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Abstract

Grothendieck polynomials were introduced by Lascoux and Schützenberger and play an

important role in K-theoretic Schubert calculus. In this paper, we give a new definition

of double stable Grothendieck polynomials based on an iterated residue operation. We

illustrate the power of our definition by calculating the Grothendieck expansion of

K-theoretic Thom polynomials of A2 singularities. We present this expansion in two

versions: one displays its stabilization property, while the other displays its expected

finiteness property.

1 Introduction

From the point of view of enumerative geometry, a very important invariant of a

subvariety X in a smooth variety M is its cohomological fundamental class [X ⊂ M] ∈
Hcodim(X⊂M)(M), obtained from the homology fundamental class by Poincaré duality. A

key technique to approach this invariant is to pass to the local equivariant version.

Let G be a reductive group, J be a vector space endowed with a G-action, and η be a
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G-invariant subvariety of J. Then the G-equivariant fundamental class

[η ⊂ J] ∈ Hcodim(η⊂J)
G (J) = Hcodim(η⊂J)

G (pt)

is an invariant polynomial. The study of this invariant is also known as degeneracy

locus theory (see e.g., [5, 14, 22, 33]).

We encounter this setup, for example, in a branch of Schubert calculus where J

is a representation vector space of a quiver and the fundamental class is called a quiver

polynomial, see for example [12, 14, 30]. Another instance is global singularity theory,

where J is the vector space of germs (or jets) of maps acted upon by reparametrization

groups, and the fundamental class is called the Thom polynomial [5, 35, 37] of the

singularity.

In this paper, we will be concerned with the notion of G-equivariant K-theoretic

fundamental class [η ⊂ J] ∈ KG(J) = KG(pt) of an invariant subvariety η of a G-

representation J. In fact, there are at least two inequivalent notions that may be called

“K-theoretic fundamental class”:

• the class of the structure sheaf of η,

• the push-forward of the class of the structure sheaf of a resolution.

These two notions coincide if η has rational singularities, but not in general

(cf. Section 5). The non-ambiguous notion of cohomological fundamental class can be

recovered from either of these two K-theoretic fundamental class notions via a limiting

procedure. For a review of these two notions, as well as a third notion of K-theoretic

fundamental class, see [15, Section 2].

K-theoretic fundamental classes have been computed and studied in numerous

situations, in particular, in Schubert calculus, for quivers, and for matroids, (see

[6, 12] and the references therein). At the risk of oversimplification, we can say

that the vector spaces J in these situations are direct sums of spaces of linear

maps: Hom(Ca, Cb), and the group G linearly reparametrizes the vector spaces Ca

and Cb. Linear maps may be thought of as local 1-jets of general maps between

manifolds. In this paper, we leave the realm of 1-jets, and our principal object of

study, the variety A2 defined below, is in a 2-jet space of the form Hom(Ca, Cb) ⊕
Hom(S2Ca, Cb). A key novel aspect of this variety is that it has non-rational

singularities.
It is customary to express GLn(C)-equivariant cohomological fundamental

classes in terms of Schur polynomials in the Chern roots of GL(n). One reason for
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this is that Schur polynomials are themselves cohomological fundamental classes of

some basic varieties: the (matrix) Schubert varieties. A key feature of these Schur-

expansions is that their coefficients are often positive. More generally, when G is a

product of general linear groups, the cohomological fundamental classes are still often

expressible as positive linear combinations of some flavors of Schur polynomials, and

the coefficients are often related to interesting objects in combinatorics or algebra. See

[13, 14, 30] for examples of this phenomenon for quiver polynomials, and [34] for Thom

polynomials.

In K-theory, the role of Schur polynomials is played by Grothendieck poly-

nomials, as they are the K-theoretic fundamental classes of Schubert varieties. The

expectation is that K-theoretic fundamental classes, when G is a product of general

linear groups, may be expressed as linear combinations of some flavors of Grothendieck

polynomials with coefficients that have alternating signs (see [3, 7] for the geometric

origin of this phenomenon, and also [11, 12, 32]). In Section 8, we will show that this

expectation holds for A2, in fact, for two different Grothendieck polynomial expansions.

In the process of developing these expansions, we needed a new formula for

(double stable) Grothendieck polynomials. This leads us to a novel residue calculus for

double stable Grothendieck polynomials, which we present in §4. We briefly describe

this formula below, and then present our main result.

1.1 Grothendieck polynomials, Grothendieck expansions

In Section 2, we recall the original definition of double stable Grothendieck polyno-

mials [20, 21]. This involves first introducing ordinary Grothendieck polynomials Gw,

indexed by permutations and defined by a recursion involving divided differences.

Geometrically, the polynomials Gw represent torus-equivariant K-theoretic funda-

mental classes of Schubert varieties in full flag varieties [31]. Next, double stable

Grothendieck polynomials Gλ(α; β) parametrized by partitions are defined by a limiting

procedure from ordinary Grothendieck polynomials, where α and β are sequences of

variables.

Finally, applying to these latter polynomials a set of certain straightening

laws, one defines double stable Grothendieck polynomials GI(α; β) parametrized

by arbitrary integer sequences. Another approach to double stable Grothendieck

polynomials parametrized by partitions uses the combinatorics of set-valued

tableaux [10].
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In §4.1, we propose a new formula for the most general integer-sequence

parametrized double stable Grothendieck polynomials:

GI(α1, . . . , αk; β1, . . . , βl) =

Res
z1=0,∞

. . . Res
zr=0,∞




r∏

j=1

(1 − zj)
Ij−j

∏

i>j

(

1 − zi

zj

) r∏

j=1

∏l
i=1(1 − zjβi)

∏k
i=1(1 − zjαi)(1 − zj)

l−k

r∏

j=1

dzj

zj



 . (1)

This formula is analogous to the useful residue formula

sI(ᾱ1, . . . , ᾱk; β̄1, . . . , β̄l) =

(−1)r Res
z1=∞

. . . Res
zr=∞




r∏

j=1

z
Ij
j

∏

j>i

(

1 − zi

zj

) r∏

j=1

∏l
i=1(1 + β̄i/zj)

∏k
i=1(1 + ᾱi/zj)

·
r∏

j=1

dzj

zj



 (2)

for the double stable Schur polynomials (see e.g., [18, Lemma 6.1]). Note that in the case

of Schur polynomials, the residues are taken only at infinity, while for Grothendieck

polynomials, one takes the sum of the residues at 0 and infinity (this phenomenon

appeared in [23] too).

Let us explain how our formula (1) helps us to find Grothendieck expansions

of certain functions of αi, βi. Assume that a function T = T(α1, . . . , αk, β1, . . . , βl) is

presented in the form

T = Res
z1=0,∞

. . . Res
zr=0,∞



F ·
∏

i>j

(

1 − zi

zj

) r∏

j=1

∏l
i=1(1 − zjβi)

∏k
i=1(1 − zjαi)(1 − zj)

l−k

r∏

j=1

dzj

zj



 , (3)

for some polynomial function F(z1, . . . , zr) of the form F = ∑
I cI

∏r
j=1(1 − zj)

Ij−j. Then,

since the transformation

F '→ Res
z1=0,∞

. . . Res
zr=0,∞

(F · fixed kernel function(z, α, β)) (4)

is linear in F, we conclude that the function T has Grothendieck expansion
∑

I cIGI .

We note that the Grothendieck polynomials GI , which appear in this expansion, are not

linearly independent. Now, unfortunately, it is too much to ask that we obtain Thom

polynomials in the form of (3) with polynomial F—in practice, F is often a rational

function. Yet, this consideration indicates that the Grothendieck expansion of (3) for

general F should be related to a Laurent expansion of F at zi = 1. We will give an
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idea below how to perform this calculation. A detailed analysis will be carried out in

Sections 4.3, 8.3, and 8.4.

1.2 K-theoretic Thom polynomials of singularities

The general reference for singularities of maps is [4]. For a positive integer N, denote

by RN(Ca) the algebra of N-jets of functions on Ca at 0; this is the ring of polynomials

in a variables modulo monomials of degree at least N + 1. Let JN(Ca, Cb) be the space

of N-jets of maps (Ca, 0) → (Cb, 0) vanishing at 0. An element of JN(Ca, Cb) = RN(Ca)b

is given by a b-tuple of jets from the maximal ideal of RN(Ca). A singularity η is an

algebraic subvariety of JN(Ca, Cb) invariant under the group of formal holomorphic

reparametrizations of (Ca, 0) and (Cb, 0) (cf. e.g., [5]).

