in the metrology community and have a widely
accepted terminology for errors [7,8]. However, CMM-based techniques include significant
measurement times (e.g., centimeter-class aspheres requiring 15 minutes) and various systematic
error sources. Probes are required to measure at a normal incidence condition, requiring
additional tilt axes or adapted configurations that work in cylindrical or spherical coordinates.
These limitations diminish their value in industrial practice.

Ray tracing is used for metrology in cases where the camera can be well calibrated [9]. An
example is Phase Measuring Deflectometry (PMD) [10-16]. PMD is a null-free full-field
metrology solution with high resolution and short measurement times that plays out its strength
for large and complex freeform optics [16]. Measuring the refractive power through absolute
phase measurements using incoherent sources was introduced in [17] and extended to PMD
in transmission in [18-22]. PMD systems were further advanced in [23,24] through complex
calibration procedures based on ray tracing. Nowadays, this idea has been broadened for
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metrology of multisurface freeform optics as in [25-27], where the camera sensor model is
using a non-linear extension of a pinhole model. Nonetheless, this model has been proven to be
insufficient to model some sensors as shown in [9]. To the credit of camera manufacturers, there
are some camera lenses as the Nikon D60 (see Ref. [28]), that can be described well with the
pinhole model.

PMD enables form and MSF measurements. In particular, for the MSF regime, PMD has been
reported to “measure MSF errors on freeform parts orders of magnitude faster than traditional
tactile metrology tools" [29]. PMD systems are highly sensitive slope measuring systems
with high repeatability, even for samples with high surface slopes. Reference [30] reported an
environmental instability and noise of 0.6 nm RMS and an overall slope measurement uncertainty
near ~100nrad. Deflectometry is a robust and low-cost alternative for low and medium-volume
applications with unique advantages for measuring MSF structures.

A significant drawback of PMD systems is systematic errors that produce slowly varying form
errors in the measurement, in this regard many calibration efforts are used to minimize the this
systematic terms [31-34]. The systematic error can be attributed to simple error sources as the
flatness of the cover-glass of the display or the drift of the baseline (relative position between
camera and display) after the system calibration [14,35-43]. A further critical aspect of PMD
systems is the numerical reconstruction algorithm. Depending on the algorithms’ sophistication,
many of those solvers rely on mathematical optimization routines that minimize a cost function.
Many of these solvers are either based on simpler models (convex optimization problems [44—46])
that have unique mathematical solutions (global minima) but do not model the physical problem
well or use more sophisticated models (nonconvex optimization problems [47]) that have no
straightforward solution because the solver can get trapped in a local minimum. Both types of
optimization solvers contribute to systematic error. An exciting aspect of PMD is that PMD
is extremely sensitive to out-of-plane deformations, and many systematic errors cancel out in
comparative measurements. Using a reference artifact that is accurately measurable with a slower
metrology instrument (e.g., a CMM), it is possible to calibrate systematic errors down to the 20
nm level in the Zernike coeflicients [48].

Deflectometry has also been reported to transmission measurements. Fischer [31] reported
a transmission PMD system for the measurement of aspheric optics. Other transmission
deflectometry systems have been reported by Petz [33,34]. PMD has been an innovative area
of research. SeBner [49], proposed the use of telecentric imaging systems to overcome the
slope-height ambiguity. Komander [32] proposed a display is mounted onto a motorized linear
stage and can thus be moved to various positions during the measurement process.

Experimental Ray Tracing (ERT) is another competitive technique that was introduced by
Hiusler et al. in 1988 [50]. In ERT, a ray with known angle and position is deflected by the
sample, where the direction of the deflected ray is measured using two parallel planes that are
orthogonal to z [51]. ERT has also been performed to find the rays that propagate near the focus
of test pieces which allows point-wise measurements of the deflected rays [50], and can be used
for the characterization of gradient index of optical elements as described in [51].

Motivated by that, this work proposes a Vision Ray Metrology system that consists of an active
target and a camera with well-characterized vision rays. The sample under test is placed between
the camera and the screen, resulting in a deflection of the vision rays that can be accurately
measured by analyzing the patterns projected onto the active target. The concept of vision rays
has been borrowed from the camera calibration techniques of the vision community, where the
bundle of rays incident onto a camera pixel is represented by a single chief ray. This vision ray
camera model and was introduced by Grossberg and Nayar [52], was later improved [9,28,53-57].

The proposed Vision Ray metrology system measures the sample-induced deflection in the
vision rays; in contrast, PMD requires accurate knowledge of the camera’s location and the active
target to trace the rays through the sample and the measurement system. The reconstruction
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algorithm of the proposed metrology system requires a simple fitting procedure (fitting a ray
through a line), whereas PMD requires elaborated optimization routines that may be sensitive to
system drifts and suffer from convergence problems.

