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Inference by means of mathematical modeling from a collection of observations remains 
a crucial tool for scientific discovery and is ubiquitous in application areas such as signal 
compression, imaging restoration, and supervised machine learning. With ever-increasing 
model complexities and larger data sets, new specially designed methods are urgently 
needed to recover meaningful quantities of interest. We consider the broad spectrum 
of linear inverse problems where the aim is to reconstruct quantities with a sparse 
representation on some vector space. We provide a new variable projection augmented 
Lagrangian algorithm to solve the underlying !1 regularized inverse problem that is both 
efficient and effective. We present the proof of convergence for an algorithm using an 
inexact step for the projected problem at each iteration. The performance and convergence 
properties for various imaging problems are investigated. The efficiency of the algorithm 
makes it feasible to automatically find the regularization parameter, here illustrated using 
an argument based on the degrees of freedom of the objective function equipped with a 
bisection algorithm for root-finding.

 2023 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Many scientific problems are modeled through the linear relationship

b = Axtrue + ε. (1)

Here A ∈ Rm×n is the forward process that maps from an unknown true solution, xtrue ∈ Rn , to true observations, btrue ∈
Rm . Practically, the observations are given by b = btrue + ε, where ε represents the noise contamination of the data. For 
the models of interest, we assume that A is obtained via the discretization of an underlying physical model which is ill-
posed (i.e., a solution does not exist, is not unique, or does not depend continuously on the data [44]) yielding A that is 
numerically ill-conditioned. Given A and b, as well as some desired characteristics of xtrue, the aim in inverse problems is 
to obtain an approximate solution ̂x that inherits the desired properties of xtrue [48]. Such inverse problems arise in many 
different fields, such as, but not limited to, medical imaging, geophysics, and signal processing [49,62,73]. Efficient and 
effective algorithms to solve these large-scale problems are of high relevance.
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For the solution of eq. (1) we seek

x̂ ∈ arg min
x

ϕ(x) = 1
2 ‖Ax − b‖2

2 + µ‖Dx‖1 , (2)

in which the inversion process is stabilized using the regularization ‖Dx‖1 under the assumption of sparsity for Dx. Here 
‖ ·‖p denotes the !p -norm, D ∈ R!×n is a predefined matrix, and µ > 0 is a regularization parameter that weights the 
relevant contributions of the !2-data loss and the !1-regularizer. Equation (2) gained major attention, in particular, in the 
early 2000s, due to its connection to compressed sensing and the reconstruction of solutions with sparsity properties in 
the range of D [16]. The !1-regularization in eq. (2) is also referred to as the (generalized, if D &= In) least absolute shrinkage 
and selection operator (lasso) regression or basis pursuit denoising (BPDN), [79,80]. This contrasts with ridge regression, or 
Tikhonov regularization, in which the !1-norm in eq. (2) is replaced by the !2 norm, yielding

min
x

1
2 ‖Ax − b‖2

2 + µ2

2 ‖Dx‖2
2 . (3)

Equations (2) and (3) have a Bayesian interpretation, where x̂ represents the maximum a-posteriori (MAP) estimate of a 
posterior with a linear model, Gaussian likelihood and a particular Laplace prior, or Gaussian prior, respectively, [15,82]. We 
further note that eq. (2) is a specialization of the more general !p -!q regularization in which the data fit and regularization 
terms are measured in the p and q-norms, respectively, rather than with p = 2 and q = 1, as here, [18].

The introduction of methods including the Alternating Direction Method of Multipliers (ADMM), Split Bregman, 
majorization-minimization, as well as iteratively reweighted norms for general !p -!q formulations, and the Fast Iterative 
Shrinkage-Thresholding Algorithm [13,33,36,53,58,71], have made it computationally feasible to solve large-scale problems 
described by eq. (2), e.g. [6,29,30,37]. Nevertheless, compared to !2-regularized linear least-squares (Tikhonov), the need 
to use these nonlinear optimization methods even with the introduction of limited memory generalized Krylov methods 
makes the solution of the !1-regularized problem computationally more expensive [13,79]. Furthermore, for real-world ap-
plications, the regularization parameter µ in each case is generally unknown and the need to select an appropriate µ can 
require multiple solves of the given regularized problem for different choices of µ. While efficient solvers are crucial in 
either case, here our focus is on the design of an efficient solver for eq. (2) and the validation of the new algorithm, not 
only for a selection of inverse problems, but also in the context of the efficient estimate of a suitable µ using a χ2 degrees 
of freedom (DF) argument [60].
Main Contributions: We present a new variable projection augmented Lagrangian algorithm (VPAL) for solving eq. (2). First, 
this approach is novel through its use of variable projection in conjunction with inexact solves in an alternating direction 
algorithm. Indeed, as contrasted with the standard ADMM algorithm, which uses the separability of the underlying objective 
function to perform an alternating minimization that may be exact or inexact, the presented VPAL algorithm applies variable 
projection to recast the minimization with respect to a single variable. Under the standard condition that the matrix A has 
full column rank, we prove that the presented algorithm that uses an inexact solve at each iteration converges to the 
minimum of eq. (2). Numerical evidence of the low computational complexity of the VPAL algorithm is provided. Second, 
taking note of the efficiency of VPAL, it is augmented with an automated root-finding algorithm to select µ using a χ2-
test based on a DF argument for eq. (2) in the context of image restoration. The same approach can be used to select µ
by imposing the discrepancy principle for the data fit term in eq. (2) [63], or within any other parameter-choice method 
in which a root-finding algorithm is suitable. Our findings are corroborated by numerical experiments on various imaging 
restoration and projection problems.

This work is organized as follows. In Section 2 we introduce further notation and provide the background on !1-
regularization methods in Section 2.1, as well as methods to estimate µ in Section 2.2. We present the new algorithm 
in Section 3, with the algorithm development in Section 3.1 and a discussion of the convergence in Section 3.2. The bisec-
tion root-finding algorithm to estimate µ in the context of image restoration is briefly discussed in Section 4. Numerical 
investigations are provided in Section 5, and we conclude our work with an overview of conclusions and topics for future 
research in Section 6.