An important set of examples of singularities, called contact singularities, is

obtained as follows (a.k.a. K- or V-equivalence classes of germs, cf. [4, Ch. 3, Sect. 1.6]).

A reparametrization invariant of N-jets of functions is the local algebra, defined for h =
(h1(x1, . . . , xa), . . . , hb(x1, . . . , xa)) ∈ JN(Ca, Cb) as the ideal quotient RN(Ca)/(h1, . . . , hb).

Then for a fixed finite-dimensional local commutative algebra Q and nonnegative

integers a ≤ b, we can define the singularity ηa→b
Q as the Zariski closure of the set

{g ∈ JN(Ca, Cb) : the local algebra of g is isomorphic to Q}.

(We will omit the dimensions a and b from the notation when this causes no confusion.)

Denote the group of linear reparametrizations GLa(C) × GLb(C) by GL[a → b],

and observe that the space JN(Ca, Cb) is equivariantly contractible, hence we have the

identification with the symmetric polynomials:

H∗
GL[a→b](J

N(Ca, Cb)) = H∗
GL[a→b](pt) = Z[ᾱ1, . . . , ᾱa, β̄1, . . . , β̄b]Sa×Sb ,

KGL[a→b](J
N(Ca, Cb)) = KGL[a→b](pt) = Z[α±1

1 , . . . , α±1
a , β±1

1 , . . . , β±1
b ]Sa×Sb ,

where Sm is the permutation group on m elements, and ᾱi and β̄j are the cohomological,

while αi and βj are the K-theoretic Chern roots of the standard representation of GLa(C)

and GLb(C), correspondingly.

In §5, we recall the definition of the equivariant Poincaré dual class [X] of an

invariant algebraic subvariety X in a vector space V acted upon by a Lie group. Using

this notion, we define the Thom polynomial of the singularity η as the equivariant
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Poincaré dual

Tpa→b
η = [η] ∈ H∗

GL[a→b](J
N(Ca, Cb)).

The analogous K-theoretic notion

KTpa→b
η = [η]K ∈ KGL[a→b](J

N(Ca, Cb))

is, in fact, problematic when η has non-rational singularities, and we will discuss its

definition in detail in Section 5 as well.

To simplify our notation, we will denote the Thom polynomial of the contact

singularity ηQ as TpQ (and KTpQ) when this causes no confusion. Consider the example

of Q = A2 = C[x]/(x3). We will write formulas for TpA2
in terms of Schur functions sλ =

sλ(ᾱ1, . . . , ᾱa, β̄1, . . . , β̄b) defined in (2), or equivalently, by the more standard definition

sλ = det(cλ(i)+j−i) with

1 + c1t + c2t2 + . . . =
∏b

i=1(1 + β̄it)∏a
i=1(1 + ᾱit)

.

The general formula due to Ronga [36] is as follows:

Tpa→a+l
A2

=
l+1∑

i=0

2isl+1+i,l+1−i. (5)

Here are the first few cases:

Tpa→a
A2

= s1,1 + 2s2,0, Tpa→a+1
A2

= s2,2 + 2s3,1 + 4s4,0, Tpa→a+2
A2

= s3,3 + 2s4,2 + 4s5,1 + 8s6,0.

Formula (5) illustrates three key features of cohomological Thom polynomials of

contact singularities:

• (stability) The Thom polynomial Tpa→b
A2

only depends on the relative dimen-

sion b − a (denoted by l), not on a and b individually.

• (l-stability) We obtain Tpa→a+l
A2

from Tpa→a+l+1
A2

by replacing each Schur

polynomial sa,b by sa−1,b−1 (note that sa,−1 = 0). The general statement of

this property for arbitrary Q may be found in [16, Theorems 2.1, 4.1].

• (positivity) The coefficients of Schur expansions of Thom polynomials of

contact singularities are non-negative [34].

In §8, we calculate the K-theoretic Thom polynomials KTpa→b
A2

for all a ≤ b, and

in §10, we comment on the case of higher singularities.
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We will, in fact, obtain two formulas:

• the first (cf. Theorem 8.4), which we call minimal, is the unique representa-

tion in the basis of the Grothendieck polynomials indexed by partitions. This

expression is uniquely defined but it is not l-stable.

• the second (cf. Theorem 8.2), which we will call formal stable, is a special

representation as a formal infinite sum of Grothendieck polynomials indexed

by integer sequences (furnished with a summation procedure), which has

the l-stability property analogous to the l-stability of cohomological Thom

polynomials, see Remark 8.3. This is a new phenomenon in K-theory.

Let us give a visual presentation of the relation between the two Grothendieck

expansions of KTpA2
. Consider the rational function

f (x1, x2) = 1

1 − z2/z2
1

∣∣∣∣∣ z1=1−x1,z2=1−x2
= 1 − 2x1 + x2

1

x2 − 2x1 + x2
1

.

The coefficients of its |x1| < |x2| Laurent expansion are naturally arranged in the infinite

grid as follows:

In the formal stable version of Grothendieck expansion of KTpa→a+l
A2

(Theorem 8.2), these

numbers are exactly the coefficients of the corresponding Grothendieck polynomials,

for any l, with an appropriate shift. To obtain a finite expression, we sum these

Grothendieck polynomials first in the vertical direction, and, as will we show, all but

finitely many of these partial sums will vanish, giving a correct finite expression for
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8

KTpA2
. For example, two of the vanishing terms in the formally stable expansion of

KTpa→a
A2

are

4G4,0 − 12G4,−1 + 8G4,−2 = 4G4 − 12G4 + 8G4 = 0,

−G5,0 + 13G5,−1 − 28G5,−2 + 16G5,−3 = −G5 + 13G5 − 28G5 + 16G5 = 0,

corresponding to the x3
1 and x4

1 columns above.

To obtain the minimal version of our formula, Theorem 8.4, the coefficients of

KTpa→a+l
A2

for different l’s are obtained by different procedures from this grid of integers.

For example, for l = 1 we “sweep up” all numbers from below the third row to the third

row. That is, replace the (3, k) entry with the sum of entries (r, k) for r ≥ 3 and then delete

the rows from the 4th one down. This sweeping is illustrated by the framed entries in

the picture. In the resulting table, we get the numbers (reading along the diagonals)

1, 2, 4; −2, −5, −12 + 8 = −4; 1, 4, 13 − 28 + 16 = 1; −1, and then infinitely many 0’s.

These are exactly the coefficients in the minimal Grothendieck expansion of KTpa→a+1
A2

,

cf. (6). To get KTpa→a+2
A2

we need to “sweep” the same table below the fourth row, for

l = 3 we sweep from the fifth row, etc. The exact statement of this sweeping procedure

is given in Theorem 8.4.

As a result, we obtain the following minimal expansions:

KTpa→a
A2

=
(
G1,1 + 2G2

)
−

(
2G2,1 + G3

)
+ G3,1 (6)

KTpa→a+1
A2

=
(
G2,2 + 2G3,1 + 4G4

)
−

(
2G3,2 + 5G4,1 + 4G5

)
+

(
G4,2 + 4G5,1 + G6

)
− G6,1

KTpa→a+2
A2

=
(
G3,3 + 2G4,2 + 4G5,1 + 8G6

)
−

(
2G4,3 + 5G5,2 + 12G6,1 + 12G7

)

+
(
G5,3 + 4G6,2 + 13G7,1 + 6G8

)
−

(
G7,2 + 6G8,1 + G9

)
+ G9,1.

It is remarkable that the third key feature, the positivity of cohomological Thom

polynomials, extends to a rule of alternating signs for both of our expansions. This

result will be proved in §9.

2 Combinatorial Definition of Grothendieck Polynomials

In this section, we will review the traditional definition of various versions of

Grothendieck polynomials. We follow the references [8, 10, 12, 20, 21, 31]. Our goal

in Sections 2–4 is to replace these traditional definitions with the residue description

of Definition 4.2. The reader not interested in the traditional definitions can take
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Definition 4.2 to be the definition of double stable Grothendieck polynomials and jump

to Section 5.