This manuscript is structured as follows: Section 2 introduces the concept of Vision Ray
Metrology, Section 3 describes one possible experimental VRM system implementation. Section
4 shows measurement results for the measured vision rays, and Section 5 shows the results for the
reconstructed wavefront. Finally, discussions and conclusions are presented in Sections 5 and 6.

2. Vision rays as a metrology tool

Vision rays are widely used in camera calibrations for metrology systems, especially for cases
where conventional techniques fail. The vision ray camera model [9,28,56] is a geometric model
that assigns to every sensor pixel with the pixel coordinates (u, v) a so-called 3D vision ray
{6, 7.} (pixel line of sight) that originates at the coordinate vector o, and has the direction vector
7.. Any point on the ray {0, 7.} projects back to («,v) as shown in Fig. 1 (i.e., pierces the sensor
plane at the location of the pixel of origin). A common convention is to define the vision rays
so that the third component of 0. equals 0 and the third component of 7. equals 1. The other
components of 7. are given by tan e, and tan a,. The angles a, and @, describe the ray direction
in the x- and y-direction [9]. For visualization, the direction vector (gradient) amplitude S is

calculated as § = \/VZ + V7 [9].
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Fig. 1. Vision ray image formation model. Each pixel collects light from a closely arranged
ray bundle represented by a principal (chief) ray. Single vision ray that passes through all
control points. Parameters defining the vision ray: (x¢, yo) offset, slope (Vy, Vy).

A quantitative assessment for freeform surfaces is possible if we quantify the change in the
direction of the rays (deflection) caused by the samples under test. In essence, Snell’s Law in
3D space [58] can be used to write a minimization problem that looks for the surface normal
that generates the corresponding change in direction. For such an assessment, it is useful to
use a telecentric lens. The telecentricity of the imaging systems allows for sample placement
within the constant field of view of the sensor without additional alignment concerns, e.g., a
position-dependent magnification; see the comparison in Fig. 2.

Although the vision ray model pictures the chief ray from image space, in reality, the rays are
produced in object space, as shown in Fig. 3. The vision rays for telecentric imaging system are
T, = tana/, T, = tan a!, where a, and ay are related to telecentricity. When placing a sample,
the direction of the vision rays change. The changes can be measured and are defined in the
manuscript as follows Aa, and Aa, with

Aaxzax—af (1)
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a) Vision ray model of b) Vision ray model of
Conventional lenses (diverging angular FOV) Telecentric lense (non-angular, constant, FOV)

ray 1

Systems with different FOV

Fig. 2. Comparison between using a non-telecentric and a telecentric imaging system
during sample assessment based on Vision ray model. a) For the non-telecentric imaging
system, the number of vision rays on the sample depends on the field of view. In contrast, b)
for the telecentric imaging systems, the number of vision rays incident on the sample surface
only marginally depends on the sample placement along the z-axis.

Aay = ay — ayT ()

where a, and a, and is the angle of the vision ray in the x- and y-direction in the presence of the
measurement sample.
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Fig. 3. Schematic of measurement principle. From all incoming rays, the imaging detector
captures only those rays that match the vision rays of the imaging system.

Although nowadays, the vision ray model is progressively becoming a standard in camera
calibration to reduce the uncertainty in incoherent metrology setups [9,59,60], to our knowledge,
it has not been used directly as a metrology tool.

3. Method

The vision rays are measured using the setup proposed in Fig. 4. The sample is mounted in front
of a telecentric lens, causing a deflection of vision rays of the imaging system. These vision rays
(and thereby the ray deflection) are estimated using the setup of Fig. 4. This system steps both
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the camera and the measurement sample along the z-axis to a series of z-planes, starting from
7 = zp to the plane z = zp + Az. This translation causes the vision rays to pierce the target plane
at different xy-locations. Each xy-location is then measured. This process is repeated, measuring
at least 30 different 3D piercing points for each vision ray with low uncertainty. These points are
then used to fit a line in 3D through the points, as shown in Fig. 1(b). The resultant set of 3D
coordinates per pixel is transformed into rays parameters {o., 7.}. The origin of the measurement
system of coordinates was chosen to be the center of one control point in the flat target so that
the screen itself was in the plane located at z = z;, with z; a position along the z axis of the
calibration coordinate system. The design of the active target is a critical step and is critical to
the accuracy of the system.

sample ~ 1§\ Calibration
/ \ Telecentric \target

| Pos, N ..Posy...

a

Y Linear 2 =
\ds—/ stage translation axis

projector

Projected
fringes

Fig. 4. Measurement setup: An active target comprises a projector and a well-defined
diffuse passive calibration board. Fringes are projected onto a diffuse reference target, and
only the camera and the sample are stepped along the z-axis. At all times, both the distance
between the sample and telecentric lens dy and the distance between projector and calibration
target dy remain constant.

