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Abstract: In order to extend the geometrization of Yangian R-matrices from Lie alge-
bras gl(n) to superalgebras gl(M|N), we introduce new quiver-related varieties which
are associated with representations of gl(M|N). In order to define them similarly to the
Nakajima-Cherkis varieties, we reformulate the construction of the latter by replacing
the Hamiltonian reduction with the intersection of generalized Lagrangian subvarieties
in the cotangent bundles of Lie algebras sitting at the vertices of the quiver. The new vari-
eties come from replacing some Lagrangian subvarieties with their Legendre transforms.
We present superalgebra versions of stable envelopes for the new quiver-like varieties
that generalize the cotangent bundle of a Grassmannian. We define superalgebra gener-
alizations of the Tarasov—Varchenko weight functions, and show that they represent the
super stable envelopes. Both super stable envelopes and super weight functions transform

according to Yangian R-matrices of gl(M|N) with M + N = 2.

1. Introduction

There is a well-known correspondence between an A,-type framed Nakajima quiver
variety and a weight space in the tensor product of fundamental representations of gl(n).
This correspondence is used for the geometric construction of Yangian R-matrices and
for the categorification of the quantum group GL, (). In recent works of Okounkov
and his co-authors [MO,01,AO,02] the key ingredient of this correspondence is the
collection of so-called stable envelope maps.

The purpose of this paper is to extend this correspondence from gl(n) = gl(N|0) to
Lie superalgebras gl(M|N).

In Sect. 2 we introduce a new family of quiver-related varieties, defined by a modi-
fied Nakajima-Cherkis construction. In the original construction the Nakajima-Cherkis
quiver variety (a.k.a. bow variety) is a Hamiltonian reduction of the product of edge-
related symplectic varieties X} by the product of vertex-related groups GL(n,). We
show that the same quiver variety can be presented as an intersection of edge-related
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generalized Lagrangian subvarieties L, in the product of cotangent bundles T*gl(n,).
The superalgebra related varieties result from replacing some generalized varieties £,
by their Legendre transforms. A replacement of some Nakajima arrow edges turns gl(N)
into gl(M|N), while a replacement of some Cherkis bow edges turns the corresponding
fundamental representations of gl(M|N) into their parity-flipped twins.

Consider a tensor power of the defining vector representation of gl(N). The quiver
variety corresponding to a weight space of this representation is a cotangent bundle
of an N-step partial flag variety. In particular, for N = 2, it is the cotangent bundle
of a Grassmannian. Starting in Sect. 3 we carry out detailed calculations showing the
four possible Legendre transform generalizations of this case. The generalized varieties,
associated with the four decorated quivers of (15) below, will still be total spaces of
vector bundles over the Grassmannian, but of different bundles—see Fig. 1. We define
the superalgebra generalization of Maulik—Okounkov stable envelopes (‘super stable
envelopes’), and show their existence using the superalgebra generalization of Tarasov—
Varchenko weight functions (‘super weight functions’). We show that both super stable
envelopes and super weight functions transform according to the Yangian R-matrices
of

gl(ceven S>) (Ceven)» g[((ceven 5> Codd)» g[((codd S>) (Ceven)a g[((codd S>) (Codd)-

The quiver-related varieties coming from Legendre-transformed arrow edges ap-
peared in the work [OR] of Oblomkov and the second author on link homology, where
either of two types of the fundamental representation of GL family were assigned to
each link component. The categorical representation of the braid group amounted to
the categorification of the gl(M|N) Hecke algebra, where M and N are the numbers of
braid strands colored with either type of the fundamental representation of GL. Upon the
reduction to gl(n) or, more generally, to gl(m|n) homology, one of these representations
becomes the fundamental representation of gl(n) or gl(m|n), while the other becomes
its parity-flipped twin.

Other works studying the geometrization of (affine) super Yangian actions include
[LY,RSYZ,GY,GLY,VV]. We plan to compare our geometric construction with those
works in the future.

2. A New Family of Quiver Varieties

2.1. A Nakajima—Cherkis quiver variety. In this section we recall the definition of vari-
eties associated to quivers with two kinds of edges: arrow edges and bow edges. These
varieties have also been called bow varieties [Ch1,Ch2,Ch3,NT,N3,RS], but in this pa-
per we employ the metaphor that a “quiver” can hold both “arrows” and “bows” so we
keep calling the varieties with arrow and bow components quiver varieties. The history
of quiver varieties without bow edges goes back to [N1,N2], for a more recent survey
see [G].

2.1.1. Hamiltonian reduction In this paper we consider only linear quivers. Thus, a
quiver Q is a ‘linear’ graph with two univalent vertices, No — 1 bi-valent vertices and
Ng edges:

07 DY ... 40
) (@ =1 @) @+1) (No)”’
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New Quiver-Like Varieties and Lie Superalgebras

(7) Being a vertex index. A vertex (i) is assigned a non-negative integer n; representing
the n;-dimensional vector space V; and the group G; = GL(V;). We always assume that
no=n No = 0.

An oriented edge connecting the vertices (i — 1) and (7) is assigned a symplectic
variety (Xis, w) with the Hamiltonian action of G;_1 x G; and the corresponding moment
maps u?_l and le.L. If the orientation of the edge is reversed, then w, ,u?_l and ,ul.L change
signs, but (X, w) and (X?, —w) are symplectomorphic, because X7 is (a Hamiltonian
reduction of) a cotangent bundle, and one can switch the sign of cotangent fibers. Hence
ultimately the choice of orientation of the edges does not affect the resulting quiver
variety (unless the orientation is also used to specify the stability conditions).

The quiver variety X is a result of the Hamiltonian reduction of the product of edge
varieties with respect to all vertex groups:

Xo = Xe| =0 /Gy, @)
i=0,..., NQ
where
Ng No
Xe=]]x, Gv=[]oLwvo,
i=1 i=0

while p; is the total moment map of the vertex v:
L, R
i = Wi+ [

2.1.2. Arrow and bow edges. The edges of a quiver are of two types: an arrow edge and
a bow edge:

. IT
o o QAW o o bow

The corresponding symplectic varieties X7 are also of two types: the arrow varieties Ay,
and the bow varieties B, ,, where m and n are non-negative integers representing the
dimensions of adjacent vertex spaces. An arrow variety .4,, , has a Hamiltonian action
of GL(m) x GL(n), while a bow variety B,, , has a Hamiltonian action of GL(m) x
GL(n) x C*. The groups C* acting on bow varieties combine into the group

Cpow =[] (€

eis bow

acting on the quiver variety Xg.

2.1.3. The arrow variety. For two non-negative integers m, n define

Am.n = T*"Hom(C™, C")
with the natural Hamiltonian action of GL,, x GL,,. The moment maps are u,, = —Y X
and u, = XY, where (X, Y) € Hom(C™, C") x Hom(C", C") = T*Hom(C™, C").

For geometrizing the Yangian R-matrix we need a ‘stable’ version of the arrow

variety. Namely, denote Hom* (C", C") ¢ Hom(C™, C") the set of linear maps of the
highest rank and define

A = T*Hom* (C", C"). 2)
Now define the symplectic variety of an oriented arrow edge as

(@ —OT)_(()I') AF = Ap_yp; oOF A'Sltf—l»"i'

Disk Received [ ] | Corrupted [
Jour. No | Ms. No. Disk Used [] Mismatch [_]

K“ 2 2 0 4 608 B ?gi‘gla;ca}ge%?/g%mn lJ\(I)(;l[H[ljaslé dCorﬁ]mun. Math. Phys.
o™




106
107

108

109

110
111
112
113
114

115

116

117

118
119

120

121
122
123

124

125

126

127

128

129
130
131
132

133

134

135

136

R. Rimdnyi, L. Rozansky

2.1.4. The bow variety, cf. [N4, Section 2] Denote Uy C GL(k) the subgroup of upper-
triangular unipotent matrices. For two non-negative integers m < n define the subgroup
Um.n C Uy consisting of upper-triangular unipotent matrices of the form

u|*
= (i)
where u € Uj,_,, while * is any m x (n —m) matrix and [ is the m x m identity matrix.
We define the action of U, , on GL(n) x C™. Let Uy, act on GL(n) by right
multiplication. Denote w(h) the last row of the matrix x. Then w(h1hy) = w(hy)+w(h2)

and we define the action of Uy, , on C" as h - v = w(h) + v. Now By, , is the ‘twisted’
symplectic quotient:

B = T*(GL(1) x C") /x,,,Un.n == T*(GL(n) x C")

0
Xman = (xo() O) ,

and xq is the (n — m) x (n — m) transposed nilpotent Jordan block. Now we define the
symplectic variety of a bow edge as

/Um,)’ls

KU n=Xm,n

where

O-----0 Xs A Bn,-,n,-,lv ifni—l > nj,
-1 ON ‘ By, _ynis ifnicy < mj.

