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High-fidelity two-qubit gates in quantum computers are often hampered by fluctuating experimental
parameters. The effects of time-varying parameter fluctuations lead to coherent noise on the qubits, which
can be suppressed by designing control signals with appropriate filter functions. Here, we develop filter
functions for Mølmer-Sørensen gates of trapped-ion quantum computers that accurately predict the change
in gate error due to small parameter fluctuations at any frequency. We then design the filter functions of
frequency-modulated laser pulses, and compare this method with pulses that are robust to static offsets of
the motional-mode frequencies. Experimentally, we measure the noise spectrum of the motional modes
and use it for designing the filter functions, which improves the gate fidelity from 99.23(7)% to 99.55(7)%
in a five-ion chain.
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I. INTRODUCTION

Generating high-fidelity entangling gates in multiqubit
systems is a key challenge for scalable quantum com-
puting. Trapped-ion systems with exactly two ions have
achieved two-qubit gate fidelities higher than 99.9%, using
lasers [1–3] and magnetic field gradients [4]. Larger sys-
tems, despite remarkable experimental efforts, are more
susceptible to various noise and parameter drifts, which
makes them more challenging to achieve high-fidelity two-
qubit gates. Two-qubit gate fidelities of approximately
99% for a 15-ion chain [5] and 97.5% for 16-ion and 25-ion
chains [6,7] have been reported.

Trapped-ion qubits are entangled by a state-dependent
force that briefly excites the normal modes of the ions’ col-
lective motion. At the end of the gate, all motional modes
should be completely disentangled from the qubits, while
the qubit states are entangled with each other by the correct
amount [8,9]. Such precise control needs to be performed
in the presence of experimental noise.

To achieve this task of robust high-fidelity gates, various
pulse-design methods have been proposed. One approach
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is to use multichromatic beams with tunable ampli-
tudes [10–15], and another approach is to use amplitude
[16–21], phase [22–26], and/or frequency [27–30] mod-
ulation over many time segments. These methods find a
pulse that guarantees high fidelity in the presence of a
small offset of a parameter, such as the motional-mode
frequency [31].

While it is useful to achieve robustness to static off-
sets, experimental parameters often fluctuate over time.
Recently there has been exciting works in experimen-
tally measuring the noise spectrum of the motional modes
[32,33] as well as control signal [34,35] and ambient
dephasing [36,37] in a trapped-ion system. This motivates
designing pulses that are robust to time-varying parameter
fluctuations of a known spectrum.

The filter-function (FF) formalism describes the per-
formance of a control protocol in the presence of time-
varying noise [38–41]. In particular, designing the FF
has been experimentally shown to be useful for suppress-
ing errors of single-qubit gates in trapped-ion systems
[42–44]. The FF for two-qubit gates has been introduced
in Refs. [24,25,44], but has limited capability in predicting
the response of the gate error to noise of frequency lower
than the inverse of gate time [25].

We propose a method of actively designing the FFs
of frequency-modulated (FM) pulses for two-qubit gates
with trapped ions, such that the effects of noise of a given
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spectrum, including its low-frequency component, are sup-
pressed. The rest of the paper is organized as follows. In
Sec. II we briefly review the theory of Mølmer-Sørensen
(MS) gates and their FFs. In particular, we introduce
the FF for the rotation angle with respect to the entan-
gling spin axis, which is crucial for describing the gate
error with low-frequency noise. In Sec. III, we improve
on the previous FM pulse-design scheme [28] by design-
ing the FFs, which lowers the gate error in the presence
of time-varying fluctuations as well as static offsets in
the motional-mode frequencies. In Sec. IV, we experi-
mentally demonstrate measuring the noise spectrum and
applying the results to designing the FFs, which improves
the two-qubit gate fidelity from 99.23(7)% to 99.55(7)% in
a five-ion chain for a fixed pulse length. Finally, we discuss
future directions and summarize our results in Sec. V.

II. MS GATE AND FILTER FUNCTIONS

A. MS-gate errors
The MS gate using FM pulse applies a state-dependent

force with lasers at a drive frequency modulated near the
sideband frequencies. As the pulse is applied to ions j1
and j2, the unitary evolution of the system of the ions
and the motional modes, after applying the rotating-wave
approximation, is given by

Û = exp





∑

j =j1,j2

∑

k

(
[αkj â†

k−α∗
kj âk]σ̂ x

j

)
+ i#σ̂ x

j1 σ̂
x
j2




 ,

where â†
k is the creation operator of mode k and σ̂ x

j is the
bit-flip operator of ion j . Also, αkj is the displacement of
motional mode k with respect to ion j and # is the rotation
angle of the spins with respect to the XX axis [45], which
are given by

αkj =
$ηkj

2

∫ τ

0
e−iθk(t)dt, (1)

# = −$2
∑

k

ηkj1ηkj2

2

∫ τ

0
dt1
∫ t1

0
dt2 sin[θk(t1) − θk(t2)],

(2)

where

θk(t) =
∫ t

0
[µ(t′) − ωk]dt′. (3)

Here, τ is the pulse length, $ is the carrier Rabi frequency,
ηkj is the Lamb-Dicke parameter of ion j with respect to
mode k, and ωk is the frequency of mode k. Also, µ(t) is
the drive frequency, which we call the FM pulse.

An ideal MS gate satisfies αkj1 = αkj2 = 0 ∀k and # =
π/4, where the first condition is necessary to completely

disentangle the qubits from the motional modes at the
gate’s conclusion. The two-qubit-gate error E , defined as
the normalized Hilbert-Schmidt inner product of the ideal
and actual unitary operators, can be expressed up to leading
order as E = Eα + E#, where Eα and E# are, respectively,
the displacement and angle error [26], given by

Eα =
∑

k

(
|αkj1 |

2 + |αkj2 |
2) , (4)

E# =
(
# − π

4

)2
. (5)

Note that here we assume zero temperature. At higher tem-
perature, such that the initial average phonon occupation
of mode k is n̄k, the contribution of mode k to Eα has an
additional proportionality of (n̄k + 1

2 ) [26,30]. Using side-
band cooling, n̄k ! 0.1 is achievable [46], and motional
heating rate of the near-resonantly excited modes can be
maintained below approximately 2 × 10−3 quanta per gate
time [27], which make the zero-temperature approximation
valid.

B. Robustness to static mode-frequency offsets
In this paper we focus on the static offsets and time-

varying fluctuations of the mode frequencies ωk, which
occur from various classical sources of noise, such as the
fluctuation of the rf driving signal for the trap. This is moti-
vated by the fact that motional dephasing is one of the
leading sources of errors for MS gates in our system [27].
The effects of fluctuations in other parameters, such as the
laser phase and intensity, are explored in Appendices A
and B.

First, we consider the effects of static mode-frequency
offsets on the displacement error. When ωk → ωk + δk,
where δk is the unwanted mode-frequency offset, Eq. (4)
becomes

Eα =
∑

j =j1,j2

∑

k

∣∣∣∣∣

∞∑

m=0

δm
k

m!
∂mαkj

∂ωm
k

∣∣∣∣∣

2

, (6)

for sufficiently small δk’s such that the sum converges.
Therefore, an analytic approach of minimizing Eα for any
δk’s, up to order M , is to minimize |∂mαkj /∂ωm

k | to zero for
all k and m = 0, 1, .., M [15].

Note that the first-order derivative can be expressed
as [28]

∂αkj

∂ωk
= iτ

(
αkj − ᾱkj

)
,

where

ᾱkj =
$ηkj

2τ

∫ τ

0

∫ t

0
e−iθk(t′)dt′dt (7)

is the time-averaged displacement. Thus, a first-order
robustness (M = 1) can be achieved by minimizing |αkj |
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and |ᾱkj | to zero for all k. This is convenient as using
a time-symmetric pulse [µ(τ − t) = µ(t)] guarantees that
minimizing |ᾱkj | also minimizes |αkj | [28].

