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Abstract

Grothendieck polynomials were introduced by Lascoux and Schiitzenberger and play an
important role in K-theoretic Schubert calculus. In this paper, we give a new definition
of double stable Grothendieck polynomials based on an iterated residue operation. We
illustrate the power of our definition by calculating the Grothendieck expansion of
K-theoretic Thom polynomials of A, singularities. We present this expansion in two
versions: one displays its stabilization property, while the other displays its expected

finiteness property.

1 Introduction

From the point of view of enumerative geometry, a very important invariant of a
subvariety X in a smooth variety M is its cohomological fundamental class [X C M] €
HeodimXCM) (1) obtained from the homology fundamental class by Poincaré duality. A
key technique to approach this invariant is to pass to the local equivariant version.

Let G be a reductive group, J be a vector space endowed with a G-action, and n be a
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G-invariant subvariety of J. Then the G-equivariant fundamental class
[77 cJle Hgodim(r]CJ)(J) _ Hgodim(nc]) (pt)

is an invariant polynomial. The study of this invariant is also known as degeneracy
locus theory (see e.g., [5, 14, 22, 33]).

We encounter this setup, for example, in a branch of Schubert calculus where J
is a representation vector space of a quiver and the fundamental class is called a quiver
polynomial, see for example [12, 14, 30]. Another instance is global singularity theory,
where J is the vector space of germs (or jets) of maps acted upon by reparametrization
groups, and the fundamental class is called the Thom polynomial [5, 35, 37] of the
singularity.

In this paper, we will be concerned with the notion of G-equivariant K-theoretic
fundamental class [n C J] € K;(J) = Kg(pt) of an invariant subvariety n of a G-
representation J. In fact, there are at least two inequivalent notions that may be called

“K-theoretic fundamental class”:

e the class of the structure sheaf of 7,

e the push-forward of the class of the structure sheaf of a resolution.

These two notions coincide if n has rational singularities, but not in general
(cf. Section 5). The non-ambiguous notion of cohomological fundamental class can be
recovered from either of these two K-theoretic fundamental class notions via a limiting
procedure. For a review of these two notions, as well as a third notion of K-theoretic
fundamental class, see [15, Section 2].

K-theoretic fundamental classes have been computed and studied in numerous
situations, in particular, in Schubert calculus, for quivers, and for matroids, (see
[6, 12] and the references therein). At the risk of oversimplification, we can say
that the vector spaces J in these situations are direct sums of spaces of linear
maps: Hom(C% CP), and the group G linearly reparametrizes the vector spaces C%
and CP. Linear maps may be thought of as local 1-jets of general maps between
manifolds. In this paper, we leave the realm of 1-jets, and our principal object of
study, the variety A4, defined below, is in a 2-jet space of the form Hom(C%,CP) @
Hom(S%C%,CP). A key novel aspect of this variety is that it has non-rational
singularities.

It is customary to express GL,(C)-equivariant cohomological fundamental

classes in terms of Schur polynomials in the Chern roots of GL(n). One reason for
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this is that Schur polynomials are themselves cohomological fundamental classes of
some basic varieties: the (matrix) Schubert varieties. A key feature of these Schur-
expansions is that their coefficients are often positive. More generally, when G is a
product of general linear groups, the cohomological fundamental classes are still often
expressible as positive linear combinations of some flavors of Schur polynomials, and
the coefficients are often related to interesting objects in combinatorics or algebra. See
[13, 14, 30] for examples of this phenomenon for quiver polynomials, and [34] for Thom
polynomials.

In K-theory, the role of Schur polynomials is played by Grothendieck poly-
nomials, as they are the K-theoretic fundamental classes of Schubert varieties. The
expectation is that K-theoretic fundamental classes, when G is a product of general
linear groups, may be expressed as linear combinations of some flavors of Grothendieck
polynomials with coefficients that have alternating signs (see [3, 7] for the geometric
origin of this phenomenon, and also [11, 12, 32]). In Section 8, we will show that this
expectation holds for A,, in fact, for two different Grothendieck polynomial expansions.

In the process of developing these expansions, we needed a new formula for
(double stable) Grothendieck polynomials. This leads us to a novel residue calculus for
double stable Grothendieck polynomials, which we present in §4. We briefly describe

this formula below, and then present our main result.

1.1 Grothendieck polynomials, Grothendieck expansions

In Section 2, we recall the original definition of double stable Grothendieck polyno-
mials [20, 21]. This involves first introducing ordinary Grothendieck polynomials &,
indexed by permutations and defined by a recursion involving divided differences.
Geometrically, the polynomials &, represent torus-equivariant K-theoretic funda-
mental classes of Schubert varieties in full flag varieties [31]. Next, double stable
Grothendieck polynomials G, («; B) parametrized by partitions are defined by a limiting
procedure from ordinary Grothendieck polynomials, where o and B are sequences of
variables.

Finally, applying to these latter polynomials a set of certain straightening
laws, one defines double stable Grothendieck polynomials G;(¢; ) parametrized
by arbitrary integer sequences. Another approach to double stable Grothendieck
polynomials parametrized by partitions uses the combinatorics of set-valued
tableaux [10].
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In §4.1, we propose a new formula for the most general integer-sequence

parametrized double stable Grothendieck polynomials:

Grlay,...,ap By B =

r - I o . .
Res ... Res H(l_zf)lj_jn(l_z_;)n [Tie: @ =28y 1_[dz_z W

= = k Ik
z1=0,00 zr=0,00 j=1 isj j=1 Hi:l(l — Zjai)(]‘ — ZJ) j=1

This formula is analogous to the useful residue formula

SI(&I""Io_lk;ﬂl""’ﬂl) =

S %) iz [1is Q + /2 =1 %
for the double stable Schur polynomials (see e.g., [18, Lemma 6.1]). Note that in the case
of Schur polynomials, the residues are taken only at infinity, while for Grothendieck
polynomials, one takes the sum of the residues at 0 and infinity (this phenomenon
appeared in [23] too).
Let us explain how our formula (1) helps us to find Grothendieck expansions
of certain functions of «;, B;. Assume that a function T = T(a,..., 0, By,.... B is

presented in the form

N\ L (1—zp; " dz
T= Res ... Res FH(I—?)H s (1 = 280 HZ—ZJ , (3)
7

— = k _ .
721=0,00  2=0,00 iy i s = zjep (1 —zphk ) %

for some polynomial function F(z;,...,z,) of the form F = > ; c; ]_[;:1(1 - zj)IJ"j. Then,

since the transformation

F+— Res ... Res (F-fixed kernel function(z, «, 8)) (4)

z1=0,00 zr=0,00

is linear in F, we conclude that the function T has Grothendieck expansion > ; ¢;G;.
We note that the Grothendieck polynomials G;, which appear in this expansion, are not
linearly independent. Now, unfortunately, it is too much to ask that we obtain Thom
polynomials in the form of (3) with polynomial F—in practice, F is often a rational
function. Yet, this consideration indicates that the Grothendieck expansion of (3) for

general F should be related to a Laurent expansion of F at z; = 1. We will give an
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idea below how to perform this calculation. A detailed analysis will be carried out in
Sections 4.3, 8.3, and 8.4.

1.2 K-theoretic Thom polynomials of singularities

The general reference for singularities of maps is [4]. For a positive integer N, denote
by RY(C%) the algebra of N-jets of functions on C% at 0; this is the ring of polynomials
in @ variables modulo monomials of degree at least N + 1. Let JV(C%, C?) be the space
of N-jets of maps (C%,0) — (C?,0) vanishing at 0. An element of JY(C?,C?) = RV(C#)?
is given by a b-tuple of jets from the maximal ideal of RY(C%). A singularity n is an
algebraic subvariety of JV(C%,C?) invariant under the group of formal holomorphic
reparametrizations of (C%,0) and (CP,0) (cf. e.g., [5]).

