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ABSTRACT: A recent paper in Science Advances by Sun et al. claims that intra-
chloroplast proteins in the model plant Arabidopsis can be polyubiquitinated and
then extracted into the cytosol for subsequent degradation by the proteasome.
Most of this conclusion hinges on several sets of mass spectrometry (MS) data. If
the proposed results and conclusion are true, this would be a major change in the
proteolysis/proteostasis field, breaking the long-standing dogma that there are no
polyubiquitination mechanisms within chloroplast organelles (nor in mitochon-
dria). Given its importance, we reanalyzed their raw MS data using both open and
closed sequence database searches and encountered many issues not only with the
results but also discrepancies between stated methods (e.g., use of alkylating agent
iodoacetamide (IAA)) and observed mass modifications. Although there is likely
enrichment of ubiquitination signatures in a subset of the data (probably from
ubiquitination in the cytosol), we show that runaway alkylation with IAA caused
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extensive artifactual modifications of N termini and lysines to the point that a large fraction of the desired ubiquitination signatures is
indistinguishable from artifactual acetamide signatures, and thus, no intra-chloroplast polyubiquitination conclusions can be drawn
from these data. We provide recommendations on how to avoid such perils in future work.

KEYWORDS: ubiquitination, chloroplasts, mass spectrometry, iodoacetamide, alkylation

B INTRODUCTION

A recent paper by Sun et al.' studying Arabidopsis thaliana
suggested that proteins in the chloroplast stroma and thylakoid
membrane, including chloroplast-encoded proteins, can be
polyubiquitinated and subsequently transferred into the
cytosol for proteasomal degradation. This closely followed a
prior publication which suggested that the cytosolic CDC48
complexes mediate ubiquitin-dependent degradation of intra-
chloroplast proteins in Arabidopsis.” However, mechanisms
and enzymatic machinery to polyubiquitinate within the
chloroplast stroma or thylakoids have not been determined,
nor has a translocation pathway to export proteins from the
intra-chloroplast space (the stroma) been identified. Poly-
ubiquitination (especially with lysine-48 (K48) linkages
between the ubiquitin molecules) is recognized by the 26S
proteasome in the cytosol and nucleus and results in
degradation of the polyubiquitinated substrates.”™® So far,
extensive research has shown that proteins within the
chloroplast (i.e., the space confined by the double envelope
membranes) are degraded by intra-chloroplast proteases or
degraded in the vacuole after export through autophagy-
independent transport vesicles or through autophago-
somes.””'? Different speculative and confirmed degradation
pathways of chloroplast proteins and possible involvement on
(poly)ubiquitination are summarized and listed in Figure 1A.
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Polyubiquitination requires recognition of substrate by E3
ubiquitin ligases, as well as E1 and E2 enzymes for activation of
ubiquitin and transfer to the E3 ligase (Figure 1B). There are
two E1 and eight E2 ligases and a large number (~1400) of E3
UBI ligases in A. thaliana® that can be found in the cytosol and
nucleus or associated with the cytosolic surface of the
endoplasmic reticulum or outer membranes of plastids/
chloroplasts, mitochondria, and peroxisomes.”'* Each E3
ligase is generally believed to target a specific set of substrates,
and it is therefore the E3 ligases that provide selectivity to
proteasomal degradation (in case of polyubiquitinated
substrates). Two E3 ligases, SP1 and SP2, are associated
with the cytosolic side of chloroplasts."*~"” Furthermore,
nuclear-encoded chloroplast precursor proteins synthesized in
the cytosol can be polyubiquitinated for proteasomal
degradation en route to the chloroplast by cytosolic E3 ligases
such as CHIP,'® and the cytosolic E3 ligase PUB4 appears also
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A

involvement of (poly)ubiquitination .

Speculative and confirmed degradation pathways of chloroplast proteins and possible

i) Ubiquitination of nuclear-encoded precursor proteins en route to chloroplasts by

cytosolic E3 ligase CHIP.
i)
iii)
(2022) and Li et al (2022).

Ubiquitination of outer envelope proteins by E3 ligases SP1 and SP2.
Ubiquitination within intact chloroplasts (plastid- and nuclear-encoded) - Sun et al

B Ubiquitin (U)

E1+E2
enzymes

iv) Intra-chloroplast protein degradation by ATP-dependent (FtsH, Clp, Lon, Deg) | E3 ligase +@
and ATP-independent prot without _ubiquitination (e.g. cGEP, PGM48, 9
SPPA, PREP,OOP, di- and tripeptidases, SPP). b /t
v) Selective removal of chloroplast content from intact chloroplasts through various substrate —— substrate
types of vesicles (RCB, ATl PS, SSGL, CCV, SAV, MVB).
vi) Loss of chloroplast integrity (extreme light stress), release of protein content ( e.g.
in flu mutant ) into the cytosol followed by ubiquitination & proteasomal or
vacuolar degradation, degradation by cytosolic proteases or autophagy (CHMP1,
ATI1/2, ATGS/7, others). D SH NH
vii) Autophagosomal (ATG-dependent) degradation of swollen chloroplasts after | [ 2 N|H2
excess light or UV stress which caninvolve ubiquitination (E3 ligase PUB4 in fc2, NH, 3000000 CX00000XKX0000000KKXXXCOOH
others).
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Figure 1. Points for consideration and background information when evaluating ubiquitination of chloroplast proteins. (A) Speculative and
confirmed degradation pathways of chloroplast proteins and possible involvement of (poly)ubiquitination. Scenario (iii) is proposed in refs 1, 2.
(B) UBI-protease pathway (precursor UBI processing and activation, conjugation to E3 ligases, and selective ubiquitination of substrates by E3
ligases). Ubiquitin is shown as circled U. (C) UBI-protein isopeptide linkage (K-6-GG) and consequence of digestion with trypsin protease. The
products are tryptic peptides from the substrate and from the (poly)ubiquitination chain. For proteasomal degradation, the internal isopeptide
linkages in the polyubiquitination chain are typically from K,,. (D) Desired and unwanted off-target alkylation can result in +57.0215 and 114.0429
modifications on cysteine, lysine, peptide N-termini, as well as several other amino acid residues (S, T, D, E, Y, H, and M). The di-GG footprint of
ubiquitination also results in a +114.0429 Da mass modification on lysine, thus preventing unequivocal identification of this modification.