Next, we consider the angle error. For simplicity we
assume δk = rkδ ∀k, i.e., offsets of different modes dif-
fer only up to proportionality constants. This is a valid
assumption when δk(t) comes from noise in the trap’s rf
voltage. Then, we may consider the mth-order derivative
of # over δ. Specifically, for m = 1,

∂#

∂δ
= $2

∑

k

rk

2
ηkj1ηkj2

×
∫ τ

0
dt1
∫ t1

0
dt2(t1 − t2) cos[θk(t1) − θk(t2)], (8)

where the derivative is evaluated at δ = 0. For the robust-
ness of the rotation angle, |∂#/∂δ| needs to be minimized,
on top of satisfying the usual condition # = π/4.

C. Robustness to time-varying mode-frequency
fluctuations

The effects of time-varying mode-frequency fluctuations
δk(t) on the gate errors can be described using the FF
formalism. For simplicity we assume δk(t) = rkδ(t). The
power spectral density (PSD) of δ(t) is defined as

Sδ(f ) =
∫ ∞

−∞
dt〈δ(t′ + t)δ(t′)〉e−2π ift, (9)

where 〈·〉 denotes the average over all t′.
Now we introduce the FFs for MS gates. Consider the

case where a pulse satisfies the ideal conditions αkj1 =
αkj2 = 0 ∀k and # = π/4, but gate error occurs due to
fluctuations ωk → ωk + rkδ(t). Then, for small fluctua-
tions such that |

∫ t
0 δk(t′)dt′| * 1(0 ≤ t ≤ τ ), up to leading

order, the errors are given by

Eν =
∫ ∞

−∞
df

Sδ(f )

f 2 Fν(f ), (10)

where ν = α or #, and

Fα(f ) = $2
∑

k

(η2
kj1 + η2

kj2)

∣∣∣∣
rk

2

∫ τ

0
dtei(2π ft−θk(t))

∣∣∣∣
2

,

(11)

F#(f ) = $4
∣∣∣∣

∫ τ

0
dt1
∫ t1

0
dt2(e2π ift1 − e2π ift2)

×
∑

k

rk

2
ηkj1ηkj2 cos[θk(t1) − θk(t2)]

∣∣∣∣∣

2

. (12)

Here, Sδ(f )/f 2 is the noise spectrum of motional dephas-
ing, and Fα(f ) and F#(f ) are the FFs for the displacement

(a)

(b)

FIG. 1. (a) Pulses obtained by robust FM (black) and FF opti-
mization (red), which require carrier Rabi frequency $/2π =
85.8 and 109.8 kHz, respectively. 150-µs pulses are applied on
the second and third ions of a five-ion chain with the sideband
frequencies shown as dashed lines. (b) Filter functions Fα(f )
(left) and F#(f ) (right) of the pulses. Dashed lines show the noise
spectrum Sδ(f )/f 2 with the characteristic frequency fc = 10 kHz
that is used in the FF optimization.

and angle error, respectively. Therefore, given the noise
spectrum, the gate error can be minimized by designing
the FFs. Figure 1 shows an example. The method used in
designing the FFs here will be described in Sec. III A.

Note that while the previous literature considers only
Fα(f ) [24,25,44], F#(f ) is larger than Fα(f ) at frequen-
cies f * 1/τ , so is crucial for minimizing the gate error
in the presence of low-frequency noise. The derivation of
F#(f ) is given in Appendix I.

The usage of FFs is not limited to handling mode-
frequency fluctuations. Appendix A shows that for an
experimental setup where fluctuations of the motion phase
of lasers becomes relevant [47], Fα(f ) and F#(f ) can
be used for laser-phase noise as well. Appendix B intro-
duces a different set of FFs that describes the effects of
laser-intensity noise, or fluctuations of $.

D. FFs and static mode-frequency offsets
While the FFs above are designed to handle time-

varying parameter fluctuations, it can be easily shown that
suppressing the FFs at low frequencies leads to reducing
the gate error due to static mode-frequency offsets as well.

First, we consider the displacement FF. Expanding e2π ift

in Eq. (11) into a Taylor series gives

Fα(f ) =
∑

j =j1,j2

∑

k

∣∣∣∣∣rk

∞∑

m=0

(2π f )m

m!
∂mαkj

∂ωm
k

∣∣∣∣∣

2

, (13)
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which closely resembles the displacement error with static
offsets in Eq. (6). In particular, when rk = 1, Fα(f ) is equal
to the displacement error when δk = 2π f ∀k. Thus, we
expect that suppressing Fα(f ) at low frequencies leads to
reducing the displacement error due to small static offsets.

Note that Eq. (6) is valid only for small δk’s such
that the sum converges. Therefore, the predictions of FFs
become inaccurate when the noise corresponds to large
static offsets during the gate time. This agrees with previ-
ous observations that the first-order approximation of the
FF formalism is less accurate when noise is stronger at
frequencies lower than the inverse of the gate time [25,48].

Next, we consider the angle FF. Comparing Eqs. (8)
and (12), we immediately obtain

lim
f →0

F#(f )

f 2 = (2π)2
∣∣∣∣
∂#

∂δ

∣∣∣∣
2

, (14)

which shows that suppressing F#(f ) at low frequencies
reduces the angle error due to small static offsets. Unlike
the case of the displacement, F#(f ) at low frequency is
explicitly related to only the first-order derivative of #,
and not to its higher-order derivatives.

III. COMPARISON OF OPTIMIZATION
METHODS

A. Optimization methods
In this subsection we introduce the FM pulse-

optimization methods that achieve robustness to static
offsets and time-varying fluctuations of the mode frequen-
cies, where the latter is done by our “FF-optimization”
method.

The previous FM pulse-design method, which we call
“robust FM” [28], finds a pulse µ(t) that removes the time-
averaged displacement. The cost function is given by

C1 =
∑

k

(
|ᾱkj1 |

2 + |ᾱkj2 |
2) . (15)

As explained in Sec. II B, by constraining µ(t) to time-
symmetric pulses, minimizing C1 removes the displace-
ment of each mode up to first order (M = 1) in the static
mode-frequency offset.

We may also consider the “second-order robust-FM”
method, which finds µ(t) that minimizes the displacement
up to second order (M = 2), using the cost function

C2 = C1 + 1
τ 2

∑

k

(∣∣∣∣
∂2αkj1

∂ω2
k

∣∣∣∣
2

+
∣∣∣∣
∂2αkj2

∂ω2
k

∣∣∣∣
2)

. (16)

Finally, we introduce the “FF-optimization” method,
which designs the FFs Fα(f ) and F#(f ) for a given noise

PSD Sδ(f ). Specifically, we find µ(t) that minimizes the
cost function

CFF = C1 +
∫ fmax

−fmax

df
Sδ(f )

f 2 [Fα(f ) + F#(f )] , (17)

where fmax is the cutoff frequency. In this paper, we choose
fmax = 13.3 MHz as we consider Sδ(f ) that decays at high
frequencies.

For all methods above, we constrain µ(t) to piecewise-
constant and time-symmetric pulses. The gradient of each
term in the cost function over each segment of µ(t) is
analytically evaluated for efficient optimization. Also, $
is updated at each iteration of optimization such that # =
π/4 in the absence of noise.

In this paper, unless specified otherwise, “robust FM”
indicates the first-order method. For the majority of the
paper, we compare the (first-order) robust-FM and the
FF-optimization methods. The second-order robust-FM
method will be briefly used in Sec. III C to discuss robust-
ness to static mode-frequency offsets in detail.

For the FF optimization performed in this section, in
order to study the noise of various frequencies, we con-
sider Sδ(f ) that consists of two types of noise: (i) noise of a
Gaussian spectrum centered at the characteristic frequency
fc, and (ii) 1/f noise. Specifically, Sδ(f ) is given by

Sδ(f ) =
(
Sδ,1(f )1/2 + Sδ,2(f )1/2)2, (18)

where

Sδ,1(f ) = N1√
2πσ

exp
(

− (f − fc)2

2σ 2

)
, (19)

Sδ,2(f ) = N2

f
. (20)

For each fc, we set σ = fc/10, and choose N1 such that
the standard deviation of δ(t) realized from Sδ,1(f ) is 2π ×
500 Hz. Also, N2 is chosen such that the standard deviation
of δ(t) realized from Sδ,2(f ) is 2π × 100 Hz.