2. Background

We briefly elaborate in Section 2.1 on standard approaches for the solution of eq. (2) using the iterative ADMM algorithm, 
as outlined in Algorithm 1 [5,14,17,29,31,35,66]. This reveals that the main computational limitation of ADMM is the need 
to solve at least one problem equivalent to a Tikhonov solve, as in eq. (3), at each ADMM iteration. Regularization parameter 
selection methods are addressed in Section 2.2.

2.1. Methods to solve generalized lasso problems

Introducing y ∈R! with y = Dx, eq. (2) is equivalent to

min
x,y

f (x,y) = 1
2 ‖Ax − b‖2

2 + µ‖y‖1 subject to Dx − y = 0. (4)
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Now, following the well-established augmented Lagrangian framework, a quadratic penalty term is added to eq. (4) yielding

Laug(x,y, z;λ) = f (x,y) + z'(Dx − y) + λ2

2 ‖Dx − y‖2
2 , (5)

where z ∈ R! denotes the vector of Lagrange multipliers and λ is a scalar penalty parameter [51,72] and [67, Chapter 17]. 
Merging the last two quadratic terms in eq. (5) gives

Laug(x,y, c;λ) = f (x,y) + λ2

2 ‖Dx − y + c‖2
2 − λ2

2 ‖c‖2
2 , (6)

where c = z/λ2 is a scaled Lagrangian multiplier. For fixed c, eq. (6) can be solved using an alternating direction approach to 
minimize the augmented Lagrangian Laug(x, y, c; λ) with respect to x and y.

From the first-order optimality condition, we expect ∇x,y Laug(xk+1, yk+1, ck; λ) ≈ 0, whenever (xk+1, yk+1) approxi-
mately minimizes Laug( · , · , ck; λ). But, we see that Dxk+1 − yk+1 + ck approximates the corresponding Lagrange multiplier 
by noting that ∇x,y Laug(x, y, ck; λ) = ∇x,y f (x, y) + λ2[D; −I!]'(Dx − y + ck). In consequence we obtain the method of multi-
pliers [51,72], in which, for initial c0 ∈R! and a choice of λ, we iterate to convergence over

(xk+1,yk+1) = arg min
x,y

Laug(x,y, ck;λ) (7a)

ck+1 = Dxk+1 − yk+1 + ck. (7b)

The main computational effort associated with implementing eqs. (7a) and (7b) lies in solving eq. (7a). Hence, splitting the 
optimization problem eq. (7a) with respect to x and y, and replacing ck by c for ease of notation, an equivalent objective 
function to Laug(x, y, c; λ) is given by h :Rn ×R! →R with

h(x,y) = 1
2 ‖Ax − b‖2

2 + λ2

2 ‖Dx − y + c‖2
2 + µ‖y‖1 . (8)

Optimizing with an alternating direction approach offers the potential to reduce computational complexity. This leads to the 
widely used alternating direction method of multipliers (ADMM), where xk+1 and yk+1 in eq. (7a) are approximately obtained 
by performing the alternating direction optimizations

xk+1 = arg min
x

h(x,yk), (9a)

yk+1 = arg min
y

h(xk+1,y). (9b)

Considering the specific form of eq. (4), each of these updates yields a problem that offers a computational advantage. 
Ignoring constant terms, eq. (9a) reduces to a linear least-squares problem of the form

xk+1 = arg min
x

1
2

∥∥∥∥

[
A
λD

]
x −

[
b

λ (yk − ck)

]∥∥∥∥
2

2
, (10)

for which there are many efficient approaches using either direct or inexact solvers [43]. On the other hand, eq. (9b) reduces 
to

yk+1 = arg min
y

µ‖y‖1 + λ2

2

∥∥dk+1 − y
∥∥2

2 , (11)

where dk+1 = Dxk+1 + ck . Equation (11) is a well-known shrinkage problem that has the explicit solution

yk+1 = sign
(
dk+1

)
+

(∣∣dk+1
∣∣ − µ

λ2 1!

)

+
. (12)

Here, the element-wise function ( · )+ is defined by (w)+ = w , for w > 0, and w = 0, otherwise, + denotes the Hadamard 
product, and | · | is the element-wise absolute value. Consequently, the update eq. (12) is of low computational complexity. 
Combining eqs. (10) and (12) with eq. (7b), yields the ADMM algorithm for the solution of eq. (2) as summarized in 
Algorithm 1, here with the assumption of an exact solve for eq. (10). Stopping criteria for ADMM are outlined in [10].

The computational complexity of a plain ADMM algorithm, as described in Algorithm 1, is O(K̃ (m +!)n2), where K̃ refers 
to the required number of iterations. There is, however, also substantial literature on the use of efficient direct factorizations, 
inexact solves, algorithms based on generalized Krylov spaces with limited memory, as well as preconditioning to improve 
the computational efficiency when solving eq. (10) [13,17,19,45,56]. Our focus takes a different direction, in which we 
recast Algorithm 1 using a variable projection approach [40,69]. Note that here we assume a non-adaptive approach for the 
parameters λ and µ that are held fixed.
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Algorithm 1 Alternating Direction Method of Multipliers (ADMM) [31]
1: input A, b, D, µ, and λ
2: initialize c0 = x0 = y0 = 0, and k = 0
3: while not converged do
4: xk+1 = arg minx