We will use standard notations of algebraic combinatorics. A permutation

w ∈ Sn will be represented by the sequence [w(1), w(2), . . . , w(n)]. The length of a

permutation %(w) is the cardinality of the set {i < j : w(i) > w(j)}. We will identify

Sn with its image under the natural embedding Sn = {w ∈ Sn+1| w(n + 1) = n + 1}.

2.1 Double Grothendieck polynomials

Double Grothendieck polynomials (in variables xi, yj) were introduced by Lascoux and

Schutzenberger [31]. In the present paper, following for example [8], we perform the

rational substitutions xi = 1 − 1/αi and yi = 1 − βi in those polynomials, and denote

the resulting rational functions by Gw(α, β). To keep the terminology simple, we will

continue calling these functions “Grothendieck polynomials.”

The functions Gw(α, β) are defined by the following recursion:

• For the longest permutation w0 = [n, n − 1, . . . , 1] ∈ Sn, let

Gw0
=

∏

i+j≤n

(

1 − βi

αj

)

.

• Let si be the ith elementary transposition. If %(wsi) = %(w) + 1, then

Gw = πi(Gwsi
),

where the isobaric divided difference operator πi is defined by

πi(f ) = αif (. . . , αi, αi+1, . . .) − αi+1f (. . . , αi+1, αi, . . .)
αi − αi+1

= f (. . . , αi, αi+1, . . .)
1 − αi+1/αi

+ f (. . . , αi+1, αi, . . .)
1 − αi/αi+1

.

For example, here is the list of double Grothendieck polynomials for all w ∈ S3

G321 =
(

1 − β1

α1

) (
1 − β2

α1

)(
1 − β1

α2

)
G231 =

(
1 − β1

α1

) (
1 − β1

α2

)

G312 =
(

1 − β1

α1

) (
1 − β2

α1

)
G213 = 1 − β1

α1
G132 = 1 − β1β2

α1α2
G123 = 1.
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2.2 Stable versions

For a permutation w ∈ Sn, let 1m × w ∈ Sm+n be the permutation that is the identity

on {1, . . . , m} and maps j '→ w(j − m) + m for j > m. The double stable Grothendieck

polynomial Gw(α, β) is defined to be

Gw = lim
m→∞ G1m×w. (7)

For example, Gs1
= 1 − β1β2β3···

α1α2α3··· for the non-trivial element s1 ∈ S2. The precise definition

of this limit may be found in [8]: roughly, rewritten in the x and y variables mentioned

above, each coefficient of G1m×w stabilizes with m, and hence the limit is defined as a

formal power series in xi, yj with the stabilized coefficients.

2.3 Truncated versions

One usually considers specializations of double stable Grothendieck polynomials of the

type

Gk,l
w (α1, . . . , αk; β1, . . . , βl) = Gw(α1, . . . , αk, 1, 1, . . . ; β1, . . . , βl, 1, 1, . . .). (8)

In fact, Gk,l
w may be obtained by substituting αi = 1, i > k, βi = 1, i > l in G1m×w for

m , k, l. This way the truncated versions (8) may be calculated without the limm→∞ of

(7).

Below, we will drop the superscripts k, l whenever they may be determined from

the number of α and β variables.

In the case l = 0, we will simply write Gw(α1, . . . , αk).

2.4 Stable Grothendieck polynomials parametrized by partitions.

As usual, a weakly decreasing sequence of nonnegative integers λ = (λ1, . . . , λr) will be

called a partition. We will identify two partitions if they differ by a sequence of 0’s,

and we define L(λ), the length of a partition λ to be the largest i for which λi > 0. The

Grassmannian permutation associated to a partition λ with descent in position p is

the permutation

wλ(i) =





wλ(i) = i + λp+1−i for i ≤ p, and

wλ(i) < wλ(i + 1) unless i = p.
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Note that necessarily p ≥ L(λ).

We define the double stable Grothendieck polynomial Gλ of the partition λ as

Gwλ
(α; β). It is easy to show that this definition does not depend on the choice of p

above.

2.5 Stable Grothendieck polynomials parametrized by integer sequences.

The notion Gλ (with λ a partition) is extended to GI where I ∈ Zr is any finite integer

sequence—by repeated applications of the straightening laws [9, Sect. 3]

GI,p,q,J =
q∑

k=p+1

GI,q,k,J −
q−1∑

k=p+1

GI,q−1,k,J if p < q, (9)

GI,p = GI,0 = GI if p < 0. (10)

3 Properties of Grothendieck Polynomials

We will need the following three properties of Grothendieck polynomials.

Proposition 3.1. [21], [12,(2)] The polynomial Gw(α1, . . . , αk; β1, . . . , βl) is Sk × Sl-

supersymmetric, that is, it is symmetric in the αi and the βj variables separately, and

satisfies

Gw(α1, . . . , αk−1, t; β1, . . . , βl−1, t) = Gw(α1, . . . , αk−1; β1, . . . , βl−1).

In particular, the left hand side of this equality does not depend on t.

The next statement is an easy application of the Fomin–Kirillov formulas [20],

and also follows directly from the set-valued tableau description in [10].

Proposition 3.2. Let λ = (λ1, . . . , λr) be a partition with λr > 0 and let 0 < k < r. Then

Gλ(α1, . . . , αk) = 0.

Proposition 3.3. Let λ = (λ1, . . . , λr) be a partition with λr ≥ 0. We have

Gλ(α1, . . . , αr) =
∑

σ∈Sr

∏r
i=1

(
1 − 1/ασ (i)

)λi+r−i

∏
i>j

(
1 − ασ (i)/ασ (j)

) .
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Proof. Consider the permutation

w̄λ = λ1 + r, λ2 + r − 1, . . . , λr + 1, i1, . . . , is,

where ij < ij+1 for all j, and s is sufficiently large to make this a permutation. The

permutation w̄λ is a so-called dominant permutation. For dominant permutations, the

recursive definition of Section 2.1 can be solved explicitly ([31], or see the diagrammatic

description in [20]), and we obtain

Gw̄λ
(α1, . . . , αr) =

r∏

i=1

(
1 − 1

αi

)λi+r−i

.

Observe that w̄λ · w0 = wλ, where w0 is the longest permutation of 1, . . . , r. Hence

Gλ(α1, . . . , αr) = Gwλ
(α1, . . . , αr) = πw0(r)

( r∏

i=1

(
1 − 1

αi

)λi+r−i
)

, (11)

where

πw0(r)(f ) = (π1π2 . . .πr−1)(π1π2 . . . πr−2) . . . (π1)(f ) =
∑

σ∈Sr

σ

(
f∏

i>j(1 − αi/αj)

)

,

where σ ∈ Sr acts by permuting the variables αi. The right-hand side of (11) is equal

to the right-hand side of the displayed formula in the Proposition. If the number of α

variables is at least the length of the partition, then Gλ(α) = Gλ(α), which concludes our

proof. !

Proposition 3.3 has a geometric interpretation, as a push-forward formula,

cf. [38]. Note that it may be used whenever the number of α variables is larger than the

length of the partition, because we can append 0’s to the end of λ to make the condition

satisfied.

4 Grothendieck Polynomials in Residue Form

In this section, we introduce a residue calculus for Grothendieck polynomials and show

how this new formalism helps to understand some of their properties.
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Let z be a complex variable, and introduce the notation

Res
z=0,∞

f (z) dz = Res
z=0

f (z) dz + Res
z=∞

f (z) dz.

The following property of Resz=0,∞ is straightforward.

Lemma 4.1. Let 0 ≤ a ≤ s − r − 2 and let

f (z) = za ·
∏r

i=1(z − xi)∏s
i=1(z − yi)

for non-zero complex numbers xi, yi. Then Resz=0,∞ f (z) dz = 0.

4.1 Residue form of double stable Grothendieck polynomials

Let z1, . . . , zr be complex variables. For nonnegative integers k and l, define the

differential form

Mk,l(z1, . . . , zr) =
r∏

j=1

∏l
i=1(1 − zjβi)

∏k
i=1(1 − zjαi)(1 − zj)

l−k
·

r∏

j=1

dzj

zj
. (12)

When it causes no confusion, we will omit the indices k an l, and denote the vector

(z1, . . . zr) by z: thus we will write M(z) for Mk,l(z1, . . . , zr).

Definition 4.2. For an integer sequence I ∈ Zr, define the g-polynomial as

gI(α1, . . . , αk; β1, . . . , βl) = Res
z1=0,∞

. . . Res
zr=0,∞




r∏

j=1

(1 − zj)
Ij−j

∏

i>j

(

1 − zi

zj

)

Mk,l(z1, . . . , zr)



 .