Figure 1 shows the robust-FM and FF-optimized pulses
and their FFs Fα(f ) and F#(f ). We use 150-µs pulses
to perform a MS gate on the second and third ions of
a five-ion chain. For the FF optimization, we use Sδ(f )
in Eqs. (18)–(20) with fc = 10 kHz, which is shown as
dashed lines in Fig. 1(b). Also, we use rk = ωk/ωCM,
where ωCM is the frequency of the center-of-mass mode
(largest ωk), which is a reasonable assumption for the
rf-voltage fluctuations.

In Fig. 1(b), Fα(f ) of the robust-FM pulse converges
to zero as f → 0. This is because minimizing the dis-
placement |αkj | to zero also minimizes Fα(0) to zero. By
relaxing this constraint, such that small displacements in
the absence of noise are allowed [30], the FF-optimization
method is able to find a pulse that suppresses both Fα(f )
and F#(f ) at frequencies near and lower than fc.
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B. Comparison under time-varying fluctuations
To test whether the FFs can accurately describe the gate

error, we inject monotone fluctuation of frequency f ′ into
the mode frequencies, and compare the gate error predicted
by Eqs. (10)–(12) and simulated using Qutip [49], for var-
ious values of f ′. We use the robust-FM and FF-optimized
pulses in Fig. 1. The simulations are performed by solving
the state-vector evolution with respect to the Hamiltonian
of the MS gate [45].

Figure 2(a) shows that the FF-optimized pulse has lower
gate error than the robust-FM pulse with any noise of fre-
quency lower than 17 kHz. This shows that the gate error
can be reduced for a broad range of noise frequencies by
broadly suppressing both Fα(f ) and F#(f ).

Notably, the predictions of Eqs. (10)–(12) match the
simulated gate errors well at all noise frequencies, includ-
ing those much lower than 1/τ = 6.7 kHz. At frequencies
f ′ lower than 1 kHz, E# dominates Eα , as well as con-
verges to a nonzero value as f ′ → 0, which agrees with the
simulated gate errors. Therefore, it is crucial to minimize
F#(f ′) in order to achieve robustness to noise that primar-
ily occurs in the low-frequency regime, such as the 1/f
noise. At frequencies f ′ higher than 3 kHz, Eα dominates,
so minimizing Fα(f ′) becomes crucial.

Next, we show that the FF optimization reduces the gate
error in the presence of mode-frequency noise of vari-
ous spectrum. Instead of monotone fluctuations, we inject
fluctuations δ(t) with respect to Sδ(f ) in Eqs. (18)–(20)
of various values of fc. The robust-FM pulse is fixed to
the one shown in Fig. 1, while the FF optimization is
performed for each fc using the cost function in Eq. (17).

For the state-vector simulations, δ(t) (0 ≤ t ≤ τ ) is real-
ized by assigning random phase to Sδ(f )1/2 independently

at each frequency component and then performing an
inverse Fourier transform. Each simulated gate error is
averaged over 1000 realizations of noise.

Figure 2(b) shows that the FF-optimized pulses have
lower gate error than the robust-FM pulse for all noise
PSDs considered. In most cases, the gate error is lower by
more than an order of magnitude.

For noise PSDs of fc lower than 2 kHz, discrepan-
cies between the simulated and predicted gate errors
occur. This is because, as explained in Sec. II D, when
noise is stronger at frequencies much lower than 1/τ ,
the first-order approximation of the FF formalism is less
accurate [25,48].

In the regime where low-frequency noise is strong, gate
errors are more accurately described when the noise is
modeled as static parameter offsets [48]. For fc lower
than 2 kHz, Fig. 2(b) also shows the average gate errors
when the static offsets δ, drawn from a normal distribu-
tion of zero mean and standard deviation 2π × (5002 +
1002)1/2 Hz, are added to the mode frequencies. Each
gate error is averaged over 1000 samples of δ. When fc
is lower than approximately 1 kHz, these predictions bet-
ter match the simulated gate errors than Eqs. (10)–(12) that
use the FFs. However, for fc higher than 1 kHz, predictions
using the FFs show good match with the simulated gate
errors.

When a pulse is found by FF optimization combined
with methods that achieve robustness to static mode-
frequency offsets beyond first order [15,30], the discrep-
ancy between the simulated gate error and the prediction
using the FFs can be removed. Such a pulse can achieve
even lower gate error in the presence of low-frequency
noise. See Appendix G for an example.

(a) (b)

FIG. 2. Gate errors of the 150-µs pulses obtained by robust FM (black) and FF optimization (red), predicted (lines) by Eqs. (10)–(12)
and simulated (dots) by state-vector evolution. (a) The pulses in Fig. 1 are compared under monotone fluctuations of various frequencies
injected to mode frequency ωk. The amplitude of fluctuation is fixed to 2

√
2π(ωk/ωCM ) × 500 Hz. Each error bar represents the

upper standard deviation of the simulated gate errors over 1000 initial phases of the fluctuation. (b) For each Sδ(f ), defined with the
characteristic noise frequency fc by Eqs. (18)–(20), we find the FF-optimized pulse, which requires carrier Rabi frequency $/2π
between 67 and 150 kHz, and compare the gate error with the robust-FM pulse shown in Fig. 1. For the simulations, fluctuations δ(t)
generated from each Sδ(f ) are injected to the mode frequencies. Each error bar represents the upper standard deviation of the simulated
gate errors over 1000 realizations of δ(t). The dashed lines show the average predicted gate errors when static offsets, drawn from a
normal distribution of zero mean and standard deviation 2π × (5002 + 1002)1/2 Hz, are added to the mode frequencies.
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C. Comparison under static offsets
We show that suppressing the FFs at low frequencies

achieves improved robustness to static mode-frequency
offsets, as suggested in Sec. II D. Here, we compare the FF-
optimization method with both the first-order and second-
order robust-FM methods. For the first-order robust-FM
and the FF-optimization methods, the pulses in Fig. 1 are
used. The second-order robust-FM pulse is found using the
same parameters.

Figure 3(a) shows that in the presence of static off-
sets, the FF-optimized pulse achieves significantly lower
gate error than the other two pulses. As in the case of
low-frequency noise, the angle error dominates the dis-
placement error [50], and the majority of the FF-optimized
pulse’s advantage comes from reducing the angle error.
The displacement error of the FF-optimized pulse is also
smaller than that of the first-order robust-FM pulse.

As shown in Eq. (13), Fα(f ) contains the derivatives of
the displacement over static offset of all orders. Therefore,
the FF optimization is expected to suppress the higher-
order derivatives, beyond the first-order derivative that is
explicitly added to the cost function of Eq. (17).

To verify this, we calculate the terms of various orders
in the displacement error of Eq. (6) in the presence of static
offset δ0 = −2π × 500 Hz, given by

|α(m)
kj | =

∣∣∣∣
δm

0

m!
∂mαkj

∂ωm
k

∣∣∣∣ . (21)

We show the case for k = 1 and j = 3, where k = 1
corresponds to the mode of lowest frequency, as this
displacement is the largest.

Figure 3(b) shows the result. As expected, for the first-
order (second-order) robust-FM pulse, the second-order
(third-order) term is the leading contribution to the dis-
placement. Meanwhile, for the FF-optimized pulse, the

0th-order term, which is the leading contribution, is sup-
pressed to a reasonably small value, and the terms up to
fourth-order are “evenly” suppressed to within an order
of magnitude smaller than the 0th-order term. This agrees
with the intuition that the FF optimization suppresses
the higher-order derivatives (m > 1) when all terms of
order lower than m are suppressed to sufficiently small
values, such that the summands in Eq. (13) are compa-
rable. In particular, the second- and third-order terms of
the FF-optimized pulse are more than an order of magni-
tude smaller than those of the first-order robust-FM pulse.
This explains why the FF-optimized pulse has lower dis-
placement errors than the first-order robust-FM pulse in
Fig. 3(a).

If the displacement error due to static offsets is the only
source of error, then the second-order robust-FM pulse out-
performs the FF-optimized pulse, as shown by the dashed
lines of Fig. 3(b). Indeed, a shortcoming of the FF opti-
mization is that completely removing |∂mαkj /∂ωm

k | is not
guaranteed for any m. However, in practice, suppressing
|∂mαkj /∂ωm

k | to small but nonzero values may be suffi-
cient, as potentially larger contributions to gate error, such
as the angle error and the displacement error due to time-
varying mode-frequency fluctuations, can be additionally
suppressed.