This work proposes an active target consisting of a passive diffusive calibration target and a
fringe projector, as shown in Fig. 4, to avoid the cover glass uncertainty [35—37]. The passive
calibration target has a matt finish on top of aluminum/LDPE composite sheets, which offer
high flatness and stiffness (~500 um from the vendor Calib.io). The surface has been treated
using an ultra-violet inkjet printing (from the vendor Calib.io) process to generate the reference
markers. To obtain spatial information on every point of the passive target, we employ a projector
to generate and project a series of horizontal and vertical fringes onto the target. Combined with
phase-shifting techniques, it is possible to estimate the absolute phase in x- and y-direction and
obtain the corresponding spatial coordinates for every camera pixel. This process is the projector
calibration, which differs from the classical sense (i.e., treat a projector as an inverse camera),

The principle is shown in Fig. 5. In other words, the xy-location of each reference marker has
been used to generate a 2D xy-map for each point on the board via interpolation, see Fig. 5(b).
Similarly, the projected fringe patterns are used to obtain a 2D phase map in x- and y-direction
(see Fig. 5(a)). Having a 2D xy-map for each point on the target and two 2D phase maps provides
all necessary data to create a function that maps the phase in x- and y-direction into spatial
coordinates. The data to generate this mesh does not need to originate from a single plane; in
fact, numerous planes can be used for this purpose to reduce the error, even data from auxiliary
cameras that capture the fringe patterns at, e.g., at a different angle. We employ Delaunay
triangulation [24] with natural neighbor interpolation using Matlab built-in routines to generate
the mapping function. Once the calibration mapping function is available, the spatial position on
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the target can be estimated for each ray using solely the phase data
[x,y] = Phase_to_XYMapping(¢*, ¢’)

even for the case where the control points are not visible.

a) Vertical and horizontal Phase shifting b) High density spatial information
at every sample position
x {mm) Passive target
Pos. _Posy,.. H|! . mlm' I—»o e o o
F i ||||| e o o ’ Delaunay mesh (¢, ¢ ,x,1)
— s ||| |, * sparse data
| L] L] . L] L]
\ o o o o o
Absolute phase [x.¥] = Delaunay Interpolation mesh (¢"¢") high density
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Fig. 5. High-resolution extraction of the spatial information using the proposed active
target. a) At every z-position, vertical and horizontal fringes are projected onto the target to
generate absolute phase measurements in x and y directions. b) The spatial XY-location of
each reference marker is used to obtain a high-resolution spatial map for both the x- and
y-coordinate. This is a two-step procedure; firstly, a Delaunay triangulation mesh is created
using the spatial information at the sparse features on the target and the absolute phase values
at those locations. In case data is available from different cameras or z-planes, this could
reduce the error. Afterward, the absolute phase maps obtained from a) serve as a query point
to estimate each pixel’s high-resolution x- and y-coordinates (i.e., vision ray).

The active calibration target proposed here combines the advantages of currently known
passive and active targets, where there is no cover-glass problem and a high spatial resolution
is maintained. The absolute phase measurements enable sub-1/100 fringe uncertainties with
robustness against defocus errors while maintaining the ability to work with high tilt angles. In
most cases, the absolute phase and spatial coordinates are simple low-order polynomials because
both follow an almost linear trend. The latter aspect makes noise filtering very simple.

4. Experiments
4.1. Measurement Setup:

To demonstrate the feasibility of this method, we measured the vision rays of five different
samples:

* a plano-concave lens with a 50 mm focal length (925.4 mm, N-BK7)

¢ aplano-convex lens with a 100 mm focal length (@25.4 mm, N-BK?7)

* a pair of commercially available spectacle lenses with adjustable focus.

* an array consisting of cubic phase plates (manufactured at UNC Charlotte)

* an Alvarez micro-lens array consisting of two cubic phase plate arrays (manufactured at
UNC Charlotte)
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The experimental setup follows the structure of Fig. 5 and consists of an Edmund Optics
TitanTL Telecentric Lens, (0.136x, f/11-f/22, telecentricity <0.1°), a FLIR camera (model
BFS-U3-200S6M-C with 5472 x 3648, 20MP, pixel pitch of 2.4 ym), and an Optoma Technology
EH200ST projector (1920 x 1080, 3,000 lumens, Contrast ratio 20,000:1). The telecentric lens is
stepped along the z-axis using a Physics Instruments (PI) M-404-6DG Precision Linear Stage
(resolution 0.1um, yaw 75prad, pitch 75urad).