(13)

Remark 4.3. In general, iterated residue formulas are sensitive to the order in which

one takes the residues Reszi
—see for example [5, 17, 27, 28]—due to factors of the type

zi − zj in the denominator. However, the denominators in (13) are linear factors each

depending on a single variable, and hence the order in this case does not matter.

The following is evident from Definition 4.2.
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Lemma 4.4. We have

gI(α1, . . . , αk, 1; β1, . . . , βl) = gI(α1, . . . , αk; β1, . . . , βl, 1) = gI(α1, . . . , αk; β1, . . . , βl). (14)

The function gλ(α1, . . . , αk; β1, . . . , βl) is supersymmetric: it is symmetric in the αi and the

βj variables separately, and we have

gλ(α1, . . . , αk−1, t; β1, . . . , βl−1, t) = gλ(α1, . . . , αk−1; β1, . . . , βl−1).

In particular, the left hand side does not depend on t.

Theorem 4.5. For any integer sequence I, and nonnegative integers k, l, we have

GI(α1, . . . , αk; β1, . . . , βl) = gI(α1, . . . , αk; β1, . . . , βl).

First we prove two lemmas.

Lemma 4.6. Let I and J be integer sequences. Then we have

gI,p,q,J =
q∑

k=p+1

gI,q,k,J −
q−1∑

k=p+1

gI,q−1,k,J if p < q, (15)

and

gI,p = gI if p ≤ 0. (16)

In the work [2], which is based on the present paper, this lemma appeared as

Theorem 2.2.

Proof. For simplicity of notation, we assume that I = J = ∅. The general case is treated
similarly. For p < q consider

gp,q − gq−1,q = Res
z1=0,∞

Res
z2=0,∞

(
(1 − z1)p−1(1 − z2)q−2 − (1 − z1)q−2(1 − z2)q−2

) (
1 − z2

z1

)
· M(z1, z2).

Applying the identities

(
1 − z2

z1

)
= −z2

z1

(
1 − z1

z2

)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
3
4
5
/6

9
5
5
7
9
3
 b

y
 U

n
iv

 o
f N

o
rth

 C
a
ro

lin
a
 a

t C
h
a
p
e
l H

ill H
e
a
lth

 S
c
i L

ib
 u

s
e
r o

n
 0

6
 J

u
ly

 2
0
2
3



15

and

(
(1 − z2)q−2(1 − z1)p−1 − (1 − z2)q−2(1 − z1)q−2

) (
−z2

z1

)
=

q−1∑

k=p+1

(1 − z2)q−1(1 − z1)k−2 −
q−1∑

k=p+1

(1 − z2)q−2(1 − z1)k−2,

we obtain that gp,q − gq−1,q equals

Res
z1=0,∞

Res
z2=0,∞




q−1∑

k=p+1

(1 − z2)q−1(1 − z1)k−2 −
q−1∑

k=p+1

(1 − z2)q−2(1 − z1)k−2




(

1 − z1
z2

)
· M(z1, z2).

Using the definition of g with the role of z1 and z2 switched, we obtain

gp,q − gq−1,q =
q−1∑

k=p+1

gq,k −
q−1∑

k=p+1

gq−1,k.

This is equivalent to (15) up to the easy equality

gq−1,q = gq,q,

whose proof we leave to the reader.

Formula (16) immediately follows from the fact that, for p ≤ 0,

Res
zr=0

(1 − zr)
p−r

r−1∏

i=1

(
1 − zr

zi

)
Mk,l(zr) = 1,

while the residue of this expression at zr = ∞ vanishes. !

Let us remark that while the original straightening laws of [9] depend on the

number k of variables, our residue formalism gets rid of that dependence.

Lemma 4.7. Let λ = (λ1, . . . , λr) be a partition with λr > 0. Then for k < r, we have

gλ(α1, . . . , αk) = 0.

Proof. First note that, according to Lemma 4.4, the case k = r−1 implies the case k < r.

Now assume k = r − 1, and introduce the temporary notation γ for the

differential form in (13). Assume that the values of the αis are all different.
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We calculate the first residue Reszr=0,∞ γ in (13), taking into account Remark

4.3, and applying the 1-variable Residue Theorem. We note that l = 0, and hence the

exponent of the factor (1−zr) is equal to Ir−r+k−l = Ir−1. This quantity is nonnegative,

since Ir = λr > 0, and this implies that there is no pole at zr = 1. The remaining poles are

thus the points zr = 1/αi, i = 1, . . . , k, and each of these poles is simple. The residue at

the simple pole zr = 1/αi, up to a factor of −αi is obtained by omitting the factor (1−αizr)

in the denominator, and then substituting into the remainder zr = 1/αi. Continuing the

application of residues in (13), we obtain a sum over all choices of indices 1 ≤ ij ≤ k,

j = 1, . . . r, of terms of the following form

r∏

j=1

(1 − αij)
ε

∏

m>j

(

1 −
αim
αij

)

M̃,

where ε ≥ 0 and M̃ is some rational expression in the α’s. The relevant factor in the

product is the second one, which vanishes as long as im = ij for some 1 ≤ j < m ≤ r. As

k < r, this is certainly the case, and this completes the proof. !

The following generalization of Lemma 4.7 also holds: gλ(α1, . . . , αk; β1, . . . , βl) =
0 unless λ fits into the (k, l)-hook, that is, unless λk+1 ≤ l. We will not need this

statement.

Now we are ready to prove Theorem 4.5.

Proof. First we prove the statement for l = 0, that is, for single Grothendieck

polynomials.

In this case, both gλ and Gλ vanish if the number of α’s is less than the length of

λ (see Proposition 3.2 and Lemma 4.7).

Let λ = (λ1, . . . , λr) and consider formula (13) for k = r, l = 0. We will apply

the Residue Theorem for each residue Reszi=0,∞, that is, we replace Reszi=0,∞ by

−∑
p Reszi=p where the sum runs over all poles different from 0 and ∞. We claim that

the only such poles are at zi = 1/αj. Indeed, the substitution βi = 1 makes the exponent

of (1 − zi) in the formula equal to λi − i + r, which is nonnegative.

The only nonzero finite residues hence correspond to permutations σ ∈ Sr: zi =
1/ασ (i). Straightforward calculation shows that the − Reszi=1/ασ (i)

operation yields the

term corresponding to σ ∈ Sr in Proposition 3.3. This completes the proof for l = 0.
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Now we use supersymmetry to prove that the l = 0 case implies the arbitrary l

case (We thank A. S. Buch for this argument.). Define

pλ(x1, . . . , xk; y1, . . . , yl) =
[
Gλ(α1, . . . , αk; β1, . . . , βl) − gλ(α1, . . . , αk; β1, . . . , βl)

]
αi=exi ,βi=eyi

as a formal power series in xi, yi. Proposition 3.1 and Lemma 4.4 imply that pλ is

supersymmetric, and we know that it is 0 for the yi = 0 substitution. Consider the

expansion

pλ(x1, . . . , xk; y1, . . . , yl) =
∑

µ

cµsµ(x1, . . . , xk; y1, . . . , yl),

where sµ denotes the supersymmetric Schur polynomial. Since

pλ(x1, . . . , xk+1; y1, . . . , yl)|xk+1=0 = pλ(x1, . . . , xk; y1, . . . , yl),

we can assume that for the same cµ coefficients we have

pλ(x1, . . . , xk+s; y1, . . . , yl) =
∑

µ

cµsµ(x1, . . . , xk+s; y1, . . . , yl)

for arbitrary s. Substituting yi = 0 now makes the left-hand side 0, implying that

cµ = 0 unless µk+s+1 ≥ 1. Since this holds for all s, we obtain that all cµ = 0, that

is, pλ(x1, . . . , xk; y1, . . . , yl) = 0. Finally, exi and eyi are algebraically independent, and the

proof is complete: Gλ = gλ. !