The bow variety 5, , has a Hamiltonian action of the group GL(n) x GL(m) x C*
stemming from its action on GL(n) x C™. The group GL(n) acts on GL(n) by left
multiplication and it does not act on C™; while GL(m) x C* acts on GL(n) by right
multiplication: (h, z) - g = gM ' (h, z), where

M, z) = (ZOI 2)

Finally, GL(m) x C* acts on C™ by natural action and scaling: (&, z) - x = z hx.

2.1.5. Edge charges and the Hanany—Witten move Consider a linear quiver:

o o .- O 0
0 i n nN-1 ny 0

with an arbitrary distribution of arrow and bow edges.

We always assume that the leftmost and the rightmost vertices are assigned number
0. For an edge e connecting a vertex (i — 1) on the left and (i) on the right define g, as
the number of edges of opposite type to the left of it and nr . — to the right of it. Define
the charge n, of e:

n; —nj_1 +nLe, ifeisan arrow,
ne = e
ni—1 —n; +nr,., ifeisabow.

Since the number n¢ at the leftmost vertex is fixed (zero), the charges of the edges
determine the numbers at all vertices of the quiver. We consider only the quivers for
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New Quiver-Like Varieties and Lie Superalgebras

which n, > 0 for all edges e and all n; > 0 for all vertices (i). The latter condition
imposes a constraint on possible edge charge assignments.

The Hanany—Witten move [HW] transposes two neighboring edges of opposite na-
ture: the quiver variety resulting from this move is isomorphic to the original one as long
as the charges of edges are preserved:

o—0----0 5  O----- 9—9 ifn: +n. =n; o —
i I 2 n[,_ol' 20 ifni+n; =ni—y+niq — L

If the middle vertex number after the transposition (n; or n;) has to be negative, then
the original quiver variety is empty.

2.1.6. A separated quiver and its variety Consider a linear quiver with N arrow edges
with charges w = (wi, ..., wy) and K bow edges with charges k = (ki, ..., kg).
Denote |w| = ZlN:  w; and similarly for [k|. Since the numbers at end-point vertices
are zero, the charges must satisfy the consistency condition: |w| = |k|. If this condition
is satisfied, then there exists a separated quiver Q)" in which all N arrow edges are on
the left and all K bow edges on the right:

QW. Wi Ow—No___k_K__o O__]_q__.o (4)
k- 0 R nyZ| Miax NN+l AN+K-1 0’
and ny = nmax, where npax := |w| = |K| is the number at the middle vertex which

separates the arrow and bow parts of the quiver. Since the edge charges are non-negative,
the vertex numbers are in relation

O0<nm <---<ny_1=<ny, ny=>ny_12-->nnsk—1=>0.

Defining the variety A" associated with the separated quiver Q)", we use varieties
Ay, of (2) for arrow edges.
We split the separated quiver into the arrow and bow halves:

O e = R
®)

The boxes at end-vertices indicate that we do not perform the Hamiltonian reduction
there.

The arrow quiver variety is the cotangent bundle to a partial flag variety: T* Fy,, where
Fw = {F.} and

Fo=(FoCF C--CFy_1 CFy=C"),  dimFy=0, dimF —dimF = w;.
We denote the bow variety by §k, If the bow edge charges are non-decreasing:
ki <--- <kg,

then the bow variety §k is the equivariant Slodowy slice introduced by Losev [L].
Denote Sk the Slodowy slice corresponding to the nilpotent matrix with Jordan block
decomposition given by k. Then Sk = GL(npax) X Sk and the moment map for the
action of GL(n1max) is ug(g, x) = Adgx.
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In order to describe the action of (C¥)pow = (C*)X on 3}, we split C"'max =
Chg...@ Ckk. Forz = (z1,--+,2k) € (C*)pow denote M, the diagonal matrix
which multiplies each component Cki by z;. Thenz- (g, x) = (gMZ_l, Adpy,x).

Since the separated quiver Q)Y results from joining Q4" and Qﬁ"w atthe middle vertex,
the corresponding variety is the Hamiltonian reduction with respect to the middle group:

XY = (T* Fyy X 8k)/GL(may). (6)

2.1.7. The GL(N) weight space quiver. A weight of a GL(N)-module is determined by
N ordered non-negative integers w = (wi, ..., wy). Denote Ry the k-th fundamental
representation of GL(N), that is Ry is the defining N-dimensional module and Ry =
AX R . For an ordered sequence of non-negative integers k = (kq, ..., kg ) denote

szRk1®"'®Rk1(

and denote V¥ C Ry its weight space of weight w. The corresponding quiver is a linear
quiver consisting of K bow edges with charges k and N arrow edges with charges w.
The edges can be distributed randomly along the quiver. In this paper we use the quiver
Qy of (4) and its variety A of (6).

In particular, if we consider the tensor product of only defining representations R ®
@Ry, thenk =1=(1,...,1),and S = T*GL(nmax), so the corresponding variety
is the cotangent bundle to a partial flag variety: X = T*Fy

2.2. Alternative construction. For our generalization in Sect.2.3 we need an alternative
construction of arrow-bow quiver varieties, which we describe now.

2.2.1. Critical locus Let X® be a symplectic variety with the Hamiltonian action of a Lie
group G and the corresponding moment map w. The adjoint action of G on its Lie algebra
g extends to the action of G on X' x g. Consider a G-invariant function W* € C[X* x g]¢
defined as a pairing of u and the elements of g: W5(x, X) = Tr u(x) X. If the action of
G on X is free, then the projection 'S x g —> XS establishes an isomorphism between
the critical locus Crit(WS; XS x g) of W* on A* x g and the subvariety X®|,—o. As
a result, the Hamiltonian reduction of A® can be presented as a (GIT) quotient of the
critical locus of W*:

X*)G = Crit(WS; X* x g)/G. )

2.2.2. Symplectic intersection. For a given Lie group G we consider ‘G-pairs’ (X, W),
where & is a variety with the G action and W is a G-invariant function on X x g:
W e C[X x g]°. In all our examples W is linear as a function on g, that is, there is a
function u: X — g (not necessarily a moment map) and W = Tr uX. For two G-pairs
(X, W), i = 1,2 we define their symplectic intersection as the critical locus:

s
(X1, W) N (A, Wh) = Crit(W2 — Wi &1 x & x g). (8)

This intersection has a symplectic geometry interpretation. A pair (X', W) determines
a ‘generalized’ G-invariant Lagrangian subvariety of T*g or, equivalently, a generalized
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Lagrangian subvariety of the Hamiltonian reduction T*g/ G. Present T*g = g x g with
coordinates (X, Y). By definition,

~ ow Iw
L = X, Y)e X xT* — =Y, — = .
(X, W) {(X ) xTe| 5% x }

The image Ly, w)y C T*gof Z(X’W) under the projection X’ x T*g —> T*g is a (possi-
bly singular) Lagrangian subvariety of T*g. Thus the generalized Lagrangian subvariety
Lx,w) represents a fibration £y w) — L(x,w) with a Lagrangian base. We consider
two G-pairs equivalent: (X; Wy) ~ (X; W»), if they produce the same fibration.