Each sample has been measured using the data from 30 equidistant with a plane separation
of Imm. A series of phase-shifted fringe patterns are projected at each plane with the periods
[10,40, 160, 640, 2560] (sample 1-4) and [42, 126, 378, 1134, 3402] (sample 5) projector pixels.
The projector gamma nonlinearity is compensated using a two-stage compensation with

(i) firstly, a passive gamma calibration using the method by Zhang is applied, where non-
sinusoidal fringes are sent to the projector to produce sinusoidal fringes [61], and

(i) secondly, the 10-step Bruning temporal phase-shifting algorithm is employed [62] to
suppress the remaining harmonics 0, —1, £2, +3, +4, £5, +6, +7, £8, +9 [63].

A repeatability test across the calibration volume showed that a total of 10 phase steps for each
period was sufficient to obtain a sufficiently low phase noise level (<27/400). An exception was
the Alvarez micro-lens array that had significantly lower fringe visibility due to the high surface
roughness. To overcome the resulting low SNR value, a 14-step Bruning algorithm has been
employed [63].

The obtained wrapped phases are processed using the multi-wavelength phase unwrapping
technique GOMF [64] to obtain the absolute phase map [65].

The absolute phase is then converted into spatial xy-coordinates, using the mapping procedure
described in Section 3. These measurements provide xyz coordinates for each vision ray as
both the camera and the sample are stepped along the z-axis. The vision rays at each pixel are
estimated by fitting a line through each data-point using robust regression techniques [66],

Vi X0 Vi
X=0,+7. Az=0.+ Vy [nlAz=] yo [+| V, n Az 3)
1 0 1
where n is the plane number of the 30 measurement planes withn=0, 1, 2, ..., 29.

It is convenient to define the direction vector (gradient) amplitude [9] as

S=Vi+V2 4)

for visualization purposes because it provides valuable information on the structure of the sample.

4.2. Measurement results for the spherical lenses:

The complete vision ray data of the two spherical lenses have been measured. The results for
the 50mm focal length plano-concave lens are shown in Fig. 6. The sample is placed near the
center of the FOV of the telecentric lens. Figure 6(a) shows the fringe visibility for each pixel.
The reference markers of this calibration target are printed in black and provide, therefore, low
fringe visibility. This limitation may be overcome in future designs by printing the reference
dots of the target in a lighter color (e.g., grey). Figure 6(b) shows the direction vector amplitude

S = ‘/Vf + Vy2 [9] for the measurement system without the sample. This data is, in essence,

related to the direction of the vision rays of the telecentric lens. The deflection can be calculated
using Eqgs. (1) and (2). Figure 6(c) shows the raw data of the corresponding direction vector
amplitude of the deflection induced by the measurement sample.
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Fig. 6. Measurement sample 1 (#25.4 mm Plano-Concave Lens, 50 mm EFL): Direction
vector amplitude. a) Sensor view of the sample under test, the missing data correspond to
obscured features in the passive calibration board. b) Direction vector amplitude for the
telecentric system only (before placing the sample). ¢) Sample direction vector. Noll-ordered
Zernike decomposition for sample evaluation across spatial frequencies: d) Zernike terms
1:37, e) Zernike terms 38:150. f) Residual after removing 150 Zernike terms

Figure 6(d) and 6(e) show the case where the Zernike polynomials 1-37 and 38-150 have been
fitted to the raw data of Fig. 6(c), respectively. The residual in Fig. 6(f) contains the data that is
not described by the Zernike fitting process of Fig. 6(d) and 6(e), i.e., adding the data of Fig. 6(d),
6(e), and 6f together, one obtains the data in Fig. 6(c).

A comparison of the measurement results with the theoretical values is shown in Fig. 7.

Figure 7(a) and 7(c) show the results of the direction vector amplitude S = ,/Vf + sz for the
(fitted) low-order measurement data and the theoretically expected value for an EFL of 50mm,
respectively. For additional comparison, we also plot the direction vector angle «, calculated
as @ = atan2(V,, V,) to distinguish between concave and convex surfaces. Furthermore, a also
encodes information of the tangential component of the aberration of the sample; thus, it can be
used as another useful metric during teste piece assessment.