Now we consider the derivatives of the rotation angle
over static mode-frequency offset. Figure 3(c) compares
the mth-order contribution of static offsets ωk → ωk + rkδ
to the angle when δ = δ0, i.e.,

|#(m)| =
∣∣∣∣
δm

0

m!
∂m#

∂δm

∣∣∣∣ , (22)

for various values of m. We again use δ0 = −2π × 500 Hz.
As robustness of the angle is not imposed for the first- and
second-order robust-FM pulses, the FF-optimized pulse
has about 2 times smaller |#(1)| than these pulses, which

(a) (b) (c)

FIG. 3. (a) Simulated gate errors of the robust-FM (black), second-order robust-FM (blue), and FF-optimized (red) 150-µs pulses
over various static offsets of ωk, applied uniformly for all k. The carrier Rabi frequencies of the three pulses are $/2π = 85.8, 96.6,
and 109.8 kHz, respectively. The displacement errors Eα = E − E# of the second-order robust-FM and FF-optimized pulses are too
small to be visible. (b),(c) Contributions of various orders to the (b) displacement [Eq. (21)] and (c) angle [Eq. (22)] of the three pulses.
Dashed lines show |αk=1,j =3| and |# − π/4| when ωk → ωk + δ0, where δ0 = −2π × 500 Hz. In (c), the gap between the black and
blue curves is too small to be visible.
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leads the gate error to be about 4 times smaller. The
higher-order contributions are negligible.

A naturally arising question is whether |∂m#/∂δm| (m =
1, 2, ..) can be completely removed, using reasonable pulse
resources τ and $, similarly to how |∂mαkj /∂ωm

k | is com-
pletely removed using the robust-FM methods of various
orders. We note that this may require pulse-modulation
schemes other than FM, such as amplitude modulation
or amplitude-and-frequency modulation, as discussed in
recent works [51,52].

IV. EXPERIMENT

We measure the noise spectrum of the motional-mode
frequencies in a five-ion chain of 171Yb+, and apply the
results to the FF optimization. Then, we verify that the
FF-optimized pulse has a higher MS-gate fidelity than the
robust-FM pulse for a fixed pulse length of 180 µs. The
experimental setup is described in detail in Ref. [27]. We
use a rf system-on-chip (ZCU111), driven by firmware
from Sandia National Laboratories [53], as the rf source
for modulating the laser pulses.

Following the method of Ref. [36], we can measure the
PSD of motional dephasing. We apply a CPMG sequence
[54,55] using the blue-sideband transition of the target
motional mode and measure the Ramsey contrast at the

end of the sequence. Then, the noise PSD Sδ(f ) is obtained
from the relations [36]

χ(τ̃ ) = 4
∫ ∞

0
Sδ(f )|ỹ(f , τ̃ )|2df , (23)

ỹ(f , τ̃ ) = 1
2π f

L∑

j =0

(−1)j (e2π if τ̃j − e2π if τ̃j +1), (24)

where e−χ(τ̃ ) is the Ramsey contrast, L is the number of
π pulses in the CPMG sequence, τ̃ is the interval time
between π pulses, τ̃0 = 0, τ̃L+1 = Lτ̃ , and τ̃i (i = 1, . . . , L)
is the time stamp of the ith π pulse, as shown in Fig. 4(a).
Note that |ỹ(f , τ̃ )|2 can be interpreted as the filter function
of the CPMG sequence.

The PSD measured with this method consists of dephas-
ing in both spin control and the motional mode. Note that
the coherence time of spin control in the system is close
to 500 ms, which is much longer than the 8-ms motional-
coherence time, so the measured PSD is dominated by
motional dephasing.

The measured Ramsey contrast and the noise PSD are
shown in Figs. 4(b) and 4(c), respectively. The noise
spectrum is measured at frequencies below 14 kHz,
which is limited by the maximum available sideband-Rabi

L = 5
0.0 3.5 7.0

0.0

0.5

1.0

C
on

tr
as

t

L = 21
0.0 0.75 1.5

1

(a)

(b)

(d)

(e)

(c)

(f)

FIG. 4. Experimental data. (a) Diagram of the CPMG sequence. (b) Measured Ramsey contrast over various intervals between the
π pulses of the CPMG sequence. (c) Noise spectrum obtained from (b). Note that Sδ(f )/f 2 is plotted in order to match Eq. (10). The
boundaries of the shaded region represent the standard deviation of the measured Sδ(f )/f 2. (d) Robust-FM (left) and FF-optimized
(right) pulses used in the experiments, which require carrier Rabi frequency $/2π = 63.9 and 70.5 kHz, respectively. 180-µs pulses
are applied on the second and third ions of a five-ion chain. The sideband frequencies are shown as dashed lines. (e) FFs Fα(f ) (left)
and F#(f ) (right) of the pulses. The FF optimization is performed using the noise spectrum measured in (c) with L = 21. (f) Simulated
budgets and experimentally measured values of the gate errors of the pulses. The experimentally measured gate errors of the robust-FM
and FF-optimized pulses are 0.77(7)% and 0.45(7)%, respectively, where the difference comes from the effects of motional dephasing.
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frequency of our system. We note that the methods in
Refs. [32,33] may allow a wider bandwidth.

Next, using the measured Sδ(f ), we perform the FF opti-
mization to find a MS-gate pulse, and compare with the
robust-FM method. Figure 4(e) shows that both Fα(f ) and
F#(f ) of the FF-optimized pulse are lower than those of
the robust-FM pulse at most frequencies below 9 kHz.

Finally, we experimentally measure the gate errors of the
robust-FM and FF-optimized pulses. After initializing the
qubits to |0〉, we apply sequences of various odd numbers
of MS gates, which ideally generates the maximally entan-
gled state (|00〉 ± i |11〉)/

√
2. In order to remove crosstalk

errors, in a sequence of 2n + 1 gates (n ≥ 1), we apply
decoupling pulses after the first and second blocks of n
gates [56]. The gate error E is extracted from a linear fit of
the state errors, each given by ε = 1

2 (p01 + p10 + 1 − c),
where p01 + p10 is the populations of the |01〉 and |10〉
states combined and c is the parity contrast [57]; see
Appendices C and F for details.

The measured MS-gate fidelity is 99.23(7)% for the
robust-FM method and 99.55(7)% for the FF-optimized
method, for a fixed pulse length of 180 µs. The domi-
nant sources of errors are motional dephasing, motional
heating, and laser dephasing. Motional dephasing is sim-
ulated using the measured Sδ(f ), and motional heating and
laser dephasing are simulated using a master equation [58];
see Appendix D for details. The error budget in Fig. 4(f)
shows that the error due to motional dephasing is reduced
by more than half when the FF-optimized pulse is used.
This demonstrates that noise in the mode frequencies can
be characterized and then filtered out by designing the FFs,
leading to an improved gate fidelity.

We note in passing that our method of measuring the
gate fidelity is specific to the initial qubit state |00〉. The
gate fidelity may vary significantly for different initial
states; see, for example, Ref. [59]. Nonetheless, we expect
that the FF optimization improves the gate fidelity for all
initial states, as the FFs are designed to suppress the gate
errors in Eqs. (4) and (5), which are derived from a distance
measure between unitary operators [26] that is independent
of the initial state.

Our experimental setup allows limited laser intensity,
which sets an upper bound on $ at approximately 2π ×
70 kHz. To meet this constraint, we use a cost function
slightly modified from Eq. (17) for the FF optimization.
When $ is upper bounded, for a shorter pulse length,
designing a pulse that minimizes

∑
k
(
|ᾱkj1 |2 + |ᾱkj2 |2

)

while satisfying # = π/4 is more restrictive, which leaves
smaller room for appropriately designing the FFs. For
instance, when the pulse length is 150 µs, the FF-
optimized pulse does not outperform the robust-FM pulse
with the current constraint on $. Appendix E shows that if
larger $ is allowed, we expect a larger advantage of using
the FF-optimized pulse even when an optimal pulse length
is considered,

Finally, we note that while Sδ(f )/f 2 in Fig. 4(c) roughly
follows a 1/f 3 trend, distinct high-frequency peaks have
been observed in noise of other labs, such as the mode-
frequency noise of Ref. [25] and the laser-phase noise of
Ref. [35]. In the presence of such fast noise, the FF opti-
mization is expected to more significantly improve the gate
fidelity, as shown in Fig. 2.