Define the intersection of two generalized Lagrangian subvarieties as the product of
fibers over the intersection of their bases:

~ lg ~
Lx,wy N Lo wy = {(x1,x2,X,Y) € Xy x Xo x T*g | (x1, X, Y)
€ Lix,wyy, (02, X,Y) € Lix, wy)-

Now aprojection X'} x Xp x T*g — A& x X, x gidentifies the symplectic intersection
of pairs with the intersection of their generalized Lagrangian subvarieties:

~ lg ~ o~ N
Lx,,wy N Loy, wyy — (X1, W) N (X2, Wa).

2.2.3. Brief 2-category motivation. G-pairs represent objects in the 2-category [KRS,
KR] associated with the Hamiltonian quotient T*g/ G considered as a symplectic va-
riety. The category of morphisms between two G-pairs (X7, Wp) is the category of
G-equivariant matrix factorizations of W, — Wp over X x X» x g. This category is
‘approximately’ equivalent to the derived category of G-equivariant coherent sheaves
over the critical locus (8), which motivates the set-theoretical definition of the symplectic
intersection.

The particular 2-category of T*g/ G and its arrow edge-related objects were studied
in detail in [OR1,0R2] in relation to the categorical representation of the braid group
and the construction of the link homology.

2.2.4. Quiver varieties as symplectic intersections. The relation (7) allows us to trans-
form the standard definition (1) of the quiver variety Xy into the symplectic intersec-
tion (8). For an edge e connecting the vertices v and v, its edge variety A becomes
a pair (X; W5), where W; = Tr py, Xy, + Tr py,,¢ X4, relative to the Lie algebra
gl(ny,) x gl(ny,). Now the quiver variety X can be presented as a quotient of the sym-
plectic intersection of all pairs (X; W}) in the total Lie algebra gy =[], €0, gl(ny)

S
Xo= [N (X W:)/Gv = Crit(W; Xe X gv)/ G,

e€Qe
where
We= > Wi= ) TruX,.
e€Qe veQy
= o) Dispatch: 22/12/2022 | Journal: Commun. Math. Phys.
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2.3. New quiver-related varieties.

2.3.1. A Legendre transform. For a G-pair (X; W) define a Legendre-transformed pair
as

(X; WG 1= (X x g; —W(x, Z) + Tr X Z),

where (x, Z) € X x g and G has adjoint action on g. The generalized Lagrangian subva-
rieties of (X'; W) and (X; W) are related by the Legendre anti-symplectomorphism

fig: T'g — T, (X, Y) > (¥, X).

As a consequence, the symplectic intersection of two G-pairs is isomorphic to the sym-
plectic intersection of their Legendre transforms:

S S
(X1 WO N (A Wo)k6 = (x, W) N (A, Wh).

Finally, ffG = 1, that is, the double Legendre transform of a G-pair is equivalent to the
original pair:

(0 WEYC ~ (s w),

2.3.2. Legendpre transform and quiver varieties The Legendre transform can be applied
to a G-pair (X7; W,) associated with an edge e of a quiver. If the edge e is attached to a
vertex v, then we define the one-sided transform

(X:v We)LG’U = (X: X gy Tr Zy(Xy — o).

The two-sided transform (X7; We)LG is defined as the application of one-sided trans-
forms on both sides of the edge e.

A marked quiver Q has marks () at the ends of some of its edges. A mark means
that the G-pair of the edge is Legendre-transformed at that side. Thus, depending on the
marks, a G-pair (X,; W,) of an edge e attached to the vertices vy, v may be of one of
the four forms:

S. sy . S. s\LG,vp ., *
(X5 WD) 19, (A5 W) o9

1 v2°
(XS WS)LG,UZ A O—*O (XS WS)LG . Ouo . OLO
e’ e V] V2’ e’ e * V1 Uy T V1 [

that is, a single mark in the middle means a complete (two-sided) Legendre transform.
Note that a mark can be moved from one edge to the other at the same vertex and if
two edges are marked at the same vertex, then these marks can be removed:

* * * ok
—O0—=—0— —O— = —0—. 9

’

Disk Received [] Corrupted [
Jour. No | Ms. No. Disk Used [] Mismatch [ ]

tZ 12204608 B i N By e
o




273

274

275

276
277
278
279
280

281

282
283

284

285

286

287

288

289

290

291

292

293

New Quiver-Like Varieties and Lie Superalgebras

2.3.3. Mixed vector bundles over partial flag varieties. As an example of the latter
construction, consider the following quiver Q:

o
o
o
o
o

))

w1 w) w1 wy—1 = WM = (10)

All of its edges are of the arrow type, their charges being the non-negative integers
w = (wy, ..., wy). The marks are distributed randomly among the edges. The box
[ at the end of the quiver indicates that we do not apply symplectic intersection with
respect to its Lie algebra.

The resulting variety has the following description. Consider a partial flag variety
Fw = {F,}, where

Fo=(FyCF C---CFy_1 CFy=CM"), dimFy=0, dimFy —dimF; =w;.
(11)
For a partial flag F, consider a subspace V (F,) C End(CY'!) such that ¢ € V(F,) iff

F;, if the i-th edge is marked,

. . . (12)
F;_1, if the i-th edge is unmarked,

¢(Fi) C

N9

The quiver (10) produces the G-pair (Xp; W), where X is the bundle over Fy with
fibers V (F,), while Wp = Tr¢ X.

Remark 2.1. The image of the map u: Xp — gl(|w|), u(x) = ¢ has an explicit
description. Denote by m the number of unmarked edges and let w"i! = (w‘]“l, e, w{,‘;l)
be the list of the corresponding numbers w; in descending order: wl‘."] > w']?‘], ifi <j.

Then the image of  consists of matrices ¢ € End(C™!) such that

k
dimker¢* > Y wi  forallk =1,2,...,m.
i=1
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Table 1. Directions of various branes in R0

Type D3 D5 NS5
. : T 3 3
Direction univ RDS RNSS

2.4. String theory motivation.

2.4.1. Old quiver varieties. Itis well-known that a quiver variety is the Higgs branch of
a 3-dimensional super-Yang-Mills (SYM) theory of the type considered by Hanany and
Witten [HW]. The theory describes the IIB superstring physics of a stack of D3 branes
sandwiched between NS5 and D5 branes. The whole brane arrangement is within the
10-dimensional space with coordinates xo, ..., X9, each brane representing an affine
subspace parallel to a coordinate subspace.
The 10-dimensional space R!? is split into a product of subspaces:
RO =R3 | x RLy X Rigs x R

cmn quiv

All branes are stretched along the common 3-dimensional space RJ, = and the Table 1
describes the extra directions of affine subspaces spanned by various branes. D3 branes
begin and end on D5 and NS5 branes, and their arrangement along Rclluiv is dual to the
quiver Q: the transverse NS5 (resp. D5) branes correspond to arrow (resp. bow) edges,
while the segments of D3 branes correspond to the vertices of O, n; being the number

of D3 branes between the adjacent D5 and NS5 branes, for example:

N D5
Rps

R, n1D3 nD3 n3D3 _ ni ny \ n3
quiv ‘ -

3
Riss in the notation of [RS]

NS5

2.4.2. New quiver varieties. New quiver-related varieties emerge as Higgs branches of
2d SYM theories describing the physics of a stack of D2 branes sandwiched between
NS5 and D4 branes within the ITA string theory. This time the 10-dimensional space-time
R0 is split in the following way:
10 2 1 2 1 2 2
R™ = RCmn X Ryuiy X Rygs X Rpg x Ry x RY.

cmn quiv

2
cmn*

All branes span R D2 branes are segments along R! . . The branes NS5 span ]RI%ISS,

quiv®
while the branes D4 span R]IM. Each NS5 (resp. D5) brane may stretch either along R%
or along R% and depending on this choice, we denote them as NS54, NS5y (resp. D4,
D4y). These choices are summed up in the Table 2.