4.2 Consequences of the g = G theorem

Grothendieck polynomials have a rich algebraic structure and they display beautiful

finiteness and alternating-sign properties. We believe that the residue form for the

stable Grothendieck polynomials above sheds light on many of those properties. We will

illustrate this in Section 8 in a so-far unexplored situation—the Thom polynomials of

singularities. Here we will just sketch a simple example showing how the multiplication

structure of Grothendieck polynomials is encoded in their residue form.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
3
4
5
/6

9
5
5
7
9
3
 b

y
 U

n
iv

 o
f N

o
rth

 C
a
ro

lin
a
 a

t C
h
a
p
e
l H

ill H
e
a
lth

 S
c
i L

ib
 u

s
e
r o

n
 0

6
 J

u
ly

 2
0
2
3



18

4.3 Multiplication

Consider the concrete example of calculating the g-expansion of the product g2 ·g2 (here

“2” in the subscript is a length 1 partition). We have

g2 · g2 = Res
z=0,∞

(1 − z)M(z) · Res
u=0,∞

(1 − u)M(u) = Res
z,u=0,∞

(1 − z)(1 − u)M(z, u) =

Res
z,u=0,∞

(
(1 − z)(1 − u)

1
1 − u

z

(
1 − u

z

)
M(z, u)

)
=

Res
z,u=0,∞

(

(1 − z)(1 − u)

( 2∑

i=0

(1 − z)i

(1 − u)i+1
−

2∑

i=1

(1 − z)i

(1 − u)i
+ u(1 − z)3

(z − u)(1 − u)3

)(
1 − u

z

)
M(z, u)

)

.

The term involving u(1 − z)3/((z − u)(1 − u)3) has u-residue 0, because of Lemma 4.1.

Hence, we further obtain

g2 · g2 = Res
z,u=0,∞

(( 2∑

i=0

(1 − z)i+1

(1 − u)i
−

2∑

i=1

(1 − z)i+1

(1 − u)i−1

) (
1 − u

z

)
M(z, u)

)

= g2,2 + g3,1 + g4,0 − g3,2 − g4,1.

In general, the calculation of products of arbitrary Grothendieck polynomials is

similar, see [2]. Namely, to find an explicit expression for gI ·gJ as sums of Grothendieck

polynomials, one considers

∏

i

(1 − zi)
Ii−i

∏

j

(1 − uj)
Jj−j

∏

i,j

1

1 − uj
zi

,

and replaces 1/(1 − uj/zi) with an appropriate initial sum of its Laurent series at zi =
uj = 1. The initial sum needs to be chosen in such a way that the remainder multiplied

by
∏

(1 − zi)
Ii−i ∏

(1 − uj)
Jj−j has 0 residue.

Remark 4.8. The example above can be generalized to show that the product of

two Grothendieck polynomials (parametrized by integer sequences) is a finite sum of

Grothendieck polynomials parametrized by integer sequences with coefficients with

alternating signs, see [2]. Proving the much more difficult analogous statement for
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Grothendieck polynomials parametrized by partitions [10] needs extra considerations.

We will perform a similar analysis for Thom polynomials in Section 9.

5 Fundamental Class in Cohomology and K-Theory

5.1 The cohomology fundamental class

Let X be a subvariety of codimension d in a smooth projective variety M. Then X has a

well-defined fundamental class [X] ∈ H2d(M, Q), satisfying

∫

X
ι∗ω =

∫

M
[X] · ω, (17)

where ι : X → M is the embedding, and ω ∈ H∗(M, Q) is arbitrary, cf. [24].

There is a natural extension of this notion to the equivariant setting, which plays

a fundamental role in enumerative geometry. Let V be a complex vector space acted upon

by a complex torus T. Then a T-invariant affine subvariety X has a fundamental class

[X]T ∈ H2d
T (V) = H2d

T (pt), d = codim(X), which satisfies the equivariant version of (17):

∫

X
ι∗ω =

∫

V
[X]T · ω,

where ω is any equivariantly closed, compactly supported form on V.

There is a number of definitions of this notion (cf. [5, §3] for a discussion); below

we recall one due to Joseph [26]. We begin with introducing some necessary notation.

• Let exp : Lie(T) → T be the exponential map; the pull-back of a function from

f : T → C to Lie(T) via this map will be denoted by exp∗ f .

• For a character α ∈ Hom(T, C∗), we will write ᾱ for the corresponding weight

in the weight lattice WT ⊂ Lie(T)∨. We will thus have the following equality

of functions on Lie(T):

exp∗ α = eᾱ,

where factor of 2π i is considered to be absorbed in the definition of the

exponential, and will be ignored in what follows.

• Fix a Z-basis β1, . . . , βr : T → C∗ of Hom(T, C∗). We then have

H∗
T(V) = H∗

T(pt) = Z[β̄1, . . . , β̄r].
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• Let xj, j = 1, . . . N be a set of coordinates on V, corresponding to a basis

of eigenvectors of the T action, and denote by ηj ∈ Hom(T, C∗), j = 1, . . . N,

the corresponding characters: for t ∈ T, we have t · xj = ηj(t)
−1xj. For what

follows, it is convenient to make the following

Assumption 5.1. All the weight vectors of the vector space V lie in an open half-space

of the weight lattice WT ⊂ Lie(T)∨, that is, there exists an element Z ∈ Lie(T) such that

we have

〈η̄j, Z〉 > 0, j = 1, . . . N.

One can carry out the constructions of the theory without this assumption as well, but

this is more technical, and this case is sufficient for our purposes.

Recall that for a finite-dimensional representation W of T with a diagonal basis

W = ⊕m
i=1Cwi, t · wi = αi(t) · wi, we have Tr [t | W] =

m∑

i=1

αi, for t ∈ T.

This function on T is called the character of W.

Now let X ⊂ V be a T-invariant subvariety, and denote by RX the ring of

algebraic functions on X. The character

χX(t) = Tr[t | RX], t ∈ T

of RX considered as a T-representation may be interpreted as a rational function in T-

characters (cf. treatment in [33]). Alternatively, under Assumption 5.1, χX(t) makes sense

as a power series, convergent in a domain in T.

For example, RV = C[x1, . . . , xN ] is the ring of polynomial functions on V, and we

have

χV =
N∏

j=1

1

1 − η−1
j

, (18)

as can be seen by expanding this function in an appropriate domain in T.

The following theorem is a consequence of the Hilbert’s syzygy theorem (cf. [33,

Chapter 8]).
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Theorem 5.2. Let X ⊂ V be a T-invariant subvariety of codimension d. Then χX is a

function on T defined whenever χV is defined (cf. (18)), and has the form of a finite

integral linear combination of T-characters multiplied by χV :

χX = χV ·
M∑

j=1

ajθj, where aj ∈ Z, θj ∈ Hom(T, C∗). (19)

Moreover, expanding the function exp∗(χX/χV) = ∑M
j=1 ajθ̄j on Lie(T) around the origin,

we obtain a power series with lowest degree terms in degree d:

M∑

j=1

aj exp θ̄j = 1
d!

M∑

j=1

ajθ̄
d
j + ρd+1 with ρd+1 ∈ md+1, (20)

where m is the maximal ideal of analytic functions vanishing at the origin in Lie(T).

The last part of the theorem states that, after the expansion, the terms up to

degree d − 1 cancel.

Definition 5.3. Let X ⊂ V be a T-invariant subvariety of codimension d. We define the

T-equivariant fundamental class of X in V as the degree-d (leading) term on the right

hand side of (20) interpreted as an element of H∗
T(V):

[X]T = (−1)d
M∑

j=1

ajθ̄
d
j .

There are other, equivalent, definitions of the concept equivariant fundamental

class in K-theory, cf. [15].

Example 5.4. Let V = C2 be endowed with a diagonal action of T = C∗ with weight

1 on each of the two coordinate functions x and y, and let X = {xy = 0}. Then X is

T-invariant, and there is a short exact sequence of RV-modules

0 → RV[−2] → RV → RX → 0,
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where RV[−2] stands for the free module of rank 1, generated by a single element of

degree 2, whose image is the function xy. This implies

χV = 1
(1 − β−1)2 , and χX = 1 − β−2

(1 − β−1)2 = 1 + β−1

1 − β−1 .

Now we substitute β = eβ̄ , and we see that modulo β̄3, we have χX/χV = 1 − β−2 = 2β̄,

and hence [X]T = 2β̄.

5.2 Equivariant K-theoretic fundamental classes

It is not immediately obvious what one should take as the appropriate definition of the

equivariant fundamental class [X] in K-theory. There are three choices in the literature

(see [15] for a survey) that are only equivalent if X has mild singularities. Our X’s below

have more sophisticated singularities ([29]).