V. OUTLOOK AND CONCLUSION

While we demonstrate robustness to parameter fluc-
tuations with respect to a first-order PSD, actual noise
can be more complex. Spectroscopy tools for noise of
higher-order spectrum [60,61], quantum noise [60], and
nonstationary noise [62] have been developed; however,
the control and noise in these protocols have been limited
to qubits. Whether such advanced noise spectroscopy can
be used for oscillator-mediated entangling operations such
as the MS gate is an interesting theoretical question.

We show that designing the FFs can improve the MS-
gate fidelity in the presence of both time-varying fluctu-
ations and static offsets of an experimental parameter. In
general, we expect that the workflow of characterizing and
filtering noise using the FF formalism will be useful for
high-fidelity operations in trapped-ion systems, as well as
various other quantum computing platforms.
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APPENDIX A: ROBUSTNESS TO LASER-PHASE
NOISE

The FFs introduced in Eqs. (11) and (12) can be
designed to achieve robustness to time-varying fluctua-
tions in the motional-mode frequencies. The same FFs can
be used to achieve robustness to time-varying fluctuations
in the laser phase.

For MS gates that use Raman beam pairs, motion phase
and spin phase are defined from the phase differences of the
beams. Depending on the orientation of the lasers, either
motion phase or spin phase is chosen to be insensitive
to the beam-path fluctuations [47]. Here, we consider the
phase-insensitive scheme, where the spin phase is insensi-
tive and the motion phase’s fluctuation is denoted as φ(t).
We note that this does not apply to our experimental setup,
which uses the phase-sensitive scheme.
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The lasers’ motion-phase fluctuation φ(t) directly adds
to the phases of the motional modes, i.e., θk(t) → θk(t) +
φ(t)∀k. This leads to the MS-gate error, with the compo-
nents Eν (ν = α, #) given by

Eν =
∫ ∞

−∞
dfSφ(f )Fν(f ), (A1)

where Sφ(f ) is the PSD of φ(t) defined analogously to
Eq. (9), and Fν(f )’s are found in Eqs. (11) and (12) with
rk = 1 ∀k.

Similarly to Fig. 2(a), we inject monotone fluctuation
of frequency f ′ into the lasers’ motion phase, and com-
pare the gate errors predicted by Eqs. (A1), (11)–(12) and
simulated using Qutip [49], for various values of f ′. We
again use the robust-FM pulse and the FF-optimized pulse
in Fig. 1.

Figure 5 shows the comparison. Similarly to Fig. 2(a),
the FF-optimized pulse has a lower gate error than the
robust-FM pulse with any noise of frequency lower than
17 kHz. This implies that robustness to fluctuations in the
mode frequencies and those in the lasers’ motion phase can
be achieved simultaneously, as both parameters share the
same filter functions.

Unlike in Fig. 2(a), the predicted gate errors do not
perfectly match the simulated gate errors at low noise fre-
quencies. In particular, Eq. (A1) wrongly predicts that the
gate error converges to zero as f ′ → 0. It is expected that
the FF formalism does not provide correct predictions for
low-frequency noise in some parameters, as for noise of
frequency much lower than 1/τ , the first-order approxi-
mation of the FFs is less accurate [25,48]. Nonetheless,
E# provides a significantly closer match with the simu-
lated gate errors than Eα at low frequencies, which again
highlights the relevance of designing F#(f ).

FIG. 5. Gate errors of the robust-FM (black) and FF-optimized
(red) pulses with monotone noise of frequency f ′ in the lasers’
motion phase, for various values of f ′. The amplitude of fluctu-
ation is fixed to 2

√
2π × 0.01 rad. The gate errors are predicted

(lines) by Eqs. (A1), (11)–(12), and simulated (dots) by state-
vector evolution. Each error bar represents the upper standard
deviation of the simulated gate errors over 1000 initial phases of
the fluctuation.

APPENDIX B: ROBUSTNESS TO
LASER-INTENSITY NOISE

The main text and Appendix A show that the FFs in
Eqs. (11) and (12) can be designed to achieve robustness to
time-varying mode-frequency fluctuations δk(t) and laser-
phase fluctuations φ(t). Here, we show that robustness
to time-varying laser-intensity fluctuations, manifested as
fluctuations in the carrier Rabi frequency, can also be
achieved, but with a different set of FFs.

We define $′(t) as the unintended fluctuations in $,
i.e., $ → $ + $′(t). Then, similarly to Eqs. (10)–(12),
the MS-gate error terms Eν (ν = α, #) due to $′(t) are
given by

Eν =
∫ ∞

−∞
df

S$′(f )

$2 Gν(f ), (B1)

where

Gα(f ) = $2

4

∑

k

(η2
kj1 + η2

kj2)

∣∣∣∣

∫ τ

0
dtei(2π ft−θk(t))

∣∣∣∣
2

, (B2)

G#(f ) = $4

4

∣∣∣∣

∫ τ

0
dt1
∫ t1

0
dt2(e2π ift1 + e2π ift2)

×
∑

k

ηkj1ηkj2 sin[θk(t1) − θk(t2)]

∣∣∣∣∣

2

. (B3)

Here, S$′(f ) is the PSD of $′(t) defined analogously to
Eq. (9), and Gα(f ) and G#(f ) are the FFs for the dis-
placement and angle errors, respectively. These FFs can
also be designed by performing an optimization with a cost
function equivalent to Eq. (17).

The FFs for the displacement error Gα(f ) turns out to
be identical to Fα(f ) with rk = 1 [see Eq. (11)]. Therefore,
suppressing the displacement error due to fluctuations in
the mode frequency and the laser phase also suppresses
that due to fluctuations in the laser intensity [25]. However,
this does not hold for the angle error, as the FFs G#(f ) and
F#(f ) [see Eq. (12)] are different.

Figure 6(a) shows the FFs Gα(f ) and G#(f ) of the
150-µs pulses obtained by robust FM and FF optimiza-
tion. The FF optimization is performed with a monotone
noise PSD S$′(f ) = (A$′/2)2 × [δ(f − f ′) + δ(f + f ′)],
where A$′ =

√
2 × 0.05$ and f ′ = 10 kHz are the ampli-

tude and frequency of the monotone fluctuation $′(t),
respectively, and δ(·) is the Dirac δ function. As expected,
the FF-optimized pulse’s FFs are both sharply suppressed
at f = 10 kHz.

Note that unlike F#(f ), G#(f ) converges to a nonzero
value as f → 0. Indeed, when a static offset occurs in
the carrier Rabi frequency from $ to $ + $′, the angle
changes from # to (1 + $′/$)2 × #, regardless of the
pulse. Therefore, it is unlikely that G#(f ) is suppressed at
zero or very low frequencies (f * 1/τ ) by pulse design.

014014-9



MINGYU KANG et al. PHYS. REV. APPLIED 19, 014014 (2023)

(a) (b)

FIG. 6. (a) Filter functions Gα(f ) (left) and G#(f ) (right) of the 150-µs pulses obtained by robust FM (black) and FF optimization
(blue), which require carrier Rabi frequency $/2π = 85.8 and 118.5 kHz, respectively. Dashed lines show the monotone frequency
f ′ = 10 kHz of the noise model used in the FF optimization. Note that the robust-FM pulse is not robust to laser-intensity offsets. (b)
Gate errors with monotone noise of frequency f ′ in the laser intensity, for various values of f ′. The amplitude of carrier Rabi-frequency
fluctuation is given by A$′ =

√
2 × 0.05$. Each FF-optimized pulse, which requires carrier Rabi frequency $/2π between 66 and

285 kHz, is optimized with the corresponding monotone-noise PSD, and is compared with the robust-FM pulse shown in Fig. 1. The
gate errors are predicted (lines) by Eqs. (B1)–(B3), and simulated (dots) by state-vector evolution. Each error bar, which represents the
upper standard deviation of the simulated gate errors over 1000 initial phases the fluctuation, is too small to be visible.

