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Abstract: In order to extend the geometrization of Yangian R-matrices from Lie alge-1

bras gl(n) to superalgebras gl(M |N ), we introduce new quiver-related varieties which2

are associated with representations of gl(M |N ). In order to define them similarly to the3

Nakajima-Cherkis varieties, we reformulate the construction of the latter by replacing4

the Hamiltonian reduction with the intersection of generalized Lagrangian subvarieties5

in the cotangent bundles of Lie algebras sitting at the vertices of the quiver. The new vari-6

eties come from replacing some Lagrangian subvarieties with their Legendre transforms.7

We present superalgebra versions of stable envelopes for the new quiver-like varieties8

that generalize the cotangent bundle of a Grassmannian. We define superalgebra gener-9

alizations of the Tarasov–Varchenko weight functions, and show that they represent the10

super stable envelopes. Both super stable envelopes and super weight functions transform11

according to Yangian Ř-matrices of gl(M |N ) with M + N = 2.12

1. Introduction13

There is a well-known correspondence between an An-type framed Nakajima quiver14

variety and a weight space in the tensor product of fundamental representations of gl(n).15

This correspondence is used for the geometric construction of Yangian R-matrices and16

for the categorification of the quantum group GLq(n). In recent works of Okounkov17

and his co-authors [MO,O1,AO,O2] the key ingredient of this correspondence is the18

collection of so-called stable envelope maps.19

The purpose of this paper is to extend this correspondence from gl(n) = gl(N |0) to20

Lie superalgebras gl(M |N ).21

In Sect. 2 we introduce a new family of quiver-related varieties, defined by a modi-22

fied Nakajima-Cherkis construction. In the original construction the Nakajima-Cherkis23

quiver variety (a.k.a. bow variety) is a Hamiltonian reduction of the product of edge-24

related symplectic varieties X s
e by the product of vertex-related groups GL(nv). We25

show that the same quiver variety can be presented as an intersection of edge-related26
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generalized Lagrangian subvarieties L̃v in the product of cotangent bundles T∗gl(nv).27

The superalgebra related varieties result from replacing some generalized varieties L̃v28

by their Legendre transforms. A replacement of some Nakajima arrow edges turns gl(N )29

into gl(M |N ), while a replacement of some Cherkis bow edges turns the corresponding30

fundamental representations of gl(M |N ) into their parity-flipped twins.31

Consider a tensor power of the defining vector representation of gl(N ). The quiver32

variety corresponding to a weight space of this representation is a cotangent bundle33

of an N -step partial flag variety. In particular, for N = 2, it is the cotangent bundle34

of a Grassmannian. Starting in Sect. 3 we carry out detailed calculations showing the35

four possible Legendre transform generalizations of this case. The generalized varieties,36

associated with the four decorated quivers of (15) below, will still be total spaces of37

vector bundles over the Grassmannian, but of different bundles—see Fig. 1. We define38

the superalgebra generalization of Maulik–Okounkov stable envelopes (‘super stable39

envelopes’), and show their existence using the superalgebra generalization of Tarasov–40

Varchenko weight functions (‘super weight functions’). We show that both super stable41

envelopes and super weight functions transform according to the Yangian Ř-matrices42

of43

gl(Ceven ⊕ Ceven), gl(Ceven ⊕ Codd), gl(Codd ⊕ Ceven), gl(Codd ⊕ Codd).44

The quiver-related varieties coming from Legendre-transformed arrow edges ap-45

peared in the work [OR] of Oblomkov and the second author on link homology, where46

either of two types of the fundamental representation of GL family were assigned to47

each link component. The categorical representation of the braid group amounted to48

the categorification of the gl(M |N ) Hecke algebra, where M and N are the numbers of49

braid strands colored with either type of the fundamental representation of GL. Upon the50

reduction to gl(n) or, more generally, to gl(m|n) homology, one of these representations51

becomes the fundamental representation of gl(n) or gl(m|n), while the other becomes52

its parity-flipped twin.53

Other works studying the geometrization of (affine) super Yangian actions include54

[LY,RSYZ,GY,GLY,VV]. We plan to compare our geometric construction with those55

works in the future.56

2. A New Family of Quiver Varieties57

2.1. A Nakajima–Cherkis quiver variety. In this section we recall the definition of vari-58

eties associated to quivers with two kinds of edges: arrow edges and bow edges. These59

varieties have also been called bow varieties [Ch1,Ch2,Ch3,NT,N3,RS], but in this pa-60

per we employ the metaphor that a “quiver” can hold both “arrows” and “bows” so we61

keep calling the varieties with arrow and bow components quiver varieties. The history62

of quiver varieties without bow edges goes back to [N1,N2], for a more recent survey63

see [G].64

2.1.1. Hamiltonian reduction In this paper we consider only linear quivers. Thus, a65

quiver Q is a ‘linear’ graph with two univalent vertices, NQ − 1 bi-valent vertices and66

NQ edges:67

· · · · · ·
(i − 1) (i) (i + 1)(0) (NQ)

,68
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(i) Being a vertex index. A vertex (i) is assigned a non-negative integer ni representing69

the ni -dimensional vector space Vi and the group Gi = GL(Vi ). We always assume that70

n0 = nNQ = 0.71

An oriented edge connecting the vertices (i − 1) and (i) is assigned a symplectic72

variety (X s
i ,ω) with the Hamiltonian action of Gi−1×Gi and the corresponding moment73

maps µR
i−1 and µL

i . If the orientation of the edge is reversed, then ω, µR
i−1 and µL

i change74

signs, but (X s
i ,ω) and (X s

i ,−ω) are symplectomorphic, because X s
i is (a Hamiltonian75

reduction of) a cotangent bundle, and one can switch the sign of cotangent fibers. Hence76

ultimately the choice of orientation of the edges does not affect the resulting quiver77

variety (unless the orientation is also used to specify the stability conditions).78

The quiver variety XQ is a result of the Hamiltonian reduction of the product of edge79

varieties with respect to all vertex groups:80

XQ := Xe
∣∣ µi =0

i=0,...,NQ

//Gv, (1)81

where82

Xe =
NQ∏

i=1

X s
i , Gv =

NQ∏

i=0

GL(Vi ),83

while µi is the total moment map of the vertex v:84

µi = µL
i + µR

i .85

2.1.2. Arrow and bow edges. The edges of a quiver are of two types: an arrow edge and86

a bow edge:87

: arrow , bow
88

The corresponding symplectic varieties X s
i are also of two types: the arrow varieties Am,n89

and the bow varieties Bm,n , where m and n are non-negative integers representing the90

dimensions of adjacent vertex spaces. An arrow variety Am,n has a Hamiltonian action91

of GL(m) × GL(n), while a bow variety Bm,n has a Hamiltonian action of GL(m) ×92

GL(n)× C×. The groups C× acting on bow varieties combine into the group93

(C×)bow =
∏

eis bow

(C×)e94

acting on the quiver variety XQ .95

2.1.3. The arrow variety. For two non-negative integers m, n define96

Am,n = T∗Hom(Cm, Cn)97

with the natural Hamiltonian action of GLm ×GLn . The moment maps are µm = −Y X98

and µn = XY , where (X, Y ) ∈ Hom(Cm, Cn)× Hom(Cn, Cm) = T∗Hom(Cm, Cn).99

For geometrizing the Yangian R-matrix we need a ‘stable’ version of the arrow100

variety. Namely, denote Homst(Cm, Cn) ⊂ Hom(Cm, Cn) the set of linear maps of the101

highest rank and define102

Ast
m,n = T∗Homst(Cm, Cn). (2)103

Now define the symplectic variety of an oriented arrow edge as104

(i − 1) (i) X s
i = Ani−1,ni or Ast

ni−1,ni
.105
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2.1.4. The bow variety, cf. [N4, Section 2] Denote Uk ⊂ GL(k) the subgroup of upper-106

triangular unipotent matrices. For two non-negative integers m ≤ n define the subgroup107

Um,n ⊂ Un consisting of upper-triangular unipotent matrices of the form108

h =
(

u ∗
0 I

)
,109

where u ∈ Un−m , while ∗ is any m× (n−m) matrix and I is the m×m identity matrix.110

We define the action of Um,n on GL(n) × Cm . Let Um,n act on GL(n) by right111

multiplication. Denote w(h) the last row of the matrix ∗. Then w(h1h2) = w(h1)+w(h2)112

and we define the action of Um,n on Cm as h · v = w(h) + v. Now Bm,n is the ‘twisted’113

symplectic quotient:114

Bm,n = T∗
(
GL(n)× Cm)

//xn,m Um,n := T∗
(
GL(n)× Cm)∣∣∣

µUm,n =xm,n
/Um,n,115

where116

xm,n =
(

x0 0
0 0

)
,117

and x0 is the (n −m)× (n −m) transposed nilpotent Jordan block. Now we define the118

symplectic variety of a bow edge as119

(i − 1) (i) , X s
i =

{
Bni ,ni−1 , if ni−1 ≥ ni ,
Bni−1,ni , if ni−1 ≤ ni .