An important set of examples of singularities, called contact singularities, is
obtained as follows (a.k.a. K- or V-equivalence classes of germs, cf. [4, Ch. 3, Sect. 1.6]).
A reparametrization invariant of N-jets of functions is the local algebra, defined for h =
(hy Xy, X)), hp(Xy, ..., Xx,)) € JY(C? CP) as the ideal quotient RN (C%)/(h,, ..., hy).
Then for a fixed finite-dimensional local commutative algebra Q and nonnegative

integers a < b, we can define the singularity ng”b as the Zariski closure of the set

{g € JV(C*, C?) : the local algebra of g is isomorphic to Q}.

(We will omit the dimensions a and b from the notation when this causes no confusion.)
Denote the group of linear reparametrizations GL,(C) x GL,(C) by GLla — b],
and observe that the space JV(C%, C?) is equivariantly contractible, hence we have the

identification with the symmetric polynomials:

HéL[a»b](JN(Ca' Ch) = Hepjasn(®Y =Zlay, ..., ag, By Bpl3e,

Korfampn (T (€4 CY) = Kgpianp (0 = Zlof !, . o, B, L, BiE1 152750,

where S,, is the permutation group on m elements, and «; and BJ- are the cohomological,
while o; and g; are the K-theoretic Chern roots of the standard representation of GL,(C)
and GL,(C), correspondingly.

In §5, we recall the definition of the equivariant Poincaré dual class [X] of an
invariant algebraic subvariety X in a vector space V acted upon by a Lie group. Using

this notion, we define the Thom polynomial of the singularity n as the equivariant
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Poincaré dual
Tp 0 = ] € Hipjpp TV (C%, CO)).
The analogous K-theoretic notion
KTp? b = [ € Kgpja_ (I (C%,CY)

is, in fact, problematic when n has non-rational singularities, and we will discuss its
definition in detail in Section 5 as well.

To simplify our notation, we will denote the Thom polynomial of the contact
singularity n, as Tp, (and KTp,) when this causes no confusion. Consider the example
of @ = A, = Clx]/(x%). We will write formulas for Tp 4, in terms of Schur functions s, =
s, (@, ..., 0y, By, ..., Bp) defined in (2), or equivalently, by the more standard definition

s; = det(c; y4j—;) with

H?zl(l +,3_it)

l4+cit+ct’+...= sty
o [T, (1 +at)

The general formula due to Ronga [36] is as follows:

+1
a—>a+l
22 SIH14i,41—i (5)

Here are the first few cases:

Tpaaa+2

=S2,2 +253,1 +4s4,0,

Tpil;)a+1 = 53,3 + 254,2 +455,1 + 8s5,0-

Tp, “ =s1,1 +252,0,
Formula (5) illustrates three key features of cohomological Thom polynomials of

contact singularities:

a—>b

e (stability) The Thom polynomial Tp% " only depends on the relative dimen-
sion b — a (denoted by ), not on a and b individually.

e (I-stability) We obtain Tp“_)“” from Tp“"“”“ by replacing each Schur
polynomial s, ; by s,_;;_, (note that s, ; = 0). The general statement of
this property for arbitrary Q may be found in [16, Theorems 2.1, 4.11].

e (positivity) The coefficients of Schur expansions of Thom polynomials of

contact singularities are non-negative [34].

In §8, we calculate the K-theoretic Thom polynomials KTpf{z’b for all a < b, and

in 8§10, we comment on the case of higher singularities.
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We will, in fact, obtain two formulas:

e the first (cf. Theorem 8.4), which we call minimal, is the unique representa-
tion in the basis of the Grothendieck polynomials indexed by partitions. This
expression is uniquely defined but it is not I-stable.

e the second (cf. Theorem 8.2), which we will call formal stable, is a special
representation as a formal infinite sum of Grothendieck polynomials indexed
by integer sequences (furnished with a summation procedure), which has
the l-stability property analogous to the I-stability of cohomological Thom

polynomials, see Remark 8.3. This is a new phenomenon in K-theory.

Let us give a visual presentation of the relation between the two Grothendieck

expansions of KTp 4,. Consider the rational function

1 1—2x; + X%
X9,%) = — | 1 oy gy = ————————
f 172 1— Zz/Zf z1=1-x1,22=1-x> X, — 2X1 +X%

The coefficients of its |x;| < |x,| Laurent expansion are naturally arranged in the infinite

grid as follows:

1 1 i il i a? a$ af a8
x5! 1 -2 1
ry” 2 -5 4 ~1
zy° —12 —6 1]
x5t 87 387§ —QZ
ay” —64 104
7’ 2] L]

In the formal stable version of Grothendieck expansion of KTpiG“H (Theorem 8.2), these
numbers are exactly the coefficients of the corresponding Grothendieck polynomials,
for any [, with an appropriate shift. To obtain a finite expression, we sum these
Grothendieck polynomials first in the vertical direction, and, as will we show, all but

finitely many of these partial sums will vanish, giving a correct finite expression for

€20z AINF 90 Uo Jasn qr 198 UieaH [IIH [9dey Je euljosed YUON JO Alun AG €6/GG69/GYEOBUUIIEEO L 0 L/10P/3[0Ie-dUBADE/UILYWOD dNO"dlWspeoe)/:Sdjjy Wolj papeojumoq



8

KTp 4,. For example, two of the vanishing terms in the formally stable expansion of

KTpi‘_;“ are

4G40 —12G4, 1 +8Gy 4G, — 12G, + 8G, = 0,
—Ggo+13Gs_, —28Gs_, +16G5 _3 = —Gg+13G5—28G5+16G; = 0,

corresponding to the Xf and X‘lL columns above.

To obtain the minimal version of our formula, Theorem 8.4, the coefficients of
a—a+l

KTpy
2
For example, for I = 1 we “sweep up” all numbers from below the third row to the third

for different I's are obtained by different procedures from this grid of integers.

row. That is, replace the (3, k) entry with the sum of entries (r, k) for r > 3 and then delete
the rows from the 4th one down. This sweeping is illustrated by the framed entries in
the picture. In the resulting table, we get the numbers (reading along the diagonals)
1,2,4; —2,—-5,—-12+8 = —4; 1,4,13 — 28 + 16 = 1; —1, and then infinitely many 0'’s.
These are exactly the coefficients in the minimal Grothendieck expansion of KTpfgaH,
cf. (6). To get KTpi’JaJr2 we need to “sweep” the same table below the fourth row, for
I = 3 we sweep from the fifth row, etc. The exact statement of this sweeping procedure
is given in Theorem 8.4.

As a result, we obtain the following minimal expansions:

KTpS ®  =(Gy1 +2G,) — (2G5, + G3) + Gy (6)
KijﬁJ““ =(Gy3 +2G3, +4G,) — (2G5 5+ 5G4, +4Gs) + (G4 5 + 4G5, + Gg) — Gg
KTpZJ‘”Z =(G33+ 2G4, +4Gs1 + 8Gg) — (2G4 5 + 5G5 , + 12Gg | + 12G)
+(Gs3 +4Gg, +13G; 1 +6Gg) — (G7, +6Gg 1 + Go) + G-

It is remarkable that the third key feature, the positivity of cohomological Thom
polynomials, extends to a rule of alternating signs for both of our expansions. This
result will be proved in §9.