In particular, in our setup, we have

KT(pt) = ZHom(T, C∗) = Z[β±1
1 , β±1

2 , . . . , β±1
r ],

and thus for a T-invariant X ⊂ V, it would seem natural to define as this fundamental

class the linear combination of torus characters χX/χV in (19), which naturally lies in

this space (This polynomial is called the K-polynomial in [33] for this reason.). This

invariant does not have nice push-forward or pullback properties. Another choice for

K-theory fundamental class would be a notion called equivariant motivic Chern class

mCy(X), or its y = 0 substitution [15, 19], which has good properties. Yet, we are going

to choose a third alternative.

Proposition 5.5. Let X be a T-invariant variety, and assume that X has a T-equivariant

embedding into a vector space satisfying Assumption 5.1. Then the cohomology groups

of the structure sheaf Hi(Y, OY) for a smooth T-equivariant resolution π : Y → X are

independent of the choice of Y, and thus are invariants of X. In particular,

χ̃X(τ )
def=

dim Y∑

i=0

(−1)iTr
[
τ | Hi(Y, OY)

]
(21)

is an invariant of X, which coincides with χX if X has only rational singularities.

Moreover, χX/χV and χ̃X/χV have the same leading term in the sense of (19) and (20)

in Theorem 5.2.
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These statements are fairly standard—see for example [25, 33]—hence we only

give a sketch of the proof to emphasize the key ideas involved. First, we recall that for

two smooth resolutions Y1 → X → Y2, there exists a resolution Y → X that dominates

Y1, Y2. This fact reduces the theorem to the case when both X and Y are smooth and π

is birational. In this case, the first statement may be found in [25, Chapter III].

The statement on rational singularities is essentially a tautology: for an affine

variety X, having rational singularities means precisely that for any smooth resolution

Y → X, we have H0(Y, OY) = H0(X, OX) and Hi(Y, OY) = 0 for i > 0.

Finally, note that the cohomology groups Hi(Y, OY) are the sections over X of the

derived push-forward sheaves Riπ∗OY . Applying the flat base change for the smooth

locus in X, we see that for i > 1, these sheaves are supported on the singular locus of X,

which is of higher codimension than X itself. For such a sheaf then, the corresponding

leading term will be of higher degree than d, the codimension of X (see [33]), and this

completes the proof.

Definition 5.6. Let X be a T-invariant subvariety of the vector space V endowed with

a T-action and satisfying Assumption 5.1. Then we define the K-theoretic fundamental

class [X]KT of X in V as the character χ̃X/χV , where χ̃X is given by the formula (21).

Now let us revisit Example 5.4. Denote by Y the normalization of X, which is the

union of two nonintersecting lines. Then H0(Y, OY) is two copies of a polynomial ring

in one variable, and H0(X, OX) ⊂ H0(Y, OY) is the subset of those pairs of polynomials

whose constant terms coincide. We have

χ̃X = χY = 2
1 − β−1 , χV = 1

(1 − β−1)2 , and hence [X]KT = χ̃X

χV
= 2(1 − β−1).

It is instructive to verify directly the last statement of Proposition 5.5 even in

this simple case. When we used χX instead of χ̃X , we obtained a different answer:

χX

χV
= (1 + β−1)/(1 − β−1)

1/(1 − β−1)2 = 1 − β−2.

Yet, after substituting β = eβ̄ , we see that, modulo (β̄3) we have the equality:

χ̃X/χV = χX/χV = 2β̄ mod (β̄3),

recovering the cohomological fundamental class of Example 5.4.
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Remark 5.7. For a holomorphic map between complex manifolds g : Ma → Pb, one can

consider the η-singularity points

η(g) = {x ∈ M : the N-jet of g at x belongs to η}.

Thom’s principle on cohomological Thom polynomials states that if g satisfies certain

transversality properties then

[η(g)] = Tpa→b
η (Chern roots of TM, Chern roots of g∗(TP)).

This powerful statement relies on the fact that the notion of “cohomological fundamen-

tal class” is consistent with pullback morphisms. The way we set up the notion of K-

theoretic fundamental class in Definition 5.6 is not consistent with pullback morphisms

(rather, it is consistent with push-forward morphisms), hence Thom’s principle does not

hold for our K-theoretic Thom polynomials. Another version of K-theoretic fundamental

class called motivic Chern class [15, 19] has push-forward and pullback properties. It

would be interesting to find motivic Chern class Thom polynomials.

We end this section with an observation addressing the situation when the

group G acting on V is a general reductive group with maximal torus T. For a reductive

group G, we have KG(pt) = KT(pt)W (the Weyl-invariant part). For a G-invariant X ⊂ V,

the class [X]KT will be in this Weyl-invariant part, and hence we can define [X]KG = [X]KT .

In the rest of the paper, if the group that acts is obvious, we will drop the

subscript and use the notation [X] = [X]G, [X]K = [X]KG for the cohomological and K-

theoretic fundamental class.

6 Singularities and Their Thom Polynomials

Recall the notion of contact singularities and their Thom polynomials from §1.2. Let us

see a few examples.

Example 6.1.

• The simplest case is Q = C, also known as the A0-algebra. In this case, we

have

ηa→b
A0

= JN(Ca, Cb),
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which is essentially the inverse function theorem.

• When the algebra Q is A1 = C[x]/(x2), the set ηa→b
A1

is the set of singular

map-jets, that is, those whose derivative at 0 is not injective.

• For r > 0, consider Q = C[x1, . . . , xr]/(x1, . . . , xr)
2. In this case, ηa→b

Q is the set

of those map-jets whose linear part has corank at least r (also known as the

0r singularity).

• The contact singularities corresponding to the algebra Q = Ar = C[x]/(xr+1)

are called Morin singularities. A generic element of η2→2
A2

may be represented

as (x, y) '→ (x3 + xy, y); it is called the cusp singularity.

6.1 The model

By a model for a singularity η ⊂ J(Ca, Cb), we mean a GL(Ca) × GL(Cb)-equivariant

commutative diagram

where

• M is a smooth compact manifold,

• π : X → M is a vector subbundle of the trivial bundle π1 : M ×J(Ca, Cb) → M,

• ρ = π2 ◦ i is birational to η,

• and pM is the map from M to a point pt.

Let ν be the quotient bundle of π1 : M × J(Ca, Cb) → M by X → M. It follows that

for such a model for the singularity η one has

Tpη = pM∗(e(ν)),

where e stands for the (equivariant) Euler class. Indeed, we have

Tpη = ρ∗(1) = π2∗(i∗(1)) = π2∗(e(ν)) = pM∗(e(ν)). (22)

The advantage of our choice of K-theoretic fundamental class notion in Section 5

is that the equalities (22) hold without change in K-theory, and we obtain

KTpη = pM!(e(ν)),
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where e is now the K-theoretic (equivariant) Euler class, and pM! is the K-theoretic push-

forward map.

6.2 Integration in K-theory using residues

In what follows, we will use residue calculus for the push-forward map in K-theory.

Let the torus T act on the smooth variety X with finitely many fixed points. Let

W be a rank-d equivariant vector bundle over X, and let ω1, . . . , ωw be its Chern roots

(i.e., virtual line bundles whose sum is W). Let p : Gr(r, W) → X be the Grassmannization

of W, that is an equivariant bundle whose fiber over x ∈ X is the Grassmannian Gr(r, Wx)

of dimension r linear subspaces of the fiber Wx of W over x. Let S be the tautological

subbundle over Gr(r, W), and let σ1, . . . , σr be its Chern roots. A symmetric Laurent

polynomial g(σ1, . . . , σr) is hence an element of KT(Gr(r, W)).

Lemma 6.2. We have

p!(g(σ1, . . . , σr)) = Res
z1=0,∞

. . . Res
zr=0,∞




∏

i>j

(

1 − zi

zj

)
g(z1, . . . , zr)

∏r
i=1

∏w
j=1

(
1 − zi

ωj

)
r∏

i=1

dzi

zi



 . (23)

Proof. Consider first the special case when X is a point. Then the equivariant

localization formula for the push-forward map is

p!(f (σ1, . . . , σr)) =
∑

I

f (ωI1 , . . . , ωIr )
∏

i∈I
∏

j∈Ī

(
1 − ωi

ωj

) ,

where the summation is over r-element subsets I of {1, . . . , n}, and Ī is the complement

of I. Applying the Residue Theorem for the right hand side of (23), for z1, z2, . . . gives the

same expression. This proves the lemma when X is a point. The general case follows by

the splitting principle. !