The correspondence between the brane arrangements and marked quivers is the same
as in the Hanany—Witten IIB construction, except that now the branes NS5« and D4y
correspond to unmarked edges, while NS5y and D4y correspond to marked edges.
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Table 2. Directions of various branes in R0

Type D2 D4y D4y NS5x NS5y
; ; T I 2 I 2 2 2 2 2
Direction univ Rp, x Ry Rp, xRy Riss < Rx Ryss X Ry

If the space Ri X R§ is endowed with the Taub-NUT metric, then Ri x {0} and {0} x R§
become a pair of cigars and our construction makes contact with that of Mikhaylov and
Witten [MW] who studied the emergence of U(M|N) Chern—Simons theory when D-
branes are wrapped on both cigars. Note however, that we have a skew Howe-dual version
here, because in our case the super-algebra is determined by the number of NS5 and
NS5y branes, whereas D4 branes are responsible for its representations.

2.5. Quiver Varieties for gl(M|N) Superalgebras.

2.5.1. Weights and fundamental representations. A weight of the superalgebra gl(M|N)
is described by two sequences of ordered integers (w, w'), where w = (w1, ..., wy)
and w' = (w), ..., wy).

Denote R; the defining fundamental representation of gl(M|N): R
cM o Cé\éd and denote Ry = A R;. Also denote by R the parity-flipped fundamental

cven
representation: R| = CNM =C¥ @ CY and R, = A*R].

=~ CMIN =

even
For two ordered sequences of non-negative integers kK = (ki,...,kg) and K’ =

(k}, ..., k},) denote
Riw =Ry ® - @ Rig ) ® (R, @ ---Q Ry, )
1 K/

and denote V' C Ry its weight space of weight (w; w').
— —
To the weight space Vly ]’(‘,v we associate the marked quiver Qxl?,' which is similar to
Oy of (4). Going from left to right, it has

(1) N marked (that is, Legendre-transformed) arrow edges with charges k’,
(2) M unmarked (that is, ordinary) arrow edges with charges K,

(3) K marked bow edges with charges k from right to left,

(4) K’ unmarked bow edges with charges k’ from right to left.

Relations (9) allow us to present this quiver by using only two endpoint marks:

*
O0—O0O— -+ — 00— i —O-= it =D i o O---0
w/l wi Nmax kq k/l

Remark 2.2. We believe that the weight space Vkv,vl;(v,v/ C Ry can be represented by any

separated quivers, that is, the marked and unmarked edges are distributed arbitrarily as
long as the arrow edges are to the left of the bow edges. One can also transpose two
unmarked edges or two marked edges by the Hanany—Witten move (3), however we do
not know whether it is possible to transpose a marked edge and an unmarked edge of
opposite nature.
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2.5.2. Varieties for weight spaces. For a Lie superalgebra gl(M|N) we consider the
weight space of (w, w') in the module Ry.,, = Ry, ® --- ® Rk, . The corresponding

—
marked separated quiver Q) " has the form
*

w;w
v O0—O0— - — O - —O0---- - ---0
Qk wi w1 Nmax k1

and we denote /'\,’IZV "W the corresponding variety. Similar to (5), we split this quiver into
the arrow half

*
arr
Qw,w’ w/l wi nrlgax

and the bow half Qﬁ"w. Each half-quiver produces its own G-pair, and the variety X]:V W
of the full quiver is their symplectic intersection with respect to T*gl(nmax)-

The bow half-quiver ngw yields the G-pair (§k; Tr ugX), where g is the moment
map of the action of GL(nnax) On §k

The arrow half-quiver Qﬁfw, yields the G-pair (fw/,w; Tr urX). Here fw/,w is a
‘mixed parabolic-nilpotent’ vector bundle over the flag variety fv’(,w = {F,} which

corresponds to the concatenated weight list (W', w). The fiber of Fy y over a partial
flag F, is the subspace V (F,) C End(C"mx) such that ¢ € V (F,) if

F..  ifthei < N.
- <
PEDCY e ifthei > N.

The function pr: fw/,w — gl(nmax) is defined as u r(F,, ¢) = ¢.
Thus the variety ;" W' is the symplectic intersection:

- ~ S ~
A" = (Fw,w TrprX) N (S TrugX)

~ A (13)
= Crit(Tr(u]: — 13X Fw w X Sk X g[(nmax))/GL(nmax).

The criticality with respect to gl(nmax) requires uF = pg. Since g is the moment map
for the action of GL(71max) on §k and this action is free, it follows that the criticality of
Tr ugX along Sk requires X = 0. The variation of Tr 1 £ X along Fy v is proportional
to X, so X = 0 guarantees that this variation is zero. Hence the critical locus of (13)
is just the condition ur = pg imposed on ]/-:w/,w x S, s0 XIZV " has a quiver-like
presentation:

A = Py x 89| [GL(ma).

HF=PLG
If we consider the tensor product of defining representations Ry = R ® --- ® Ry,

thatis, k =1 = (1,..., 1), then §1 = T*GL(nmax) and the corresponding variety is
the mixed bundle to the partial flag variety:

XY =T, (14)
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2.5.3. gl(N) presented as gl(O|N). Finally, consider the case of M = 0, that is, the
algebrais gl(N), but it is presented as gl(0| N) rather than as traditional g[(N|0). Denote
R(ny the (ordinary, even) defining representation of gl(/N) and consider the product of
its symmetric powers

Rls(ym = Sk1 Rm®---® SkK Rny.

The defining representation Ry of gl(0|N) is odd, so its exterior powers appearing in
Ry are, in fact, symmetric powers of R(y): R,y = Riiym. Hence, according to the
general construction, the weight w subspace in the product of symmetric powers Riiym
is represented by the symplectic intersection of bundle of parabolic algebras over the
flag variety Fy and the equivariant Slodowy slice

R =Py xS0| _ [CLmw).
S

where Py is a bundle over F, whose fiber over a partial flag F, is the subspace V (F,) C
End(C"max) such that ¢ € V (F,) if ¢ (F;) C F; for all i, while ur(F,, ¢) = ¢.

3. The Spaces X l(cril and Their Equivariant Cohomology

From now on in the whole paper we will focus on the construction of Sect.2.5 in the
special case of M = N = 1, that is, corresponding to the decorated quivers

OO0 =50 =m0 =50 <10
o— o O ---2 o - O ----- o ----0

k7 n—k 1 1 1

(15)

o o—=—0=--- O ----- O ----- o ----0

k= n—k 1 1 1 1

* O * _______________ P R —
M e S T S T 177

Now we give a detailed description of the corresponding varieties and their equivariant
cohomology.

3.1. The spaces X ,Erz Consider the tautological short exact sequence 0 — § — C" —
Q — 0 of vector bundles over Gr;C". Define

° X,(CO(Z =total space of Hom(Q, S) = T*Gr;C";

. X,(:‘iz =total space of Hom(C”", S);

° X,(flr: =total space of Hom(Q, C");

. X}(‘f; =total space of Hom(S, S) @ Hom(Q, C") = Hom(C", S) @ Hom(Q, Q)

illustrated in Fig. 1. Several notions and statements below will have four versions, corre-
sponding to these four spaces. The upper index () = (00), (10), (01), (11) will always
refer to this choice.
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S Q S Q S Q S Q

(00) (10) (01) (11)

Fig. 1. Illustration of the bundles over Gr; C"

3.2. Torus equivariant cohomology of Gry C". The natural action of A = A" = (C*)"
on C" induces an action on Gr;yC". The fixed points of the action are the coordinate
k-planes. The one naturally corresponding to the k-element subset I C {1, ..., n} will
be denoted by p;. The set of k-element subsets of {1, ..., n} will be denoted by Zy.

Wehave H}(pt) = C|z1, ..., z,4], where ; is the first Chern class of the tautological
line bundle over B(C*) (the ith C* factor). The A equivariant cohomology ring of any
space with an A action is hence a C[z1, . .., z,]-module.

Let us recall the description of H;"‘ (GryC") based on the maps

q L
Clor, ...t 21, 2l — HI(GRC") = @rer Hi(pn) . (16)
[ — N —’
Sk =Clz1,..,2n]

The g-image of the variables #; are the equivariant Chern roots of the tautological k-
bundle S over GryC". They generate H(GriC") over H}(pt), hence the map g is
surjective.