120

The bow variety Bm,n has a Hamiltonian action of the group GL(n)×GL(m)×C×121

stemming from its action on GL(n) × Cm . The group GL(n) acts on GL(n) by left122

multiplication and it does not act on Cm ; while GL(m) × C× acts on GL(n) by right123

multiplication: (h, z) · g = gM−1(h, z), where124

M(h, z) =
(

z I 0
0 h

)
.125

Finally, GL(m)× C× acts on Cm by natural action and scaling: (h, z) · x = z hx .126

2.1.5. Edge charges and the Hanany–Witten move Consider a linear quiver:127

· · ·
0 n1 n2 0nNnN−1

128

with an arbitrary distribution of arrow and bow edges.129

We always assume that the leftmost and the rightmost vertices are assigned number130

0. For an edge e connecting a vertex (i − 1) on the left and (i) on the right define nL,e as131

the number of edges of opposite type to the left of it and nR,e – to the right of it. Define132

the charge ne of e:133

ne =
{

ni − ni−1 + nL,e, if e is an arrow,
ni−1 − ni + nR,e, if e is a bow.

134

Since the number n0 at the leftmost vertex is fixed (zero), the charges of the edges135

determine the numbers at all vertices of the quiver. We consider only the quivers for136
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which ne ≥ 0 for all edges e and all ni ≥ 0 for all vertices (i). The latter condition137

imposes a constraint on possible edge charge assignments.138

The Hanany–Witten move [HW] transposes two neighboring edges of opposite na-139

ture: the quiver variety resulting from this move is isomorphic to the original one as long140

as the charges of edges are preserved:141

ni−1 ni ni+1 ←→ ni−1 n′i
ni+1 , if ni + n′i = ni−1 + ni+1 − 1.

(3)142

If the middle vertex number after the transposition (ni or n′i ) has to be negative, then143

the original quiver variety is empty.144

2.1.6. A separated quiver and its variety Consider a linear quiver with N arrow edges145

with charges w = (w1, . . . , wN ) and K bow edges with charges k = (k1, . . . , kK ).146

Denote |w| = ∑N
i=1 wi and similarly for |k|. Since the numbers at end-point vertices147

are zero, the charges must satisfy the consistency condition: |w| = |k|. If this condition148

is satisfied, then there exists a separated quiver Qw
k in which all N arrow edges are on149

the left and all K bow edges on the right:150

Qw
k : · · ·

0 n1 nN+1nmaxnN−1 nN+K−1 0
· · ·w1 wN kK k1

, (4)151

and nN = nmax, where nmax := |w| = |k| is the number at the middle vertex which152

separates the arrow and bow parts of the quiver. Since the edge charges are non-negative,153

the vertex numbers are in relation154

0 ≤ n1 ≤ · · · ≤ nN−1 ≤ nN , nN ≥ nN−1 ≥ · · · ≥ nN+K−1 ≥ 0.155

Defining the variety X w
k associated with the separated quiver Qw

k , we use varieties156

Ast
m,n of (2) for arrow edges.157

We split the separated quiver into the arrow and bow halves:158

Qarr
w : · · ·

0 n1 nmax
! , Qbow

k : ! · · ·nmax nN+K−1 0
(5)159

160

The boxes at end-vertices indicate that we do not perform the Hamiltonian reduction161

there.162

The arrow quiver variety is the cotangent bundle to a partial flag variety: T∗Fw, where163

Fw = {F•} and164

F• = (F0 ⊂ F1 ⊂ · · · ⊂ FM−1 ⊂ FM = C|w|), dim F0 = 0, dim Fi+1 − dim Fi = wi .165

We denote the bow variety by Ŝk. If the bow edge charges are non-decreasing:166

k1 ≤ · · · ≤ kK ,167

then the bow variety Ŝk is the equivariant Slodowy slice introduced by Losev [L].168

Denote Sk the Slodowy slice corresponding to the nilpotent matrix with Jordan block169

decomposition given by k. Then Ŝk = GL(nmax) × Sk and the moment map for the170

action of GL(nmax) is µŜ(g, x) = Adgx .171
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In order to describe the action of (C×)bow = (C×)K on Ŝk, we split Cnmax =172

Ck1 ⊕ · · · ⊕ CkK . For z = (z1, . . . , zK ) ∈ (C×)bow denote Mz the diagonal matrix173

which multiplies each component Cki by zi . Then z · (g, x) = (gM−1
z , AdMz x).174

Since the separated quiver Qw
k results from joining Qarr

w and Qbow
k at the middle vertex,175

the corresponding variety is the Hamiltonian reduction with respect to the middle group:176

177

X w
k = (T∗Fw × Ŝk)//GL(nmax). (6)178

2.1.7. The GL(N ) weight space quiver. A weight of a GL(N )-module is determined by179

N ordered non-negative integers w = (w1, . . . , wN ). Denote Rk the k-th fundamental180

representation of GL(N ), that is R1 is the defining N -dimensional module and Rk =181

"k R1. For an ordered sequence of non-negative integers k = (k1, . . . , kK ) denote182

Rk = Rk1 ⊗ · · ·⊗ RkK183

and denote V w
k ⊂ Rk its weight space of weight w. The corresponding quiver is a linear184

quiver consisting of K bow edges with charges k and N arrow edges with charges w.185

The edges can be distributed randomly along the quiver. In this paper we use the quiver186

Qw
k of (4) and its variety X w

k of (6).187

In particular, if we consider the tensor product of only defining representations R1⊗188

· · ·⊗ R1, then k = 1 = (1, . . . , 1), and Ŝ1 = T∗GL(nmax), so the corresponding variety189

is the cotangent bundle to a partial flag variety: X w
1 = T∗Fw190

2.2. Alternative construction. For our generalization in Sect. 2.3 we need an alternative191

construction of arrow-bow quiver varieties, which we describe now.192

2.2.1. Critical locus Let X s be a symplectic variety with the Hamiltonian action of a Lie193

group G and the corresponding moment map µ. The adjoint action of G on its Lie algebra194

g extends to the action of G on X s×g. Consider a G-invariant function W s ∈ C[X s×g]G
195

defined as a pairing of µ and the elements of g: W s(x, X) = Tr µ(x)X. If the action of196

G on X s is free, then the projection X s×g −→ X s establishes an isomorphism between197

the critical locus Crit
(
W s;X s × g

)
of W s on X s × g and the subvariety X s|µ=0. As198

a result, the Hamiltonian reduction of X s can be presented as a (GIT) quotient of the199

critical locus of W s:200

X s//G ∼= Crit
(
W s;X s × g

)
/G. (7)201

2.2.2. Symplectic intersection. For a given Lie group G we consider ‘G-pairs’ (X , W ),202

where X is a variety with the G action and W is a G-invariant function on X × g:203

W ∈ C[X × g]G . In all our examples W is linear as a function on g, that is, there is a204

function µ : X → g (not necessarily a moment map) and W = Tr µX . For two G-pairs205

(Xi , Wi ), i = 1, 2 we define their symplectic intersection as the critical locus:206

(X1, W1)
s
∩ (X2, W2) := Crit

(
W2 −W1;X1 × X2 × g

)
. (8)207

This intersection has a symplectic geometry interpretation. A pair (X , W ) determines208

a ‘generalized’ G-invariant Lagrangian subvariety of T∗g or, equivalently, a generalized209
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Lagrangian subvariety of the Hamiltonian reduction T∗g//G. Present T∗g = g× g with210

coordinates (X, Y ). By definition,211

L̃(X ,W ) :=
{
(x, X, Y ) ∈ X × T∗g

∣∣∣
∂W
∂ X

= Y,
∂W
∂x

= 0
}

.212

The image L(X ,W ) ⊂ T∗g of L̃(X ,W ) under the projection X ×T∗g −→ T∗g is a (possi-213

bly singular) Lagrangian subvariety of T∗g. Thus the generalized Lagrangian subvariety214

L̃(X ,W ) represents a fibration L̃(X ,W ) → L(X ,W ) with a Lagrangian base. We consider215

two G-pairs equivalent: (X1; W1) ∼ (X2; W2), if they produce the same fibration.216

Define the intersection of two generalized Lagrangian subvarieties as the product of217

fibers over the intersection of their bases:218

L̃(X1,W1)

lg
∩ L̃(X2,W2) := {(x1, x2, X, Y ) ∈ X1 × X2 × T∗g | (x1, X, Y )219

∈ L̃(X1,W1), (x2, X, Y ) ∈ L̃(X2,W2)}.220

Now a projectionX1×X2×T∗g −→ X1×X2×g identifies the symplectic intersection221

of pairs with the intersection of their generalized Lagrangian subvarieties:222

L̃(X1,W1)

lg
∩ L̃(X2,W2)

∼=−−→ (X1, W1)
s
∩ (X2, W2).223

2.2.3. Brief 2-category motivation. G-pairs represent objects in the 2-category [KRS,224

KR] associated with the Hamiltonian quotient T∗g//G considered as a symplectic va-225

riety. The category of morphisms between two G-pairs (X1, W1) is the category of226

G-equivariant matrix factorizations of W2 − W1 over X1 × X2 × g. This category is227

‘approximately’ equivalent to the derived category of G-equivariant coherent sheaves228

over the critical locus (8), which motivates the set-theoretical definition of the symplectic229

intersection.230

The particular 2-category of T∗g//G and its arrow edge-related objects were studied231

in detail in [OR1,OR2] in relation to the categorical representation of the braid group232

and the construction of the link homology.233

2.2.4. Quiver varieties as symplectic intersections. The relation (7) allows us to trans-234

form the standard definition (1) of the quiver variety XQ into the symplectic intersec-235

tion (8). For an edge e connecting the vertices v1 and v2, its edge variety X s
e becomes236

a pair (X s
e ; W s

e ), where W s
e = Tr µv1,e Xv1 + Tr µv2,e Xv2 , relative to the Lie algebra237

gl(nv1)× gl(nv2). Now the quiver variety XQ can be presented as a quotient of the sym-238

plectic intersection of all pairs (X s
e ; W s

e ) in the total Lie algebra gv = ∏
v∈Qv

gl(nv)239

XQ =
s⋂

e∈Qe

(X s
e ; W s

e )
/

Gv := Crit
(
W s

e ;Xe × gv
)
/Gv,240

where241

W s
e =

∑

e∈Qe

W s
e =

∑

v∈Qv

Tr µv Xv.242
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2.3. New quiver-related varieties.243