9-21
However, so far,

involved in chloroplast proteostasis.'
none of the EI—E2—E3 proteins are known to reside within
the plastid/chloroplast stroma and thylakoids. To the best of
our knowledge, there is also no demonstration for ubiquitin (a
76 amino acid peptide encoded by UBQ10—AT4G05320 and
homologs) within the stroma/thylakoids of plastids/chlor-
oplast or the mitochondrial matrix. The conclusion that a
ubiquitin-based pathway acts inside chloroplasts to regulate
photosynthesis' is thus truly surprising, and it is therefore
prudent to take a critical look at the various data presented in
this recent study. The conclusion mostly hinges on mass
spectrometry (MS) of affinity-enriched peptides using either
an antibody directed to a lysine-¢-diglycine (K-e-GG) peptide
or using anti-Myc affinity materials that recognize an
overexpressed 6Myc-tagged version of ubiquitin.

Canonical ubiquitination occurs on the sidechain of lysine
residues through a covalent isopeptide bond of the e-amine to
the C-terminal glycine residue of ubiquitin (Figure 1C). The
C-terminus of the activated ubiquitin ends with the amino acid
residues-RLRGG. Upon digestion of a ubiquitinated protein
with trypsin, which cleaves the peptidyl bond C-terminal of
lysine and arginine, a di-G “footprint” is left on the modified
lysine (Figure 1C). This K-e-GG footprint is therefore
considered evidence for mono- or polyubiquitination. Using
MS, this GG is identified as an extra mass of 114.0429
associated with the modified lysine residue (Figure 1C). It
should be noted that the K-&-GG footprint can also result from
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other UB-like modifications (NEDDylation and some
SUMOpylation) and cannot distinguish between monoUBI
and different polyUBI linkages.”” Finally, there are reports of
non-lysine (non-canonical) ubiquitination at the N-terminus of
proteins, as well as of cysteine, serine, or threonine, but this
possibility has not really been investigated in plants.”*

There are several pitfalls of relying on the additional
+114.0429 Da mass for assigning ubiquitination. Unfortu-
nately, covalent attachment of two acetamide molecules to
lysine results in an identical mass modification (Figure 1D).
The main confounder for the GG footprint therefore stems
from covalent attachment of two acetamide molecules to
lysine, or if a peptide has two lysines, an extra mass of
114.0429 can be obtained by single alkylation of each lysine
(2x 57.0215)*%* (Figure 1D). Such lysine modifications can
occur during the alkylation reaction to block the sulthydryl of
cysteine residues, in particular using iodoacetamide (IAA) (a
a-halocarbonyl electrophile). The frequency of off-target
alkylation can be reduced by using lower IAA concentrations
at lower temperatures or by using chloroacetamide (CAA).>
However, it should be noted that the delta mass of acetylation
with IAA or CAA is identical and potential (di)-acetylation of
lysine by even CAA cannot be ignored.”® Furthermore, CAA
has shown to produce other artifacts not seen with IAA, in
particular very high levels of oxidation of M and W.** Different
abbreviations for iodoacetamide and chloroacetamide are used
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in the published literature; here, we follow the abbreviations usin§ ThermoRawFileParser*® and processed using MSFragger

(IAA and CAA) as defined in ref 28.

Confident assignment of any mass modification (both post-
harvest and physiological post-translational modifications—
PTMs) to a specific residue, including GG to lysines, requires
specific sequence coverage of the modified residue through
identification of b-ion and/or y-ions and statistical significance
of the assigned PTM-site through a PTM-scoring algorithm.
High mass accuracy of the precursor ion (e.g., within 3—6
ppm) is needed to ensure that the peptide with the assigned
PTM does not carry additional mass modifications that could
provide alternative interpretation of the peptide sequence and
its PTMs. Correct assignment of the monoisotopic (only C12,
not C13) peak within the isotope envelope is also important to
avoid additional mass accuracy errors. The mass of asparagine
(N) is also 114.0429 Da and might lead to false positive
identification of ubiquitination if a protein ends with K-N since
a missed cleavage of K-N at the C-terminal end results in
addition of 114.0429. Furthermore, the isobaric residues I and
L have a mass of 113.0841 and D has a mass of 115.0269, so
when combined with isotope (£1.003355) uncertainties and/
or amidation and deamidation (+0.984016), special care and
high mass accuracy are crucial. Furthermore, there are
conflicting reports about whether trypsin cleaves the C-
terminal of modified lysines, and therefore, assigning
ubiquitination at a C-terminal K of a peptide needs to be
treated with care’” but see ref 31. Nevertheless, we can
conclude that MS is a very powerful tool to detect
ubiquitination and indeed several large scale ubiquitination
studies have been published for Arabidopsis®* ™" as well as
many non-plant species.””**”** However, as in all large-scale
“omics” studies, even low false discovery rates can result in
many false positive observations especially for PTMs, and a
critical evaluation of the MS results is therefore needed.
Because the original raw MS data for many protein MS-based
publications are available through ProteomeXchange (http://
www.proteomexchange.org/),” it is possible to re-evaluate
reported results by re-searching these raw MS data.*"*
However, because many of these data sets are large and
because of the need for specific expertise, many readers are not
in the position to explore the raw data by themselves.
Initiatives such as PeptideAtlas™ are therefore important to
provide access to reanalysis of published MS data sets as is
available for A. thaliana (http: / /www.peptideatlas.org/builds/
arabidopsis/).44