1
2 ‖Ax − b‖2

2 + λ2

2 ‖Dx − yk + ck‖2
2

5: yk+1 = arg miny µ ‖y‖1 + λ2

2

∥∥Dxk+1 − y + ck
∥∥2

2
6: ck+1 = ck + Dxk+1 − yk+1
7: k = k + 1
8: end while
9: output xk

2.2. Regularization parameter selection

There is substantial literature on determining the regularization parameter µ in eq. (3), for which details are available in 
texts such as [4,47,48] or in literature focused on a review of parameter selection approaches [12]. Such methods range from 
techniques that do not need any information about the statistical distribution of the noise in the data, such as the L-curve 
that trades off between the data fit and the regularizer [48], the method of generalized cross-validation [39], the residual 
whiteness principle (RWP) based on the correlation of the components in the residual [59], and supervised learning tech-
niques [2,68]. Many other approaches are statistically-based and require that some underlying noise distribution is assumed, 
including the well-known Morozov discrepancy principle (DP) [63,82]. The reader is referred to this extensive literature on 
parameter choice approaches, including for !p − !q formulations, the assumption that eq. (2) defines an image restoration 
problem, or under certain algorithmic considerations to solve eq. (2) [12]. It has also been suggested to consider the classes 
of parameter choice methods as either non-stationary or stationary [12]. In the non-stationary case, (equivalently adaptive), 
µ is automatically updated throughout a given algorithm, such as the iterative majorization-minimization algorithm. In the 
stationary case, an optimal µ is obtained based on a limited number of full solves for a judiciously chosen set of µ values. 
Here in section 4 we will present a stationary approach but argue that the presented bisection algorithm is efficient and 
effective, requiring very few full solutions of eq. (2).

In the statistical literature it has been shown that the family of solutions for eq. (2) is piecewise linear, namely the 
regularization path for solutions as µ varies has a piecewise linear property in µ [28]. Thus, path-following on µ has been 
used to analyze the properties of the solution with µ and to design algorithms that determine the bounds µmin < µ < µmax
[3,25,55,80,85]. We note also, that in the context of Algorithm 1 for data with Poisson noise, it has been suggested that one 
may use a DP [63] for the data fit residual in eq. (10) to select the Lagrange parameter using a Newton algorithm, assuming 
a fixed µ [78]. An approach for the case of Gaussian noise is also discussed in [66].

Generally, the lack of an analytic expression for the solution of eq. (2) and the associated computational demands for 
large-scale problems, presents challenges in both defining a method for optimally selecting µ and with finding an optimal 
estimate efficiently. In all cases it is therefore imperative to consider whether any new algorithm for the solution of eq. (2)
can be used effectively and robustly in a parameter choice method. Here we will address this in the context of a stationary 
bisection algorithm to be described in section 4, based on the following observations in the context of image restoration.

For the solution of the generalized lasso problem when A is a blurring operator of an image and D &= In , a MAP estimator 
for µ can be derived under the assumption of Gaussian noise in b [42]. For naturally occurring images, if the TV functional 
defined by y = Dx is Laplace distributed1 with mean θ ∈ R! and variance 2β2I! , i.e., y ∼ L(θ, 2β2I!), then the underlying 
image x is said to be differentially Laplacian. In this case, under the assumption ε ∼ N (0, σ 2Im), the MAP estimator for ̂x(µ), 
here denoted by x̂(µmap), is given by eq. (2) when µ = µmap = σ 2/β [60, eq. (9)]. For naturally occurring images the use 
of µmap seems appropriate, but to obtain µmap we require β . In the ideal case we can use the estimate β = std(Db)/

√
2

[61, Algorithm 1], where std denotes the standard deviation. For images that are significantly blurred, however, it is unlikely 
that β obtained from b is a good estimate for the true β associated with the unknown image x. Alternatively, we may also 
use a χ2-test on eq. (2)

‖Âx(µ) − b‖2
2 + µ‖D̂x(µ)‖1 ∼= mσ 2, (13)

when both A and D have full column rank, [60, Theorem 4] and we define µχ2 to be the µ that satisfies eq. (13).
Finding µχ2 to satisfy eq. (13) is a natural extension of existing techniques that use the DP applied to the residual, in 

which, for example, µ in eq. (3) is found by requiring ‖Ax(µ) −b‖2
2 ≈ mσ 2, assuming there are m degrees of freedom in the 

residual. Arguments based on the degrees of freedom have paved the way to identifying an optimal µ for the lasso problem, 
D = In [24,27,28,80,81,85]. Given an efficient algorithm to solve the lasso problem, it becomes computationally feasible to 
find an optimal µ that satisfies the DP. We focus on verifying that our efficient VPAL solver can be suitably integrated to 
efficiently find µχ2 for the generalized lasso problem using a root-finding algorithm.

1 A random variable y follows a Laplace distribution with mean θ and variance 2β2, denoted y ∼ L(θ, 2β2), if its probability density function is y =
1/2β exp ((|y − θ |)/β).
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Finally, while the results presented in [60] demonstrate that solutions obtained using µχ2 are improved as compared 
to those obtained using µmap, [60, Algorithm 2], as we have also confirmed from results not presented here, it must be 
noted that we cannot immediately apply eq. (13) to find a suitable µ for matrices A that arise in other models, such as 
projection, i.e., A is not a smoothing operator. Still, for the restoration of blurred and noisy images, eq. (13) can be used in 
the context of a root-finding algorithm to provide an estimate for a suitable µχ2 . Here we give only the necessary details, 
but note that the approach provided is feasible when ε ∼ N (0, σ 2Im) and σ 2 is available. For colored noise, a suitable 
whitening transform can be applied to modify eq. (2), effectively, using a weighted norm in the data fit term, see e.g., [61]. 
We reiterate that the approach presented here is directly applicable only for the restoration of naturally occurring images, 
[42], and as such can be regarded as an alternative to the RWP [57].

3. Variable Projected Augmented Lagrangian

As discussed in Section 2.1 the computational efficiency of Algorithm 1 is dominated by the effort of repeatedly solving 
the least-squares problem eq. (10) at step 4 of Algorithm 1, regardless of whether exact or inexact solves are involved. The 
focus, therefore, of our approach is to significantly reduce the computational cost that arises in obtaining the updates in eq.
(7a) by rewriting eqs. (9a) and (9b) in terms of a single term obtained using variable projection. Within this reformulation, we 
suggest a specific inexact solve for xk+1, using a single conjugate gradient (CG) step. As compared to many other efficient 
algorithms in the literature, the presented algorithm proceeds without the need to maintain any Krylov, or generalized 
Krylov, subspace, and is, moreover, not specific to a particular choice of kernel giving rise to the matrix A in eq. (1) [13,18]. 
We develop the algorithm in Section 3.1 and present the analysis of convergence in Section 3.2 where the convergence is 
not tied to the particular CG update strategy.