2 Combinatorial Definition of Grothendieck Polynomials

In this section, we will review the traditional definition of wvarious versions of
Grothendieck polynomials. We follow the references [8, 10, 12, 20, 21, 31]. Our goal
in Sections 2—4 is to replace these traditional definitions with the residue description

of Definition 4.2. The reader not interested in the traditional definitions can take
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9

Definition 4.2 to be the definition of double stable Grothendieck polynomials and jump
to Section 5.

We will use standard notations of algebraic combinatorics. A permutation
w € S, will be represented by the sequence [w(1), w(2),...,w(n)l. The length of a
permutation ¢(w) is the cardinality of the set {i < j : w(@) > w(j)}. We will identify

S, with its image under the natural embedding S,, = {w € S, .| w(n +1) =n+1}.

2.1 Double Grothendieck polynomials

Double Grothendieck polynomials (in variables x;, y;) were introduced by Lascoux and
Schutzenberger [31]. In the present paper, following for example [8], we perform the
rational substitutions x; = 1 — 1/«; and y; = 1 — B; in those polynomials, and denote
the resulting rational functions by &, («, 8). To keep the terminology simple, we will
continue calling these functions “Grothendieck polynomials.”

The functions &, («, B) are defined by the following recursion:

e For the longest permutation wy =[n,n—1,...,11 € S, let

B,
6= |] (1 -~ a—‘)
i+j<n J

e Lets; be the ith elementary transposition. If £(ws;) = £(w) + 1, then
®w = ni(ﬁwsi)'

where the isobaric divided difference operator x; is defined by

of (oo, ) —a 1 fC a0, )
i (f) =
o — Qg
_f(...,Oli,()li+1,...) f(...,()li+1,()li,...)
I—ap /oy 1 —o;/o,

For example, here is the list of double Grothendieck polynomials for all w € S,

—(1-BY(1_ P21 A _(1-A2)(1-A
= (-0) (=) (-2) em=(-2)(-2)
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10
2.2 Stable versions

For a permutation w € S, let 1™ x w € S be the permutation that is the identity

m+n
on {1,...,m} and maps j — w(j — m) + m for j > m. The double stable Grothendieck
polynomial G,,(«, 8) is defined to be

G, = lim & m, . (7)

w

For example, G; =1 — % for the non-trivial element s, € S,. The precise definition
of this limit may be found in [8]: roughly, rewritten in the x and y variables mentioned
above, each coefficient of &, stabilizes with m, and hence the limit is defined as a

formal power series in x;, y; with the stabilized coefficients.

2.3 Truncated versions

One usually considers specializations of double stable Grothendieck polynomials of the

type
Ghlay, .. o By B) =Gy, g, 1,1, By B 11,0, (8)

In fact, Gﬁ;l may be obtained by substituting o; = 1,7 > k, ; = 1,i > lin &n,,, for
m > k,l. This way the truncated versions (8) may be calculated without the lim,, of
(7).

Below, we will drop the superscripts k,l whenever they may be determined from
the number of « and g variables.

In the case I = 0, we will simply write G, («;, ..., ).

2.4 Stable Grothendieck polynomials parametrized by partitions.

As usual, a weakly decreasing sequence of nonnegative integers A = (A,...,1,) will be
called a partition. We will identify two partitions if they differ by a sequence of 0's,
and we define L(}), the length of a partition A to be the largest i for which A; > 0. The
Grassmannian permutation associated to a partition A with descent in position p is

the permutation

. w; () =i+ 4, ;fori <p, and
w, (1) =
w, (i) < w, (i+ 1) unless i = p.
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Note that necessarily p > L(}).
We define the double stable Grothendieck polynomial G, of the partition X as
Gy, (@; B). It is easy to show that this definition does not depend on the choice of p

above.

2.5 Stable Grothendieck polynomials parametrized by integer sequences.

The notion G, (with A a partition) is extended to G; where I € Z" is any finite integer

sequence—by repeated applications of the straightening laws [9, Sect. 3]

q g-1

Glpas = Z Grakg — Z Grg1kg ifp<gq, (9)
k=p+1 k=p+1

Gp = Gro=G; ifp<0. (10)

3 Properties of Grothendieck Polynomials
We will need the following three properties of Grothendieck polynomials.
Proposition 3.1. [21], [12,(2)] The polynomial G, (ay,..., 0 B;,.-.,B) is Si x Si-

supersymmetric, that is, it is symmetric in the ¢; and the B; variables separately, and

satisfies

Gw(al"'"akfl’t’.ﬂl""'lglfl't) = Gw(al"-~l(xk71;ﬂl"-"ﬂl71)'

In particular, the left hand side of this equality does not depend on ¢.

The next statement is an easy application of the Fomin—Kirillov formulas [20],

and also follows directly from the set-valued tableau description in [10].

Proposition 3.2. Let A = (A4,...,%,) be a partition with A, > 0 and let 0 < k < r. Then
G}L(al, cee ,ak) = 0.

Proposition 3.3. Let A = (A{,...,A,) be a partition with A, > 0. We have

7.‘_ 1 _ 1 . )»i+7'—i
Ja) = Z [Tiza ( /%(L)) '

G, (ay,...
oESr Hi>j (1 - aa(i)/ao(]'))
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Proof. Consider the permutation

W, =M +1rA+r—1,.. A +1,0,...,1,

where i; < i;, for all j, and s is sufficiently large to make this a permutation. The
permutation w, is a so-called dominant permutation. For dominant permutations, the
recursive definition of Section 2.1 can be solved explicitly ([31], or see the diagrammatic

description in [20]), and we obtain

r 1 Aj+r—i
Qﬁm(al,...,ar)zn(l—a—) :

Observe that w, - w, = w,, where w is the longest permutation of 1,...,r. Hence

r 1 Ai+r—i
esk(al,...,ar)=esm(a1,...,ar)=nwo(r)(H(1—;) ) (11)

i=1 l

where

o) = (Mg . )y gy ) - () () = Z o (4) ,
1_[1'>j(1

oeSr — /%)

where o € S, acts by permuting the variables «;. The right-hand side of (11) is equal
to the right-hand side of the displayed formula in the Proposition. If the number of «
variables is at least the length of the partition, then &, («) = G, («), which concludes our

proof. |

Proposition 3.3 has a geometric interpretation, as a push-forward formula,
cf. [38]. Note that it may be used whenever the number of « variables is larger than the
length of the partition, because we can append 0’s to the end of A to make the condition

satisfied.

4 Grothendieck Polynomials in Residue Form

In this section, we introduce a residue calculus for Grothendieck polynomials and show

how this new formalism helps to understand some of their properties.
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Let z be a complex variable, and introduce the notation
Res f(z)dz = Resf(z)dz + Res f(z) dz.
z=0,00 z=0 Z=00

The following property of Res,_ ., is straightforward.

Lemmad4.l. Let0<a<s—r—2andlet

a . H;:l(z B Xi)

1@ =2 N @y

for non-zero complex numbers x;, y;. Then Res,_, ., f(z) dz = 0.

4.1 Residue form of double stable Grothendieck polynomials

Let z,,...,z,. be complex variables. For nonnegative integers k and [, define the

differential form

r l r
11 —2z:8) dz;
YRR, g L= U o) 12)
j=1 [Tim (1= zja;)(1 — z)) —k j=1 Zj

When it causes no confusion, we will omit the indices k an [, and denote the vector

(zy,...2,) by z: thus we will write M(z) for My ;(zy,...,Zz,).