B METHODS

To evaluate the MS-based conclusions in Sun et al,’ we
downloaded the raw MS files from ProteomeXchange
(PXD031388 submitted through PRIDE* and PXD031468
submitted through iProX*®) and we carefully considered the
process for generation of extracted peptides (use of proteases,
reducing and alkylation agents, urea, formic acid and
trifluoroacetic acid, temperature, and time) as well as the
acquisition parameters (summarized in Table 1). The raw data
files in PXD031388 self-identify the mass spectrometer as a “Q_
Exactive” (Thermo Fisher Scientific) and the data in
PXD031468 self-identify as a “Q Exactive HF” (Thermo
Fisher Scientific) and a timsTOF (Bruker) because this
information is embedded in the raw files (this information is
more reliable than the written information provided in papers
or ProteomeXchange as is also the case for Sun et al. —see
Table 1). These raw files were then converted into mzML"*’
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3.2" and the Trans-Proteomic Pipeline (TPP) software suite
version 6.2.0.*° In the following sections, we discuss the MS-
based experiments and results presented in Sun et al.' and
compare that with the results we obtained from reprocessing
these raw mass spectra.

B RESULTS AND DISCUSSION

Across the two PXD submissions, there are five experiments
(Table 1). The summarizing Table 1 provides information on
these experiments, the number of acquired tandem MS spectra
(MSMS), and previously key reported findings.' After
downloading all of the raw data, we performed first a so-called
“open search” with MSFragger'® in which the software tries to
match the MSMS spectra to predicted peptides in Arabidopsis
with wide precursor m/z tolerance (—150 to +500 Da). Post-
analysis of the open search results to localize the discovered
mass deltas was performed with the “massdiff mode” of
PTMProphet.”” The advantage of such open searches is that
this allows one to detect common and less common mass
modifications, including those induced by sample treatment
(e.g., alkylation or urea) and in-source fragmentation. We note
that most researchers do not perform such open searches
because most are unfamiliar with this type of analysis, it is
computationally expensive, and it is quite laborious to
(manually) evaluate the results.”’ These open search results
can then be used to set up the search parameters for a more
typical (closed) search with defined mass modifications. The
results for these open searches are summarized in Figures 2
and S1 and Tables 1 and S1.

We detected more than 40 mass modifications across these
five experiments ranging in frequency up to 12% of all assigned
spectra in an experiment (Table S1 and Figures 2 and S1). A
prominent modification was +43.006 Da from carbamylation
due the urea treatment (urea breakdown at elevated temper-
atures produces isocyanate which reacts with N-term, Lys, and
Arg) observed in the experiments 1, 2, and 4 carried out in
Oxford (frequency of 1.5, 2.5, and 2.8%, respectively) but less
prominent in experiments 2 and S carried out in Shanghai
(Table S1 and Figures 2A and SIB). A surprise was the
+183.228 Da modification (on K and Y) resulting from a
serine protease inhibitor AEBSF (4-benzenesulfonyl fluoride
hydrochloride) especially in experiment 2 (4.5%) because the
samples were treated with 1% plant protease inhibitor cocktail
(Tables 1 and S1 and Figure 2). Finally, a few other prominent
modifications were the formation of pyroglutamate (of peptide
N-terminal Q and E) in all experiments (0.4—0.9%) due to N-
terminal cyclization and methylation (+14.016) from the use
of the acids TFA and FA, as well as oxidation and di-oxidation
(+15.995 and +31.989) of M, W, H, and P (Table S1 and
Figures 2 and S1).

By far the most frequent modification was +57.022 Da due
to carbamidomethylation of mostly C (the intended target of
alkylation treatments) but also peptide N-termini, K, S, T, D,
E, Y, and H which are known off-target consequences of the
alkylation treatment.”® This frequency was very high at 12% in
experiments 2 and 3 and 4 and 7.7% in experiments 1 and 4
(Figures 2 and S1), respectively. However, the open search
clearly showed that alkylation was absent in experiment $
(Figures 2 and S1) despite the method section in Sun et al!
stating alkylation with 50 mM IAA for 40 min. In contrast, Sun
et al." did not mention any alkylation treatment for experiment
3, whereas the samples clearly have undergone alkylation.
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Figure 2. Detection and frequency of mass modifications by open
searches of raw MS data downloaded from PXD031388 (A) and
PXD031468 (B,C). Modifications marked in green can be the result
of alkylation (—48.0034, +57.0215, +114.0429, 171.0644) but
+114.0429 can also be from the GG footprint (isopeptide bond to
K) from ubiquitination (see Table S1 for more information). (A)
Anti-K-e-GG affinity eluate from isolated chloroplasts of wild-type
plants by a QE instrument (exp. 2 in Table 1). (B) Anti-K-¢-GG
affinity eluates from chloroplasts isolated from transgenic CDC48-DN
plants and analyzed by timsTOF (IPX0004051001) (exp. 3 in Table
1). (C) Comparative proteomics of seedlings isolated from CDC48-
WT and CDC48-DN lines analyzed by a QE instrument (exp. S in
Table 1). Mass modifications +71.9845 and +84.0575 are
unidentified.