3.1. Algorithm development

We briefly review the under-utilized variable projection technique, which is a hybrid of two approaches, (1) alternating 
direction optimization and (2) block coordinate descent [40,69]. First, we assume a general function h(x, y) that can be 
decomposed into two sets of independent variables x ∈ Rn and y ∈R! . Further, we assume, for simplicity, that h is strictly 
convex, has compact lower-level sets, and is sufficiently differentiable to ensure convergence to a unique solution (̂x, ̂y)

[76]. Then, we may use separability at each iteration of the numerical optimization scheme to first optimize over x while 
keeping y constant, and then optimize with respect to y, while keeping x constant, as utilized in ADMM eq. (9a) and eq.
(9b). Another approach applies a block coordinate descent for each variable, the iterates, initialized with arbitrary x0, y0, 
proceed until convergence via the alternating steps

xk+1 = xk + αksx(h,xk,yk), (14a)

yk+1 = yk + βksy(h,xk+1,yk). (14b)

Here, sx and sy refer to appropriate descent directions with corresponding step sizes αk and βk . Within each iteration k, the 
function h is kept constant with respect to one of the variables while the other performs, for instance, a gradient descent 
or Newton step with appropriate step size control [83]. Now, forming the hybrid we note that rather than using eq. (14a)
directly, we can instead replace eq. (14b) by the single iterative step

yk+1 = yk + αksy(h,arg min
x∈Rn

h(x,yk),yk). (15)

With this reformulation, we have now applied the key idea behind variable projection, namely the elimination of one set 
of variables x by projecting the optimization problem onto a reduced subspace associated with the other set of variables y
[38,74].

Variable projection approaches were specifically developed for separable nonlinear least-squares problems, such as 
min(x,y)∈Rn+! ‖A(y)x − b‖2

2 where for fixed y the optimization problem exhibits a linear least-squares problem in x which 
may easily be solved. This approach has been successfully applied beyond standard settings, for example, in super-resolution 
applications, for separable deep neural networks, and within stochastic approximation frameworks, see [21,64,65] for details. 
Variable projection methods show their full potential when one of the variables can be efficiently eliminated.

For Eq. (7a) calculating y exactly while keeping x constant is computationally tractable due to the use of the shrinkage 
step eq. (12). On the other hand, gains in computational efficiency can be achieved by exploiting an inexact solve for x. This 
new perspective of utilizing variable projection resonates with the use of inexact solves of the linear system within ADMM
[37]. At the same time, our approach is not the same as using an inexact solve within ADMM. Specifically, the proposed 
inexact update directly incorporates the shrinkage step in the minimization of eq. (15) before updating the Lagrange multi-
plier c. While there are various efficient update strategies that may be utilized to find x as needed in the formulation of eq.
(15), such as LBFGS or Krylov subspace type methods [67,70], we focus here on updating x by performing a single CG step. 
Specifically, we use the update
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x( j+1) = x( j) − α jg j, (16)

where the descent direction g j is a vector of length n given by

g j =
[

A' λD' ]
r j with r j =

[
Ax( j) − b

λDx( j) − λ
(
y( j) − ck

)
]

,

and the optimal step length α j may be computed by

α j = arg min
α

hproj(x( j) − αg j). (17)

The projected function hproj :Rn →R is defined via the continuous shrinkage mapping Z :Rn →R! for eq. (12)

Z(x) = sign(Dx + c) +
(
|Dx + c| − µ

λ2 1!

)

+
, (18)

giving

hproj(x) = 1
2 ‖Ax − b‖2

2 + λ2

2 ‖Dx − Z(x) + c‖2
2 + µ‖Z(x)‖1 , (19)

[52,70]. Note that the optimal calculation of α j requires only O(n) operations once g j , Ag j , and Dg j have been obtained. 
Adopting this update strategy yields the new variable projection augmented Lagrangian (VPAL) method for solving eq. (2) as 
summarized in Algorithm 2, given for fixed parameters λ and µ.

Algorithm 2 Variable Projected Augmented Lagrangian (VPAL)
1: input A, b, D, µ, λ
2: initialize c0 = x0 = y0 = 0, and set k = 0
3: while not converged do
4: set j = 0, x(0) = xk , y(0) = yk
5: while not converged do

6: calculate residual r j =
[

Ax( j) − b
λDx( j) − λ

(
y( j) − ck

)
]

,

7: calculate direction g j =
[

A' λD' ]
r j

8: set α j = arg minα hproj(x( j) − αg j)

9: update x( j+1) = x( j) − α j g j

10: y( j+1) = arg miny µ ‖y‖1 + λ2

2

∥∥Dx( j+1) − y + ck
∥∥2

2
11: j = j + 1
12: end while
13: set xk+1 = x( j) and yk+1 = y( j)

14: set ck+1 = ck + Dxk+1 − yk+1
15: k = k + 1
16: end while
17: output xk

Remark 1. Within VPAL our ansatz for applying a variable projection technique is “inverted” as compared to the standard 
approaches. Specifically, a typical variable projection method would seek to optimize over the variable that determines the 
linear least squares problem, here it would be x, and would update the variable occurring nonlinearly, here y, using a 
standard gradient or Newton update, [40,69]. Here we reverse the roles of the variables.