2.3.1. A Legendre transform. For a G-pair (X ; W ) define a Legendre-transformed pair244

as245

(X ; W )LG :=
(
X × g;−W (x, Z) + Tr X Z

)
,246

where (x, Z) ∈ X ×g and G has adjoint action on g. The generalized Lagrangian subva-247

rieties of (X ; W ) and (X ; W )LG are related by the Legendre anti-symplectomorphism248

fLG : T∗g −→ T∗g, (X, Y ) /→ (Y, X).249

As a consequence, the symplectic intersection of two G-pairs is isomorphic to the sym-250

plectic intersection of their Legendre transforms:251

(X1; W1)
LG s
∩ (X2; W2)

LG ∼= (X1, W1)
s
∩ (X2, W2).252

Finally, f 2
LG = 1, that is, the double Legendre transform of a G-pair is equivalent to the253

original pair:254

(
(X ; W )LG)LG ∼ (X ; W ).255

2.3.2. Legendre transform and quiver varieties The Legendre transform can be applied256

to a G-pair (X s
e ; We) associated with an edge e of a quiver. If the edge e is attached to a257

vertex v, then we define the one-sided transform258

(X s
e ; We)

LG,v := (X s
e × gv; Tr Zv(Xv − µv)).259

The two-sided transform (X s
e ; We)

LG is defined as the application of one-sided trans-260

forms on both sides of the edge e.261

A marked quiver Q has marks (∗) at the ends of some of its edges. A mark means262

that the G-pair of the edge is Legendre-transformed at that side. Thus, depending on the263

marks, a G-pair (Xe; We) of an edge e attached to the vertices v1, v2 may be of one of264

the four forms:265

(X s
e ; W s

e ) : v1 v2 , (X s
e ; W s

e )LG,v1 : v1 v2

∗
,266

(X s
e ; W s

e )LG,v2 : v1 v2

∗
, (X s

e ; W s
e )LG : v1 v2

∗ ∗ = v1 v2

∗
,267

that is, a single mark in the middle means a complete (two-sided) Legendre transform.268

Note that a mark can be moved from one edge to the other at the same vertex and if269

two edges are marked at the same vertex, then these marks can be removed:270

∗ = ∗
,

∗ ∗ = . (9)271

272
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2.3.3. Mixed vector bundles over partial flag varieties. As an example of the latter273

construction, consider the following quiver Q:274

· · · !∗ ∗ ∗
w1 w2 w1 wM−1 wM (10)275

All of its edges are of the arrow type, their charges being the non-negative integers276

w = (w1, . . . , wM ). The marks are distributed randomly among the edges. The box277

! at the end of the quiver indicates that we do not apply symplectic intersection with278

respect to its Lie algebra.279

The resulting variety has the following description. Consider a partial flag variety280

Fw = {F•}, where281

F• = (F0 ⊂ F1 ⊂ · · · ⊂ FM−1 ⊂ FM = C|w|), dim F0 = 0, dim Fi+1 − dim Fi = wi .

(11)282

For a partial flag F• consider a subspace V (F•) ⊂ End(C|w|) such that φ ∈ V (F•) iff283

φ(Fi ) ⊂
{

Fi , if the i-th edge is marked,

Fi−1, if the i-th edge is unmarked,
(12)284

see285

∗ ∗ ∗

.286

The quiver (10) produces the G-pair (XQ; WQ), where XQ is the bundle over Fw with287

fibers V (F•), while WQ = Tr φX .288

Remark 2.1. The image of the map µ : XQ −→ gl(|w|), µ(x) = φ has an explicit289

description. Denote by m the number of unmarked edges and let wnil = (wnil
1 , . . . , wnil

m )290

be the list of the corresponding numbers wi in descending order: wnil
i ≥ wnil

j , if i < j .291

Then the image of µ consists of matrices φ ∈ End(C|w|) such that292

dim ker φk ≥
k∑

i=1

wnil
i for all k = 1, 2, . . . , m.293
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Table 1. Directions of various branes in R10

Type D3 D5 NS5
Direction R1

quiv R3
D5 R3

NS5

2.4. String theory motivation.294

2.4.1. Old quiver varieties. It is well-known that a quiver variety is the Higgs branch of295

a 3-dimensional super-Yang-Mills (SYM) theory of the type considered by Hanany and296

Witten [HW]. The theory describes the IIB superstring physics of a stack of D3 branes297

sandwiched between NS5 and D5 branes. The whole brane arrangement is within the298

10-dimensional space with coordinates x0, . . . , x9, each brane representing an affine299

subspace parallel to a coordinate subspace.300

The 10-dimensional space R10 is split into a product of subspaces:301

R10 = R3
cmn × R1

quiv × R3
NS5 × R3

D5302

All branes are stretched along the common 3-dimensional space R3
cmn and the Table 1303

describes the extra directions of affine subspaces spanned by various branes. D3 branes304

begin and end on D5 and NS5 branes, and their arrangement along R1
quiv is dual to the305

quiver Q: the transverse NS5 (resp. D5) branes correspond to arrow (resp. bow) edges,306

while the segments of D3 branes correspond to the vertices of Q, ni being the number307

of D3 branes between the adjacent D5 and NS5 branes, for example:308

R1
quiv

R3
D5

R3
NS5

NS5

D5

n1D3 n2D3 n3D3• •

n1 n2 n3

=
n1 n2 n3

in the notation of [RS]

.309

2.4.2. New quiver varieties. New quiver-related varieties emerge as Higgs branches of310

2d SYM theories describing the physics of a stack of D2 branes sandwiched between311

NS5 and D4 branes within the IIA string theory. This time the 10-dimensional space-time312

R10 is split in the following way:313

R10 = R2
cmn × R1

quiv × R2
NS5 × R1

D4 × R2
x × R2

y.314

All branes span R2
cmn. D2 branes are segments along R1

quiv. The branes NS5 span R2
NS5,315

while the branes D4 span R1
D4. Each NS5 (resp. D5) brane may stretch either along R2

x316

or along R2
y and depending on this choice, we denote them as NS5x, NS5y (resp. D4x,317

D4y). These choices are summed up in the Table 2.318

The correspondence between the brane arrangements and marked quivers is the same319

as in the Hanany–Witten IIB construction, except that now the branes NS5x and D4y320

correspond to unmarked edges, while NS5y and D4x correspond to marked edges.321
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Table 2. Directions of various branes in R10

Type D2 D4x D4y NS5x NS5y
Direction R1

quiv R1
D4 × R2

x R1
D4 × R2

y R2
NS5 × R2

x R2
NS5 × R2

y

If the space R2
x×R2

y is endowed with the Taub-NUT metric, then R2
x×{0} and {0}×R2

y322

become a pair of cigars and our construction makes contact with that of Mikhaylov and323

Witten [MW] who studied the emergence of U(M |N ) Chern–Simons theory when D-324

branes are wrapped on both cigars. Note however, that we have a skew Howe-dual version325

here, because in our case the super-algebra is determined by the number of NS5x and326

NS5y branes, whereas D4 branes are responsible for its representations.327

2.5. Quiver Varieties for gl(M |N ) Superalgebras.328

2.5.1. Weights and fundamental representations. A weight of the superalgebra gl(M |N )329

is described by two sequences of ordered integers (w, w′), where w = (w1, . . . , wM )330

and w′ = (w′1, . . . , w
′
N ).331

Denote R1 the defining fundamental representation of gl(M |N ): R1 ∼= CM|N =332

CM
even⊕CN

odd and denote Rk = "k R1. Also denote by R′1 the parity-flipped fundamental333

representation: R′1 ∼= CN |M = CM
odd ⊕ CN

even and R′k = "k R′1.334

For two ordered sequences of non-negative integers k = (k1, . . . , kK ) and k′ =335

(k′1, . . . , k′K ′) denote336

Rk;k′ = (Rk1 ⊗ · · ·⊗ RkK )⊗ (R′k′1
⊗ · · ·⊗ R′k′

K ′
)337

and denote V w;w′
k;k′ ⊂ Rk its weight space of weight (w; w′).338

To the weight space V w;w′
k;k′ we associate the marked quiver Qw;w′

k;k′ which is similar to339

Qw
k of (4). Going from left to right, it has340

(1) N marked (that is, Legendre-transformed) arrow edges with charges k′,341

(2) M unmarked (that is, ordinary) arrow edges with charges k,342

(3) K marked bow edges with charges k from right to left,343

(4) K ′ unmarked bow edges with charges k′ from right to left.344

Relations (9) allow us to present this quiver by using only two endpoint marks:345

w′1
· · ·

w1

∗ · · · nmax
· · ·

k1

∗ · · ·
k′1346

347

Remark 2.2. We believe that the weight space V w;w′
k;k′ ⊂ Rk can be represented by any348

separated quivers, that is, the marked and unmarked edges are distributed arbitrarily as349

long as the arrow edges are to the left of the bow edges. One can also transpose two350

unmarked edges or two marked edges by the Hanany–Witten move (3), however we do351

not know whether it is possible to transpose a marked edge and an unmarked edge of352

opposite nature.353
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2.5.2. Varieties for weight spaces. For a Lie superalgebra gl(M |N ) we consider the354

weight space of (w, w′) in the module Rk;z′ = Rk1 ⊗ · · · ⊗ RkK . The corresponding355

marked separated quiver Qw;w′
k has the form356

Qw;w′
k :

w′1
· · ·

w1

∗ · · · · · ·
k1nmax

357

and we denote X w;w′
k the corresponding variety. Similar to (5), we split this quiver into358

the arrow half359

Qarr
w,w′ : w′1

· · ·
w1

∗ · · · !nmax
360

and the bow half Qbow
k . Each half-quiver produces its own G-pair, and the variety X w;w′

k361

of the full quiver is their symplectic intersection with respect to T∗gl(nmax).362