Three other modifications were observed that are also
unintended consequences of alkylation, ie., —48.003 Da in
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experiment 3 (dethiomethylation of M due to alkylation of M
followed by in-source loss of the alkylated side chain), +39.995
Da in experiment 2 for pyro-carbamidomethylation (alkylation
of C, followed by N-term S-carbamoylmethyl-cysteine
cyclisation), and +114.025 Da (di-carbamidomethylation of
K, N-term, and other residues as for +57.022) in particular in
experiments 2 (0.9%), 3 (7.3%), and 4 (0.6%) (Figures 2 and
S1 and Table S1). The —48.003 modification which was high
only in experiment 3 is a known off-target consequence of
(over)alkylation with iodine containing reagents (such as IAA)
but not with CAA,”® indicating that TAA (or iodoacetic acid)
was used in experiment 3. However, as mentioned above, the
+114.025 on K is also the main hallmark for ubiquitination due
to the GG footprint—it is not possible to distinguish between
these two modifications based on mass alone. Importantly, off-
target alkylation patterns do provide insight as to whether the
K + 114.025 is likely to result from alkylation rather than
ubiquitination.”**® Based on the observed modifications from
these open searches, we then conducted our closed searches
for each of these five experiments using the most prominent
selected modifications (for closed search settings see footnotes
in Table 1). The take-home message is that the reanalysis of
the raw MS data from Sun et al." by open searches (Figures 2
and S1 and Table S1) and closed searches strongly suggest that
the surprising report of intra-chloroplast ubiquitination is due
to alkylation artifacts and that IAA was used as alkylating agent
in experiment 3. In the remainder of this paper, we discuss the
experiments in Sun et al.' and compare our open and closed
MS search results with the results and interpretation listed in
Sun et al.’

The paper' starts out with an Arabidopsis transgenic line
with 35S-driven overexpression of 6xMyc-UBI (there is no
chloroplast signal peptide; hence this ~20.5 kDa protein likely
accumulated in the cytosol but no data are shown), followed
by an immunoblot with anti-Myc serum of SDS-PAGE
separated isolated chloroplast proteins. This showed a ~200
kDa band which was insensitive to treatment with the protease
thermolysin (cleaves N-terminal of L, F, V, I, A, and M), which
was taken as evidence that this band reflected poly-Myc6-UBI
tagged proteins inside the chloroplast. Fractionation of isolated
chloroplasts into membrane and soluble samples shows that
this 200 kDa band is in the soluble (stromal) fraction, with
weaker bands in the membrane fraction. It is not clear to us
why there is only one band and why it has a mass so large
(perhaps a small aggregate). Based on previous reports,
polyUBI proteomes (e.g., in loss of E3 ligases, inhibition of
proteasomal activity) show multiple bands across a wide mass
range.””>> At most, this blotting experiment provides only very
circumstantial evidence for intra-chloroplast polyubiquitinated
proteins. Proteins from isolated chloroplasts from this 3SS-
Myc6-UB line (no wild-type control) were digested with Lys-C
and trypsin and analyzed by MS (Table 1—exp. 1). The
paper’' reports 359 identified chloroplast (associated) proteins
and, for just one protein, stromal peptide chain release factor
(PrfB3—AT3GS7190), a specific ubiquitination site was
detected, of which 12 proteins have an assigned K-e-GG
modification. PrfB3 has a reported ubiquitination at K133 (but
in their Table S1," there is no value for peak intensities, no MS
counts, no K-e-GG id; one peptide count with g-value 0.0077,
score 5.8). This single spectrum, shown in their Figure S1 Jis
claimed to be evidence for the tryptic peptide AVDSL-
KupDLK, but 6 of the top 10 peaks in this annotated
spectrum are not assigned, and thus it appears to be a false
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match. We reproduce the spectrum match in Figure 3A and
manually re-evaluated this raw spectrum, and we find several
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Figure 3. Alternative interpretations of the MSMS spectrum (z = 2*)
with scan number 18320 for the reported ubiquitinated peptide for
PrfB3. Measured experimental m/z 551.8094. (A) Reproduced match
of Figure S1 from Sun et al' from down-loaded raw file (USL:
mzspec:PXD031388:QEX01_200129_ChloroplastMycUb_Elu-
ate_04:scan:18320:AVDSLK[GG]DLK/2). Several crucial major
peaks are unassigned. Calculated theoretical m/z 551.8088. Mass
error 1.1 ppm. (B) Alternative spectrum interpretation in which
nearly all major peaks are now assigned and with the same theoretical
mass as the interpretation in A and Figure S1 from Sun et al.' (USL:
mzspec:PXD031388:QEX01_200129_ChloroplastMycUb_Elu-
ate_04:scan:18320:GIDTVLTDLR/2). The unlabeled purple peaks
correspond to weak internal fragmentation ions. Note that the K +
114.0429 Da can result from either di-carbamidomethylation or the
diG footprint of ubiquitination.