Remark 2. The underlying formulation for the variable projection approach minimizes the single nonlinear function hproj(x), 
using shrinkage eq. (12) at each CG step. In contrast, in ADMM there are two distinct minimizations at each iteration, as 
given in eqs. (9a) and (9b). We see that the step to obtain xk+1 in eq. (9a) minimizes the nonlinear function h(x, y) given 
in eq. (8) with y held fixed. In particular, while alternating direction methods such as ADMM solve eq. (2) by using a linear 
update to find x, the variable projection approach uses a nonlinear optimization step that directly incorporates changes in 
y when finding x. These observations apply regardless of whether the updates employed are exact or inexact and it is easy 
to verify with simple examples that each algorithm minimizes the different functions.

Remark 3. The idea of using an explicit CG with inexact solves within an alternating optimization is not new. Indeed it is 
quite standard to use an inexact update step for eq. (10) within an ADMM algorithm. For instance, using just a few CG steps 
or other iterative methods has been proposed and analyzed [26,41,45,77]. We follow this approach within the context of a 
variable projection framework.
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Remark 4. An optimal step size for the projected function hproj as computed in eq. (17) is not required. Rather it may be 
sufficient to use an efficient step size selection that provides a decrease along the search direction. Since y( j) ≈ Z(x( j)−α jg j), 
especially in later iterations, we may replace this term in hproj, resulting in a linear least squares problem where the 
(linearized) optimal step size can be computed efficiently by

α j =
g'

j g j

t'j t j
, where t j =

[
A
λD

]
g j.

Empirically, we observe that the linearized step size selection is very close to the optimal step size α̂, approximately under-
estimated by about 10%, and is computationally less expensive (experiment not shown).

Remark 5. In eq. (16) the dominant costs to obtain the update x( j+1) are the matrix-vector products needed to generate g j
and t j . There are two matrix-vector multiplications with A, two with D, and one each with their respective transposes. This 
corresponds to two multiplications with matrices of sizes (m + !) × n and n × (m + !) yielding a computational complexity 
of O((m + !)n). Hence, the computational complexity of Algorithm 2 is O(K J (m + !)n), where J refers to an average of the 
number of inner iterations for the inner while loop (steps 5 to 12 in Algorithm 2) and K is the number of outer iterations. 
We remark also that the algorithm is a limited memory implementation, at any step we only need to calculate the given 
matrix-vector products and store a limited number of vectors for the next step. No information about the underlying space 
for the solution is used, whether in terms of maintaining the basis for the space, or in terms of performing any additional 
factorizations on the space for efficient updating.

In the practical implementation of Algorithm 2, we eliminate the while loop over x( j) and y( j) (steps 5 to 12) and 
only perform a single update of xk and yk , a common approach, e.g., see [37, page 331]. This reduces the need to provide 
suitable stopping conditions for carrying out the inexact solve and reduces the computational complexity of a practical 
implementation of VPAL to O(K (m + !)n). We observe fast convergence as highlighted in Section 5. To terminate the outer 
iteration k we use stopping criteria that are adapted from standard criteria for terminating iterations in unconstrained 
optimization, i.e., given a user-specified tolerance τ > 0, we terminate the algorithm when both h(xk, yk) − h(xk+1, yk+1) ≤
τ (1 + h(xk+1, yk+1)) and 

∥∥xk − xk+1
∥∥

∞ ≤ √
τ (1 +

∥∥xk+1
∥∥

∞) [34]. A simplified Matlab source code of the VPAL method 
illustrated on a simple denoising example is provided in Appendix A. We also provide a more elaborated Matlab code which 
is available and maintained at www.github.com/matthiaschung/vpal.

3.2. Convergence

There is extensive literature on the convergence of the ADMM algorithm, including results that provide convergence rates, 
address the use of inexact solves, and consider modifications of the given ADMM algorithm to include additional terms, or 
allow for separability with respect to more than two blocks of variables, [1,46]. Generally, the convergence rate results 
rely on suitable error bounds for the solutions, such as absolute summability of the errors arising through the iteration on 
eq. (10) [19,26,50]. Comprehensive overviews of the convergence results are available for example in [10,14,56,84]. For our 
analysis we do not seek to provide convergence rates, consequently, our approach is to present a general result without 
applying any specific error bounds on the inexact solves used to minimize eq. (19). This result relies on the well-established 
convergence analysis of augmented Lagrangian methods for the sequence of solves for xk [8–10,52,72]. Thus, the focus of the 
proof is to show that the solves obtained via variable projection corresponding to inexact solves in the inner loop, steps 5
to 12 of Algorithm 2, are sufficient to solve eq. (7a). Our convergence result for Algorithm 2 is summarized in Theorem 3.4. 
To be complete we note first, without proof, the convexity of h(x, y).

Lemma 3.1. Suppose that A has full column rank. Then, for arbitrary but fixed c and µ, λ > 0, h(x, y) is strictly convex and has a 
unique minimizer (̂x, ̂y).

This result is well-known and the proof is omitted. Now, using Z and hproj defined in eqs. (18) and (19) we obtain the 
following results.

Lemma 3.2. Let µ, λ > 0, then the following statements are true.

1. For any fixed x there exists a y such that hproj(x) = h(x, y).
2. For any y and arbitrary fixed x the inequality hproj(x) ≤ h(x, y) holds.
3. Let (̂x, ̂y) be the (unique) global minimizer of h(x, y). Then ̂x is the (unique) global minimizer of hproj(x).

Proof. 1. The first statement follows directly by the definitions, eqs. (8), (18) and (19), i.e., if y = Z(x), then hproj(x) =
h(x, y).