The map Loc is the restriction (“equivariant localization’) map in cohomology to the
union of fixed points. It is injective, and its image has the so-called GKM description
[GKM]:

The tuple (f1)1e7, belongs to the image of Loc if and only if for any two compo-
nents f, fj satisfying I = KU{i},J = KU{j} (K| =k —1,i # j)we have
(zi —zpIfr = f1) inClzy, ..., zal.
Hence, if we allowed z; — z; denominators, ie. by tensoring with C(zy, ..., z,), then
the Loc map would become an isomorphism.

The I component of the composition Loc oq is obtained by substituting t; = z;, for
I ={iy, ..., i}, which we will write as

Locog : f(1,2) = (f(z1, D)iex;- a7

In summary, we have two ways of naming an element in H’; (Gr;C"). Either by an (Z)
tuple of polynomials satisfying the GKM condition, or by an element of Cl[ty, . .., #, 71,
oz —although this latter element is only unique up to the kernel of (17).

3.3. The X,fr) spaces, and their T equivariant cohomology. We define

n
X0 = |_| Xz(:,l for r = 00, 10, 01, 11.
k=0
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The A = (C*)" action on Gr;C" induces an action on X ,(le, and hence on X,ﬁ’). We let
an extra C* (denoted by C) act on X ,Er; (and hence on ")) by multiplication in the
fibers. Thus we have T = T" = A x CJ actions on X,Er?1 and X",

The X ,Er; spaces are T equivariantly homotopy equivalent to Gr;C", and hence we
have ’

Hi(x\") = P H3(GrC") & Clh] vr. (18)
k=0

3.4. The Loc map on Hy, (Xn(r)). We can regard the Loc map as a map

H%(Xrg’)) — @ Clz1,...s2n, Bl

It will be convenient for us to permit rational function coefficients: define H,, = H; (X,fr))
® C(z1, ..., zn, h)—we dropped the upper index r because of the independence on r,
see (18). This way we can regard Loc, which is now an isomorphism of 2"-dimensional
vector spaces over C(zy, ..., z,, h), as

Hy —— @cqt..m CG1 v zn B (19)

yeeey

In Sect.4 we will consider four versions of n! different isomorphisms from right to
left in (19): the super stable envelope maps.

3.5. Tangent weights at torus fixed points. The tangent space of X,({rzl at the torus fixed

point py, as a T representation, will be denoted by T](r) . It splits to “horizontal” and
“vertical” sub-representations

r) __ o (r),hor (r),ver
TI = TI @ T[

(r),hor (r),ver
TI TI

where is the tangent space of Gr;yC" at p;, and is the vector bundle

defined in Sect. 3.1 restricted to p;. The weights of Tl(r)’hor (called horizontal weights)

arezj —zifori €I, j € I. The weights of Tl(r)’ver, called vertical weights, can be read
from Fig. 1:

(t=00)zi—zj+h foriel, jel,
r=10)z; —z;+h foriel, s ef{l,...,n},
(r=01)zs—z;+h forjel_,se{l,...,n},
(r=11)z; —zj+h fori, j € I and
Zi—zj+h fori,jel_and
zi—zj+h foriel, jel.

3.6. Repelling and attracting directions. Given a permutation o € S,, we call a weight
zi — zj + €h (where e = {0, 1})
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n—=k k n—k

n—=k

n—=k

(10)

n—=k

0

1) (11)

Fig. 2. Red regions illustrate the dimensions d)

o—repelling if o~'(i) > a71(}),
o —attracting if o1 (i) < o71(}),
o —neutral

if o~ 1) = o 71()).

In notation we will use the signs —, +, O referring to repelling, attracting, neutral weights.

For fixed o we have the further splitting

(r) (r),hor,o+ (r),hor,o0— (r),ver,o+ (r),ver,o0— (r),ver,a0
1" = (7} &7 ) (7 &7 &7 )

(r),hor
TI

(r),ver
TI

according to o -attracting/repelling/neutral directions. The T-equivariant Euler class of
these representations will be decorated by indexes the same way. For example we have

for any r, or

@)

(zi — zs + h).

e;r),hor,of — e(TI(r),hor,af) _ l—[
iel,jel
o~ l(j)>o~!
10),ver,0 — 10),ver,c —
eg ),ver,o =€(TI( ),ver,o )= l—[
iel,sefl,...,n}

o=l (PH>o71(s)

The dimension of the space Tl(r)’hm’a_ @ T\”"""°~ does not depend on I or on o';
it only depends on r. Let us denote this dimension by 4. That is (cf. Figure 2),

4 =kn—k),  d"=kn—k)+ (g)
4 = k(n — k) + (" N k) 4" = k(n — k) + (k> + (” N k) = (")
2 2 2 2

Remark 3.1. The appearance of neutral weights for r = (10), (01), (11) is a novelty. In
the language of Sect.2.4 it is due to the fact that a D4 brane and a NS5 brane share a
common direction R2, so a D2 brane sandwiched between them can move along R2.
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4. Super Stable Envelopes
4.1. Definition. Letus fix k,n and o € S,. The map

Stab? ((X‘”) ) —— HE(X)

@Dez, Clz. Al HZ:(GriC")

is called the o super stable envelope (map), if the classes /< Stab((, ) (17) satisfy the
axioms

AO0: deg(/c(r)) VARK

Al: « (r) | (r) ver, G_QY) Lhor, o—’

A2: k (r) 7l s d1V1Slble by A for J # I
A3: « | J is divisible by e(r) YR for all J.

In the A0 axiom we mean that the class is of homogeneous degree d”) where deg z; =
degh = degt; = 1 (that is, degree d classes live in H%).

The Stab® maps coincide with the stable envelope maps of Maulik—Okounkov [MO]
for the quiver variety Uy T*Gry C".

If the Stabf,r) maps exist then they are uniquely determined by the axioms. The proof
of this statement is the same as the proof of the existence of stable envelopes in the
known cases in the literature [MO, Section 3.3.4] (c.f. [RTV2, Section 3.1], [RTV3,
Section 7.8]). We will prove the existence of stable envelopes in Sect. 7.

Now we give examples for K(r)
examples.

classes. It is instructive to verify the axioms for these

4.2. Example: P'. Letn = 2,k = 1,5, = {id, s}. The classes K(r?} are elements

of H*(X(r)) = H*(IED ). We have two ways of naming such elements, see Sect.3.2,
elther by a GKM consistent pair of polynomials in C[z1, z2], or by a representative in
Clt1, z1, z2]- Accordingly, we have

Ki((;){l} =(@-z1 0) =[z2 — 1],
Kig,){l} =(h s 22—z1+h) =[n —z1+h],
Ks(f{)l} =(z1—22+h, h) = [n —z2 +Ahl,
Ks(,r{)l} =0 , u—z22) =la—nl

for all r = 00, 10, 01, 11.

4.3. Example: projective spaces. For r = 00, 10 the example of Sect.4.2 generalizes
to k = 1 and arbitrary n. Namely, the polynomial

H(ll —zp+h) H (zp —11)

b=i+1
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represents the classes Ki(go){i} = Ki((lioii}'
The k = 1 (i.e.P"~!) formulas for » = 01, 11 are less obvious. While the polynomial

[Teo—t) [] @ —za+h
b=2

2<a<b=<n

represents /ci(glil} = /ci(é'il} for any n, no such “nicely factoring” polynomial represen-
tative exists in general. For example, for n = 4 the ‘best’ polynomial representative

for

o1)

Kid ) = Kid ) = ((z3 —2)(z4 — 213 — 22+ M (24 — 22 + D) (24 — 23),

(13 —22)(@s —z22)(z2 — 21 + W) (@3 — 21 +h) (24 — 21 + W) (24 — 23 + 1), 0, 0)
(20)

we found is

(t—z1+M)(z3—1)(z4 —1)(z4 —23+h)
><(—t2 +1(z3+24 +2Rh) + h+ (=271 — 222+ 23+ 24)
+23 + 25 + 2324 — (21 + 22) (23 + 24)).

For general r, k, n neither the fixed point restrictions nor the polynomial representatives
are products of linear factors. In Sects. 5—7 we will use a further algebraic trick to name

(r)
the Ko classes.