The corresponding measurement results for a ¥25.4mm” Plano-Convex Lens with 100 mm
EFL are shown in Figs. 8 and 9. As expected, measurement sample 1 (50 mm EFL) has a
direction vector amplitude that is twice as large as the case of measurement sample 2 (100 mm
EFL), i.e., the measurement results indicate that the lens is faster by a factor of two.

4.3. Measurement results for commercially available spectacle lenses:

The first freeform optic measured in this work is a pair of adjustable spectacle lenses based
on an Alverez lens design [67], as shown in Fig. 10. Each lens consists of two cubic phase
plates that can be sheared laterally relative to one another to adjust the power. Figure 10 shows
the measurement results for three different lens shears for one adjustable lens. The results in
Fig. 10 clearly show a change in the sample direction vector. The maximum amplitudes for the
three different configurations are 0.06, 0.11, and 0.26, respectively. A decomposition using the
Noll-ordered Zernike polynomials is shown in Fig. 11. The decomposition allows separating the
direction vector amplitude into its low-frequency terms and the Mid-spatial-frequency (MSF)
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Fig. 7. Measurement sample 1 (25.4 mm Plano-Concave Lens, 50 mm EFL): measured

(a) and simulated (c) direction vector amplitude S = 1/V)? + Vyz. To distinguish between
concave and convex wavefronts, the direction vector angle & = atan2(Vy, Vy) is shown in (b)
and (d) for the measurement and simulated data, respectively.

a) Telecentric only %102
b) (no sample)
v calibration board 15
features
= T 5
= e o o o S
3 i 143
s . . . . . b4
) * e o o o s
g 3
E . . . . . 13 2
« e o o o
0 a
dark feature:
100 mm EFL Plano-Convex, low fringe visibility) 12
25.4 mm Diameter
missing data
©) w10 d) «101€) «103f) %10

Noll-ordered Zernike
terms 38:150 (fitted)

Sample direction vector _ Noll-ordered Zernike + Residual
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Fig. 8. Measurement sample 2 (#25.4 mm Plano-Convex Lens, 100 mm EFL): Direction
vector amplitude. a) Sensor view of the sample under test, the missing data correspond to
obscured features in the passive calibration board. b) Direction vector amplitude for the
telecentric system only (before placing the sample). ¢) Sample direction vector. Noll-ordered
Zernike decomposition for sample evaluation across spatial frequencies: d) Zernike terms
1:37, ) Zernike terms 38:150. f) Residual after removing 150 Zernike terms.

components that can be used to assess the errors introduced during the manufacturing process
where the design prescription is available.
4.4. Measurement results of a micro-optic array consisting of cubic-phase plates:

The second freeform optic measured in this work is a micro-optic array consisting of cubic phase
plates. For this sample, we selected a single unit without the markers to avoid data dropout. The
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Fig. 9. Measurement sample 2 (25.4 mm Plano-Convex Lens, 100 mm EFL): measured

(a) and simulated (c) direction vector amplitude S = 1/V)? + Vy2. To distinguish between

concave and convex wavefronts, the direction vector angle & = atan2(Vy, Vy) is shown in (b)
and (d) for the measurement and simulated data, respectively.
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Fig. 10. Measurement sample 3 (off-the-shelf spectacle lenses with adjustable power):
direction vector amplitude for three different configurations of the adjustable glasses. The
missing data correspond to obscured features in the passive calibration board shown in the
second row.

measurement results in Fig. 12 show that a single array cell produces a direction vector amplitude
between 0.062 and 0.097.
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Sample direction __  (fitted) Noll-ordered + {fitted) Noll-ordered +

vector (raw data) = Zernike terms 1:37 Residual

Zernike terms 38:150
x 10

Position 1

h} . ] d)

Position 3

Fig. 11. Noll-ordered Zernike decomposition for sample 3. a),f), and k) (first column)
show the fringe visibility of the sample for the different relative positions of the two surfaces
that compose the variable EFL lens. The raw data of the measured sample direction vectors
are shown in b), g), and 1). The third column, c), h), and m), shows the fitted Noll-ordered
Zernike polynomials that dominate the direction vector amplitude. The fitted higher-ordered
Noll-ordered Zernike terms 38:150 are shown in d), i), and n) that provide valuable insights
into the mid-spatial frequency components. Finally, the residual for all datasets are shown in
the last column. The obscured features from the calibration target are responsible for the
missing data.
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Fig. 12. Measurement sample 4 (micro-optic array consisting of cubic phase plates): a)
Sensor view of the sample under test. b) Direction vector amplitude for the telecentric
system only (before placing the sample). c) Direction vector amplitude of the sample. The
Noll-ordered Zernike decomposition for sample evaluation across spatial frequencies ranges
is found in d) Zernike terms 1:37, e) Zernike terms 38:150, where the residual is shown in f).
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Fig. 13. Measurement sample 4 (Alvarez lens array single unit): Direction vector amplitude.
a) Sensor view of the sample under test, the missing data correspond to obscured features in
the passive calibration board. b) Direction vector amplitude for the telecentric system only
(before placing the sample). ¢) Sample direction vector. Noll-ordered Zernike decomposition
for sample evaluation across spatial frequencies: d) Zernike terms 1:37. e) Zernike terms
38:150. f) Residual after removing 150 Zernike terms.