2. Due to optimality of Z(x) = arg miny h(x, y) for arbitrary fixed x, h(x, Z(x)) ≤ h(x, y) follows.
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3. By eqs. (8) and (19) we have hproj(x) = h(x, Z(x)) ≥ h(̂x, ̂y) for any x ∈Rn . With Lemma 3.2 item 2, we have hproj (̂x) ≤
h(̂x, ̂y), thus a global minimizer for hproj(x) is obtained at x̂, i.e., hproj(̂x) = h(̂x, Z(̂x)). Further, we must have Z(̂x) = ŷ, 
since Z(̂x) minimizes h(̂x, ·) with respect to the second component and noticing that Z(̂x) is its unique minimizer.
Next, assume (̂x, ̂y) is the unique global minimizer of h(x, y) and assume further that there exists an 1x &= x̂ that is also 
a global minimizer of hproj(x), i.e., hproj(1x) = hproj(̂x). By this assumption we have that h(̂x, ̂y) = h(̂x, Z(̂x)) = hproj(̂x) =
hproj(1x) = h(1x, Z(1x)). Hence, (1x, Z(1x)) &= (̂x, ̂y) is a global minimizer of h(x, y). But this contradicts the assumption that 
(̂x, ̂y) is the unique global minimizer of h(x, y), and thus ̂x is the unique global minimizer of hproj(x). !

It remains to be shown that the global minimizer of hproj , given by ̂x, is the only minimizer.

Lemma 3.3. Assume A has full column rank, c is fixed, and µ, λ > 0; then all minimizers of hproj are global.

Proof. Note, hproj(x) has a local minimum at x if there exists a neighborhood D(x) of x such that hproj(x) ≥ hproj(x) for all x
in D(x). Let (̂x, ̂y) = (̂x, Z(̂x)) denote the unique global minimum of h(x, y) according to Lemma 3.1. Since h(x, y) is strictly 
convex, h(x, y) is inevitably strictly convex in each of its components x and y. Let y be arbitrary but fixed, e.g., y = Z(x); 
then for any x ∈Rn with x &= x̂ and ε > 0, there exists an x∗ &= x with 

∥∥x∗ − x
∥∥

2 < ε such that

h(x∗,y) < h(x,y) = hproj(x)

due to the strict convexity in x. Further, by Lemma 3.2 item 1 we have hproj(x∗) = h(x∗, Z(x∗)), and, by Lemma 3.2 item 2, 
h(x∗, Z(x∗)) ≤ h(x∗, y). Together, we have

hproj(x∗) = h(x∗,Z(x∗)) ≤ h(x∗,y) < h(x,y) = hproj(x).

Hence, there does not exist a neighborhood D(x) around x for which hproj(x) ≥ hproj(x) for all x ∈ D(x), and x &= x̂ cannot 
be a local minimizer. For x = x̂ we have hproj(̂x) = h(̂x, Z(̂x)) and there is nothing to show. !

Taking the results of Lemmas 3.2 and 3.3 together we arrive at the main convergence result, in which we now consider 
the minimization at step k of Algorithm 2.

Theorem 3.4. Given optimization problem eq. (2), where A has full column rank, µ > 0, and λ > 0 sufficiently large, Algorithm 2
converges to the unique minimizer ̂x of eq. (2).

Proof. As noted above, the convergence of the outer loop (steps 3 to 16 of Algorithm 2) is well established for augmented 
Lagrangian methods, see [8,9] for details. It remains to be shown that the variable projection corresponding to the inner 
loop, steps 5 to 12 of Algorithm 2, solves eq. (7a). Lemmas 3.1 (item 1 to item 3) and 3.3 ensure uniqueness of the minimizer 
x̂ of hproj(x) and correspondingly to h(x, y). Due to optimality for y = Z(x) and noting that the subgradient of h(x, y) with 
respect to y is given by hy = λ2 (−Dx + y − c) + µ (sign(y) + 1!), we have

λ2 (−Dx + Z(x) − c) + µ(sign(Z(x)) + 1!) =0.

Therefore,

s = −
(

A'(Ax − b) + λ2D' (Dx + c − Z(x))
)

(20)

is a descent direction of hproj(x) corresponding to −g j in Algorithm 2. Paired with an optimal step size α j as defined in eq.
(17), an efficient descent is ensured until the subgradient optimality conditions are fulfilled. !

Remark 6. Notice that in eq. (20) we use the search direction s = −g j , however, other choices are available. In fact, the 
proof remains valid for any direction s = −B jg j with B j being symmetric positive definite and therefore includes (inexact) 
Newton and quasi Newton updates. Further, if we instead replace steps 5 to 12 in Algorithm 2 with an exact minimization 
of hproj, then the convergence of the VPAL algorithm will be equivalent to that for Algorithm 1 with exact solves. The inexact 
solves within the VPAL method provides new flexibility and adds efficiency as is demonstrated in Section 5.

4. A bisection algorithm to find µ

Although the importance of eq. (13) was presented in [60], no efficient algorithm to find µχ2 was given. We briefly 
describe a bisection root-finding approach that is used to estimate µχ2 and relies on finding an interval in which F (µ) −
pσ 2 changes sign, where

F (µ) = ‖Âx(µ) − b‖2
2 + µ‖D̂x(µ)‖1 . (21)
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While it is clear that F (µ) > 0, we also know, under the assumption that ‖D̂x(µ)‖1 is bounded, that, at least for the case 
of image restoration, F (µ) decreases as µ → 0, [60, Proposition 4]. Consequently, for any choice of p > 0, F (µ) − pσ 2

decreases, and may become negative if pσ 2 is sufficiently large. When the estimates for p and σ 2 are accurate we can 
expect, for sufficiently large µ, that F (µ) − pσ 2 > 0. Noting now that we can also calculate F (µ) as given by eq. (21)
given an algorithm to find x̂(µ), and an interval in which F (µ) − pσ 2 changes sign, then we can find µχ2 as the root of 
F (µ) − pσ 2 = 0. This is the same approach as can be applied when applying the DP to the residual.