Definition 4.2. For an integer sequence I € Z", define the g-polynomial as

.
. Z.
s, 0 Bq,....,8)= Res ... Res 1—z)iJ 1-2 )M, (z.,...,2
gr(@y, o @i Broo B = Res ... Res Hl( ) H( Zj) k1210 2p)
= 1>]

(13)

Remark 4.3. In general, iterated residue formulas are sensitive to the order in which
one takes the residues Reszl,—see for example [5, 17, 27, 28]—due to factors of the type
z; — z; in the denominator. However, the denominators in (13) are linear factors each
depending on a single variable, and hence the order in this case does not matter.

The following is evident from Definition 4.2.
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Lemma 4.4. We have

gI(Oll,...,O{k,1,'}31,...,}3l) ZgI(Oll,...,Olk;ﬂl,...,ﬂl,].) zgl(al""’ak;lBl""'ﬁl)' (14:)

The function g, (a;,...,a; B;, ..., By is supersymmetric: it is symmetric in the «; and the

B; variables separately, and we have

gy log, o0, 6B, B ) =gy (g, 015 By Biiy)-
In particular, the left hand side does not depend on ¢.

Theorem 4.5. For any integer sequence I, and nonnegative integers k, [, we have

GI(al,...,ak;ﬁl,...,ﬂl) =gI(Otl,...,Olk,'ﬁl,...,ﬂl).

First we prove two lemmas.

Lemma 4.6. LetI and J be integer sequences. Then we have

q q-1
91pqs = Z 9149kJ — Z 91.9q-1kJ ifp<agq, (15)
k=p+1 k=p+1
and
9p=9r ifp=0. (16)

In the work [2], which is based on the present paper, this lemma appeared as
Theorem 2.2.

Proof. For simplicity of notation, we assume that I = J = (. The general case is treated
similarly. For p < g consider

_ _ _ _ Z
9pg—9g-14= Res Res ((1-z1P 711 -2)7% = (121121 - 7)772) (1—£)~M(zl,z2).

z1=0,00z2=0,00

Applying the identities
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and

((1 — 2721 — 2P — (1 — 2,)772(1 — zl)q—Z) (_Z_z) =

Z

Z 1 —z)T (1 —z)F % - Z (1-2)%7%(1 —2)*?,

k=p+1 k=p+1

we obtain that g, , — g,_; 4 equals

q—1 qg—1
V4
Res Res > A-zTla -zt - > 12972 - z)F 2 (1——1)~M(zl,zz).
21=0,00 z2=0,00 Z2
k=p+1 k=p+1

Using the definition of g with the role of z; and z, switched, we obtain
9p.q " 9q-14 = Z 9ok~ Z 9q-1k
k=p+1 k=p+1

This is equivalent to (15) up to the easy equality

99-1.9 = Y9q.9'

whose proof we leave to the reader.

Formula (16) immediately follows from the fact that, for p <0,

r—1
zZ
Res(1 —z )P7 1-L )M (z,) =1,
s(1-2,) ||( ~ ) Mii(Z)

z-=0
i=1 l

while the residue of this expression at z, = co vanishes. |

Let us remark that while the original straightening laws of [9] depend on the

number k of variables, our residue formalism gets rid of that dependence.

Lemma 4.7. Let A = (Ay,...,A,) be a partition with A, > 0. Then for k < r, we have
gy (ay, ..., ap) =0.

Proof. First note that, according to Lemma 4.4, the case k = r—1 implies the case k < r.
Now assume k = r — 1, and introduce the temporary notation y for the

differential form in (13). Assume that the values of the «;s are all different.
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We calculate the first residue Res, _, ., ¥ in (13), taking into account Remark
4.3, and applying the 1-variable Residue Theorem. We note that [ = 0, and hence the
exponent of the factor (1—-z,) is equal to I, —r+k—I = I.—1. This quantity is nonnegative,
since I, = A, > 0, and this implies that there is no pole at z,. = 1. The remaining poles are
thus the points z, = 1/«;, i = 1,...,k, and each of these poles is simple. The residue at
the simple pole z, = 1/«;, up to a factor of —«; is obtained by omitting the factor (1 —«;z,)
in the denominator, and then substituting into the remainder z, = 1/«;. Continuing the
application of residues in (13), we obtain a sum over all choices of indices 1 < i; < k,

7
j=1,...r, of terms of the following form

r o\ ~
Moo 1152

m>j )

where € > 0 and M is some rational expression in the «'s. The relevant factor in the
product is the second one, which vanishes as long as i,, = iJ- forsomel <j<m<r.As

k < r, this is certainly the case, and this completes the proof. ]

The following generalization of Lemma 4.7 also holds: g, (e}, ..., 05 By,..., B) =
0 unless A fits into the (k,I)-hook, that is, unless A;,; < [ We will not need this
statement.

Now we are ready to prove Theorem 4.5.

Proof. First we prove the statement for I = 0, that is, for single Grothendieck
polynomials.

In this case, both g, and G, vanish if the number of «'s is less than the length of
A (see Proposition 3.2 and Lemma 4.7).

Let A = (A,...,A,) and consider formula (13) for k = r,I = 0. We will apply
by

— 2 pRes, _, where the sum runs over all poles different from 0 and co. We claim that

the Residue Theorem for each residue Res that is, we replace Res

z;=0,00" z;=0,00

the only such poles are at z; = 1/«;. Indeed, the substitution g; = 1 makes the exponent
of (1 — z;) in the formula equal to A; — i + r, which is nonnegative.
The only nonzero finite residues hence correspond to permutations o € S,: z; =

1/a, ;. Straightforward calculation shows that the — Res operation yields the

zi=1/ds )

term corresponding to o € S, in Proposition 3.3. This completes the proof for I = 0.
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Now we use supersymmetry to prove that the I = 0 case implies the arbitrary [

case (We thank A. S. Buch for this argument.). Define

pk(Xl""'Xk;YI""'yl) = [G)\(all-~-lakl.ﬁll"'lﬂl) _gk(all""ak;IBl""’ﬂl)]ai:exilﬁi:eyi

as a formal power series in x;, y;. Proposition 3.1 and Lemma 4.4 imply that p, is
supersymmetric, and we know that it is O for the y; = 0 substitution. Consider the

expansion
DXy X Vi V) = Zcﬂsﬂ(xl,...,xk;yl,...,yl),
I
where s, denotes the supersymmetric Schur polynomial. Since

p},(Xll'"!Xk+1;yll"‘lyl)|xk+1=0 =p)\(X1r‘-'le;y1r~--ryl)r

we can assume that for the same C coefficients we have
DXy, Xy Voo YD = Zcusu(xl,...,xkﬁ;yl,...,yl)
"

for arbitrary s. Substituting y; = 0 now makes the left-hand side 0, implying that
c, =0 unless uy, 5., > 1. Since this holds for all s, we obtain that all c, =0, that
is, p, (x;,..., X V1, .-, ¥ = 0. Finally, €* and eYi are algebraically independent, and the

proof is complete: G, =g, . |

4.2 Consequences of the g = G theorem

Grothendieck polynomials have a rich algebraic structure and they display beautiful
finiteness and alternating-sign properties. We believe that the residue form for the
stable Grothendieck polynomials above sheds light on many of those properties. We will
illustrate this in Section 8 in a so-far unexplored situation—the Thom polynomials of
singularities. Here we will just sketch a simple example showing how the multiplication

structure of Grothendieck polynomials is encoded in their residue form.
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4.3 Multiplication

Consider the concrete example of calculating the g-expansion of the product g, - g, (here

“2" in the subscript is a length 1 partition). We have

959, = Res (1 —z)M(z)- Res (1 —u)M(u)= Res (1—-2)(1—-u)M(z,u)=
z=0,00 u=0,00 z,u=0,00

z,u=0,00

1 u
Res ((1 —2(1 - W z (1 - E) M(z, u)) _

2 i 2 i 3
1—-2 (1-2 u(l — 2 u
z,1:1R=eOS,oo((1 —al-w (Z (1 —uitl 2 I-wi  z-wda- u)3) (1 - E) Mz, u))'

i=0 i=1

The term involving u(1 — 2)3/((z — u)(1 — u)®) has u-residue 0, because of Lemma 4.1.