The bow half-quiver Qbow
k yields the G-pair (Ŝk; Tr µŜ X), where µŜ is the moment363

map of the action of GL(nmax) on Ŝk.364

The arrow half-quiver Qarr
w,w′ yields the G-pair (F̂w′,w; Tr µF X). Here F̂w′,w is a365

‘mixed parabolic-nilpotent’ vector bundle over the flag variety Fw′,w = {F•} which366

corresponds to the concatenated weight list (w′, w). The fiber of F̂w′,w over a partial367

flag F• is the subspace V (F•) ⊂ End(Cnmax) such that φ ∈ V (F•) if368

φ(Fi ) ⊂
{

Fi , if the i ≤ N ,

Fi−1, if the i > N .
369

The function µF : F̂w′,w → gl(nmax) is defined as µF (F•,φ) = φ.370

Thus the variety X w;w′
k is the symplectic intersection:371

X w;w′
k = (F̂w′,w; Tr µF X)

s
∩ (Ŝk; Tr µŜ X)

= Crit
(
Tr(µF − µŜ)X; F̂w′,w × Ŝk × gl(nmax)

)
/GL(nmax).

(13)372

The criticality with respect to gl(nmax) requires µF = µŜ . Since µŜ is the moment map373

for the action of GL(nmax) on Ŝk and this action is free, it follows that the criticality of374

Tr µŜ X along Ŝk requires X = 0. The variation of Tr µF X along F̂w′,w is proportional375

to X , so X = 0 guarantees that this variation is zero. Hence the critical locus of (13)376

is just the condition µF = µŜ imposed on F̂w′,w × Ŝk, so X w;w′
k has a quiver-like377

presentation:378

X w;w′
k = (F̂w′,w × Ŝk)

∣∣∣
µF=µŜ

/
GL(nmax).379

If we consider the tensor product of defining representations R1 = R1 ⊗ · · · ⊗ R1,380

that is, k = 1 = (1, . . . , 1), then Ŝ1 = T∗GL(nmax) and the corresponding variety is381

the mixed bundle to the partial flag variety:382

X w;w′
1 = T∗Fw. (14)383
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2.5.3. gl(N ) presented as gl(0|N ). Finally, consider the case of M = 0, that is, the384

algebra is gl(N ), but it is presented as gl(0|N ) rather than as traditional gl(N |0). Denote385

R(N ) the (ordinary, even) defining representation of gl(N ) and consider the product of386

its symmetric powers387

Rsym
k = Sk1 R(N ) ⊗ · · ·⊗ SkK R(N ).388

The defining representation R1 of gl(0|N ) is odd, so its exterior powers appearing in389

Rk;z′ are, in fact, symmetric powers of R(N ): Rk;z′ = Rsym
k . Hence, according to the390

general construction, the weight w subspace in the product of symmetric powers Rsym
k391

is represented by the symplectic intersection of bundle of parabolic algebras over the392

flag variety Fw and the equivariant Slodowy slice393

Yw
k = (Pw × Ŝk)

∣∣∣
µF=µŜ

/
GL(nmax),394

where Pw is a bundle over Fw, whose fiber over a partial flag F• is the subspace V (F•) ⊂395

End(Cnmax) such that φ ∈ V (F•) if φ(Fi ) ⊂ Fi for all i , while µF (F•,φ) = φ.396

3. The Spaces X(r)
k,n and Their Equivariant Cohomology397

From now on in the whole paper we will focus on the construction of Sect. 2.5 in the398

special case of M = N = 1, that is, corresponding to the decorated quivers399

k n − k 1 1 1
· · ·

1

k n − k 1 1 1
· · ·

1
∗

k n − k 1 1 1
· · ·

1
∗

k n − k 1 1 1
· · ·

1
∗ ∗

. (15)400

Now we give a detailed description of the corresponding varieties and their equivariant401

cohomology.402

3.1. The spaces X (r)
k,n. Consider the tautological short exact sequence 0→ S→ Cn →403

Q → 0 of vector bundles over GrkCn . Define404

• X (00)
k,n =total space of Hom(Q, S) = T∗GrkCn ;405

• X (10)
k,n =total space of Hom(Cn, S);406

• X (01)
k,n =total space of Hom(Q, Cn);407

• X (11)
k,n =total space of Hom(S, S)⊕ Hom(Q, Cn) = Hom(Cn, S)⊕ Hom(Q, Q)408

illustrated in Fig. 1. Several notions and statements below will have four versions, corre-409

sponding to these four spaces. The upper index (r) = (00), (10), (01), (11) will always410

refer to this choice.411
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Q

S

S Q

(00)

Q

S

S Q

(10)

Q

S

S Q

(01)

Q

S

S Q

(11)
Fig. 1. Illustration of the bundles over GrkCn

3.2. Torus equivariant cohomology of Grk Cn. The natural action of A = An = (C×)n
412

on Cn induces an action on GrkCn . The fixed points of the action are the coordinate413

k-planes. The one naturally corresponding to the k-element subset I ⊂ {1, . . . , n} will414

be denoted by pI . The set of k-element subsets of {1, . . . , n} will be denoted by Ik .415

We have H∗A(pt) = C[z1, . . . , zn], where zi is the first Chern class of the tautological416

line bundle over B(C×) (the i th C× factor). The A equivariant cohomology ring of any417

space with an A action is hence a C[z1, . . . , zn]-module.418

Let us recall the description of H∗A(GrkCn) based on the maps419

C[t1, . . . , tk︸ ︷︷ ︸
Sk

, z1, . . . , zn]Sk H∗A(GrkCn)
⊕

I∈Ik
H∗A(pI )︸ ︷︷ ︸

=C[z1,...,zn ]

.
q Loc (16)420

The q-image of the variables ti are the equivariant Chern roots of the tautological k-421

bundle S over GrkCn . They generate H∗A(GrkCn) over H∗A(pt), hence the map q is422

surjective.423

The map Loc is the restriction (“equivariant localization”) map in cohomology to the424

union of fixed points. It is injective, and its image has the so-called GKM description425

[GKM]:426

The tuple ( f I )I∈Ik belongs to the image of Loc if and only if for any two compo-427

nents f I , f J satisfying I = K ∪ {i}, J = K ∪ { j} (|K | = k − 1, i 1= j) we have428

(zi − z j )|( f I − f J ) in C[z1, . . . , zn].429

Hence, if we allowed zi − z j denominators, ie. by tensoring with C(z1, . . . , zn), then430

the Loc map would become an isomorphism.431

The I component of the composition Loc ◦q is obtained by substituting ts = zis for432

I = {i1, . . . , ik}, which we will write as433

Loc ◦q : f (t, z) /→ ( f (zI , z))I∈Ik . (17)434

In summary, we have two ways of naming an element in H∗A(GrkCn). Either by an
(n

k

)
435

tuple of polynomials satisfying the GKM condition, or by an element of C[t1, . . . , tk, z1,436

. . . , zn]Sk —although this latter element is only unique up to the kernel of (17).437

3.3. The X (r)
n spaces, and their T equivariant cohomology. We define438

X (r)
n =

n⊔

k=0

X (r)
k,n for r = 00, 10, 01, 11.439
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The A = (C×)n action on GrkCn induces an action on X (r)
k,n , and hence on X (r)

n . We let440

an extra C× (denoted by C×! ) act on X (r)
k,n (and hence on X (r)

n ) by multiplication in the441

fibers. Thus we have T = Tn = A × C×! actions on X (r)
k,n and X (r)

n .442

The X (r)
k,n spaces are T equivariantly homotopy equivalent to GrkCn , and hence we443

have444

H∗T(X (r)
n ) =

n⊕

k=0

H∗A(GrkCn)⊗ C[!] ∀r. (18)445

3.4. The Loc map on H∗T(X (r)
n ). We can regard the Loc map as a map446

H∗T(X (r)
n )→

⊕

I⊂{1,...,n}
C[z1, . . . , zn, !].447

It will be convenient for us to permit rational function coefficients: defineHn = H∗T(X (r)
n )448

⊗ C(z1, . . . , zn, !)—we dropped the upper index r because of the independence on r ,449

see (18). This way we can regard Loc, which is now an isomorphism of 2n-dimensional450

vector spaces over C(z1, . . . , zn, !), as451

Hn
⊕

I⊂{1,...,n} C(z1, . . . , zn, !).
Loc (19)452

453

In Sect. 4 we will consider four versions of n! different isomorphisms from right to454

left in (19): the super stable envelope maps.455

3.5. Tangent weights at torus fixed points. The tangent space of X (r)
k,n at the torus fixed456

point pI , as a T representation, will be denoted by T (r)
I . It splits to “horizontal” and457

“vertical” sub-representations458

T (r)
I = T (r),hor

I ⊕ T (r),ver
I459

where T (r),hor
I is the tangent space of GrkCn at pI , and T (r),ver

I is the vector bundle460

defined in Sect. 3.1 restricted to pI . The weights of T (r),hor
I (called horizontal weights)461

are z j − zi for i ∈ I, j ∈ Ī . The weights of T (r),ver
I , called vertical weights, can be read462

from Fig. 1:463

(r = 00) zi − z j + ! for i ∈ I, j ∈ Ī ,
(r = 10) zi − zs + ! for i ∈ I, s ∈ {1, . . . , n},
(r = 01) zs − z j + ! for j ∈ Ī , s ∈ {1, . . . , n},
(r = 11) zi − z j + ! for i, j ∈ I and

zi − z j + ! for i, j ∈ Ī and
zi − z j + ! for i ∈ I, j ∈ Ī .