Here we adapt a standard bisection algorithm to find the root µχ2 , assuming initial estimates for µmin and µmax such 
that F (µmin) − pσ 2 < 0 < F (µmax) − pσ 2. First, we note that we can use the estimate µmax = 2‖A'b‖∞ . Moreover, an 
estimate of µmap can be helpful. Even though µmap may be generally inadequate as the actual estimator for a good choice 
of µ, it can be used to suggest an interval in which a suitable µχ2 exists. Using µmap we define an interval for µχ2

by using µmin = 10−qµmap and µmax = min(10qµmap, 2‖A'b‖∞) for a suitably chosen q such that F (µmin) − pσ 2 < 0 <
F (µmax) − pσ 2. We can then apply bisection to seek the root in this interval. Empirically we observe that it is more 
efficient to use a logarithmic bisection for getting close to a suitable root, given that the range for suitable µ may be large. 
We further note, as observed in [60, Remarks 1 and 2], that the bisection relies not only on finding a good interval for µ
such that F (µ) − pσ 2 goes through zero, but also, as already stated, on the availability of good estimates for p and σ 2. 
These limitations (i.e., providing statistics on the data and an estimate of the DF) are the same as the ones arising when 
using the standard DP, or the χ2-estimate on the augmented residual in eq. (3), [61,63].

Bisection is terminated when one of the following conditions is satisfied: (i) µmax −µmin < τ2(1 +|µmin|); (ii) |̃F (µmax) −
F̃ (µmin)| < τ2; (iii) µmax − µmin < τ1 or (iv) a maximum number of total function evaluations are reached. First, note that 
the limit on function evaluations is important because each evaluation requires finding ̂x(µ), i.e., solving eq. (2) for a given 
choice of µ. Second, the estimate τ1 determines whether or not a tight estimate for µχ2 is required. In contrast, the 
parameter τ2, provides a relative error bound on µ that is relevant for large µ. It also permits adjustment of a standard 
bisection algorithm to reflect the confidence in the knowledge of p and/or σ 2. For example, the DP is a χ2 test on the 
satisfaction of the DF in the data fit term for Tikhonov regularization and is often adjusted by the introduction of a safety 
parameter η. Then, rather than seeking ‖AxTIK − b‖2

2 = mσ 2, the right-hand side is adjusted to ηmσ 2 (here, xTIK is the 
solution of eq. (3) dependent on the parameter µ). In the same manner, we may adjust τ2 using the safety parameter η as 
a degree of confidence on the variance σ 2 or the DF. Since we solve relative to pσ 2, we can adjust using ηpσ 2 for safety 
on σ 2 or using η = (p + ζ )/p when considering a confidence interval on the DF. For example, replacing p by p + ζ for 
ζ = confidence(p, 0.05) represents a 95% confidence interval in the χ2 distribution, as used when applying the χ2 estimate 
for the augmented residual [61]. A choice based on a confidence interval is more specific than an arbitrarily chosen η. Here 
we use η = 1.

It should also be noted that the solution x̂(µ) is defined within the algorithm for a given choice of the shrinkage 
parameter γ , which should not be changed during the bisection. This means that as µ increases, with soft shrinkage 
parameter γ = µ/λ2 fixed, λ also increases, and hence the result for a specific µχ2 is dependent on a given shrinkage 
threshold.

5. Numerical experiments

In the following, we perform various large-scale numerical experiments to demonstrate the benefits of VPAL. We first 
demonstrate the performance of VPAL in comparison to a standard ADMM method on a denoising example in Section 5.1. 
We investigate its scalability in 3D medical tomography inversion in Section 5.2 and discuss regularization parameter se-
lection methods in Section 5.3. Key metrics for our numerical investigations are the relative error and relative residual, 
respectively, defined by

e(xk) = ‖xk − xtrue‖2

‖xtrue‖2
and r(xk) = ‖Axk − b‖2

‖b‖2
.

When using e(̂x(µ, λ)), or equivalently r(̂x(µ, λ)), this refers to the converged (or final) value for the error, or residual, for 
the solution ̂x for a given parameter set (µ, λ).

While various iterative techniques for the solution of eq. (10) have been discussed in the literature, including a general-
ized Krylov approach, e.g., [11], a standard approach is to use the LSQR algorithm, also based on a standard Krylov iteration 
[70] (using an algorithm consistent relative stopping tolerance, here, τ = 10−4). This is our method of choice when com-
paring Algorithm 2 with Algorithm 1, and when presenting results for !2 regularization. In computations where we report 
timings we are using a 2013 MacPro with a 2.7 GHz 12-core Intel Xeon E5 processor with 64 GB Memory and 1866 MHz 
DDR3 running with macOS Big Sur and Matlab 2021a.

5.1. Denoising experiment

In the first experiment, we investigate the convergence of VPAL, compared to ADMM. We consider an image denoising 
problem with A = In , while b is a Matlab test image eSFRTestImage.jpg of size 1, 836 × 3, 084, so that xtrue is of size 
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Fig. 1. On the left we show Matlab’s test image eSFRTestImage.jpg representing xtrue, on the right we depict noisy observations represented by b with 
10% Gaussian white noise which yields an SNR of 20.

Fig. 2. The left panel displays the relative residual, while the right panel depicts the relative error for VPAL (solid blue line) and ADMM (dashed red line). 
Both methods converge to an approximation of xtrue where the relative difference between ADMM and VPAL is negligible.

n = 16, 986, 672, see Fig. 1, left panel2. We contaminate xtrue with 10% Gaussian white noise, which yields an SNR of 20, 
see Fig. 1 right panel. Here, we utilize a total variation regularization where D is the 2D finite difference matrix. We fix 
the regularization parameter as µ = 10, select a stopping tolerance τ = 10−4, and observe the relative error e(xk) and 
relative residual r(xk) with iteration k for both methods. The final approximations are denoted by xVPAL and xADMM with 
reconstruction errors e(xVPAL) = 2.890 ·10−2 and e(xADMM) = 2.887 ·10−2, respectively. Results are displayed in Fig. 2, where 
it is shown that ADMM reaches the solution in fewer iterations than VPAL, 28 to 38 iterations, respectively. The number 
of outer iterations used in Algorithms 1 and 2 is, however, an ambiguous computational currency. Following the discussion 
above, the main computational cost of ADMM is the number of LSQR iterations utilized for each outer iteration k, while
VPAL has the equivalent computational complexity of only one LSQR iteration for each k. Factoring in these computational 
costs, we notice that ADMM overall requires 141 LSQR iterations. In contrast VPAL requires 38 computations, indicating 
almost a factor of four improvement in the total number of LSQR iterations. Consequently, we expect VPAL to converge 
more rapidly.