Hence, we further obtain

2 ; 2 X
_ (1 _ Z)H—l (1 _ Z)l-‘rl u
92792= z,11}=eOS,oo((z a—ui 2 1- u)i—l)(1 N E) M u))

i=0 i=1

=022+931 1940932 —Y9a1-

In general, the calculation of products of arbitrary Grothendieck polynomials is
similar, see [2]. Namely, to find an explicit expression for g;-g; as sums of Grothendieck

polynomials, one considers

i J iJ z;

1

and replaces 1/(1 — u;/z;) with an appropriate initial sum of its Laurent series at z; =
u; = 1. The initial sum needs to be chosen in such a way that the remainder multiplied

by [1(1 — z)h~*[](1 — uj)JJ"j has 0 residue.

Remark 4.8. The example above can be generalized to show that the product of
two Grothendieck polynomials (parametrized by integer sequences) is a finite sum of
Grothendieck polynomials parametrized by integer sequences with coefficients with

alternating signs, see [2]. Proving the much more difficult analogous statement for
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Grothendieck polynomials parametrized by partitions [10] needs extra considerations.

We will perform a similar analysis for Thom polynomials in Section 9.

5 Fundamental Class in Cohomology and K-Theory
5.1 The cohomology fundamental class

Let X be a subvariety of codimension d in a smooth projective variety M. Then X has a
well-defined fundamental class [X] € H24(M, Q), satisfying

/L*w:/ X]- o, (17)
X M

where ¢ : X — M is the embedding, and w € H*(M, Q) is arbitrary, cf. [24].

There is a natural extension of this notion to the equivariant setting, which plays
a fundamental role in enumerative geometry. Let V be a complex vector space acted upon
by a complex torus T. Then a T-invariant affine subvariety X has a fundamental class
(X1 € H24(V) = H24(pt), d = codim(X), which satisfies the equivariant version of (17):

/L*w:/[X]T~a),
X v

where w is any equivariantly closed, compactly supported form on V.
There is a number of definitions of this notion (cf. [5, §3] for a discussion); below

we recall one due to Joseph [26]. We begin with introducing some necessary notation.

e Letexp:Lie(T) — T be the exponential map; the pull-back of a function from
f: T — Cto Lie(T) via this map will be denoted by exp* f.

e TFor a character @« € Hom(T, C*), we will write & for the corresponding weight
in the weight lattice Wy C Lie(T)". We will thus have the following equality

of functions on Lie(T):
exp*a = €%,

where factor of 27i is considered to be absorbed in the definition of the
exponential, and will be ignored in what follows.
e FixaZ-basis 8,,...,8,: T — C* of Hom(T, C*). We then have

H7(V) = Hy(pt) = ZIBy, ..., B, ).
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e Let Xj, j = 1,...N be a set of coordinates on V, corresponding to a basis
of eigenvectors of the T action, and denote by nj € Hom(T,C*),j =1,...N,
the corresponding characters: for t € T, we have ¢t - X; = nj(t)*lxj. For what

follows, it is convenient to make the following

Assumption 5.1. All the weight vectors of the vector space V lie in an open half-space
of the weight lattice W, C Lie(T)", that is, there exists an element Z € Lie(T) such that

we have
(#,2) >0, j=1,..N.

One can carry out the constructions of the theory without this assumption as well, but
this is more technical, and this case is sufficient for our purposes.

Recall that for a finite-dimensional representation W of T with a diagonal basis
m
W=, Cw;, t-w; =a;(t) - w;, we have Tr[t| W] = Zai, forteT.
i=1

This function on T is called the character of W.
Now let X C V be a T-invariant subvariety, and denote by RX the ring of

algebraic functions on X. The character
xx@®) =Trlt|RX], teT

of RX considered as a T-representation may be interpreted as a rational function in T-
characters (cf. treatment in [33]). Alternatively, under Assumption 5.1, x5 (t) makes sense
as a power series, convergent in a domain in T.

For example, RV = C[x, ..., xy] is the ring of polynomial functions on V7, and we

have

v
xw=[]—= (18)

—1
j=1 1- Ny

as can be seen by expanding this function in an appropriate domain in T.
The following theorem is a consequence of the Hilbert's syzygy theorem (cf. [33,
Chapter 8]).
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Theorem 5.2. Let X C V be a T-invariant subvariety of codimension d. Then xy is a
function on T defined whenever yx, is defined (cf. (18)), and has the form of a finite

integral linear combination of T-characters multiplied by yx:

M
Xx = Xy * Zajej, where a; € Z, 6; € Hom(T, C"). (19)
j=1

Moreover, expanding the function exp*(xx/xy) = Zjﬂil ajéj on Lie(T) around the origin,

we obtain a power series with lowest degree terms in degree d:

M M
- 1 ~d . d+1
> ajexpd; = el > 4,08 + pgyy with pg,; € m**, (20)
j=1 j=1

where m is the maximal ideal of analytic functions vanishing at the origin in Lie(T).

The last part of the theorem states that, after the expansion, the terms up to

degree d — 1 cancel.

Definition 5.3. Let X C V be a T-invariant subvariety of codimension d. We define the
T-equivariant fundamental class of X in V as the degree-d (leading) term on the right

hand side of (20) interpreted as an element of Hz(V):
M
Xlp = (D4’ ajeﬂ.
j=1

There are other, equivalent, definitions of the concept equivariant fundamental

class in K-theory, cf. [15].

Example 5.4. Let V = C? be endowed with a diagonal action of T = C* with weight
1 on each of the two coordinate functions x and y, and let X = {xy = 0}. Then X is

T-invariant, and there is a short exact sequence of RV-modules

0 — RV[-2] - RV —- RX — O,

€20z AINF 90 Uo Jasn qr 198 UieaH [IIH [9dey Je euljosed YUON JO Alun AG €6/GG69/GYEOBUUIIEEO L 0 L/10P/3[0Ie-dUBADE/UILYWOD dNO"dlWspeoe)/:Sdjjy Wolj papeojumoq



22

where RV[-2] stands for the free module of rank 1, generated by a single element of

degree 2, whose image is the function xy. This implies

B 1 4 oo L7B? 1487
Ta-pnz M T Qg2 Tiop 0

Xv

Now we substitute 8 = ef, and we see that modulo 83, we have xy/xy = 1 — =2 = 25,
and hence [X]; = 28.

5.2 Equivariant K-theoretic fundamental classes

It is not immediately obvious what one should take as the appropriate definition of the
equivariant fundamental class [X] in K-theory. There are three choices in the literature
(see [15] for a survey) that are only equivalent if X has mild singularities. Our X's below
have more sophisticated singularities ([29]).