much better matching peptide sequences (without the need to
assign any mass modifications) in which the major peaks are
now assigned (Figure 3B). None of the potential sequences
match PrfB3 and in fact do not seem to match to Arabidopsis
proteins at all. ~1% of assignable spectra match to ordinary
contaminants (human and bovine proteins) and another 1% of
assignable spectra match to Escherichia coli. The most plausible
match for this spectrum is the peptide GIDTVLTDLR,
matching to the rpmB (50S ribosomal protein L28) protein
found in many bacteria, including Ectothiorhodospira and Vibrio
species, although not the E. coli version of rpmB. The universal
spectrum identifiers (USIs)** are provided for both inter-
pretations of the same spectrum (USIs may be examined
interactively at http://proteomecentral.proteomexchange.org/
usi/). Our open search finds that only 0.85% of identified
spectra show evidence for a +114.0249 mass shift (Figure S1
and Table S1) and most on the N-terminus (due to di-
alkylation). Our closed search identified 387 proteins,
including 41 chloroplast-encoded proteins and 273 TargetP-
predicted n-encoded proteins (81%); this indicated that the
chloroplast isolation was successful. About 5.5% of the PSMs
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included a +57.00215 mass modification (nearly exclusively on
cysteine and the rest mostly on peptide N-termini) but only
0.17% for the +114.0429 modification, mostly on the peptide
N-terminus. Hence, our closed search of the raw MS data in
experiment 1 does not support ubiquitination of chloroplast
proteins. We also note that there is no negative control in this
experiment such as an affinity purification using isolated
chloroplasts from wt. Hence, this first experiment does not
provide support for ubiquitination within the chloroplast.
The Sun et al. paper' then continues with another
ubiquitination experiment but this time using isolated
chloroplasts from wild-type plants and peptide affinity
enrichment using anti K-¢-GG antibody beads (Table 1—
exp. 2). The paper claims that MS identified 57 unique UBI
sites in 40 proteins. However, results with the MaxQuant
software reported in their Table S2' show only peptides in
which two lysines each carry a +57.022 mass, likely from off-
target alkylation with CAA. Indeed, in our open search, we find
only a very low frequency (0.85%) of the +114.025
modification (Figures 2A and S1B and Table S1). Also
comparing the open search results of just the affinity eluate and
the combined results of input, flow-through, and eluate showed
no difference in frequency of the +114.0249 peak (0.85% vs
0.83%, in total vs eluate only) (Table S1). This was confirmed
by our closed search (Figure 4) which showed that 0.24% of
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Figure 4. Bar diagram with the frequency of mass modifications
+57.0215 and +114.0429 Da in the five experiments based on closed
searches of the raw MS data. PSM FDR values were < 0.002 without
PTM site scoring. Other search parameters are listed in the footnote
of Table 1. Color coding indicates if the mass modification was
localized on cysteine (blue), lysine (salmon), the peptide N-terminus
(purple), or methionine (gray). Mass modifications of +57.0215 and
+114.0429 on other amino acids that were not searched (S, T, E, D,
Y, and H) are likely assigned to C, K, M, and N termini, whichever are
physically nearest.

the PSMs includes a +114.025 modification (0.03% on K).
Their Table 2" lists two GG-labeled peptides for chloroplast-
encoded RBCL—but in one case the mass error is 25 ppm,
which make it insignificant (errors should be <~6 ppm on a
QE instrument as used here). Also, out of the 40 proteins, the
plant proteome data base (PPDB)” annotated only eight as
plastid localized and most do not have a predicted chloroplast
transit peptide (cTP); hence, most of these 40 are not plastid
proteins. At 0.73% protein FDR, there are 1268 proteins and
there are 15 PSMs with a potential K + 114. Six PSMs are for
ubiquitin (five at K48 and one at K63), but upon manual
inspection of the spectra, none of the other nine have credible
K + 114 modifications. Furthermore, the closed search shows a
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Figure 5. Example of a K + 114 detection in peptide GLAAK[ GG]GIYPAVDPLDSTSTMLQPR/3 from ATCG00480.1 (CF1f) from anti-K-¢-GG
affinity eluates from chloroplasts isolated from transgenic CDC48-DN plants and analyzed by timsTOF (IPX0004051001). The corresponding USI
is http://proteomecentral.proteomexchange.org/usi/?usi=mzspec:PXD031468:P20210200988_ DN _Slotl-72_1_
319:scan:187117:GLAAK[GG]GIYPAVDPLDSTSTMLQPR/3. This PSM has reasonably good coverage of the putative K + 114 with good
b5—b7 ions although the b3 and b4 ions are a bit weak. Unannotated peaks at 326.1710, 383.1869, 413.2027, 441.1976, and 546.252 correspond to
b-type internal fragmentation ions for fragments PLD, PAVD, PLDS, DPLD, and YPAVD, respectively (and there are many more less prominent
ones) (exp. 3 in Table 1). Note that the K + 114.0429 Da can result from either di-carbamidomethylation or the diG footprint of ubiquitination.

high percentage (22%) of PSMs that include peptides with a
+57.0215 mass modification (for cysteine, but also N-termini
and lysine indicative of off-target alkylation) but very few of
the +114.0429 modification (0.24%) (Figure 4). Hence, also
this second experiment does not provide support for
ubiquitination within the chloroplast. A brief summary is
given in Table 1.