4.5. Measurement results for a micro-lens array consisting of Alvarez lens cells:

Similar to the case of the specular lenses, we measure the vision rays of a micro-optic Alvarez
lens array that consists of two micro-optic array elements with cubic phase profiles (i.e., two
arrays of the type of sample in Section 4.4). The results in Fig. 13 show the direction vectors of
the cell where the two cubic phase elements overlap. Similar to the previous cases, the regions
with missing data are related to low fringe visibility caused by the reference markers of the
calibration board.

4.6. Reprojection error within the Vision ray calibration:

To evaluate the vision ray calibration, we have calculated the reprojection error in the calibration
coordinate system as the Euclidean distance between the recorded coordinates (¥'") and the vision
rays reprojection x given in Eq. (3) for every pixel as

Om = ||5€)$ _}m||2,

the resulting error distributions in Fig. 14 show that for the spherical lenses (samples 1&2), the
RMSE reprojection error is smaller than 5 um while for sample 3 is ~10 um. For sample 4,
micro-lens array with cubic phase plates, the RMSE is 55 um. The micro-lens array consisting
of Alvarez lens cells, sample 5, has an RMSE of 90 pm.

4.7. Three-dimensional visualization of the vision rays of all samples:

For visualization purposes, the measured trajectories of the vision rays for all samples are plotted
in 3D in Fig. 15. Figure 15(b) shows the vision rays for the pixels that go through the center
of the sample. For this dataset, the minimum bundle diameter for configuration 1, 2, and 3 is
found near ~50 mm, ~5 mm, and ~1 mm, respectively. The wavefront of the Alvarez cell in
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Fig. 14. Reprojection error (Euclidean distance) for various samples

Fig. 15(d) has more mid-spatial frequency components and, therefore, a less regular vision ray
profile compared to the other cases; see in particular results for Figs. 15(a).

For sample 1 and 2, in Fig. 16 we have plotted the vision rays in their individual coordinates
system such that z = 0 is the plane where the bundle diameter is smaller for visualization purposes.
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Fig. 15. (all measurement samples): Vision rays for a) the spherical lenses with 50 mm and
100 mm EFL, b) the commercial spectacle lenses with adjustable power, c) a single cubic
phase element of the micro-optic array, and d) a single cell of the Alvarez micro-lens array.
Each ray has been color-coded as a function of the direction vector amplitudes. For (b) and
(d), only the vision rays of the relevant center region of the lenses are plotted.
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Fig. 16. Difference in the focus point between sample 1 and sample 2. a) The focus point
for the 50 mm EFL lens is located at z=—275.83 mm. b) The focus point for the 100 mm
EFL lens is located z = —126.33. The distance between the two focus points is 149.5 mm.

However, the focus point for the spherical samples in the calibration coordinate system clearly
shows the difference in the focal length of the two samples.

5. Wavefront reconstruction

The measured refracted rays correspond are the vectors normal to the propagating wavefront
[9,17]. The directions of the refracted rays can be interpreted as a pointing vector, which is normal
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Fig. 17. (measurement results sample 1 and 2): Geometric-wavefront reconstruction using
the vision ray measurements for the sample of Sections 4.2 and 4.3.
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on the propagating wavefront [9,17]. Thus the wavefront can be reconstructed by integration of
the local wavefront slopes. There are several different deterministic wavefront reconstruction
algorithms described in the literature. Generally, they can be classified into two categories: zonal
and modal integration techniques. In zonal algorithms, the wavefront is recovered from a set of
linear equations that describe the local (zonal) relation between wavefront and its derivatives in x
and y directions [44,68,69]. The intrinsic zonal property of this method translates into highly
accurate local wavefront estimation; however, the same property makes this technique susceptible
to noise. On the other hand, modal integration reconstructs the wavefront as a superposition of
linearly independent (orthogonal) analytical polynomials that form a basis. The basis needs to be
differentiable; this allows a fitting in the slope domain that returns the corresponding weighting
coeflicients for every mode in the basis. As a result of this “global” fitting, the susceptibility
to noise and random error is reduced. Another advantage of model fitting is the direct relation
between the basis and its connection to physical parameters in the measurements. Common
polynomial bases for wavefront reconstruction include Zernike [70], Legendre [71], Chebyshev
[72], radial basis functions [73], B-splines [74], complex exponential [75], and Q-Forbes [76].
Here we apply modal integration developed in [70], where the wavefront is calculated as