464

3.6. Repelling and attracting directions. Given a permutation σ ∈ Sn we call a weight465

zi − z j + ε! (where ε = {0, 1})466
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n − k

k

k n − k

(00)

n − k

k

k n − k

(10)

n − k

k

k n − k

(01)

n − k

k

k n − k

(11)

Fig. 2. Red regions illustrate the dimensions d(r)

σ−repelling if σ−1(i) > σ−1( j),
σ−attracting if σ−1(i) < σ−1( j),
σ−neutral if σ−1(i) = σ−1( j).

467

In notation we will use the signs−, +, 0 referring to repelling, attracting, neutral weights.468

For fixed σ we have the further splitting469

T (r)
I =

(
T (r),hor,σ+

I ⊕ T (r),hor,σ−
I

)

︸ ︷︷ ︸
T (r),hor

I

⊕ (
T (r),ver,σ+

I ⊕ T (r),ver,σ−
I ⊕ T (r),ver,σ0

I

)

︸ ︷︷ ︸
T (r),ver

I

470

according to σ -attracting/repelling/neutral directions. The T-equivariant Euler class of471

these representations will be decorated by indexes the same way. For example we have472

e(r),hor,σ−
I = e(T (r),hor,σ−

I ) =
∏

i∈I, j∈ Ī
σ−1( j)>σ−1(i)

(z j − zi )473

for any r , or474

e(10),ver,σ−
I = e(T (10),ver,σ−

I ) =
∏

i∈I,s∈{1,...,n}
σ−1( j)>σ−1(s)

(zi − zs + !).475

The dimension of the space T (r),hor,σ−
I ⊕ T (r),ver,σ−

I does not depend on I or on σ ;476

it only depends on r . Let us denote this dimension by d(r). That is (cf. Figure 2),477

d (00) = k(n − k), d (10) = k(n − k) +
(

k
2

)
,478

d (01) = k(n − k) +
(

n − k
2

)
, d (11) = k(n − k) +

(
k
2

)
+

(
n − k

2

)
=

(
n
2

)
.479

480

Remark 3.1. The appearance of neutral weights for r = (10), (01), (11) is a novelty. In481

the language of Sect. 2.4 it is due to the fact that a D4x brane and a NS5x brane share a482

common direction R2
x, so a D2 brane sandwiched between them can move along R2

x.483
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4. Super Stable Envelopes484

4.1. Definition. Let us fix k, n and σ ∈ Sn . The map485

Stab(r)
σ : H∗T

(
(X (r)

k,n)T
)

H∗T(X (r)
k,n)

⊕
I∈Ik

C[z, !] H∗T(GrkCn)

486

is called the σ super stable envelope (map), if the classes κ
(r)
σ,I = Stab(r)

σ (1I ) satisfy the487

axioms488

A0: deg(κ
(r)
σ,I ) = d(r);489

A1: κ
(r)
σ,I |I = e(r),ver,σ−

I e(r),hor,σ−
I ;490

A2: κ
(r)
σ,I |J is divisible by ! for J 1= I ;491

A3: κ
(r)
σ,I |J is divisible by e(r),ver,σ−

J for all J .492

In the A0 axiom we mean that the class is of homogeneous degree d(r) where deg zi =493

deg ! = deg ti = 1 (that is, degree d classes live in H2d ).494

The Stab(00)
σ maps coincide with the stable envelope maps of Maulik–Okounkov [MO]495

for the quiver variety ∪kT∗Grk Cn .496

If the Stab(r)
σ maps exist then they are uniquely determined by the axioms. The proof497

of this statement is the same as the proof of the existence of stable envelopes in the498

known cases in the literature [MO, Section 3.3.4] (c.f. [RTV2, Section 3.1], [RTV3,499

Section 7.8]). We will prove the existence of stable envelopes in Sect. 7.500

Now we give examples for κ
(r)
σ,I classes. It is instructive to verify the axioms for these501

examples.502

4.2. Example: P1. Let n = 2, k = 1, S2 = {id, s}. The classes κ
(r)
σ,{i} are elements503

of H∗T(X (r)
1,2) = H∗T(P1). We have two ways of naming such elements, see Sect. 3.2,504

either by a GKM-consistent pair of polynomials in C[z1, z2], or by a representative in505

C[t1, z1, z2]. Accordingly, we have506

κ
(r)
id,{1} = (z2 − z1 , 0) = [z2 − t1],

κ
(r)
id,{1} = (! , z2 − z1 + !) = [t1 − z1 + !],

κ
(r)
s,{1} = (z1 − z2 + ! , !) = [t1 − z2 + !],

κ
(r)
s,{1} = (0 , z1 − z2) = [z1 − t1]

507

for all r = 00, 10, 01, 11.508

4.3. Example: projective spaces. For r = 00, 10 the example of Sect. 4.2 generalizes509

to k = 1 and arbitrary n. Namely, the polynomial510

i−1∏

b=1

(t1 − zb + !)

n∏

b=i+1

(zb − t1)511
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represents the classes κ (00)
id,{i} = κ (10)

id,{i}.512

The k = 1 (i.e. Pn−1) formulas for r = 01, 11 are less obvious. While the polynomial513

n∏

b=2

(zb − t1)
∏

2≤a<b≤n

(zb − za + !)514

represents κ (01)
id,{1} = κ (11)

id,{1} for any n, no such “nicely factoring” polynomial represen-515

tative exists in general. For example, for n = 4 the ‘best’ polynomial representative516

for517

κ (01)
id,{2} = κ (11)

id,{2} =
(
(z3 − z1)(z4 − z1)(z3 − z2 + !)(z4 − z2 + !)(z4 − z3),518

(z3 − z2)(z4 − z2)(z2 − z1 + !)(z3 − z1 + !)(z4 − z1 + !)(z4 − z3 + !), 0, 0
)

519

(20)520

we found is521

(t − z1 + !)(z3 − t)(z4 − t)(z4 − z3 + !)522

×(−t2 + t (z3 + z4 + 2!) + !2 + !(−2z1 − 2z2 + z3 + z4)523

+z2
1 + z2

2 + z3z4 − (z1 + z2)(z3 + z4)).524

For general r, k, n neither the fixed point restrictions nor the polynomial representatives525

are products of linear factors. In Sects. 5–7 we will use a further algebraic trick to name526

the κ
(r)
σ,I classes.527

Remark 4.1. In our description of H∗T of Grassmannians we permitted the Chern roots528

t1, . . . , tk of the tautological bundles. If we included the Chern roots, say, t ′1, . . . , t ′n−k529

of the quotient bundle as well, we would have more freedom to name polynomial rep-530

resentatives of κ classes. However, that approach has disadvantages when considering531

quivers instead of Grassmannians, so we do not pursue it.532

5. Super Weight Functions533

In this section we introduce four versions of rational functions in the variables534

t1, t2, . . . , tk (“Chern root variables”),
z1, z2, . . . . . . , zn (“equivariant variables”), (21)535

that will—in an implicit way—provide formulas for the super stable envelopes of Sect. 4.536

The r = 00 version is (up to convention changes) the Tarasov–Varchenko weight func-537

tion [TV,RTV1], the other ones are superalgebra generalizations of it.538

As before, k ≤ n are non-negative integers, and the set of k-element subsets of539

{1, 2, . . . , n} is denoted by Ik . For I ∈ Ik we will use the notation I = {i1 < i2 <540

. . . < ik}, and we define541

Symk f (t1, . . . , tk) =
∑

τ∈Sk

(τ f ) =
∑

τ∈Sk

f (tτ (1), . . . , tτ (k)).542
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5.1. Version r = 00. (The classical nilpotent version.) Consider the rational function543

W (00)
I = Symk(U

(00)
I ) where544

U (00)
I =

k∏

a=1




ia−1∏

b=1

(ta − zb + !)

n∏

b=ia+1

(zb − ta)



 ·
k∏

a=1

k∏

b=a+1

1
(tb − ta + !)(tb − ta)

.545

For a permutation σ ∈ Sn define the (cohomological) r = 00 super weight function546

W (00)
σ,I = W (00)

σ−1(I )(t1, . . . , tk, zσ (1), . . . , zσ (n)).547

548

Example 5.1. Let n = 2 and S2 = {id, s}. We have549

W (00)
id,{} = 1 W (00)

s,{} = 1

W (00)
id,{1} = z2 − t1 W (00)

s,{1} = t1 − z2 + !