In particular, in our setup, we have
Kr(pt) = ZHom(T,C*) = ZIBiY, 5, ..., BV,

and thus for a T-invariant X C V, it would seem natural to define as this fundamental
class the linear combination of torus characters yy/xy in (19), which naturally lies in
this space (This polynomial is called the K-polynomial in [33] for this reason.). This
invariant does not have nice push-forward or pullback properties. Another choice for
K-theory fundamental class would be a notion called equivariant motivic Chern class
mCY(X), or its y = 0 substitution [15, 19], which has good properties. Yet, we are going

to choose a third alternative.

Proposition 5.5. Let X be a T-invariant variety, and assume that X has a T-equivariant
embedding into a vector space satisfying Assumption 5.1. Then the cohomology groups
of the structure sheaf H\(Y, Oy) for a smooth T-equivariant resolution = : ¥ — X are

independent of the choice of Y, and thus are invariants of X. In particular,

dim Y
> (DT [r | H (Y, 0y)] (21)

i=0

~ def
Tx(1) =

is an invariant of X, which coincides with x5 if X has only rational singularities.
Moreover, xx/xy and Xx/xy have the same leading term in the sense of (19) and (20)

in Theorem 5.2.
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These statements are fairly standard—see for example [25, 33]—hence we only
give a sketch of the proof to emphasize the key ideas involved. First, we recall that for
two smooth resolutions ¥; — X — Y,, there exists a resolution ¥ — X that dominates
Y,,Y,. This fact reduces the theorem to the case when both X and Y are smooth and =
is birational. In this case, the first statement may be found in [25, Chapter III].

The statement on rational singularities is essentially a tautology: for an affine
variety X, having rational singularities means precisely that for any smooth resolution
Y — X, we have HO(Y, Oy) = H%(X, Oy) and H\(Y,Oy) = 0 for i > 0.

Finally, note that the cohomology groups H iy, Oy) are the sections over X of the
derived push-forward sheaves Rin*(’)y. Applying the flat base change for the smooth
locus in X, we see that for i > 1, these sheaves are supported on the singular locus of X,
which is of higher codimension than X itself. For such a sheaf then, the corresponding
leading term will be of higher degree than d, the codimension of X (see [33]), and this

completes the proof.

Definition 5.6. Let X be a T-invariant subvariety of the vector space VV endowed with
a T-action and satisfying Assumption 5.1. Then we define the K-theoretic fundamental

class [XIX of X in V as the character Xy/x;, where Xy is given by the formula (21).

Now let us revisit Example 5.4. Denote by ¥ the normalization of X, which is the
union of two nonintersecting lines. Then H(Y, Oy) is two copies of a polynomial ring
in one variable, and H(X, Ox) C HO(Y, Oy) is the subset of those pairs of polynomials
whose constant terms coincide. We have
_ 2 1 )A('X -1
Xx =Xy = ———, xy=————, andhence [XI¥=2%X=20-p8".
XTI Va2 Xv

It is instructive to verify directly the last statement of Proposition 5.5 even in

this simple case. When we used xy instead of xy, we obtained a different answer:

xx _ (A+pH/a -8
Xy 1/ =p71)2

=1-872
Yet, after substituting g = eg, we see that, modulo (BS) we have the equality:

Xx/xy = xx/xy =2  mod (B%),

recovering the cohomological fundamental class of Example 5.4.
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Remark 5.7. For a holomorphic map between complex manifolds g : M* — P, one can

consider the n-singularity points
n(g) = {x € M : the N-jet of g at x belongs to n}.

Thom's principle on cohomological Thom polynomials states that if g satisfies certain

transversality properties then
[n@l = Tp‘;*b(chern roots of TM, Chern roots of g*(TP)).

This powerful statement relies on the fact that the notion of “cohomological fundamen-
tal class” is consistent with pullback morphisms. The way we set up the notion of K-
theoretic fundamental class in Definition 5.6 is not consistent with pullback morphisms
(rather, it is consistent with push-forward morphisms), hence Thom's principle does not
hold for our K-theoretic Thom polynomials. Another version of K-theoretic fundamental
class called motivic Chern class [15, 19] has push-forward and pullback properties. It

would be interesting to find motivic Chern class Thom polynomials.

We end this section with an observation addressing the situation when the
group G acting on V is a general reductive group with maximal torus T. For a reductive
group G, we have K;(pt) = K;(pt)" (the Weyl-invariant part). For a G-invariant X C V,
the class [XI5 will be in this Weyl-invariant part, and hence we can define [X]5 = [XIX.

In the rest of the paper, if the group that acts is obvious, we will drop the
subscript and use the notation [X] = [X]., XX = [X]Ié for the cohomological and K-

theoretic fundamental class.

6 Singularities and Their Thom Polynomials

Recall the notion of contact singularities and their Thom polynomials from §1.2. Let us

see a few examples.

Example 6.1.

e The simplest case is Q = C, also known as the .Aj-algebra. In this case, we

have

%P = Jy(C?,Ch),
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which is essentially the inverse function theorem.

e When the algebra Q is A; = Clx]/(x?), the set 77?4_1)13 is the set of singular
map-jets, that is, those whose derivative at 0 is not injective.

e Forr > 0, consider Q =Clx,,...,x,1/(x;, ... ,Xr)z. In this case, naa_)b is the set
of those map-jets whose linear part has corank at least r (also known as the
2" singularity).

e The contact singularities corresponding to the algebra Q = A, = Clx]/(x"*1)
are called Morin singularities. A generic element of nfgz may be represented

as (x,y) — (x4 xy,y); it is called the cusp singularity.

6.1 The model

By a model for a singularity  c J(C% C?), we mean a GL(C?) x GL(CP)-equivariant

commutative diagram

X —= M x J(C*C") — J(C*,C")

S l

M pt,

where

e M is a smooth compact manifold,
e 1 :X — M is avector subbundle of the trivial bundle =; : M x J(C?, ch - M,
e p=um,o0lis birational to 7,

e and py, is the map from M to a point pt.

Let v be the quotient bundle of 7; : M x J(C%, Cchy > m by X — M. It follows that

for such a model for the singularity n one has
Tp, = Py (e(v)),
where e stands for the (equivariant) Euler class. Indeed, we have
Tp, = p,(1) = 72,1, (1)) = 75, (e(v)) = Py, (€(V)). (22)
The advantage of our choice of K-theoretic fundamental class notion in Section 5

is that the equalities (22) hold without change in K-theory, and we obtain

KTpn = pM! (e(l)))/
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where e is now the K-theoretic (equivariant) Euler class, and py;, is the K-theoretic push-

forward map.

6.2 Integration in K-theory using residues

In what follows, we will use residue calculus for the push-forward map in K-theory.
Let the torus T act on the smooth variety X with finitely many fixed points. Let
W be a rank-d equivariant vector bundle over X, and let w,,...,»,, be its Chern roots
(i.e., virtual line bundles whose sum is W). Let p : Gr(r, W) — X be the Grassmannization
of W, that is an equivariant bundle whose fiber over x € X is the Grassmannian Gr(r, W,)
of dimension r linear subspaces of the fiber W, of W over x. Let S be the tautological
subbundle over Gr(r, W), and let o;,...,0, be its Chern roots. A symmetric Laurent

polynomial g(oy,...,0,) is hence an element of K;(Gr(r, W)).