N
W(xy) = )" afix,y)
i=1
with f;(x, y) the Noll ordered Zernike basis. The estimated vision rays are the gradient of the
geometric wavefront [77], i.e., for this case (V, Vy) = VW, and

N
d
Vi = Zl: d_kalfi(x’ y), k=x,y,

since this method creates numerical orthogonal transformation based on analytical polynomial
sets the technic can be applied to arbitrary shaped apertures.
The reconstructed geometric wavefronts are shown in Figs. 17— 19.

6. Discussions

This work proposes a vision ray metrology system that consists of a cover-glass-free active
target, a translation stage, and a telecentric camera. The translation stage steps both the camera,
the telecentric lens, and the measurement sample together along the z-axis to record the xyz-
coordinates for each vision ray (i.e., camera pixel) without changing their relative positions. Each
vision ray is then estimated using a simple line fitting in 3D. This method relies on the information
in the vision ray direction and is inherently robust against long-term drifts that typically occur
in Deflectometry (e.g., drift of the camera-display baseline). Deflectometry techniques rely on
mathematical optimization techniques to estimate the camera’s position and display and may
need recalibration with a flat reference sample.

The differential nature of the measurement has another advantage compared to Deflectometry.
In vision ray metrology, the deflection of vision rays is measured, but the distance between the
telecentric lens and the sample remains unchanged throughout the measurement. Hence, all
vision rays reaching the camera have the same entry point on the surface of the sample — the
line fitting in 3D can be applied with no problems. In contrast, Deflectometry often requires
moving the sample within the measurement volume to estimate the geometric constraints using
optimization solvers. The geometric constraints are needed to trace the rays in reverse from the
camera pixel to the display pixel. However, as the sample is placed at different locations, the
measured rays at a given camera pixel are not incident on the same surface point. As a result,
sub-pixel interpolation or other methods must be considered to obtain the sample surface shape.
A comparison between Vision Ray Metrology and Deflectometry is shown in Table 1.
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Table 1. Comparison of Vision Ray Metrology and Deflectometry

Technology comparison

Vision Ray Metrology

Transmission Deflectometry

one ray per pixel

integration of slope data

What is common

requires pre-calibrated cameras

high-resolution phase measurements to estimate the spatial

x- and y-location on the display or screen

Where they differ
distance between camera unknown, but always remains may vary but is estimated iteratively
and sample constant

distance between screen
and sample

unknown, but the z-step is known
accurately

may vary but is estimated iteratively using
optimization solvers

distance between camera

unknown, but the z-step is known

must remain constant and is estimated

and screen accurately during the calibration using optimization
solvers
sample placement and not critical for telecentric imaging accuracy relies on the success of
alignment systems optimization solvers

sensitivity to baseline
drifts (camera screen)

not critical, due to differential
measurement

critical and recalibration is needed

reference target

cover-glass free active target

display with cover-glass
as active target

(produces view-angle dependent errors)

measurement principle

measure sample induced deflection
of vision rays

(the entry-locations of the vision
rays on the sample surface do not
change when stepping along z).

trace all rays individually from a point on
the display to the camera pixel

((the entry-locations of the vision rays on
the sample surface do change when moving
the sample within the measurement volume,

interpolation of the sample surface may be
needed)

The measurement results in Section 4 show that the vision ray data can accurately be obtained
for various measurement freeform optical samples while having fewer stringent requirements on
the sample alignment. Figures 7 and 9 show an excellent agreement with the simulation. An

AV + Vy2 can be used to highlight

some surface properties. Figures 6, 8, 11, 12, and 13 show that further data processing permits
the separation of the slowly varying terms from the mid-spatial frequency components in the
direction vector amplitude. This information could be further used for assessment during the
fabrication process of freeform surfaces.

Section 5 described how the vision ray metrology approach allows recovering the geometric
wavefront of a sample under test using solely the V. and Vy(wavefront slopes). Using these
vector components, it is possible to recover the vector normal to the surface as described in [78].
Modal integrations of the wavefront slopes can also be used to interpolate the missing data points,
which are mainly dominated by the dark reference points on the calibration target for the current
dataset. Notably, when using a different reference target with a lighter grey level, it is possible to
obtain a fringe signal on the reference points. The use of a different target would overcome the
missing data points and is part of future work. The resulting high-resolution dataset could then
be processed using a combination of zonal and modal integration methods [79], which makes
that technique applicable for highly irregular surfaces.