When G is a connected algebraic group G, Lemma 6.2 may be applied to the

maximal torus T ⊂ G, and since KG(X) is the Weyl-invariant part of KT(X), formula (23)

holds without change.

7 0r Singularities

In this short section, we illustrate the residue technique to calculate the K theoretic

Thom polynomial of singularities that are defined by the behavior of their first
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derivatives. The obtained results are not new, but our proof will serve as a sample to

the more involved calculations of the next section.

7.1 The model for 0r

The obvious model for the

0r = 0r(Ca, Cb) = {g ∈ J1(Ca, Cb) : dim ker g ≥ r}

singularity is M = Gr(r, Ca), and

X = {(V, g) ∈ Gr(r, Ca) × J1(Ca, Cb) : g|V = 0}.

Let the tautological rank r bundle over Gr(r, Ca) be S. The bundle π : X → Gr(r, Ca) can

be identified with J1(Ca/S, Cb), hence the normal bundle is ν = J1(S, Cb). Thus KTp0r =
p!(e(J1(S, Cb))) for the map p : Gr(r, Ca) → pt.

Theorem 7.1. We have

KTp0r = Res
z1=0,∞

. . . Res
zr=0,∞




∏

i>j

(

1 − zi

zj

) r∏

i=1

∏b
j=1

(
1 − zi

βj

)

∏a
j=1

(
1 − zi

αj

)
∏

i

dzi

zi



 . (24)

Proof. We have

KTp0r = p!(e(J1(S, Cb))) = p!




r∏

i=1

b∏

j=1

(

1 − σi

βj

)

 ,

and applying Lemma 6.2 proves the Theorem. !

Comparing expression (24) with the residue formula for Grothendieck polynomi-

als (Definition 4.2), we obtain

KTp0r = G(r+l)r (α
−1
1 , . . . , α−1

a ; β−1
1 , . . . , β−1

b ).

This result is known in Schubert calculus [31] as the K-theoretic Giambelli–Thom–

Porteous formula. The calculation of this section has a counterpart for motivic Chern

classes (instead of fundamental classes) see [19, § 8].
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8 A2 Singularities

8.1 The model for A2

Consider the tautological exact sequence S → Ca → Q over Gr(1, Ca). Let M =
Gr(1, S⊗2 ⊕ Q) be the projectivization of the vector bundle S⊗2 ⊕ Q over Gr(1, Ca), and

denote the tautological line bundle over M by D.

According to [5, 28], there is a model for the

ηa→b
A2

= {g ∈ J2(Ca, Cb) : Qg
∼= C[x]/(x3)]}

singularity with this M, and normal bundle ν = Hom(S ⊕ D, Cb).

8.2 Residue formula for KTpA2

Theorem 8.1. We have

KTpa→b
A2

= Res
z1=0,∞

Res
z2=0,∞




1 − z2

z1

1 − z2
z2

1

2∏

i=1

∏b
j=1

(
1 − zi

βj

)

∏a
j=1

(
1 − zi

αj

) dz2dz1

z2z1



 .

Note that the order of taking residues is important here: first we take residues

with respect to z2, then with respect to z1.

Proof. We know that KTpA2
= pM!(e(Hom(D⊕S, Cb))). Let the Chern roots of the bundle

Q be ω1, . . . , ωa−1, and let the class of S be σ , and the class of D be τ . We have

e(ν) =
b∏

j=1

(

1 − σ

βj

) b∏

j=1

(

1 − τ

βj

)

.

Pushing forward this class to Gr(1, Ca), using Lemma 6.2, we get

Res
z2=0,∞




∏

j

(
1 − σ

βj

) ∏
j

(
1 − z2

βj

)

(
1 − z2

σ2

) ∏
j

(
1 − z2

ωj

) dz2

z2



 .

Using the fact that S → Ca → Q is an exact sequence, this is further equal to

Res
z2=0,∞




∏

j

(
1 − σ

βj

) ∏
j

(
1 − z2

βj

) (
1 − z2

σ

)

(
1 − z2

σ2

) ∏
j

(
1 − z2

αj

) dz2

z2



 .
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Pushing this class further from Gr(1, Ca) to a point, using Lemma 6.2, we obtain

Res
z1=0,∞

Res
z2=0,∞





∏
j

(
1 − z1

βj

) ∏
j

(
1 − z2

βj

) (
1 − z2

z1

)

(
1 − z2

z2
1

)∏
j

(
1 − z2

αj

) ∏
j

(
1 − z1

αj

)
dz2

z2

dz1

z1



 ,

which is what we wanted to prove. !

8.3 KTpA2 in terms of Grothendieck polynomials—the stable expansion

Let

1

1 − z2/z2
1

=
∑

r,s

dr,s(1 − z1)r(1 − z2)s

be the Laurent expansion of the named rational function on the |1−z1| < |1−z2| region.

Equivalently, after substituting x1 = 1 − z1, x2 = 1 − z2, let

1 − 2x1 + x2
1

x2 − 2x1 + x2
1

=
∑

r,s

dr,sx
r
1xs

2

be the Laurent expansion of the named rational function on the |x1| < |x2| region. Based

on the calculation

1

x2 − 2x1 + x2
1

= 1
x2

· 1

1 − (2x1 − x2
1)/x2

=
∞∑

k=1

1

xk
2

(2x1 − x2
1)k−1 (25)

=
∞∑

k=1

2k−2∑

r=k−1

(−1)r−k+122k−2−r
(

k − 1
2k − 2 − r

)
xr

1x−k
2 ,

we have that

dr,s = (−1)r+s+1
(

2−2s−2−r
( −s − 1

−2s − r − 2

)
+ 2−2s−r

( −s − 1
−2s − r − 1

)
+ 2−2s−r

( −s − 1
−2s − r

))

for r = 0, 1, . . . , s = −r − 1, . . . , −4r/25. In particular, the sign of dr,s is (−1)r+s+1.

For the values of dr,s for small (absolute value) r, s see the table in §1.2.
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Theorem 8.2 (Grothendieck expansion of KTpA2
: the stable version). Let l = b − a, and

let N > 2l + 2 be arbitrary. Then

KTpa→b
A2

=
N∑

r=0

−4 r
2 5∑

s=−r−1

dr,sGr+l+1,s+l+2(α−1
1 , . . . , α−1

a ; β−1
1 , . . . , β−1

b ). (26)

Note that for a given r, the set of non-zero dr,s coefficients are exactly those

between s = −r − 1 and s = −4r/25, hence, in the summation above, s runs through all

its relevant values. The reader may find it instructive to compare (26) with the table in

Section 1.2. Namely, the terms in (26) correspond to the entries in N full columns of that

table.

Remark 8.3. Since N may be arbitrarily large in (26), it is tempting to phrase Theorem

8.2 informally as

KTpa→b
A2

=
∑

r,s

dr,sGr+l+1,s+l+2(α−1
1 , . . . , α−1

a ; β−1
1 , . . . , β−1

b ). (27)

This series does not converge, however. A possible filtration and completion of the space

of Grothendieck polynomials is outside of the scope of this paper.

Proof. The finite expansion of 1/(1 − z2/z2
1) with respect to z1, around z1 = 1, with

remainder term is

1

1 − z2/z2
1

=
N∑

r=0

(
∑

s

dr,s(1 − z2)s

)

(1 − z1)r + RN(z1, z2), (28)

where the s-summation is finite. A quick calculation shows that the remainder term may

be expressed as

RN(z1, z2) = −
(

1 − z1

1 − z2

)N+1 z1qN(z2) + pN(z2)

1 − z2
1/z2

, (29)

where

pN(z) =
4 N+1

2 5∑

i=0

(
N + 1

2i

)
zi, qN(z) =

4 N
2 5∑

i=0

(
N + 1
2i + 1

)
zi.
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According to Theorem 8.1, we have the following expression for KTpA2
:

KTpa→b
A2

= Res
z1=0,∞

Res
z2=0,∞

(

(1 − z1)l(1 − z2)l 1

1 − z2/z2
1
×

×
(

1 − z2

z1

) 2∏

i=1

∏b
j=1

(
1 − zi

βj

)

∏a
j=1

(
1 − zi

αj

)
(1 − zi)

l

dz2dz1

z2z1



.