Remark 4.1. In our description of Hy of Grassmannians we permitted the Chern roots
11, ..., t; of the tautological bundles. If we included the Chern roots, say, #{, ..., _,
of the quotient bundle as well, we would have more freedom to name polynomial rep-
resentatives of « classes. However, that approach has disadvantages when considering

quivers instead of Grassmannians, so we do not pursue it.

5. Super Weight Functions
In this section we introduce four versions of rational functions in the variables

H,t, ...,k (“Chern root variables”),
o : ” 2D
215225 e nnnn. , Zn (“‘equivariant variables”),
that will—in an implicit way—provide formulas for the super stable envelopes of Sect. 4.
The r = 00 version is (up to convention changes) the Tarasov—Varchenko weight func-
tion [TV,RTV1], the other ones are superalgebra generalizations of it.
As before, k < n are non-negative integers, and the set of k-element subsets of
{1,2,...,n} is denoted by Zj. For I € Z; we will use the notation I = {i} < i, <
. < i}, and we define

Symy f(t1,...,. %) = Z(ff) = Z fleys - tr)-

TESK TESK
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5.1. Version r = 00. (The classical nilpotent version.) Consider the rational function

W = Sym, (U"”) where

k

U;OO) — 1_[

a=1

ig—1
[Tta—z+n
b=1

b=i,+1

n ko k 1
l_[ (zp — t4) 1_[ l_[ (tb—la'i'h)(tb_td).

a=1b=a+1

For a permutation o € S, define the (cohomological) » = 00 super weight function

©0) __ p/(00)
Wa’ ;= WG

)]

(11, ..

Example 5.1. Letn = 2 and S, = {id, s}. We have

00 __
W'd,{} =1

1

©0) __
WS‘{} =1

o) __
Woay =1

Sl Zo(1)s -

s Za(n)-

Zz+h

(tr —z2+M)(z1 — 1)

Wi(g?gz} =t1—2z1+h WS(??;} =z1—1h
(h—z1+M)(z2— 1) o
W'l 2 = Sym Moy =S
L2 = G T G — ) 0

We invite the reader to verify that

Zt—n+h)ta—1)

©0) J— _
Wig 1.2y ln=21.0=00 = Wy 1 gy ln=21.0=00 = 1,

and that
W;O?; 1 0 0 0
(00) 21—22 h
WS,{l} b 0 z21—11+h 22—z1+h 0
(00) h 21—22
WS-,{2} 0 2—z1+h _2—21+h 0
(00)
Ws,{1,2} 0 0 0 1

(00)
Wid, {}

(00)
Wid ()

1

(00)
Wid.12)

1

(00)
Wid.11.2)

5.2. Version r = 10. Consider the rational function! W;m) = Symk(U;m)) where

k ig—1

n k k
U;m)zl_[ H(ta—Zb"‘h) l_[ (zp — ta) l_[ H m

a=1 \ b=1

b=i,+1

a=1b=a+1

For a permutation o € S, define the (cohomological) r = 10 super weight function

(10) _ yy,(10)
WUJ = WU

)]

(t1, ..

1 In fact this one is a polynomial, c.f. the proof of Proposition 6.1.

ks Zo(l)s - -

, Z(T(l’l))'
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Example 5.2. Letn = 2 and S = {id, s}. We have

(10)
Wid,{} =

1

a
Wid,m—zz 51

10
Wi(d,g2} =t —z1+h

(10)
Wid, {1,2}

(tr —z1+h)(z2—1)

10y __
VVS,{} =1

R. Rimdnyi, L. Rozansky

wio = HH—z22+h

s,{1} —

10
WS(’{%} =z1—11

(tr —2+h)(z1 —11)

= Sym w9 | — Sym
Y (2 —11) s1.2) = SY2 (2 —11)
=z—2z1+h =z1—22+h
We invite the reader to verify that
(10) (10)
W&{} 1 0 0 0 Wid’{}
(10) 21— R (10)
Woy | _ | Oz=zi+h m=awn| O Wia (1)
(10) h 21—22 (10)
Ws.2) Ol narh| O Wia.12)
(10) 1—2+h (10)
W12 0 0 0 |5=5% ] Wi

5.3. Version r = 01. Consider the rational function W}m) = Sym; (U;Ol)) where

k

U;Ol) — l_[

a=1

ig—1

1_[ (Zh —Iq + h)
b=1

l—[ (zp —t) | -

b=iz+1

k k 1
_ 1—[ (tp — ta)

a=1b=a+1

n n k n
< T T @z [ ooy

a=1b=a+l

a=1b=1

For a permutation ¢ € S, define the (cohomological) r = 01 super weight function

(O1) (1)
WO’,1=Wg (1, ..

~In

Example 5.3. Letn = 2 and S, = {id, s}. We have

Sl Zo(1)s - e Za(n))-

Wgy=2—za+h W=z —2+h
won Az —t1)(z2 —z1+h) Wy _ h(z1 —z2+ h)
T (2 — 1+ h)(za — 11 + D) ST i+
W _ (z2 —z1+h) oy _ Mzi—n)@1—z22+h)
R (g — i+ h) S —n+h) (2 —t+ h)
oy P@a—zi+h) (@1 —2+h) o P —zi+h)@ —z2+h)
id.(1.2) = s.q1.2) = :

[T 1_[?:1(21' —tj+h)

We invite the reader to verify that

[T 1_[?:1(21' —tj+h)

o1 — WO _
Wia 1.ayln=21.0=20 = Wy {1 gy lni=z1.n=20 = 1,

-~
=
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and that
(1) —z20+h 1)
Ws {} 2 2+h 0 0 0 Wld 0
1) 21—2 h 1)
WY {1} — 0 22lzl-iz-h 22—21+h 0 Wld {1}
o1 A - o1)
W2 0 |o=iwh 5men 0 | | Wiag
©1) o1
Ws,{1,2} 0 0 0 1 Wid,{l,Z}

5.4. Version r = 11. Consider the rational function W}“’

an _
Uy’ =

a=1

H H(zb—tam) ]"[ (b — ta)

b=igs+1
k

n

= Sym, (U}'") where

ﬁ ﬁ (tb — g+ h)
a=1b=a+1 St

hkl_[ 1—[ (Zb_zg+ﬁ)]_[]_[Zb_t 5

a=1b=a+1

a=1b=1

For a permutation o € S, define the (cohomological) r = 11 super weight function

(11) an
W W -1

(tly*"5

Example 5.4. Letn = 2 and S, = {id, s}. We have

Wl(é” =z —z1+h
wan h(za —t1)(z2 — 21+ h)
T G =+ Rz — 1 + h)
Wzo —z1 + h)
wan - M2 71T
2™ (=1 +h)

R (zp—z1+h) (h—t1+h) (22

ks 2o (1) - -

o Za(n))'

Wil =z —z2+h

Mzi —z2+h)

i)
Wia.n,2) = Symy, @

2—1)(z1 —t1+h)(z2—t1+h) (z2—t2+h)

W —
s {1 1 — N+ h
Wi _ Mzi —t1)(z1 —z2+ h)
ST @ -+ )@ —t+h)
—11)
an - _ 12 (z1—20+h) (b —t1+h) (21 —11)
W“"(Lzl = Sym, (=11 —1+h) (21— +h) (2 —t1+R) *

We invite the reader to verify that

(11)
Wld {1, 2}|t1—z1 nh=n =22 —21th, WS’{172}|I1=Z]J2=Z2 =z1—22+h,
and that
[ wan 1—2+h (n
Ws i P 0 0 0 Wi )
(11) 21—22 h (11)
Womy || O |o=4h 5=aen| O Wi,y
(11) h 21—22 (11)
Ve O |g=ewh mzsn| O Wid.2)
(11) z1—22+h (11)
Ws {1,2} | 0 0 0 2—71+h W (1,2}
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6. Properties of Super Weight Functions

In this section we will show interpolation and recursion (so-called R-matrix-) properties
of super weight functions.

6.1. Interpolation properties. The function Wér; is a rational function in fq, ..., t,
Z1, - -+ » Zn, h, of homogeneous degree d "), symmetric in the ¢; variables. For I, J € 7y,
we will write W(Sr} (z1, 2, h) for the—a priorirational function—obtained by substituting

t = zi, for I = (i1, ..., i} in WY}, cf. (17).