W (00)
id,{2} = t1 − z1 + ! W (00)

s,{2} = z1 − t1

W (00)
id,{1,2} = Sym2

(t2 − z1 + !)(z2 − t1)
(t2 − t1 + !)(t2 − t1)

W (00)
s,{1,2} = Sym2

(t2 − z2 + !)(z1 − t1)
(t2 − t1 + !)(t2 − t1)

.

550

We invite the reader to verify that551

W (00)
id,{1,2}|t1=z1,t2=z2 = W (00)

s,{1,2}|t1=z1,t2=z2 = 1,552

and that553





W (00)
s,{}

W (00)
s,{1}

W (00)
s,{2}

W (00)
s,{1,2}




=





1 0 0 0

0 z1−z2
z2−z1+!

!
z2−z1+! 0

0 !
z2−z1+!

z1−z2
z2−z1+! 0

0 0 0 1









W (00)
id,{}

W (00)
id,{1}

W (00)
id,{2}

W (00)
id,{1,2}




.554

5.2. Version r = 10. Consider the rational function1 W (10)
I = Symk(U

(10)
I ) where555

U (10)
I =

k∏

a=1




ia−1∏

b=1

(ta − zb + !)

n∏

b=ia+1

(zb − ta)



 ·
k∏

a=1

k∏

b=a+1

1
(tb − ta)

.556

For a permutation σ ∈ Sn define the (cohomological) r = 10 super weight function557

W (10)
σ,I = W (10)

σ−1(I )(t1, . . . , tk, zσ (1), . . . , zσ (n)).558

559

1 In fact this one is a polynomial, c.f. the proof of Proposition 6.1.
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Example 5.2. Let n = 2 and S2 = {id, s}. We have560

W (10)
id,{} = 1 W (10)

s,{} = 1

W (10)
id,{1} = z2 − t1 W (10)

s,{1} = t1 − z2 + !

W (10)
id,{2} = t1 − z1 + ! W (10)

s,{2} = z1 − t1

W (10)
id,{1,2} = Sym2

(t2 − z1 + !)(z2 − t1)
(t2 − t1)

W (10)
s,{1,2} = Sym2

(t2 − z2 + !)(z1 − t1)
(t2 − t1)

= z2 − z1 + ! = z1 − z2 + !.

561

562

We invite the reader to verify that563





W (10)
s,{}

W (10)
s,{1}

W (10)
s,{2}

W (10)
s,{1,2}




=





1 0 0 0

0 z1−z2
z2−z1+!

!
z2−z1+! 0

0 !
z2−z1+!

z1−z2
z2−z1+! 0

0 0 0 z1−z2+!
z2−z1+!









W (10)
id,{}

W (10)
id,{1}

W (10)
id,{2}

W (10)
id,{1,2}




.564

5.3. Version r = 01. Consider the rational function W (01)
I = Symk(U

(01)
I ) where565

U (01)
I =

k∏

a=1




ia−1∏

b=1

(zb − ta + !)

n∏

b=ia+1

(zb − ta)



 ·
k∏

a=1

k∏

b=a+1

1
(tb − ta)

566

×!k
n∏

a=1

n∏

b=a+1

(zb − za + !)

k∏

a=1

n∏

b=1

1
zb − ta + !

.567

For a permutation σ ∈ Sn define the (cohomological) r = 01 super weight function568

W (01)
σ,I = W (01)

σ−1(I )(t1, . . . , tk, zσ (1), . . . , zσ (n)).569

570

Example 5.3. Let n = 2 and S2 = {id, s}. We have571

W (01)
id,{} = z2 − z1 + ! W (01)

s,{} = z1 − z2 + !

W (01)
id,{1} = !(z2 − t1)(z2 − z1 + !)

(z1 − t1 + !)(z2 − t1 + !)
W (01)

s,{1} = !(z1 − z2 + !)

z1 − t1 + !
W (01)

id,{2} = !(z2 − z1 + !)

(z2 − t1 + !)
W (01)

s,{2} = !(z1 − t1)(z1 − z2 + !)

(z1 − t1 + !)(z2 − t1 + !)

W (01)
id,{1,2} = !2(z2 − z1 + !)(z1 − z2 + !)

∏2
i=1

∏2
j=1(zi − t j + !)

W (01)
s,{1,2} = !2(z2 − z1 + !)(z1 − z2 + !)

∏2
i=1

∏2
j=1(zi − t j + !)

.

572

573

We invite the reader to verify that574

W (01)
id,{1,2}|t1=z1,t2=z2 = W (01)

s,{1,2}|t1=z1,t2=z2 = 1,575
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and that576





W (01)
s,{}

W (01)
s,{1}

W (01)
s,{2}

W (01)
s,{1,2}




=





z1−z2+!
z2−z1+! 0 0 0

0 z1−z2
z2−z1+!

!
z2−z1+! 0

0 !
z2−z1+!

z1−z2
z2−z1+! 0

0 0 0 1









W (01)
id,{}

W (01)
id,{1}

W (01)
id,{2}

W (01)
id,{1,2}




.577

5.4. Version r = 11. Consider the rational function W (11)
I = Symk(U

(11)
I ) where578

U (11)
I =

k∏

a=1




ia−1∏

b=1

(zb − ta + !)

n∏

b=ia+1

(zb − ta)



 ·
k∏

a=1

k∏

b=a+1

(tb − ta + !)

(tb − ta)
579

×hk
n∏

a=1

n∏

b=a+1

(zb − za + !)

k∏

a=1

n∏

b=1

1
zb − ta + !

.580

For a permutation σ ∈ Sn define the (cohomological) r = 11 super weight function581

W (11)
σ,I = W (11)

σ−1(I )(t1, . . . , tk, zσ (1), . . . , zσ (n)).582

Example 5.4. Let n = 2 and S2 = {id, s}. We have583

W (11)
id,{} = z2 − z1 + ! W (11)

s,{} = z1 − z2 + !

W (11)
id,{1} = !(z2 − t1)(z2 − z1 + !)

(z1 − t1 + !)(z2 − t1 + !)
W (11)

s,{1} = !(z1 − z2 + !)

z1 − t1 + !

W (11)
id,{2} = !(z2 − z1 + !)

(z2 − t1 + !)
W (11)

s,{2} = !(z1 − t1)(z1 − z2 + !)

(z1 − t1 + !)(z2 − t1 + !)

W (11)
id,{1,2} = Sym2

!2(z2−z1+!)(t2−t1+!)(z2−t1)
(t2−t1)(z1−t1+!)(z2−t1+!)(z2−t2+!)

W (11)
s,{1,2} = Sym2

!2(z1−z2+!)(t2−t1+!)(z1−t1)
(t2−t1)(z1−t1+!)(z1−t2+!)(z2−t1+!) .

584

585

We invite the reader to verify that586

W (11)
id,{1,2}|t1=z1,t2=z2 = z2 − z1 + !, W (11)

s,{1,2}|t1=z1,t2=z2 = z1 − z2 + !,587

and that588





W (11)
s,{}

W (11)
s,{1}

W (11)
s,{2}

W (11)
s,{1,2}




=





z1−z2+!
z2−z1+! 0 0 0

0 z1−z2
z2−z1+!

!
z2−z1+! 0

0 !
z2−z1+!

z1−z2
z2−z1+! 0

0 0 0 z1−z2+!
z2−z1+!









W (11)
id,{}

W (11)
id,{1}

W (11)
id,{2}

W (11)
id,{1,2}




.589
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6. Properties of Super Weight Functions590

In this section we will show interpolation and recursion (so-called R-matrix-) properties591

of super weight functions.592

6.1. Interpolation properties. The function W (r)
σ,I is a rational function in t1, . . . , tk ,593

z1, . . . , zn , !, of homogeneous degree d(r), symmetric in the ti variables. For I, J ∈ Ik ,594

we will write W (r)
σ,J (zI , z, !) for the—a priori rational function—obtained by substituting595

ts = zis for I = {i1, . . . , ik} in W (r)
σ,J , cf. (17).596

Proposition 6.1. The function W (r)
σ,I (z J , z, !) is a polynomial in z1, . . . , zn, !, for all597

I, J ∈ Ik .598

Proof. The denominator of the U (r)
J function is

∏k
a<b(tb−ta) times possibly (depending599

on r ) some factors of the form (zi − t j + !) and (ti − t j + !). After symmetrization600

W (r)
J = Symk(U

(r)
J ) the (tb − ta) factors cancel, because the numerator will have poles601

at tb = ta as well. The (zi − t j + !) and (ti − t j + !) factors may not cancel in W (r)
J .602

What we need to show is that after the substitution ts = zis , the resulting (zi − z j +!)603

factors cancel in the sum. This holds, because of the structure of the numerators. It is604

easily verified in each of the r = 00, 10, 01, 11 cases, that a term (τU (r)
J )(zI , z, !) (for605

τ ∈ Sn) either vanishes, or is a polynomial, i.e. the (zi − t j + !) factors appearing in the606

denominator also appear in the numerator. 45607

Now we make three propositions about the W (r)
σ,J (zI , z, !) substitutions. Each one of608

the three is a “soft theorem” in the sense that they hold termwise for W (r)
J (zI , z, !) =609

∑
τ∈Sn

(τU (r)
J )(zI , z, !). That is, the combinatorics of the definition of U (r)

I imply the610

statements, not the sophisticated addition of n! rational functions.611

Proposition 6.2. We have612

W (r)
σ,I (zI , z, !) =

∏

1≤a<b≤n
♣

(zσ (b) − zσ (a)) ·
∏

1≤b<a≤n
♠

(zσ (a) − zσ (b) + !) (22)613

where614

♣ = σ (a) ∈ I, σ (b) ∈ Ī615

616

♠ =






σ (a) ∈ I, σ (b) ∈ Ī for r = 00,

σ (a) ∈ I for r = 10,

σ (b) ∈ Ī for r = 01,

σ (a) ∈ I or (σ (a) ∈ Ī and σ (b) ∈ Ī ) for r = 11.