Lemma 6.2. We have

pi(g(oy,...,0,)) = Res ... Res H(l—ﬁ) 9@y, .- 2y) H% ) (23)

-0, -0, L1 Z: r w oz 11l z
z1=0,00  z=0,00 i 'j Hi:lHj:l (1 aT;) =1 %

Proof. Consider first the special case when X is a point. Then the equivariant

localization formula for the push-forward map is

f(a)[ ,...,a)I)
p!(f(a,...,ar))zz 1 . -
1 I Hie[ Hjej (1 — %)

where the summation is over r-element subsets I of {1,...,n}, and I is the complement
of I. Applying the Residue Theorem for the right hand side of (23), for z,, z,, . .. gives the
same expression. This proves the lemma when X is a point. The general case follows by

the splitting principle. |

When G is a connected algebraic group G, Lemma 6.2 may be applied to the
maximal torus T C G, and since K;(X) is the Weyl-invariant part of K(X), formula (23)

holds without change.

7 X' Singularities

In this short section, we illustrate the residue technique to calculate the K theoretic

Thom polynomial of singularities that are defined by the behavior of their first
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derivatives. The obtained results are not new, but our proof will serve as a sample to

the more involved calculations of the next section.

7.1 The model for &"
The obvious model for the
T = 27(C%, CP) = {g € J1(C?, CP) : dimkerg > 1}
singularity is M = Gr(r, C%), and
X ={(V,g) € Gr(r,C% x J1(C%C?) : g|, = 0}.

Let the tautological rank r bundle over Gr(r, C%) be S. The bundle = : X — Gr(r,C?) can
be identified with J!(C%/S, C?), hence the normal bundle is v = J!(S, C?). Thus KTpy, =
p,(e(J' (S, CP))) for the map p : Gr(r,C%) — pt.

Theorem 7.1. We have

r b 1-%4
KTpsr = Res ... Res H(l—ﬁ)nmn% . (24)

z1=0,00 zr=0,00 \ + 4+ VAN a _Z ; i
! " i>j 7/ i=1 Hj:l (1 oz;-) i t

Proof. We have

r b
KTpsr = py(e(J'(S,C")) = p, HH(l—%) :
J

i=1j=1

and applying Lemma 6.2 proves the Theorem. ]

Comparing expression (24) with the residue formula for Grothendieck polynomi-

als (Definition 4.2), we obtain

—1 -1 —1 -1
KTp2r=G(r+l)r(Ol1 reer g ’ﬂl ,...,ﬂb )

This result is known in Schubert calculus [31] as the K-theoretic Giambelli-Thom-
Porteous formula. The calculation of this section has a counterpart for motivic Chern

classes (instead of fundamental classes) see [19, § 8.
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8 A, Singularities
8.1 The model for A,

Consider the tautological exact sequence S — C¢ — Q over Gr(1,C%). Let M =
Gr(1,S%% @ Q) be the projectivization of the vector bundle S®? @ Q over Gr(1,C%), and
denote the tautological line bundle over M by D.

According to [5, 28], there is a model for the

%P ={g € J2(C%,CP) : Q, = Clxl/(x3)]}
singularity with this M, and normal bundle v = Hom(S & D, (Cb).

8.2 Residue formula for KTp 4,

Theorem 8.1. We have

_zy 2 Hl? (1 _ ﬁ)
j=1 ) dz,dz
KTp%’’ = Res Res - bi] 82,0%,

z1=0,00 z9=0,00 — = a Zi ZoZ
1 2 22 i1 Hj:l (1 — a—;) 241

N

Note that the order of taking residues is important here: first we take residues

with respect to z,, then with respect to z;.

Proof. We know that KTp 4, = ppn(e(Hom((D®S, Cb))). Let the Chern roots of the bundle
Qbew,,...,0,_;,and let the class of S be ¢, and the class of D be 7. We have

o-1(-5)nC-5)

Pushing forward this class to Gr(1,C%), using Lemma 6.2, we get

oo (M=) (- %) az,
23=0,00 ( _5_22)1—[],(1_%) Zy

Using the fact that S — C% — Q is an exact sequence, this is further equal to

Res (- ) (- %) ~%dz
2Z9=0,00 ( _j_zz) Hj (1—%) Zy
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Pushing this class further from Gr(1,C%) to a point, using Lemma 6.2, we obtain

. _Z . _ 22 _Z
Res Res I; (1 ;s,-) I; (1 /31) (1 Zl) dz, dz,
z1=0,00 z2=0,00 Zy Zh
(-2 e-5)

which is what we wanted to prove. |

8.3 KTp,4, in terms of Grothendieck polynomials—the stable expansion

Let

1
1-— zz/z%

=>d, (1-2) (1-2z)°

r,s

be the Laurent expansion of the named rational function on the |1 —z;| < |1 — z,| region.

Equivalently, after substituting x; =1—2z;,x, =1 — z,, let

1 —2x; +x7

— =L "L ="d, x]x}
X, — 2X; + X3 rsT1t2

r.s

be the Laurent expansion of the named rational function on the |x;| < |x,| region. Based

on the calculation

v 1 ! i L2 k-t (25)
=—" = X — X3
X, —2x; +X2 X 1—(2x; —x?)/x, = xK
oo 2k-2
k-1
_ Z Z (_l)r—k+122k—2—r XIXEk,
k=1r=k—1 Zk—2-r

we have that

—s—1 —s—1 —s—1
d. = (-1 r+s+1 2—2s—2—r 2—25—r 2—23—r
rs = (=1 —2s—r—2 + —2s—r—1 + —2s—r

forr=0,1,...,s=-r—1,...,—|r/2]. In particular, the sign of d, ¢ is (=1)rtst+l,

For the values of d, ; for small (absolute value) r, s see the table in §1.2.
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Theorem 8.2 (Grothendieck expansion of KTp 4,: the stable version). Letl = b — a, and
let N > 21+ 2 be arbitrary. Then

N -3l
b -1 —1. p-1 -1
KTp% P =" D dpGryprsialor a8 B (26)

r=0s=-r-1

Note that for a given r, the set of non-zero d, ; coefficients are exactly those

r,s
between s = —r — 1 and s = —|r/2], hence, in the summation above, s runs through all
its relevant values. The reader may find it instructive to compare (26) with the table in
Section 1.2. Namely, the terms in (26) correspond to the entries in N full columns of that

table.

Remark 8.3. Since N may be arbitrarily large in (26), it is tempting to phrase Theorem

8.2 informally as
—b -1 —1. p—1 -1
KTp% % => " d, Gy siipalar g i B By ). (27)
r,s

This series does not converge, however. A possible filtration and completion of the space

of Grothendieck polynomials is outside of the scope of this paper.

Proof. The finite expansion of 1/(1 — zz/zf) with respect to z;, around z; = 1, with

remainder term is

N

: = Z(Z dr,s(l - ZZ)S) (1- Zl)r + Ry (24, 2,), (28)

2
1—2z,/z] —\5

where the s-summation is finite. A quick calculation shows that the remainder term may

be expressed as

/ (29)