Proposition 6.1. The function Wér; (zj,z, h) is a polynomial in z1, ..., z,, h, for all
1,J el ’

Proof. The denominator of the U y) function is ]_[Ia‘ <ty —14) times possibly (depending
on r) some factors of the form (z; — t; + h) and (t; — t; + h). After symmetrization
W}r) = Symk(U;r)) the (7, — t,) factors cancel, because the numerator will have poles

at t, = t, as well. The (z; — t; + h) and (t; — t; + h) factors may not cancel in Wy).
What we need to show is that after the substitution t; = z;_, the resulting (z; —z; +h)
factors cancel in the sum. This holds, because of the structure of the numerators. It is

easily verified in each of the r = 00, 10, 01, 11 cases, that a term (t Uy))(z], z, h) (for
T € §y) either vanishes, or is a polynomial, i.e. the (z; — ¢; + h) factors appearing in the
denominator also appear in the numerator. O

Now we make three propositions about the W;r} (z1, 2z, h) substitutions. Each one of
the three is a “soft theorem” in the sense that they hold termwise for Wy) (zr,z,h) =

Yoes, (T U'")(z1, z, h). That is, the combinatorics of the definition of U\" imply the
statements, not the sophisticated addition of n! rational functions.

Proposition 6.2. We have

whenzh= ] Gowy—2e@) [ Gow—zem+h  (22)
l<a<b=<n 1<b<a<n

& L]

where

&d=c@el,ob) el

o(@el,ob)el forr =00,
_Jo@ el forr =10,
.= ob)yel forr =01, 23)

o(a)elor(o(a)elando(b)el) forr=11.

Proof. 1t is enough to prove the statement for o = id. It follows by inspection that at

the substitution #; = z;, into W,(r) = ZTE St (tU ,(r)) exactly one term is not 0, the term
corresponding to T = id. Substituting #; = z;, into the 7 = id term we obtain the right
hand side of (22). O
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(r),ver,o—

Observe that on the right hand side of (22) the first product equals ¢;

the second product equals egr),hor‘gi

, and

Proposition 6.3. For J # I the polynomial W }(z 1,2, h) isdivisible by hin C[zy, .. .,
Zn L) h]

Proposition 6.4. The polynomial Wy} (z1, 2, h) is divisible by Hl§b<a§n.(zd((l) —
Zo(b) + h) where @ is as in (23).

Proof. (Propositions 6.3, 6.4.) The o = id special case implies the general case. For
o = id the proof continues the arguments given in the proof of Proposition 6.1. There we
claimed that in each of the terms (t U y) )(z1, 2, h) the denominator divides the numerator,
hence is a polynomial. The combinatorial structure of the numerator also implies that
each of these polynomials are divisible by /- [ ;- < a(Zo@ — 2o + ). O

6.2. R-matrix properties. Let s, denote the transposition in S, switching a with b. For
o, w € S, the permutation o w means first applying w then applying o . For example, the
permutation o's, 4+1 is obtained from o by switching the o (a) and o (a + 1) values. For
I € I, syv € Sy we define the set s, (1) € Zj to be obtained from / by switching u
and v. In particular, if u, v € [ orif u,v & I then s, ,(I) = 1.

Theorem 6.5. Letk <n,o € S, €Z,a=1,...,n— 1.
elf(c(a)el,o(a+1)&l)or(o(a) € I,0(a+1) € I)then
" __Ze@ = o) 0 h G
0Sa,a+1s ] T W + W(fvso(a),o(a+l)(1)

Zo@+) — Zo@ R O Zo(i) — Zo@ + P

forr =00,10,01, 11.
e lfo(a),o(a+1) €l then

0® » {ng} ) forr = 00,01,
aart,] T ) Zo@ o@D s (1) _
OSa.a+1 Za(a+l)_zz7:a)+h Wa,l forr =10, 11.
e lfo(a),oc(a+1) &I then
o {Wéf} ) forr = 00, 10,
0Sa.a+1,] | Zo@—Zo@+ht (r) _
1 Ep———— Wm[ forr =01, 11.

Proof. These statements reduce algebraically to the special casen = 2,0 =id,a = 1.
That special case is equivalent with the four matrix product identities—obtained by
concrete calculations— in Sect. 5. O

7. Existence of Super Stable Envelopes

We prove the existence of Stab( r maps by proving the existence of K(r} € Hy(GrC")
elements satisfying axioms A0, A1, A2, A3 of Sect.4. Let us recall our descrlptlon of
HJ(GrC")

Cltr, ..., tk, 21,5 - - Zn]Sk _l]» H*(Grk(cn) LOC @Iefk Clzi, .-, znl

from (16).
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Lemma 7.1. The tuple

( w® )Gz, h)) c @C[Z],..-,Zn]

1€y,

belongs to the image of Loc.

Proof. First, the components of the tuple are indeed polynomials, according to Propo-
sition 6.1.

We need to show that the tuple of polynomials satisfy the GKM condition. Let
U=KU{i}, V = KU{j} where |[K| = k — 1 and i # j. Substituting z; = z;

in W( J(zU z,h) andin W ;r} (zv, z, h) result identical functions. Hence

=0

7i=27j

( w') Gu.z, ) =W, (r) v, 2, h))

and, in turn, this implies that z; —z ; divides the difference W:} (zu, z, h)— W(r Y, (zv, z, h),
what we wanted to prove. a

Therefore, the tuple (W(r) (21, 2, M) ez, defines an element of H7(Gr;C"), let us
denote this element by [Wg}].

Remark 7.2. It is tempting to think that Wa(r} represents [Wg}] in the sense that

(W(rJ) [Wér}]. This is, however, not correct because W;?%C[tl, R P L
It is not a polynomial, it is a rational function (unless » = 10). This rational function
has the remarkable property that its ¢ = z; substitutions are polynomials (satisfying the
GKM condition), hence there is another function, this time a polynomial, whose t = z;

substitutions are the same. That other polynomial would be the representative of [W(r v

inClt1, ..., 1, 21, - - ., 22)%. For example for n = 4 the element Ki(gliz} has the “true”
polynomial representative given in (20), but we named it with the rational function

h]_[?:3(z,~ — 1) [li<icja(zj —zi+h)
[T — 0 +h) '

The reader can verify that the polynomial in (20) and this rational function indeed have
the same ¢t = z; substitutions for all J.

Theorem 7.3. The class [Wé’r}] satisfies the defining axioms for K((Tr;

Proof. The properties listed in Sect. 6 verify the axioms A0-A3 required for k @

the degree axiom A0 is implied by the fact that W( 3 has homogeneous degree d (’ ) (hence

all its t = z; substitutions have that degree too) Axioms Al, A2, A3 are verified in
Propositions 6.2, 6.3, 6.4, respectively. O
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8. Geometrically Defined Local Tensor Coordinates on (C%)®n

8.1. Local tensor coordinates. Let vy, vy be the standard basis vectors of C2, and let
us fix an element (“R-matrix”) R(¢, i) € End(C? ® C*) @ C(¢, h). For 1 < u,v <n,
u # vlet R, ,(¢) denote the element in End((C?)®")® C(¢) acting like R(¢) in the u’th
and v’th factor. Let us assume that the R-matrix satisfies the parametrized Yang-Baxter
equation

Ri2(z1 —22) R13(z1 —23) R23(22 — 23) = Ro3(z2 —23) R13(21 — 23) R12(21 — 22). (24)

Definition 8.1. Let V be a vector space isomorphic with (C2)®" (je. of dimension 2").
A collection of linear isomorphisms

L, € Hom((CH®", V) ® C(z1, ..., zn, h) foro € S,

is called “local tensor coordinates on ((C2)®””, ifforanyo € S, anda=1,...,n—1
we have

L;sla,,,ﬂ oLy = Ro(a),0a+1)Zo(@rl) — Zo(@))-

For example the Yangain )Y (gl(2)) action on (CH®"RC(z1, ..., zn, h) induces local
tensor coordinates on (C2)®” with R-matrix

V1Q®Ul VI®U2 1@V V2V

V1 QU] 1 0 0 0
om| 0 L g
RO = """ Rt RE €End(C*®CHRCE.h). (25
V2Q@U] 0 m m 0
1QU2 0 0 0 1

One of the achievements of [MO] is a geometric construction of local tensor coordinates
using the torus equivariant cohomology algebras of Nakajima quiver varieties. If the
variety is U T*GryC" then the Maulik—Okounkov construction coincides with the r =
00 case of what we will describe next.