The main MS-based argument for intra-chloroplast ubiq-
uitination stems from an ubiquitination experiment with the
dominant negative line CDC48-DN in which expression of the
endogenous cytosolic CDC48 is suppressed (Table 1, exp. 3).
The paper’ states that the MS was done by a QE instrument,
but based on the data sets we found in the repositories, the MS
analysis was done using a timsTOF (Bruker) instrument (there
is no mention of a timsTOF anywhere in the Sun et al." text or
Supplemental Information). The paper' reports that 768
unique UBI sites were identified in 316 chloroplast or
“chloroplast-associated” proteins. There was no requirement
for observation in more than one replicate. We evaluated the
predicted subcellular localization of these 316 proteins based
on the subcellular localization predictor TargetP*° and curated
localization from PPDB. Including 13 ATCG proteins and 20
outer envelope proteins that do not have a ¢TP, only 127 out
of these 316 proteins have a predicted chloroplast localization
(note that TargetP overestimates chloroplast localization) and
based on PPDB, only 112 out of 316 have a curated plastid
location. This shows that only ~40% of the reported
chloroplast proteins are in fact chloroplast-localized, including
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envelope proteins. The number of non-chloroplast proteins is
probably higher because the authors searched only 4174
Arabidopsis chloroplast(plastid)-associated protein sequences
using UniProtKB identifiers’” rather than the full predicted
proteome with ~28,000 proteins in Araportll or Uni-
ProtKB.**® Because >85% of the predicted proteome was
not searched, this increased the potential for false positive
identification of peptides and proteins; this limited search
space is unusual and should be avoided.””*” Indeed, our closed
search of the same raw MS data files identified 5556 proteins
(protein FDR <0.67%), including 56 ATCG, with nearly 40 K
distinct identified peptides and 848 K PSMs (Table 1).
Localization predictions and curated annotations in PPDB
indicate that at most ~25% of these 5500 nuclear-encoded
proteins are chloroplast proteins even if the authors state that
chloroplasts were isolated for this experiment. This very large
percentage of non-chloroplast proteins showed that chloroplast
isolation was not successful.

Neither in the method section in the paper' nor in the
iProX*® submission record is there any mention of alkylation in
this timsTOF data set. Yet our open search (Figure 2B and
Table S1) clearly shows extensive monoalkylation (+57.022
Da—12% of all identified spectra) whereas also our closed
search finds high levels of monoalkylation in particular on
cysteine (9.3%), N-termini (4.8%), and lysine (5.4%) (Figure
4). Furthermore, the method section in the paper' states that
the search parameters included fixed C-carbamidomethylation
(the desired effect of alkylation of cysteine is to prevent the
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Figure 6. Example detection of the K + 114 peptidoform TNKPQFQEIIASTK[GG]/2 from ATCG00120.1 (CFla) from anti-K-¢-GG affinity
eluates from chloroplasts isolated from transgenic CDC48-DN plants and analyzed by timsTOF (IPX0004051001). The corresponding USI is
http://proteomecentral.proteomexchange.org/usi/?usi=mzspec:PXD031468:P20210200988 DN _Slotl-72_1_
319:scan:80186: TNKPQFQEIIASTK[GG]/2. This PSM has excellent coverage from y1 to y11 as well as up to b13, which seems to convincingly
localize the K[GG]. But note that this K{GG] is on the C-terminus of the peptide and there are conflicting reports about whether trypsin is able to
cleave the C-terminal of ubiquitinated modified lysine*”*° but a recent paper suggested trypsin can cleave such modified lysines." Note that the K +
114.0429 Da can result from either di-carbamidomethylation or the diG footprint of ubiquitination.
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Figure 7. Example detection of the nterm + 114 peptidoform [GG]-GHYLNATAGTC[Carbamidomethyl]JEEMIKR in ATCG00490.1 (RBCL)
from anti-K-¢-GG affinity eluates from chloroplasts isolated from transgenic CDC48-DN plants and analyzed by timsTOF (IPX0004051001). The
corresponding USI is http://proteomecentral.proteomexchange.org/usi/?usi=mzspec:PXD031468:P20210200988 DN_Slot1-72_1_
318:scan:58580:[ GG]-GHYLNATAGTC[ Carbamidomethyl JEEMIKR/3. Prominent b2—b5 ions appear to localize the +114 at the n-terminus.
Moving it to the internal lysine would render nearly all shown peak annotations untenable. It is unclear if this evidence of N-terminal +114 is from
di-carbamidomethylation or GG.
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sulthydryl from making disulfide bonds that can interfere with
protein identification and is the only reason proteomics
samples are treated with alkylating agents), variable K-¢-GG,
and M oxidation. In contrast, the text files in the PXD (the file
“modification-specific” peptides, the parameter file, and the
“evidence file”) indicated that protein N-terminal acetylation
was also allowed, but there was no mention anywhere of
cysteine carbamidomethylation. Furthermore, neither variable
carbamidomethylation on K and N-termini nor variable di-
carbamidomethylation of other residues than lysine (+114.025
similar as GG) was included in the search; this is problematic
as our open search (and also closed search) shows that these
modifications are very prominent. The conflicting information
around alkylation and inadequate search parameters raises
serious concern to what extent the +114.025 Da modification
on K represents the GG footprint of ubiquitination.

We then compared our search results to the data displayed
in Figure 2 of Sun et al,' in particular for the chloroplast-
encoded proteins (ATCG identifiers), and we corroborated
most (~80%) of the claimed K + 114.043 detections at specific
sites in the ATCG proteins and spectrum identifiers. One
example is shown in Figure S. Here, peptide GLAAK[+114
GIYPAVDPLDSTSTMLQPR from ATCG00480 (CE1p) is
quite clearly shown to have a K + 114 modification. A second
example (Figure 6) shows convincing detection of +114.043
on a C-terminal K (TNKPQFQEIIASTK[+114]) from
ATCG00120 (CFla). However, there are conflicting reports
about whether trypsin is able to cleave C-terminal of
ubiquitinated modified lysine,””*° but a recent paper suggested
trypsin can cleave such modified lysines.”’ A third example
however shows a +114.043 on the N-terminus as well as a
single C-carbamidomethylation (+57.0215) of peptide [+114]-
GHYLNATAGTC[+S7]EEMIKR in ATCG00490 (RBCL)
(Figure 7). It is unclear if this evidence of N-terminal
+114.043 is from di-carbamidomethylation or non-canonical
N-terminal ubiquitination. This confirms our concerns about
the possibility of extensive off-target alkylation and over-
alkylation in this data set.