(23)617

Proof. It is enough to prove the statement for σ = id. It follows by inspection that at618

the substitution ts = zis into W (r)
I = ∑

τ∈Sk
(τU (r)

I ) exactly one term is not 0, the term619

corresponding to τ = id. Substituting ts = zis into the τ = id term we obtain the right620

hand side of (22). 45621

220 4608
Jour. No Ms. No.

B Dispatch: 22/12/2022
Total pages: 30
Disk Received
Disk Used

Journal: Commun. Math. Phys.
Not Used
Corrupted
Mismatch



R
ev

is
ed

Pr
oo

f

New Quiver-Like Varieties and Lie Superalgebras

Observe that on the right hand side of (22) the first product equals e(r),ver,σ−
I , and622

the second product equals e(r),hor,σ−
I .623

Proposition 6.3. For J 1= I the polynomial W (r)
σ,J (zI , z, !) is divisible by ! in C[z1, . . . ,624

zn, !].625

Proposition 6.4. The polynomial W (r)
σ,J (zI , z, !) is divisible by

∏
1≤b<a≤n♠(zσ (a) −626

zσ (b) + !) where ♠ is as in (23).627

Proof. (Propositions 6.3, 6.4.) The σ = id special case implies the general case. For628

σ = id the proof continues the arguments given in the proof of Proposition 6.1. There we629

claimed that in each of the terms (τU (r)
J )(zI , z, !) the denominator divides the numerator,630

hence is a polynomial. The combinatorial structure of the numerator also implies that631

each of these polynomials are divisible by ! · ∏1≤b<a≤n♠(zσ (a) − zσ (b) + !). 45632

6.2. R-matrix properties. Let sa,b denote the transposition in Sn switching a with b. For633

σ,ω ∈ Sn the permutation σω means first applying ω then applying σ . For example, the634

permutation σ sa,a+1 is obtained from σ by switching the σ (a) and σ (a + 1) values. For635

I ∈ Ik , su,v ∈ Sn we define the set su,v(I ) ∈ Ik to be obtained from I by switching u636

and v. In particular, if u, v ∈ I or if u, v 1∈ I then su,v(I ) = I .637

Theorem 6.5. Let k ≤ n, σ ∈ Sn, I ∈ Ik , a = 1, . . . , n − 1.638

• If (σ (a) ∈ I, σ (a + 1) 1∈ I ) or (σ (a) 1∈ I, σ (a + 1) ∈ I ) then639

W (r)
σ sa,a+1,I = zσ (a) − zσ (a+1)

zσ (a+1) − zσ (a) + !
W (r)

σ,I +
!

zσ (a+1) − zσ (a) + !
W (r)

σ,sσ (a),σ (a+1)(I )640

for r = 00, 10, 01, 11.641

• If σ (a), σ (a + 1) ∈ I then642

W (r)
σ sa,a+1,I =

{
W (r)

σ,I for r = 00, 01,
zσ (a)−zσ (a+1)+!
zσ (a+1)−zσ (a)+! W (r)

σ,I for r = 10, 11.
643

• If σ (a), σ (a + 1) 1∈ I then644

W (r)
σ sa,a+1,I =

{
W (r)

σ,I for r = 00, 10,
zσ (a)−zσ (a+1)+!
zσ (a+1)−zσ (a)+! W (r)

σ,I for r = 01, 11.
645

Proof. These statements reduce algebraically to the special case n = 2, σ = id, a = 1.646

That special case is equivalent with the four matrix product identities—obtained by647

concrete calculations— in Sect. 5. 45648

7. Existence of Super Stable Envelopes649

We prove the existence of Stab(r)
σ maps by proving the existence of κ

(r)
σ,I ∈ H∗T(GrkCn)650

elements satisfying axioms A0, A1, A2, A3 of Sect. 4. Let us recall our description of651

H∗T (GrkCn)652

C[t1, . . . , tk, z1, . . . , zn]Sk H∗A(GrkCn)
⊕

I∈Ik
C[z1, . . . , zn].q Loc

653

from (16).654
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Lemma 7.1. The tuple655

(
W (r)

σ,J (zI , z, !)
)

I∈Ik
∈

⊕

I∈Ik

C[z1, . . . , zn]656

belongs to the image of Loc.657

Proof. First, the components of the tuple are indeed polynomials, according to Propo-658

sition 6.1.659

We need to show that the tuple of polynomials satisfy the GKM condition. Let660

U = K ∪ {i}, V = K ∪ { j} where |K | = k − 1 and i 1= j . Substituting zi = z j661

in W (r)
σ,J (zU , z, !) and in W (r)

σ,J (zV , z, !) result identical functions. Hence662

(
W (r)

σ,J (zU , z, !)−W (r)
σ,J (zV , z, !)

)∣∣∣
zi =z j

= 0663

and, in turn, this implies that zi−z j divides the difference W (r)
σ,J (zU , z, !)−W (r)

σ,J (zV , z, !),664

what we wanted to prove. 45665

Therefore, the tuple (W (r)
σ,J (zI , z, !))I∈Ik defines an element of H∗T (GrkCn), let us666

denote this element by [W (r)
σ,J ].667

Remark 7.2. It is tempting to think that W (r)
σ,J represents [W (r)

σ,J ] in the sense that668

q(W (r)
σ,J )=[W (r)

σ,J ]. This is, however, not correct because W (r)
σ,J 1∈C[t1, . . . , tk, z1, . . . , zn]Sk .669

It is not a polynomial, it is a rational function (unless r = 10). This rational function670

has the remarkable property that its t = z J substitutions are polynomials (satisfying the671

GKM condition), hence there is another function, this time a polynomial, whose t = z J672

substitutions are the same. That other polynomial would be the representative of [W (r)
σ,J ]673

in C[t1, . . . , tk, z1, . . . , zn]Sk . For example for n = 4 the element κ (01)
id,{2} has the “true”674

polynomial representative given in (20), but we named it with the rational function675

W (01)
id,{2} =

!
∏4

i=3(zi − t1)
∏

1≤i< j≤4(z j − zi + !)
∏4

i=2(zi − t1 + !)
.676

The reader can verify that the polynomial in (20) and this rational function indeed have677

the same t = z J substitutions for all J .678

Theorem 7.3. The class [W (r)
σ,J ] satisfies the defining axioms for κ

(r)
σ,I .679

Proof. The properties listed in Sect. 6 verify the axioms A0-A3 required forκ(r)
σ,I . Namely,680

the degree axiom A0 is implied by the fact that W (r)
σ,J has homogeneous degree d(r) (hence681

all its t = zI substitutions have that degree too). Axioms A1, A2, A3 are verified in682

Propositions 6.2, 6.3, 6.4, respectively. 45683
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8. Geometrically Defined Local Tensor Coordinates on (C2)⊗n
684

8.1. Local tensor coordinates. Let v1, v2 be the standard basis vectors of C2, and let685

us fix an element (“R-matrix”) R(ζ, !) ∈ End(C2 ⊗ C2)⊗ C(ζ, !). For 1 ≤ u, v ≤ n,686

u 1= v let Ru,v(ζ ) denote the element in End((C2)⊗n)⊗C(ζ ) acting like R(ζ ) in the u’th687

and v’th factor. Let us assume that the R-matrix satisfies the parametrized Yang-Baxter688

equation689

R12(z1− z2)R13(z1− z3)R23(z2− z3) = R23(z2− z3)R13(z1− z3)R12(z1− z2). (24)690

691

Definition 8.1. Let V be a vector space isomorphic with (C2)⊗n (ie. of dimension 2n).692

A collection of linear isomorphisms693

Lσ ∈ Hom((C2)⊗n, V )⊗ C(z1, . . . , zn, !) for σ ∈ Sn694

is called “local tensor coordinates on (C2)⊗n”, if for any σ ∈ Sn and a = 1, . . . , n − 1695

we have696

L−1
σ sa,a+1

◦Lσ = Rσ (a),σ (a+1)(zσ (a+1) − zσ (a)).697

For example the Yangain Y(gl(2)) action on (C2)⊗n⊗C(z1, . . . , zn, !) induces local698

tensor coordinates on (C2)⊗n with R-matrix699

R(ζ ) =





v1⊗v1 v1⊗v2 v2⊗v1 v2⊗v2

v1⊗v1 1 0 0 0
v1⊗v2 0 ζ

!−ζ
!