8.2. Super stable envelopes induce local tensor coordinates. Let

110 010 1o oo
0 |5 7 0 |5 7z | ©
R™(7) = ! hg{ h;c Nk RIO(¢) = 0 hhc h;; 0 i
h=¢ h-C h=¢ A -
L 0] 0 01 | 0] 0 0 |5
(26)
[0 oo [0 o]0
0 |- 015 ] o
ROY(¢) = hgg h;; , RW() = 0 hg; hzg 0
0 |iz 7z At Rt
L 00 o1 L 0|0 0|

Each of these R-matrices satisfy the Yang-Baxter equation (24).
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Remark 8.2. In general, R-matrices come in two flavors, R and Ié, whose relation is
R = P o R where P is the operation permuting the factors of C*> ® C2. Hence, the
R versions of the R (¢) matrices above are obtained by replacing the middle 2 x 2

1 (¢h 1 (h¢
e (b ot (5)

In Sect.9 we will show the relationship between theses matrices and the Yangian
R-matices of gl(2]0), gi(1]1), gl(1]1), gl(0]|2) Lie superalgebras.

Now we give a geometric definition of local tensor coordinates on (C?)®" with the
R-matrices in (26). For brevity, we will write C(z, i) for C(z1, ..., zu, h).

First, let us identify the vector spaces

submatrix

Vi, QVj, @...Q0v;j, <

where j; =

w

1 ifs &l
2 ifse

.....

w

w

1

> 17 <

> 1€ Hi(pr)
27

. Recall from Sect.3.4 that we defined H,, = H%(X,fr) ) ®

C(z, h), and that the Loc map (see (19)) is an isomorphism from H,, to the vector space

in (27).

Theorem 8.3. Ler r € {00, 10, 01, 11}. The maps

Stab?) : (CH®" ® C(z, h) — H,

(o €Sy

form local tensor coordinates on (C%)®" with R-matrices given in (26).

Proof. Define the geometric R-matrix

RY) = (Stab{)) ™! Stab) .

What we need to prove is that

(r)
RY) = Rg(a)’a(a_,_l)(za(aﬂ) = Zo(a))-

0Sa,a+1,0

If(c(a)elando(a+1) € I)or(o(a) € I ando(a + 1) € I) then we have

Stab{ (1) = [W. )] = [

+

Zo(a+1) — Zo(a)

()

h W

Zo(a+l) — Zo(a) t h

Zo(a+l) — Zo(a) + I

0Sa,a+1,1

O0Sa,a+1,5¢(a),o (a+1) (1)}

according to Theorem 7.3 and Theorem 6.5 (in fact, writing o5, 4+1 for o in Theo-
rem 6.5). Hence

R((;Qa,aﬂsa (11) =

-~
=

Zo(a+1) — Zo(a)

11+

h

Zo(a+l) — Zo(a) + I

(r)
Rgr(a)’g(a+1)(za(a+l) = Zo@)(11).

Zo(a+1) — Zo(a) + I

155(a).5(a+1) (1)
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Ifo(a),o(a+1) € I then

w9 for r = 00, 01

0Sa,a+l,1

Zotas) —Zo@ P p () —
Za(a)_zo(zl+l)+h[ O0Saq,a+1, 1] fOr N 10’ 1 1’

Stab{" (17) = (W] = {

according to Theorem 7.3 and Theorem 6.5 (in fact, writing o's, 4+1 for o in Theo-
rem 6.5). Hence

ROy {1, for r = 00, 01
as,, a+1,0 L) = ) Zo@ ) —Zo@*h _
+ls Zo(a)_za'(a+l)+hll forr =10, 11,

which is equal to R((,r()tl)’a(aJrl)(zg(aJrl) — Zo(@) ).
The proof of the o (a), o (a + 1) ¢& I case is analogous. O

8.3. Super weight functions induce local tensor coordinates. Theorem 8.3 could have
been proved without mentioning super weight functions, essentially only using the ax-
ioms of super stable envelopes. However, the proof we gave in Sect. 8.2 has the advantage
that it actually proves another statement. Let W, , C C(#4, ..., %, 21, ..., Zn, h) be the
C(z1, ..., zn, h)-span of the functions W,y for I C {1,...,n}. In fact, according to
Theorem 6.5 this space is independent of o, hence we will denote it by W,.

Theorem 8.4. Let r € {00, 10, 01, 11}. The maps

W (@ Cih) — W, (0 € Sy)
uo e W)

form local tensor coordinates on (C*)®" with R-matrices given in (26).

Proof. Our proof of Theorem 8.3 with the formal modification of writing Wér) for Stab((,r )
and W(r) for [W, ) 71 proves this statement. O

The essence in this argument was that the R-matrix relations (Theorem 6.5) hold not

only for the cohomology classes [W(Y;] € H,, but for the rational functions W(Y; eW,
themselves: both skew arrows in the commutative diagram

(CH®" @ C(z, h)

[l

W, > H,.

are local tensor coordinates.

That is, the super weight functions are those representatives of super stable envelopes
that respect the R-matrix property. Such a choice of representative for an interesting co-
homology class follows the tradition started with Schubert polynomials [LS]. Schubert
polynomials represent fundamental classes of Schubert varieties, and these representa-
tives are chosen in a way to be consistent with the Lascoux—Schiitzenberger recursion
of Schubert classes.
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9. Yangian R-Matrices of gl(2|0), gl(1|1), gl(0|2)

Consider the four splittings

C{vi)even ® C{v2)even, C{v1)even ® C{v2)odd, C{v1)odd ® C(v2)even, C(v1)oda & C{v2)odd;

of C?(v1, v2). The corresponding Lie superalgebras are g[(2|0), gl(1]1), gl(1]1), gl(0]2),
where the middle two are of course isomorphic, and gl(2|0), gl(0|2) are both isomorphic
with the ordinary g[(2). The Yangian R-matrices for these Lie superalgebras are all

1+uP € End(C? ® C?) ® C(u)

with the key difference that the “permutation of factors” operator, P, is meant with the
usual convention: when odd vectors are permuted a (—1)-sign is introduced [Go,Z1,Z2].
Namely, the four Yangian R-matrices are (in the ordered basis v; ® vy, v ® v2, V2 ®
v, V2 @ 12)

1+u|00| O 1+u|0 O 0
O (Tu| O 0O |1 ul O
R == ,R == 9
00 (1) o i1l o 10(u) o luitl o
0 [00|1+u 0|0 O|1—u
(28)
1—u|l00] O 1—u| 0 O 0
0 (1ul O 0 1 —u| O
R - 7R u) =
o1 (u) o lu1l o 11 (u) I T
0 [001+u 0 0 O0|1l—u

The R version of R-matrices are obtained as R = P o R (with the respective P operator),
hence they are

1+u|00| O 1+ul0 0| O
. 0 |ul . 0O |u 1] O
R - ) R = 5
00(e) 0 [1ul 0 to() 0 |1u| 0
0 |00|l+u 0 [0 O|—1+u
(29)
—1+ul00| O —1+u/ 0 O 0
. 0 [ul . 0 u —1/ 0
R = N R =
o1 0 |1ul 0 nt 0 |-1u| 0
0 [00|1+u 0 0 O0|-1+u
If we divide these R-matrices by 1 + u, and then substitute u = —h/¢, then we obtain

exactly the R matrices of Remark 8.2. Therefore, the R-matrices obtained from the

geometry (namely, the super stable envelopes) of X,,(r) spaces are the Yangian R-matrices
of gl(2]0), gl(1]1), gl(1]1), gl(0[2).
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