Substituting (28), we obtain

KTpa→b
A2

= Res
z1=0,∞

Res
z2=0,∞

( N∑

r=0

(
∑

s

dr,s(1 − z2)s+l

)

(1 − z1)r+l×

×
(

1 − z2

z1

) 2∏

i=1

∏b
j=1

(
1 − zi

βj

)

∏a
j=1

(
1 − zi

αj

)
(1 − zi)

l

dz2dz1

z2z1



 +

Res
z1=0,∞

Res
z2=0,∞



RN(z1, z2)

(
1 − z2

z1

) 2∏

i=1

∏b
j=1

(
1 − zi

βj

)

∏a
j=1

(
1 − zi

αj

) dz2dz1

z2z1



 .

According to the residue expression for Grothendieck polynomials (Definition 4.2) the

first term equals

N∑

r=0

∑

s

dr,sGr+l+1,s+l+2(α−1
1 , . . . , α−1

a , β−1
1 , . . . , β−1

b ),

and we claim that the second term vanishes for large N. Indeed, using the form (29) of

the remainder term RN(z1, z2), we can see that for large N, the rational form

RN(z1, z2)

(
1 − z2

z1

) 2∏

i=1

∏b
j=1

(
1 − zi

βj

)

∏a
j=1

(
1 − zi

αj

) dz2dz1

z2z1
(30)

satisfies the conditions of Lemma 4.1 in z2. This means that already applying the first

residue operation Resz2=0,∞ results in 0. This completes the proof. !

8.4 KTpA2 in terms of Grothendieck polynomials—the minimal expansion

Theorem 8.4 (Grothendieck expansion of KTpA2
, the minimal version). We have the

following expression for KTpa→b
A2

in Grothendieck polynomials indexed by partitions:
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KTpa→b
A2

=
2l+2∑

r=0

−4 r
2 5∑

s=−l−2

Dr,s,l · Gr+l+1,s+l+2(α−1
1 , . . . , α−1

a ; β−1
1 , . . . , β−1

b ),

where l = b − a, and

Dr,s,l =





dr,s if s > −l − 2
∑−l−2

t=−r−1 dr,t = ∑−l−2
t=−∞ dr,t if s = −l − 2.

The definition of Dr,l,s is the mathematical manifestation of the “sweeping up”

procedure mentioned in Section 1.2.

Proof. It follows from Theorem 8.2 that for large N

KTpa→b
A2

=
N∑

r=0

−4 r
2 5∑

s=−r−1

dr,sGr+l+1,s+l+2. (31)

For notational simplicity, we omit the arguments α−1
i , β−1

i of the Grothendieck polyno-

mials. Consider the sum

−4r/25∑

s=−r−1

dr,sGr+l+1,s+l+2

for a given r. In it, the occurring Grothendieck polynomials have the same first index

r + l + 1, but varying second index s + l + 2. Notice that if r > 2l + 2 then all s + l + 2

indexes are non-positive. Indeed, if r > 2l + 2, then s ≤ −4r/25 < −4(2l + 2)/25 = −l − 1

and hence s + l + 2 < 1. Then using the straightening law GI,0 = GI,−1 = GI,−2 = . . . (see

(10) or Lemma 4.6) we have that

−4r/25∑

s=−r−1

dr,sGr+l+1,s+l+2 =




−4r/25∑

s=−r−1

dr,s



 Gr+l+1,0. (32)

Plugging in z2 = 0 into 1/(1 − z2/z2
1) results 1, hence for r > 0 we have

∑4r/25
s=−r−1 dr,s = 0,

and in turn, the expression (32) is 0. This proves that in (31) the number N can be chosen
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to be as small as 2l + 2:

KTpa→b
A2

=
2l+2∑

r=0

−4 r
2 5∑

s=−r−1

dr,sGr+l+1,s+l+2.

The same statement may be obtained from a careful analysis of the vanishing of the

residues of (30).

Now let r ≤ 2l+2. Using the same straightening law of Grothendieck polynomials

we obtain

−4r/25∑

s=−r−1

dr,sGr+l+1,s+l+2 =
( −l−2∑

s=−r−1

dr,s

)

︸ ︷︷ ︸
Dr,s,l

Gr+l+1,0 +
−4r/25∑

s=−l−1

dr,sGr+l+1,s+l+2,

completing the proof. !

Remark 8.5. The expansion in Theorem 8.4 is minimal in the sense that each occurring

Grothendieck polynomial is parametrized by a partition (with non-negative com-

ponents), and hence can not be simplified by the straightening laws (9)-(10) (or

Lemma 4.6).

9 Alternating Signs

The coefficients of the Grothendieck polynomials in both the stable and the minimal

Grothendieck polynomial expansions of KTpA2
have alternating signs. This statement is

even more remarkable given that the singularities of A2 are not rational [29].

Theorem 9.1. The coefficient of Ga,b(α−1
1 , . . . , α−1

e ; β−1
1 , . . . , β−1

b ) in both the expansion

of Theorem 8.2 and the expansion of Theorem 8.4 has sign (−1)a+b.

Proof. The statement for the expansion in Theorem 8.2 is equivalent to dr,s having sign

(−1)r+s+1, which follows from the explicit formula for dr,s in Section 8.3.

The statement for the expansion in Theorem 8.4 is equivalent to Dr,s,l having sign

(−1)r+s+1 for any l. For this, we need to additionally prove that

the sign of
−l−2∑

t=−∞
dr,t is (−1)r+s+1 (33)

for any l.

To prove (33), consider f = (1−2x1 +x2
1)/(x2 −2x1 +x2

1) = ∑
r,s dr,sx

r
1xs

2 (as before,

|x1| < |x2|), and let g = (−1 + f )/(1 − x2). On the one hand, g = 1/(x2 − 2x1 + x2
1) (from the
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explicit form of f ). On the other hand,

g =
(

−1 +
∑

r,s

dr,sx
r
1xr

2

)

(1 + x2 + x2
2 + . . .) =

∑

r,s

( s∑

t=−∞
dr,t

)

xr
1xs

2.

Here, we used that d0,−1 = 1 and d0,s = 0 for all s 6= −1.

Comparing the two forms of g, we find that statement (33) is equivalent to the

the property that the coefficient of xr
1xs

2 in the expansion of 1/(x2 − 2x1 + x2
1) has sign

(−1)r+s+1. This latter claim follows from the calculation (25). !

10 Remarks on Higher Singularities

For singularities higher than A2, it is difficult to carry out our program. There are

no practical models for Ad-singularities for d ≥ 7, but even in the case of A3, where

the model is very simple ([5, 28]), the combinatorial problems we face are rather

complicated. A proof analogous to that of Theorem 8.1 in this case yields the following

statement.

Theorem 10.1. We have

KTpa→b
A3

= Res
z1=0,∞

Res
z2=0,∞

Res
z3=0,∞





(
1 − z2

z1

) (
1 − z3

z1

) (
1 − z3

z2

)

(
1 − z2

z2
1

)(
1 − z3

z2
1

)(
1 − z3

z1z2

)
3∏

i=1

∏b
j=1

(
1 − zi

βj

)

∏a
j=1

(
1 − zi

αj

) dz3dz2dz1
z3z2z1



 .

This formula suggests that to obtain the Grothendieck expansion of KTpA3
, we

ought to consider the expansion

1
(
1 − z2/z2

1

) (
1 − z3/z2

1

) (
1 − z3/z1z2

) =
∑

r,s,t

dr,s,t(1 − z1)r(1 − z2)s(1 − z3)t,

valid in the region |1 − z1| < |1 − z2| < |1 − z3|, and then find an appropriate way to

resum the series

∑

r,s,t

dr,s,tGr+l+1,s+l+2,t+l+3(α−1
1 , . . . , α−1

a ; β−1
1 , . . . , β−1

b ), (34)

to obtain finite expressions. The concrete form of the resummation procedure and the

resulting finite expression is not clear at the moment.

It seems even more difficult to find the analogue of Theorem 8.4 (the minimal

Grothendieck expansion) for A3. To achieve the Grothendieck expansion of Theorem 8.4
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from that of Theorem 8.2, we needed to work only with one of the straightening laws,

namely (10). However, to “straighten” the partitions in (34), one is forced to use the

other straightening law, namely (9), and this seems much more complex. It would be

interesting to develop the residue calculus or another analytic tool that replaces the

combinatorics of (9).
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