!−ζ 0

v2⊗v1 0 !
!−ζ

ζ
!−ζ 0

v2⊗v2 0 0 0 1




∈ End(C2 ⊗ C2)⊗ C(ζ, !). (25)700

One of the achievements of [MO] is a geometric construction of local tensor coordinates701

using the torus equivariant cohomology algebras of Nakajima quiver varieties. If the702

variety is ∪kT∗GrkCn then the Maulik–Okounkov construction coincides with the r =703

00 case of what we will describe next.704

8.2. Super stable envelopes induce local tensor coordinates. Let705

R(00)(ζ ) =





1 0 0 0

0 ζ
!−ζ

!
!−ζ 0

0 !
!−ζ

ζ
!−ζ 0

0 0 0 1




, R(10)(ζ ) =





1 0 0 0

0 ζ
!−ζ

!
!−ζ 0

0 !
!−ζ

ζ
!−ζ 0

0 0 0 !+ζ
!−ζ




,

R(01)(ζ ) =





!+ζ
!−ζ 0 0 0

0 ζ
!−ζ

!
!−ζ 0

0 !
!−ζ

ζ
!−ζ 0

0 0 0 1




, R(11)(ζ ) =





!+ζ
!−ζ 0 0 0

0 ζ
!−ζ

!
!−ζ 0

0 !
!−ζ

ζ
!−ζ 0

0 0 0 !+ζ
!−ζ




.

(26)706

Each of these R-matrices satisfy the Yang-Baxter equation (24).707
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Remark 8.2. In general, R-matrices come in two flavors, R and Ř, whose relation is708

Ř = P ◦ R where P is the operation permuting the factors of C2 ⊗ C2. Hence, the709

Ř versions of the R(r)(ζ ) matrices above are obtained by replacing the middle 2 × 2710

submatrix 1
!−ζ

(
ζ !
! ζ

)
to 1

!−ζ

(
! ζ
ζ !

)
.711

In Sect. 9 we will show the relationship between theses matrices and the Yangian712

R-matices of gl(2|0), gl(1|1), gl(1|1), gl(0|2) Lie superalgebras.713

Now we give a geometric definition of local tensor coordinates on (C2)⊗n with the714

R-matrices in (26). For brevity, we will write C(z, !) for C(z1, . . . , zn, !).715

First, let us identify the vector spaces716

(C2)⊗n ⊗ C(z, !)
⊕

I⊂{1,...,n} C(z, !) H∗T((X (r)
n )T)⊗ C(z, !)

∈ ∈ ∈

v j1 ⊗ v j2 ⊗ . . .⊗ v jn 1I 1 ∈ H∗T(pI )

(27)717

where js =
{

1 if s 1∈ I
2 if s ∈ I

. Recall from Sect. 3.4 that we defined Hn = H∗T(X (r)
n ) ⊗718

C(z, !), and that the Loc map (see (19)) is an isomorphism from Hn to the vector space719

in (27).720

Theorem 8.3. Let r ∈ {00, 10, 01, 11}. The maps721

Stab(r)
σ : (C2)⊗n ⊗ C(z, !)→ Hn (σ ∈ Sn)722

form local tensor coordinates on (C2)⊗n with R-matrices given in (26).723

Proof. Define the geometric R-matrix724

R(r)
σ,ω = (Stab(r)

ω )−1 Stab(r)
σ .725

What we need to prove is that726

R(r)
σ sa,a+1,σ

= R(r)
σ (a),σ (a+1)(zσ (a+1) − zσ (a)).727

If (σ (a) ∈ I and σ (a + 1) 1∈ I ) or (σ (a) 1∈ I and σ (a + 1) ∈ I ) then we have728

Stab(r)
σ (1I ) = [W (r)

σ,I ] =
[

zσ (a+1) − zσ (a)

zσ (a+1) − zσ (a) + !
W (r)

σ sa,a+1,I729

+
!

zσ (a+1) − zσ (a) + !
W (r)

σ sa,a+1,sσ (a),σ (a+1)(I )

]
730

according to Theorem 7.3 and Theorem 6.5 (in fact, writing σ sa,a+1 for σ in Theo-731

rem 6.5). Hence732

R(r)
σ sa,a+1,σ

(1I ) = zσ (a+1) − zσ (a)

zσ (a+1) − zσ (a) + !
1I +

!
zσ (a+1) − zσ (a) + !

1sσ (a),σ (a+1)(I )733

= R(r)
σ (a),σ (a+1)(zσ (a+1) − zσ (a))(1I ).734
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If σ (a), σ (a + 1) ∈ I then735

Stab(r)
σ (1I ) = [W (r)

σ,I ] =
{

[W (r)
σ sa,a+1,I ] for r = 00, 01

zσ (a+1)−zσ (a)+!
zσ (a)−zσ (a+1)+! [W (r)

σ sa,a+1,I ] for r = 10, 11,
736

according to Theorem 7.3 and Theorem 6.5 (in fact, writing σ sa,a+1 for σ in Theo-737

rem 6.5). Hence738

R(r)
σ sa,a+1,σ

(1I ) =
{

1I for r = 00, 01
zσ (a+1)−zσ (a)+!
zσ (a)−zσ (a+1)+! 1I for r = 10, 11,

739

which is equal to R(r)
σ (a),σ (a+1)(zσ (a+1) − zσ (a))(1I ).740

The proof of the σ (a), σ (a + 1) 1∈ I case is analogous. 45741

8.3. Super weight functions induce local tensor coordinates. Theorem 8.3 could have742

been proved without mentioning super weight functions, essentially only using the ax-743

ioms of super stable envelopes. However, the proof we gave in Sect. 8.2 has the advantage744

that it actually proves another statement. Let Wσ,n ⊂ C(t1, . . . , tk, z1, . . . , zn, !) be the745

C(z1, . . . , zn, !)-span of the functions Wσ,I for I ⊂ {1, . . . , n}. In fact, according to746

Theorem 6.5 this space is independent of σ , hence we will denote it by Wn .747

Theorem 8.4. Let r ∈ {00, 10, 01, 11}. The maps748

W (r)
σ : (C2)⊗n ⊗ C(z, !) → Wn (σ ∈ Sn)

1I /→ W (r)
σ,I

749

750

form local tensor coordinates on (C2)⊗n with R-matrices given in (26).751

Proof. Our proof of Theorem 8.3 with the formal modification of writing W (r)
σ for Stab(r)

σ752

and W (r)
σ,I for [W (r)

σ,I ] proves this statement. 45753

The essence in this argument was that the R-matrix relations (Theorem 6.5) hold not754

only for the cohomology classes [W (r)
σ,I ] ∈ Hn but for the rational functions W (r)

σ,I ∈Wn755

themselves: both skew arrows in the commutative diagram756

(C2)⊗n ⊗ C(z, !)

Wn Hn .

W (r)
σ Stab(r)

σ

[ ]
757

are local tensor coordinates.758

That is, the super weight functions are those representatives of super stable envelopes759

that respect the R-matrix property. Such a choice of representative for an interesting co-760

homology class follows the tradition started with Schubert polynomials [LS]. Schubert761

polynomials represent fundamental classes of Schubert varieties, and these representa-762

tives are chosen in a way to be consistent with the Lascoux–Schützenberger recursion763

of Schubert classes.764
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9. Yangian R-Matrices of gl(2|0), gl(1|1), gl(0|2)765

Consider the four splittings766

C〈v1〉even ⊕ C〈v2〉even, C〈v1〉even ⊕ C〈v2〉odd, C〈v1〉odd ⊕ C〈v2〉even, C〈v1〉odd ⊕ C〈v2〉odd,767

of C2〈v1, v2〉. The corresponding Lie superalgebras are gl(2|0), gl(1|1), gl(1|1), gl(0|2),768

where the middle two are of course isomorphic, and gl(2|0), gl(0|2) are both isomorphic769

with the ordinary gl(2). The Yangian R-matrices for these Lie superalgebras are all770

1 + u P ∈ End(C2 ⊗ C2)⊗ C(u)771

with the key difference that the “permutation of factors” operator, P , is meant with the772

usual convention: when odd vectors are permuted a (−1)-sign is introduced [Go,Z1,Z2].773

Namely, the four Yangian R-matrices are (in the ordered basis v1 ⊗ v1, v1 ⊗ v2, v2 ⊗774

v1, v2 ⊗ v2)775

R00(u) =





1 + u 0 0 0

0 1 u 0
0 u 1 0

0 0 0 1 + u




, R10(u) =





1 + u 0 0 0

0 1 u 0
0 u 1 0

0 0 0 1− u




,

R01(u) =





1− u 0 0 0

0 1 u 0
0 u 1 0

0 0 0 1 + u




, R11(u) =





1− u 0 0 0

0 1 −u 0
0 −u 1 0

0 0 0 1− u




.

(28)776

The Ř version of R-matrices are obtained as Ř = P ◦R (with the respective P operator),777

hence they are778

Ř00(u) =





1 + u 0 0 0

0 u 1 0
0 1 u 0

0 0 0 1 + u




, Ř10(u) =





1 + u 0 0 0

0 u 1 0
0 1 u 0

0 0 0 −1 + u




,

Ř01(u) =





−1 + u 0 0 0

0 u 1 0
0 1 u 0

0 0 0 1 + u




, Ř11(u) =





−1 + u 0 0 0

0 u −1 0
0 −1 u 0

0 0 0 −1 + u




.

(29)779

If we divide these Ř-matrices by 1 + u, and then substitute u = −!/ζ , then we obtain780

exactly the Ř matrices of Remark 8.2. Therefore, the Ř-matrices obtained from the781

geometry (namely, the super stable envelopes) of X (r)
n spaces are the Yangian Ř-matrices782

of gl(2|0), gl(1|1), gl(1|1), gl(0|2).783
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