Figure 6(b) shows the gate errors of the robust-FM pulse
and the FF-optimized pulses with injected monotone laser-
intensity noise. We note that the robust-FM pulse is robust
to mode-frequency offsets but not to laser-intensity offsets.
We vary the frequency f ′ of the fluctuation of $′(t), where
the amplitude of fluctuation is fixed to A$′ =

√
2 × 0.05$.

Similarly to Fig. 2(b), the robust-FM pulse is fixed to the
one shown in Fig. 1, while the FF optimization is per-
formed for each monotone noise PSD. The pulse length
is fixed to 150 µs.

For all noise frequencies higher than 2.5 kHz, the FF-
optimized pulses achieve significantly smaller gate error
than the robust-FM pulse. However, at noise frequen-
cies lower than 2.5 kHz, the first-order approximations of
the FFs break down, and the FF optimization does not
successfully reduce the gate error.

Recently, Ref. [63] showed that robustness to static
laser-intensity noise can be achieved by using spin-
dependent squeezing. An interesting direction is to develop
and design FFs for this gate scheme such that robustness
to laser-intensity noise of any frequency is achieved. Also,
one may consider circuit-level error mitigation techniques
[64,65], rather than gate-level pulse optimization, to han-
dle static offsets and low-frequency fluctuations in the laser
intensity.

APPENDIX C: GATE-FIDELITY MEASUREMENT

In this Appendix, we describe how the gate fidelities of
the robust-FM and FF-optimized pulses are measured. We
first initialize the qubits to |0〉, and then apply sequences
of pulses, each consisting of 1, 9, 13, and 21 concatenated
MS gates, which ideally generate the maximally entangled
state (|00〉 + i |11〉)/

√
2. Each sequence, except that with

one gate, is interleaved with two pairs of single-qubit Y
gates, in order to mitigate optical crosstalk, as described in
Appendix F. The state error is given by ε = 1

2 (p01 + p10 +
1 − c), where p01 + p10 is the measured populations of the
|01〉 and |10〉 states combined and c is the measured parity
contrast [57]. Assuming that the coherent error is small,
and using the fact that the stochastic error accumulates
linearly and the state-preparation-and-measurement error
remains constant with the number of concatenated gates,
we find the gate fidelity E from the slope of a linear fit.
According to the experimental data shown in Fig. 7, the
measured MS-gate fidelity is 99.23(7)% for the robust-FM
method and 99.55(7)% for the FF-optimized method, for a
fixed pulse length of 180 µs.

Figure 7 shows that the advantage of the FF-optimized
pulse comes more from the smaller slope of the 1 − c

FIG. 7. Errors in the maximally entangled state generated by
sequences of concatenated robust-FM (left) and FF-optimized
(right) MS-gate pulses. The purple triangles, orange squares,
and black circles are the population leakage to the |01〉 and
|10〉 states, the loss of parity contrast, and the final-state errors,
respectively. The gate error is extracted from the slope of the
linear fit to the black circles.
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line than that of the p01 + p10 line. This indicates that the
lower gate error comes more from suppressing E# than
Eα , because to leading order, p01 + p10 = Eα and 1 − c =
Eα + 2E# [25,57]. This agrees with our observation that
the measured noise spectrum Sδ(f )/f 2 in Fig. 4(c) is sig-
nificantly larger at the low-frequency regime, and that
F#(f ) dominates Fα(f ) at low f . Therefore, suppressing
F#(f ) is essential for achieving higher gate fidelities in the
presence of low-frequency noise.

APPENDIX D: ERROR-BUDGET SIMULATION

In this section, we explain how the error budget for each
pulse is evaluated in Fig. 4(f). Table I shows the data of
Fig. 4(f) in numbers. We consider the three most dominant
sources of errors: motional dephasing, motional heating,
and laser dephasing. Other sources, such as spontaneous
emission and imperfection of the pulse solution, cause gate
errors in the order of 10−4 [27]. Also, ac Stark shift, which
is fourth order by design of our system with 171Yb+ ions,
is carefully tracked such that its contribution to gate errors
is negligible.

First, motional dephasing is simulated as noise in the
mode frequencies according to Sδ(f ) measured in Fig. 4(c).
Similarly to Sec. III B, fluctuation of mode frequencies
δ(t) is realized in the time domain, by assigning ran-
dom phase to Sδ(f )1/2 independently at each frequency
component and then performing an inverse Fourier trans-
form. Specifically, the value of Sδ(f ) at each frequency
used in simulations is drawn from a normal distribution of
mean and standard deviation extracted from the measured
Sδ(f ). In the frequency region where measurements with
L = 5 and L = 21 overlap, the average value of the two
measurements is taken.

For each δ(t), state-vector evolution is performed with
respect to the Hamiltonian of the MS gate. Note that
unlike in Sec. III B, δ(t) is generated for 0 ≤ t ≤ 21τ ,
such that the gate error is extracted from the slope of a
linear fit of the state errors versus the numbers of con-
catenated gates, thus directly simulating the gate-fidelity-
measurement experiment described in Appendix C. We use

TABLE I. Simulated budgets and experimentally measured
values of the gate errors of the robust-FM and FF-optimized
pulses used in the experiment. The data are identical to those
shown in Fig. 4(f).

Source of error

Error of
robust-FM

pulse (10−3)

Error of
FF-optimized
pulse (10−3)

Motional dephasing 7.7 ± 2.1 3.4 ± 1.0
Motional heating 1.3 ± 0.1 1.3 ± 0.1
Laser dephasing 0.43 ± 0.02 0.41 ± 0.02
Total 9.4 ± 2.1 5.1 ± 1.0
Experiment 7.7 ± 0.7 4.5 ± 0.7

the simulated state errors averaged over 1000 realizations
of noise, which follow a good linear trend. The simulated
gate error due to motional dephasing and its uncertainty,
shown in Fig. 4(f) and Table I, are the slope of the linear
fit and its uncertainty, respectively.

Next, motional heating and laser dephasing are simu-
lated using a master equation [58], following the method
in the Supplemental Material of Ref. [27]. The master
equation is written in Lindblad form

dρ̂

dt
= −i[Ĥ , ρ̂] +

∑

p

(
L̂p ρ̂L̂†

p−
1
2

L̂†
p L̂p ρ̂ − 1

2
ρ̂L̂†

p L̂p

)
,

where ρ̂ is the density matrix, Ĥ is the Hamiltonian, and
L̂p is the pth Lindblad operator that describes its assigned
decoherence process. Here, we consider a system con-
sisting of two qubits j1 and j2 and one motional mode,
truncated to the first ten Fock states. The evolution of
each mode is simulated sequentially and then combined
to obtain the final state, which relies on the fact that the
residual entanglement between each mode and the qubits
is small. Similarly as above, the state errors after concate-
nated MS-gate pulses are calculated, and then the gate error
is extracted from the slope of a linear fit.

Motional heating is described by the Lindblad operators
L̂+ =

√
1â† and L̂− =

√
1â, where 1 is the heating rate

and â† is the creation operator of the mode. Laser dephas-
ing is described by L̂l =

√
1/Tl(σ̂

z
j1 + σ̂ z

j2), where Tl is the
laser coherence time and σ̂ z

j is the phase-flip operator of
ion j . Based on experimental measurements, we use the
heating rates 1 = 614(18) quanta/s for the center-of-mass
mode and 1 = 5 quanta/s for the other modes, and the laser
coherence time Tl = 496(17) ms [66]. The uncertainty of
1(Tl) leads to the uncertainty of the simulated gate error
due to motional heating (laser dephasing) in Fig. 4(f) and
Table I.

Note that for the phase-insensitive laser orientation, the
effects of laser dephasing can also be mitigated using the
FFs as described in Appendix A. If the noise PSD of laser
dephasing is known, laser dephasing can be simulated as
fluctuation in an experimental parameter as well, instead of
using a master equation. While motional heating cannot be
mitigated using FFs, it can be significantly suppressed by,
for instance, using a cryogenic system [67]. Overall, reduc-
ing the effects of motional dephasing, motional heating,
and laser dephasing is a necessary step towards achieving
high-fidelity gates with trapped ions.