Supplement 1 contains several sections on the error budget considerations. Section 2 of
Supplement 1 discusses the random component of the vision ray error and the resulting wavefront

interesting detail is that the slope information V,, V,, or § =
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error. Monte-Carlo simulations suggest that the random error in the measured vision ray could
reach 500nrad when using 50 planes and ~150nrad when using 150 planes for Az = 10 mm.
Nevertheless, the dominant errors are systematic and include systems drifts. Section 3 of
Supplement 1 discusses systematic errors due to system drifts. That section concludes that the
vision ray metrology system is insensitive to lateral drifts but sensitive to axial drifts and changes
in the projector orientation angle. These systematic errors could be problematic, especially if
some time has passed since the last calibration. Section 4 of Supplement 1 discusses the resulting
wavefront error when differential measurements are applied, i.e., vision rays are measured
back-to-back for the telecentric lens with no sample and the telecentric lens with the sample. The
results show that for this specific configuration, the systematic error cancel and a wavefront error
in the order of 123nm PV (15.9nm RMS) can be achieved.

The results presented in this manuscript are technically not fully differential because the image
acquisition is not optimized, resulting in very long measurement times, where drifts even for
back-to-back measurements are to be expected. Other systematic errors that are presented but
uncompensated originate from various sources:

* The flatness of the target (or flatness of the display, if a display is used)
» The ability to measure the reference markers of the target accurately

* Thermal drifts, in particular, if they occur within back-to-back measurements. This includes
thermal expansion of the sample or the calibration board, changes in the aberrations of the
telecentric lens of the system projector, drifts of the projector orientation and location.

* Linear stage errors (positioning errors, as well as yaw, roll, and pitch errors)
» Sample drifts (displacement or tilt) relative to the telecentric system during measurements
* other temporal changes (vibrations, etc.)

One of the primary sources of errors of our current configuration is the long measurement
time (~7 hours per sample with post-processing) due to the slow implementation of the image
acquisition system. However, we estimate that optimized systems (with hardware triggered
projectors) that operate at 5fps could measure the given sample (with post-processing) within
17min. Sophisticated acquisition system could further reduce the measurement time to below
Smin. We want to highlight that although geometric wavefront and surface height profiles
are nowadays the most commonly used metrics in optical metrology, the reported vision ray
amplitude may serve as a decisive metric for assessing the geometrical properties of the surface
under test. Optical shops and lens manufacturers could benefit from this information for their
manufacturing process.

7. Conclusions

Vision ray techniques are known in the vision community to provide image formation models
even when conventional techniques fail.

This work extends this approach and proposes a Vision Ray Metrology system that estimates
the geometric wavefront of a measurement sample using the sample-induced deflection in the
vision rays [52]. A critical aspect is using a telecentric imaging system for the sensor, which
allows sample placement within the constant field of view of the sensor without additional
alignment concerns. In contrast to PMD, this work relies on differential measurements, and
hence, the absolute position and orientation between target and camera do not need to be known.
This optical configuration significantly reduces the complexity of the reconstruction algorithms;
unlike deflectometry, the proposed vision ray metrology system does not require mathematical
optimization algorithms for calibration and reconstruction — the vision rays are obtained using a
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simple 3D fitting of a line. Furthermore, the cover glass of the display [35-37] is a significant
error source in deflectometry. In this work, we propose an active target consisting of a passive
diffusive calibration target and a fringe projector (see Fig. 4), to avoid any cover glass related
problems.

We have demonstrated the feasibility of this approach via simulation and experiments for both
spherical and freeform surfaces. For all samples, the estimated vision rays V and V, have been
used to estimate the geometric wavefront [77] using modal integration techniques [70], which
can be translated into a heightmap if the material properties are known.

The accurate phase measurements produce a notably small random error of ~500 nrad in the
estimated vision rays. However, the presence of significant systematic errors as well as drifts that
limit the actual measurement uncertainty. Characterizing and compensating these error sources
is part of future research.

This work may be extended in the future to multi-freeform surfaces if multiple measurements
are recovered for different sample positions and orientations. Thus, the proposed testing method
provides a simple, low-cost, and optical shop floor-friendly way to measure the wavefronts of
optical samples.

This work has numerous applications, but in particular, the metrology and alignment of
freeform optics.
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