The authors state that the chloroplast ubiquitinome has 2.7
ubiquitination sites per protein. For thylakoid proteins, 17 are
on the stromal side and 11 on thylakoid luminal side. It would
be amazing that E3 ligases could reach even into the thylakoid
lumen compartment. Moreover, they claim a unique consensus
ubiquitination motif for chloroplast proteins (xxooxxKioaPxx),
leading to the suggestion that there is a specific ubiquitination
process inside chloroplasts (Figure 2E in Sun et al."). Given
the observed high amounts of off-target alkylation and our
observation that only 25% of the ~5500 identified proteins in
this experiment are located in chloroplasts, it is most likely that
this motif is artifactual.

Ubiquitin attachment to the substrate always occurs via a &-
isopeptide bond between the C-terminal glycine of ubiquitin
and the side chain of a lysine in the substrate (Figure 1C).
However, the attached ubiquitin monomer itself can also be
ubiquitinated leading to polyubiquitination of the substrate
(Figure 1C). Polyubiquitination chains are formed by linking
several ubiquitin monomers to each other through any of the
seven lysines (K6, 11, 27, 29, 33, 48, and 63) present in
ubiquitin in addition to the ubiquitin N-terminus; these are
referred to as linkage types.”” These polyubiquitination chains
can be homotypic (i.e., ubiquitin units are connected by the
same linkage type) or heterotypic (i.e., ubiquitin units are
connected by different linkage types), and chains can be linear
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or branched. Chain position, linkage type, and topology
determine the fate of a ubiquitylated substrate. The linkage
polyubiquitination leading to proteasomal degradation typi-
cally occurs on K48-linked chains.””°" The determination of
the nature of the substrate ubiquitination is technically
challenging.***”®" Figure 2D of Sun et al." showed a linkage
analysis indicating that 32% was from ubiquitin K48 (no
further information was provided on this analysis). It was
stated that “because K48 was the most abundant linkage type,
much of the chloroplast ubiquitinome can be assumed to be
primed for proteasomal degradation.” However, there are two
issues with this analysis: (i) we identified SS00 proteins in
these samples of which only ~25% was chloroplast-localized
(Table 1) and (ii) off-target lysine di-carbamidomethylation is
confounding this analysis. From our closed search of the raw
MS data in this experiment (exp. 3 in Table 1), we collected all
peptides matching to the ubiquitin monomer family that
contained a K + 114.0429 mass modification (PSM FDR
<0.002, site PTMProphet localization P > 0.90 or “no-choice”
(P = 1.0). This identified 487 PSMs across the seven lysines,
with 62% of the K48 linkage type (Figure S2). Interpretation
of such linkage analysis is difficult due to off-target lysine
alkylation but nevertheless supports the presence of poly-
ubiquitinated proteins in the affinity pull-down. However,
because only 25% of the identified proteins are located in the
chloroplast, no conclusions can be drawn about intra-
chloroplast ubiquitination.

Follow-up experiments using transient expression of Flag-
UBI in Arabidopsis protoplasts (wt, CDC48-WT or CDC48-
DN) and immunoblotting claim to show that overexpressed
transgenic PfB3 as well as endogenous chloroplast-encoded
PsbC (CP43) are polyubiquitinated." However, it is not clear
how Flag-UBI is imported into chloroplasts, and either PrfB3-
HA or CP43 appears to shift to higher masses (the expected
effect of polyubiquitination). Hence these follow-up experi-
ments do not provide support for intra-chloroplast ubiquiti-
nation.

Finally, Sun et al." described two comparative proteomics
experiments in which overexpression CDC48-wt and the
CDC48-DN lines (estradiol-induced) using either isolated
chloroplasts or leaf extracts (Table 1, exp. 4 and S). The
authors again did not search the MS data against the complete
predicted Arabidopsis proteome but only a subset of
chloroplast-associated sequences. As we pointed out earlier,
this will result in false discoveries in particular for proteins that
are part of multi-gene families; instead, the MS data should be
searched to all possible Arabidopsis proteins after which
subsets of identified proteins could be analyzed in more detail.
The authors report that these experiments suggest that
proteins increased in CDC48-DN represent targets of the
CHLORAD pathway. However, it is not clear to us how to
untangle pleotropic effects of suppressing the CDC48 activity
and direct effects. Our closed search for experiment 4
identified 1394 proteins (protein FDR < 0.14%), including
52 ATCGs and 1086 chloroplast-predicted n-encoded; hence,
these samples were clearly mostly isolated chloroplasts. Our
closed search for experiment S identified 3016 proteins
(protein FDR < 0.4%), including 47 ATCGs and 893
chloroplast predicted n-encoded (31% of total), consistent
with unfractionated seedling samples. Search criteria for these
closed searched are listed in the footnote of Table 1. As
pointed out earlier, we did not detect evidence for alkylation of
the samples in experiment S (lack of carbamidomethylation
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(+57) or di-carbamidomethylation (+114), in conflict with the
stated method, alkylation with IAA (50 mM, 40 min at RT).

Additional experiments in Sun et al." to further assess the
role of CDC48 do not involve protein MS analysis and are
therefore beyond the scope of this study but will be addressed
in a future publication.