APPENDIX E: EXPERIMENTAL CONSTRAINTS
OF PULSE OPTIMIZATION

For experimental implementation of the pulse optimiza-
tion, there are several additional considerations. First, the
optimization should be performed within a few seconds, so
that the runtime does not take a significant portion of the
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system’s duty cycle. Second, certain modes are more sus-
ceptible to dissipative noise than other modes, so the drive
frequency of the pulse needs to be far detuned from these
modes. In the case of our experiment, the center-of-mass
mode, which has the highest frequency, has a heating rate
more than 100 times larger than that of the other modes.
Third, the laser intensity is limited, which poses an upper
bound on the carrier-Rabi frequency $.

To satisfy the experimental constraints, we tweak the
pulse optimization as the following. First, to reduce the run
time of the FF optimization, instead of minimizing F#(f )
at various values of f , we minimize it only at the rep-
resentative frequencies f = ±1/2τ , where τ is the pulse
length. This is because evaluating F#(f ) and its gradient
is the most time-consuming routine at each iteration of
optimization. We expect to improve the run time by, e.g.,
parallelization using graphics processing units.

Second, to avoid exciting the center-of-mass mode,
which is more than 100 times susceptible to heating than
the other modes, we use an initial-guess pulse centered
at the frequency µ0 = mink ωk − 2π × 10 kHz. Given
such an initial-guess pulse, both the robust-FM and FF-
optimization methods are able to find pulses that are far
detuned from the center-of-mass-mode frequency maxk ωk,
as shown in Fig. 4(d). For longer ion chains with larger
number of modes, the initial-guess pulse needs to be more
carefully chosen, as different modes couple to different ions
with varying strengths.

Lastly, to find a pulse with a carrier Rabi frequency
lower than the upper limit $max, we add to the cost function
a penalty term given by

C$ = β exp
{
γ (1 − $2

max/$2)
}

,

where β is chosen as 10−5 and γ is typically chosen
between 20 and 50. As γ is large, C$ is very small
when $ < $max but becomes large when $ > $max. This
ensures $ ! $max when the overall cost function is mini-
mized. For the gate-fidelity-measurement experiment with
the pulses in Fig. 4(d), we use $max = 2π × 70 kHz.

To find the minimum achievable gate error for a given
$max, we perform simulations for various pulse lengths. In
general, as the pulse length increases, the gate error tends
to increase, as the effects of dissipative noise build up over
time. However, when the pulse length is too short, a suffi-
ciently good pulse solution that satisfies $ ! $max cannot
be found, so the gate error becomes larger. Therefore, there
exists an optimal pulse length that achieves the lowest gate
error for a given $max.

The simulated gate errors are shown in Fig. 8. Similarly
to Appendix D, each simulated gate error is obtained from
a linear fit of the state errors versus the numbers of con-
catenated gates up to 21. Motional dephasing, motional
heating, and laser dephasing are simulated altogether by
solving a master equation with the mode frequencies

FIG. 8. Simulated gate errors of the robust-FM (dashed) and
FF-optimized (solid) pulses, for various values of pulse length
and upper bound on the carrier Rabi frequency. The experi-
mentally measured gate errors of the robust-FM (FF-optimized)
pulses of lengths 150 and 180 µs found with $max = 2π ×
70 kHz are marked as the black triangles (red squares).

fluctuating according to Sδ(f ). We use the same values
of noise parameters as in Appendix D. Each state error is
averaged over 300 realizations of motional dephasing.

We also show the experimentally measured gate errors
of the robust-FM and FF-optimized pulses of lengths 150
and 180 µs found with $max = 2π × 70 kHz, which match
well with the simulated gate errors. The FF-optimized
pulse outperforms the robust-FM pulse when the pulse
length is 180 µs, but not when the pulse length is 150 µs.
This is because when $ has an upper limit, as the pulse
length gets shorter, the condition of achieving high-fidelity
MS gate without noise becomes already more restrictive,
which leaves smaller room for the FFs to be appropriately
designed.

Figure 8 shows that when the optimal pulse length is
considered, we expect a larger advantage of using the FF-
optimized pulse when $max is larger. In particular, when
$max = 2π × 150 kHz, the lowest simulated gate error of
the robust-FM (FF-optimized) pulse is 0.17% (0.061%),
when the pulse length is 80 (100) µs. Therefore, we expect
the FF optimization to be even more useful in future exper-
iments that allow larger laser intensity without introducing
additional technical noise.

APPENDIX F: CROSSTALK SUPPRESSION

Crosstalk errors need to be considered when implement-
ing two-qubit gates in a chain of more than two ions, as
the unwanted entanglement between the target and spec-
tator ions created by crosstalk impacts the fidelity of the
Bell state of the target ions. The crosstalk between target
ion i and spectator ion j is quantified as the carrier-Rabi-
frequency ratio εij = $j /$i when resonantly driving a
single-qubit gate on ion i. In our system we measure εij
to be 1–2% for nearest neighbors due to imperfect optical
addressing mainly caused by aberrations. The crosstalk
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FIG. 9. Circuit diagram of a crosstalk-suppression scheme for
each sequence of 2n + 1 (n ≥ 1) concatenated MS gates. The
sequence is interleaved with two pairs of Y gates on the target
ions, such that the crosstalk interaction is reversed during the
second sequence of n gates.

level is within the range of state-of-the-art trapped-ion
experiments, but this still needs to be mitigated in order
to attain a 99.5%-level two-qubit-gate fidelity. Due to the
coherent nature of crosstalk, its effect can be actively can-
celed by applying single-qubit spin-echo pulses in the
middle of the gate(s), reversing the crosstalk interaction
during the second half of the MS evolution [56,68].

For each sequence of 2n + 1 (n ≥ 1) concatenated
MS gates in the gate-fidelity measurement described in
Appendix C, we use a crosstalk-suppression scheme that
applies the echoing pulses on the target ions, as illustrated
in the circuit of Fig. 9 and detailed in Ref. [56]. Note that
a pair of Y gates commutes with a MS gate, so the Y gates
would not affect the final state in ideal conditions. A single
MS gate is applied after the second pair of Y gates in order
to generate the Bell state for the fidelity measurement.

APPENDIX G: BATCH OPTIMIZATION OF
FILTER FUNCTIONS

When the frequency of noise is much lower than 1/τ ,
noise essentially becomes a static parameter offset within
the duration of a single gate. In the FF optimization, which
uses the cost function in Eq. (17), the first term mini-
mizes the gate error due to static mode-frequency offsets
up to first order. However, higher-order errors are not
minimized, which causes the first-order approximation of
the FF formalism to be less accurate. Indeed, the simu-
lated gate errors are higher than the predictions using the
FFs in Fig. 2(b), when the low-frequency component of
noise is relatively strong. This motivates combining the
FF optimization with pulse-design methods that achieve
robustness to static offsets of motional-mode frequencies
beyond first order [15,30].

Here we combine FF optimization with the “b(atch)-
robust FM,” introduced in Ref. [30]. Instead of using an
analytic robustness condition, the b-robust FM minimizes
the average gate error over a range of systematic errors.
When the batch size is 1, the cost function is given by

C(δ) =
∑

j =j1,j2

∑

k

|αkj (δ)|2 + 1
2

(
#(δ) − π

4

)2

+
∫ fmax

−fmax

df
Sδ(f )

f 2 [Fα(f , δ) + F#(f , δ)].

Here, δ is the offset vector whose kth element is δk,
and αkj (δ), #(δ), and Fν(f , δ) are, respectively, the dis-
placement, rotation angle, and filter function when ωk is
replaced by ωk + δk. At each iteration of optimization,
δ is randomly updated, where each δk is drawn from a
normal distribution of mean zero and standard deviation
2π × 0.5 kHz. The adaptive-moment-estimation [69] opti-
mizer is used in order to stabilize the gradient while the
cost function changes over iterations.