1-2 )NH 7,9y (Z5) + Py (2Z3)
1-2z, 1—2z%/z,

Ry(zy,25) = — (

where
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According to Theorem 8.1, we have the following expression for KTp 4,:

z1=0,00 z2=0,00

KTp% % = Res Res 1—z)1 —z)——x
DA, (( D( 2) 1_22/2%

2.\ 2 1_[;?:1 (1 - %) dz,dz
X( 2)1—[ . j 2dZz,

Sl § (1 - %) (1 —2z)! %%

Substituting (28), we obtain

z1=0,00 z2=0,00
1=0, 2=0, —0 S

N
KTp‘;Gb = Res Res (Z (Z d,. (1 - zz)s+l) (1 -z x

( Zz)ﬁ Mo (1-8)  daas,

2 (1-2)a -z 24

M (1-%
Res Res RN(erZz)( - Z_Z)H j 1( ﬂ;) dz,dz,

z1=0,00 z=0,00 Zy i a 1 (1 _ ﬁ) Z9Zy
= j= o

According to the residue expression for Grothendieck polynomials (Definition 4.2) the

first term equals

N

-1 -1 p-1 -1
szr,sGr+l+1,s+l+2(0‘1 ree O ,ﬂl ,...,ﬁb ),

r=0 s

and we claim that the second term vanishes for large N. Indeed, using the form (29) of

the remainder term Ry (z,, z,), we can see that for large IV, the rational form

2 112, (1-2

z j=1 i) dz,dz

Ry(z,,2y) (1 - Z—Z) [1- ( ﬂf) — (30)
1/ o1 [T (1 - a—;) 271

satisfies the conditions of Lemma 4.1 in z,. This means that already applying the first

residue operation Res results in 0. This completes the proof. |

Z9=0,00

8.4 KTp 4, in terms of Grothendieck polynomials—the minimal expansion

Theorem 8.4 (Grothendieck expansion of KTp Ay the minimal version). We have the

following expression for KTp‘j\;’b in Grothendieck polynomials indexed by partitions:
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20+2 —l3l
b -1 —1. p—-1 -1
Kij\_z) = Z Z Dys1- Gripprsrip2(@y oo 0By 0By ),
r=0 s=—[-2
wherel=b — a, and
dy s ifs>-1-2
Dr,s,l = _l—2

t=—r—1 dr,t = Zt_:l:io dr,t ifs=-1-2.

The definition of D, ;. is the mathematical manifestation of the “sweeping up”

rls

procedure mentioned in Section 1.2.
Proof. It follows from Theorem 8.2 that for large N

N —lz]
b
KTp%, ZZ Z Ay sGritp1,s4l42- (31)

r=0s=-r—1

For notational simplicity, we omit the arguments o; 1 ! of the Grothendieck polyno-

13
mials. Consider the sum

—Lr/2]
Z dr,s Gr+l+ 1,5+1+2

s=—r—1

for a given r. In it, the occurring Grothendieck polynomials have the same first index
r+ 1+ 1, but varying second index s + [ + 2. Notice that if r > 2+ 2 then all s+ 1+ 2
indexes are non-positive. Indeed, if r > 2l + 2, then s < —|r/2] < —|(214+2)/2] = -1 -1
and hence s +1+ 2 < 1. Then using the straightening law G;, = G; _; = G; _, = ... (see

(10) or Lemma 4.6) we have that

—|r/2] —|r/2]
z dr,sGr+l+1,s+l+2: Z dr,s Gritg1,0° (32)
s=—r—1 s=—r—1

Plugging in z, = 0 into 1/(1 — z,/22) results 1, hence for r > 0 we have ZWZJ d..=0,

s=—r—17r,s

and in turn, the expression (32) is 0. This proves that in (31) the number N can be chosen

€20z AINF 90 Uo Jasn qr 198 UieaH [IIH [9dey Je euljosed YUON JO Alun AG €6/GG69/GYEOBUUIIEEO L 0 L/10P/3[0Ie-dUBADE/UILYWOD dNO"dlWspeoe)/:Sdjjy Wolj papeojumoq



33

to be as small as 2] + 2:

2+2 —L3]
b
KTpZG) = z Z dr,sGr+l+l,s+l+2'

r=0 s=—r—1
The same statement may be obtained from a careful analysis of the vanishing of the
residues of (30).
Now let r < 2I+2. Using the same straightening law of Grothendieck polynomials

we obtain

—Lr/2] 12 —1r/2)
Z dr,sGr+l+1,s+l+2=( Z dr,s) Grit10+ Z Ay sGriir1,sit2r

s=—r—1 s=—r—1 s=—[-1

Dr,s,l

completing the proof. |

Remark 8.5. The expansion in Theorem 8.4 is minimal in the sense that each occurring
Grothendieck polynomial is parametrized by a partition (with non-negative com-
ponents), and hence can not be simplified by the straightening laws (9)-(10) (or

Lemma 4.6).

9 Alternating Signs

The coefficients of the Grothendieck polynomials in both the stable and the minimal
Grothendieck polynomial expansions of KTp 4, have alternating signs. This statement is

even more remarkable given that the singularities of .4, are not rational [29].

Theorem 9.1. The coefficient of Ga,b(ozl_l, ... ,ae_l; ﬂl_l, .. .,,Bb_l) in both the expansion

of Theorem 8.2 and the expansion of Theorem 8.4 has sign (—1)%*?.

Proof. The statement for the expansion in Theorem 8.2 is equivalent to d, ; having sign
(=1)"*s+1, which follows from the explicit formula for d, ; in Section 8.3.

The statement for the expansion in Theorem 8.4 is equivalent to D, ;; having sign
(—=1)"™s*+1 for any L. For this, we need to additionally prove that

—1-2
the sign of z d,,is (-1t (33)

t=—00
for any L.

To prove (33), consider f = (1 —2x, +x%)/(x, —2x, +x%) = >, . d, ;x]x} (as before,
|x;| < |x5]), and let g = (-1 +f)/(1 — x,). On the one hand, g = 1/(x, — 2x, +Xf) (from the
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explicit form of f). On the other hand,

N
g= (—1 + Zdr'sxfxg) (I+x,+x5+...) = Z( Z dr’t)xfxg.
r,s r,Ss t=—00

Here, we used that dy _; =1 and dj ; = 0 for all s # —1.
Comparing the two forms of g, we find that statement (33) is equivalent to the
the property that the coefficient of x7xJ in the expansion of 1/(x, — 2x; + Xf) has sign

(—1)™*s*1 This latter claim follows from the calculation (25). [ ]

10 Remarks on Higher Singularities

For singularities higher than A4,, it is difficult to carry out our program. There are
no practical models for 4 ;-singularities for d > 7, but even in the case of .4;, where
the model is very simple ([5, 28]), the combinatorial problems we face are rather
complicated. A proof analogous to that of Theorem 8.1 in this case yields the following

statement.

Theorem 10.1. We have

(-)0-2)0-2) A0
=1 i) dzzdzodz
KTpr‘_)b = Res Res Res a i 2 d Fi 3772741
3 21=0,00 z2=0,00 z3=0,00 oz 1_2 (1 _ z3 ) ey H(l_ (1 _ ﬁ) Z32Z92)
Z% Z% Z12Z9 - J=1 aj

This formula suggests that to obtain the Grothendieck expansion of KTp 4., we

ought to consider the expansion

1 =>d, (1 —2) (1 —2)°(1 — z3)"
(1 —2,/2) (1- ZS/Z%) (1 —23/2,2,) r.s,t i
valid in the region |1 — z;| < |1 — z,| < |1 — z3], and then find an appropriate way to

resum the series

—1 —1. p—1 —1
Zdr,s,tGr+l+1,s+l+2,t+l+3(al v 0GB By (34)

r,st

to obtain finite expressions. The concrete form of the resummation procedure and the
resulting finite expression is not clear at the moment.
It seems even more difficult to find the analogue of Theorem 8.4 (the minimal

Grothendieck expansion) for A;. To achieve the Grothendieck expansion of Theorem 8.4
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from that of Theorem 8.2, we needed to work only with one of the straightening laws,
namely (10). However, to “straighten” the partitions in (34), one is forced to use the
other straightening law, namely (9), and this seems much more complex. It would be
interesting to develop the residue calculus or another analytic tool that replaces the

combinatorics of (9).
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