Conclusions and Recommendations

In this study, we set out to evaluate claims based on MS data
that intra-chloroplast proteins are polyubiquitinated within
intact chloroplasts (with intact chloroplast double envelope
membranes) and subsequently exported into the cytosol, with
the cytosolic chaperone CDC48 playing a central role in this
chloroplast extraction process.’ Using the deposited raw MS
data (from ProteomeXchange), we carried out both open and
closed searches to evaluate the evidence for the +114
modification of lysines (and possibly other residues) that
constitutes the only MS-based evidence in ref 1 for possible
protein ubiquitination. We did not find sound support for
ubiquitination in the 6Myc-UB affinity experiments nor
evidence in the K-e-GG affinity experiments on chloroplast
proteins isolated from a transgenic 35S-CDC48-WT line. We
do find solid support for lysine +114 modifications on
chloroplast-encoded and nuclear-encoded chloroplast proteins
in the timsTOF experiment isolated from a transgenic 3SS-
CDC48-DN line. However, there are a range of concerns with
how this experiment was carried out, thereby calling into
question the cause of the +114 modification. First and
foremost, the +114 modification can be a consequence of
double alkylation (di-carbamidomethylation) during incuba-
tion with alkylating agents (here likely IAA). The relationship
between the +114 modification and alkylation treatment is very
clearly demonstrated by one of the MS experiments
(comparative proteomics of seedlings CDC48-WT and
CDC48-DN) where there was no monoalkylation (+57 -
carbamidomethylation) of cysteines or other residues (mostly
K, N-terminus), nor any evidence for a +114 modification.
There is another pressing concern in this ubiquitination
experiment 3 (timsTOF), and in that, it was claimed that
affinity purification was done on isolated chloroplasts; yet we
find more than 5500 Arabidopsis proteins in these samples of
which only 25% were chloroplast proteins. We do not
understand this discrepancy but clearly calls into question
the notion that this experiment provides evidence for intra-
chloroplast ubiquitination in vivo. IAA is well known for
resulting in unintended alkylation of lysines, thus making IAA
inappropriate for use in MS-based ubiquitination experi-
ments.”****® CAA is considered a good alternative as it
results in fewer off-target alkylation (even though it results in
unwanted mono-, di-, and tri-oxidation of several amino acids).
Indeed the Sun et al." paper described the use of CAA for the
first two ubiquitination experiments (1 and 2) in which we did
not find much evidence for the K + 114 modification of
chloroplast proteins (Oxford submission). However, the
method in Sun et al.' for the experiment 3 (timsTOF),
where we corroborated the presence of K + 114 on chloroplast
proteins, did not detail or mention any alkylation treatment,
whereas we find overwhelming evidence for cysteine alkylation
(the intended target of alkylation treatments). The compara-
tive proteomics experiment carried out by the same
collaborator (in Shanghai) states that IAA was used for
alkylation, yet there was clearly no alkylation done.
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B CONCLUSIONS

Based on our own analysis presented here, the most recent
. € oL 5922325,36,37,61,62 .
reviews on “ubiquitinomics”, and the primary
literature, we recommend the following for the MS-based
determination of possible in vivo ubiquitination of intra-

chloroplast proteins of viable and intact chloroplasts:

i. Ensure that the plants are not under significant
chloroplast stress (e.g., due to high light treatment) as
this will result in (a) rapid release of chloroplast proteins
into the cytosol as demonstrated by confocal microscopy
of plants expressing chloroplast-targeted green fluores-
cent protein (GFP) in the flu mutant®*** and (b) ATG-
dependent and independent autophagy of swollen or
otherwise damaged chloroplasts or selected chloroplast
content and delivery and degradation in the vacuo-
Jo./ 13,6567
Use low concentration of appropriate (e.g, CAA but not
IAA) alkylating agents (e.g, 20 mM) for in-solution
digests and ensure removal or quenching of alkylating
agent prior to addition of trypsin (or other proteases) to
avoid N-terminal peptide and lysine alkylation. An
alternative method to block the cysteine sulthydryl
group without the introduction of any potentially
confounding acetamide at all is by treatment with S-
methyl methanethiosulfonate (MMTS) with a +45.9877
modification or acrylamide resulting in a +71.037
modification.”® One could also consider omitting sample
alkylation since this will avoid di-carbamidomethylation
of lysines (and other amino acid residues) while still
obtaining relatively high PSM match rates.”®

Include appropriate negative affinity-enrichment con-

trols to determine the true false discovery rate of the K-

e-GG footprint (or K + 114) and that affinity

enrichment for-K-e-GG containing peptides is highly
selective.

Use parallel alternative methods to enrich for peptides

with ubiquitination; there are several independent

methods now available.”>*%*7%>

. Perform an open search on the acquired MS data to
ensure that the mass modifications in the data are
consistent with the intended sample handling.

. For the analysis of MS data, include only the most
relevant (variable) modifications (ideally based on open
searches) and site scoring algorithms to reduce false
discovery rate of ubiquitination (in particular +57.022
and +114.0429 Da on lysine, cysteine, and peptide N
terminus).

. The sequence database used for MS data analysis should
include all proteins of the target organism (e.g,
Arabidopsis predicted protein sequences in Araportll
or TAIR10) as well as additional proteins that may be in
the sample (including contaminants such as keratin,
trypsin, and E. coli proteins) not just proteins of interest.

ii.

iii.

iv.

Finally, if indeed in vivo intra-chloroplast ubiquitination in
intact chloroplasts does occur, the challenge will be to identify
how ubiquitin is imported into chloroplasts, how intra-
chloroplast ubiquitin is activated (are there E1 and E2 like
enzymes within chloroplasts? or is perhaps activated ubiquitin
imported as activated monomers?), and how chloroplast
proteins are selected for (poly)ubiquitination (are there
ubiquitin ligases in chloroplasts?). Given the inconsistencies
and pitfalls in Sun et al,," as well as the biological challenges for
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intra-chloroplast ubiquitination in intact chloroplasts, we have
great reservations that such a speculative pathway contributes
to chloroplast (and other plastid types) proteostasis.
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