Similarly to Fig. 2(b), this batch optimization is per-
formed for various noise PSDs. To reduce the runtime,
for the optimization we use the noise spectrum Sδ(f ) =
(2π × 0.5 kHz)2/2 × [δ(f − fc) + δ(f + fc)], where δ(·)
is the Dirac δ function. Figure 10 shows the simulated and
predicted gate errors, compared with the pulses used in
Fig. 2(b) obtained by robust FM and FF optimization with-
out batch. Except a few outliers, the batch-FF-optimized
pulses have even lower gate error than the plain FF-
optimized pulses. Furthermore, the match between the
gate errors simulated by state-vector evolution and the
gate errors predicted by Eqs. (10)–(12) is improved, espe-
cially with low fc. This is because the batch optimization
achieves robustness to static offsets of mode frequencies
beyond first order.

While the batch-FF optimization is promising especially
with low-frequency noise, it takes significantly longer run-
time than the plain FF optimization, as minimizing a
randomly updated cost function requires a larger number
of iterations. For the pulses in Fig. 10, we perform 10 000
iterations for each batch optimization using the adaptive-
moment-estimation optimizer, while less than 300 iter-
ations was sufficient for each plain optimization using

FIG. 10. Gate errors of the pulses obtained by batch-FF opti-
mization under various noise of spectrum Sδ(f ), each defined
with the characteristic frequency fc by Eqs. (18)–(20). Each
batch-FF-optimized pulse, which requires carrier Rabi frequency
$/2π between 90 and 150 kHz, is compared with the robust-FM
and plain FF-optimized pulses used in Fig. 2(b). The gate errors
are predicted (lines) by Eqs. (10)–(12) and simulated (dots) by
state-vector evolution. Each error bar represents the upper stan-
dard deviation of the simulated gate errors over 1000 realizations
of noise.
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the BFGS optimizer [70]. For experimental application
of pulse optimization to a long ion chain, efficient and
parallelized implementation of the algorithm should be
accompanied. See Ref. [30] for a discussion of typical
runtimes.

APPENDIX H: FLUCTUATIONS OF THE
LAMB-DICKE PARAMETERS

In this Appendix, we consider the fluctuations of the
Lamb-Dicke parameters ηkj . The definition of ηkj is
given by

ηkj = bkj 4k

√
!

2mionωk
,

where bkj is the j th element of the normalized eigenvec-
tor of the kth normal mode with eigenvalue ωk, 4k is the
magnitude of the wave-vector difference of the two Raman
beams along the motional direction of the modes, and mion
is the mass of the ion.

Here we consider the fluctuations of the rf driving sig-
nal for the trap, which is the leading source of error in our
experimental setup. Up to first order, the rf-voltage fluc-
tuations are expected to uniformly “scale up or down” the
mode frequencies, i.e., ωk → ωk(1 + δ(t)/ωCM), and not
affect the eigenvector elements bkj . However, ηkj still has
an explicit proportionality to

√
1/ωk. While this does not

affect the displacement error, as αkj is proportional to ηkj
and is minimized to zero, this may affect the angle #.
Specifically, when ωk → ωk(1 + δ(t)/ωCM), the ηkj1ηkj2
factor in # is scaled to ηkj1ηkj2(1 + δ(t)/ωCM)−1 [see
Eq. (2)].

Therefore, rf-voltage fluctuations have two effects: (i)
dephasing, or fluctuation of θk(t) =

∫ t
0[µ(t′) − ωk]dt′, and

(ii) amplitude fluctuation due to ηkj1ηkj2 ∝ 1/ωk. We com-
pare the magnitude of the two effects on # in the presence
of static noise, i.e., ωk → ωk(1 + δ/ωCM). Specifically, we
compare |∂#/∂δ| in Eq. (8) when only one of the effects in
(i) and (ii) exists. The effect of dephasing on # is reduced
by the FF optimization, so we use the FF-optimized pulse
in Fig. 1 as an example. When only dephasing exists,
|∂#/∂δ| = 5.15 × 10−6 Hz−1. When only amplitude fluc-
tuation exists, |∂#/∂δ| = #/ωCM = 5.35 × 10−8 Hz−1.
Therefore, the effect of dephasing is 2 orders of magni-
tude larger than that of amplitude fluctuation. This justifies
why we achieve only robustness to dephasing and not the
fluctuation of ηkj .

We note that for future pulse-optimization schemes that
achieve more improved robustness of # to dephasing, the
fluctuation of ηkj may need to be considered. To achieve
robustness to ηkj fluctuation at any frequency, a possible
method is to suppress |∂#/∂δ| and F#(f ) derived for the
case where ηkj is an explicit function of ωk.

APPENDIX I: DERIVATIONS OF THE ANGLE FF

In this Appendix, we present the derivations of Eq. (10)
for ν = # and Eq. (12), which define the angle FF F#(f ).
The derivations for the displacement FF Fα(f ) can be
found in Refs. [24,25].

We consider a time-varying fluctuation ϕk(t) in the
phase θk(t) of motional mode k, such that θk(t) → θk(t) +
ϕk(t). To first order in ϕk(t), the angle # becomes

# = −$2
∑

k

ηkj1ηkj2

2

∫ τ

0
dt1
∫ t1

0
dt2 sin[θk(t1) − θk(t2) + ϕk(t1) − ϕk(t2)]

≈ −$2
∑

k

ηkj1ηkj2

2

∫ τ

0
dt1
∫ t1

0
dt2
(

sin[θk(t1) − θk(t2)] + [ϕk(t1) − ϕk(t2)] × cos[θk(t1) − θk(t2)]
)

.

When ϕk(t) = 0 ∀k, # is equal to its ideal value π/4. For brevity, we assume that ϕk(t) = rkϕ(t), i.e., dephasing of
different modes differ only up to proportionality constants. The angle gate error E#, given by Eq. (4), becomes

E# =
∣∣∣∣∣
$2

2

∫ τ

0
dt1
∫ t1

0
dt2[ϕ(t1) − ϕ(t2)]

∑

k

rkηkj1ηkj2 cos[θk(t1) − θk(t2)]

∣∣∣∣∣

2

.

Now we use E[ϕ(t)ϕ(t′)] =
∫∞
−∞ dfSϕ(f )e2π if (t−t′) from the definition of the PSD of the phase noise Sϕ(t), where

E[·] denotes the expectation value of the argument. Also note that Sϕ(t) = Sδ(f )/f 2, as ϕ(t) =
∫ t

0 δ(t′)dt′. Then, the
expectation value of E# is given by
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E[E#] = $4

4

∫ τ

0
dt1
∫ t1

0
dt2
∫ τ

0
dt′1

∫ t′1

0
dt′2

∫ ∞

−∞
dfSϕ(f )

(
e2π if (t1−t′1) − e2π if (t1−t′2) − e2π if (t2−t′1) + e2π if (t2−t′2)

)

×
∑

k,k′
rkrk′ηkj1ηkj2ηk′j1ηk′j2 cos[θk(t1) − θk(t2)] cos[θk′(t′1) − θk′(t′2)] =

∫ ∞

−∞
df

Sδ(f )

f 2 F#(f ),

where

F#(f ) = $4

4

∫ τ

0
dt1
∫ t1

0
dt2
∫ τ

0
dt′1

∫ t′1

0
dt′2
(

e2π ift1 − e2π ift2
)(

e−2π ift′1 − e−2π ift′2
)

×
∑

k,k′
rkrk′ηkj1ηkj2ηk′j1ηk′j2 cos[θk(t1) − θk(t2)] cos[θk′(t′1) − θk′(t′2)]

= $4

∣∣∣∣∣

∫ τ

0
dt1
∫ t1

0
dt2(e2π ift1 − e2π ift2)

∑

k

rk

2
ηkj1ηkj2 cos[θk(t1) − θk(t2)]

∣∣∣∣∣

2

.

This completes the derivation of Eq. (10) for ν = # and
Eq. (12), where we use E# instead of E[E#] to denote the
expected angle error in the presence of time-varying fluc-
tuations. The angle FF for the laser intensity noise G#(f ),
defined in Eq. (B1) for ν = # and Eq. (B3), can also be
derived in a similar way.
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