Along this line, we extend our investigations and examine wall clock times, see Fig. 3. Using the same computational 
setup as before, we consider varying sizes of the image in Fig. 1, left panel. Note that in this setup we also slightly vary the 
regularization parameter µ ∈ [1, 20] to obtain more realistic timings for “near optimal” regularization parameters. Addition-
ally, in our comparison, we include timings for a generalized Tikhonov approach of the form eq. (3). Here this is referred to 
as TIK and can be seen as a computational lower bound for VPAL and ADMM (left). Notice our comparison to a generalized 
Tikhonov approach comes with an asterisk, because (1) the range of good regularization parameters is largely different (to 
obtain close to optimal regularization parameters we choose µ̃ ∈ [0.1, 0.4]) and (2) the Tikhonov approach leads to inferior 
reconstructions. Nevertheless, we confirm that despite its computational superiority, VPAL does not lack numerical accuracy 
in comparison to ADMM. We depict the relative errors e(xVPAL), e(xADMM), and e(xTIK) in Fig. 3 right panel.

In Fig. 4 we show the average gain in computational speed-up of VPAL as compared to ADMM. Depicted is the ratio of 
the wall clock timing (ADMM/VPAL), confirming the computational advantage of VPAL with an approximate average speed-
up of about 8. Additionally, we recorded the ratio of how many O((m + !)n) operations (the main computational costs of 
LSQR equivalent steps) on average each of the methods requires (ADMM/VPAL).

2 A simplified demo VPAL code based on this example is provided in Appendix A. A VPAL implementation will be maintained and updated at
www.github.com/matthiaschung/vpal.
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Fig. 3. The left plot shows the wall clock timing of VPAL (solid blue line), ADMM (dashed red line), and TIK (dotted yellow line) with increasing image size 
n. Depicted on the right are the corresponding relative reconstruction errors. Despite their differences in computational complexity, both VPAL and ADMM
produce nearly identical reconstructions and are virtually indistinguishable, while TIK generates inferior reconstructions.

Fig. 4. Depicted is the computational gain of VPAL compared to ADMM. The solid black line shows the timing ratio VPAL/ADMM. The dashed violet line 
shows the ratio of O((m + !)n) operations (main computational cost) of ADMM compared to VPAL.

Fig. 5. The left panel illustrates the 3D Shepp-Logan phantom using slice planes, while the right panel shows the reconstructed Shepp-Logan phantom using
VPAL.

Note, due to the similar curves in Fig. 4, we empirically confirm that the computational costs are dominated by the 
LSQR solves. Hence, this denoising experiment illustrates that VPAL compared to ADMM reconstructs images accurately at a 
reduced computational cost.

5.2. 3D medical tomography

To demonstrate the scalability of our VPAL method, we consider a 3D medical tomography application. As a ground 
truth, we consider the 3D Shepp-Logan phantom, illustrated in Fig. 5 (left panel) by slice planes. For the discretization of 
the Shepp-Logan phantom we use 255 × 255 × 255 uniform cells, corresponding to xtrue ∈R16,581,375. Data is generated by 
a parallel beam tomography setup using the tomobox toolbox [54]. We constructed projection images from 100 random 
directions each of size 255 × 255. The projection images are contaminated with 5% white noise, an SNR of approximately 
26, see four sample projection images in Fig. 6. Consequently, the ray-tracing matrix A is of size 6, 502, 500 × 16, 581, 375. 
Note that A is underdetermined and therefore is outside the scope of Theorem 3.4 without convergence guarantees. As 
the regularization operator, we use 3D total variation. Here, D is of size 49, 549, 050 × 16, 581, 375 and uses zero boundary 
conditions. The regularization parameter is set to µ = 5, and we use VPAL with its default tolerance set to τ = 10−6.
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Fig. 6. Shown four projection images with 5% white noise and an SNR of approximately 26.

Fig. 7. Absolute error of 3D tomography image slices of the reconstruction xVPAL in each principal (x, y, and z) coordinate direction with an inverted 
colormap, where darker gray values correspond to larger absolute errors with a largest absolute error of about 0.5346.

Fig. 8. The left graph shows the relative error of the reconstructions xk at each iteration of VPAL of the 3D tomography problem. The right graph shows 
the corresponding objective function value ϕ(xk) at each iteration. Note that with this under-determined A the relative error is monotonically decreasing, 
while the objective function value is not monotonically decreasing.

VPAL requires 414 iterations to converge within the given tolerance with a wall clock time of about 2.4 hours. The 
reconstructed 3D Shepp-Logan phantom xVPAL is illustrated in Fig. 5 (right panel) by slice planes. The corresponding relative 
error is e(xVPAL) = 0.1167. A reconstruction error below 12% is noteworthy, considering that the matrix A is significantly 
underdetermined. Again, notice that a standard Tikhonov regularization (D = In) using LSQR is significantly faster (about 3.5
minutes); however, the relative reconstruction error is inferior. The Tikhonov approach does not generate a relative error 
below 35% even when utilizing an optimal regularization parameter (data not shown).

Reconstruction results are further illustrated in Figs. 7 and 8, which show the absolute error image, and relative recon-
struction errors xk of VPAL with the corresponding objective function value ϕ(xk) at each iteration, respectively. We notice 
fast but not necessarily monotonically decreasing objective function values ϕ(xk).

5.3. Experiments on regularization parameters

We discuss experiments using the bisection algorithm to identify µχ2 . As a test bed, we investigate a deblurring (blur), 
2D medical tomography (tomo), and seismic (seismic) inversion problem. For each problem we utilize the Matlab Toolbox
IRtools; see [32]. In all cases, we select Gaussian noise, and for blur we use a severe shake blur for the Hubble 
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space telescope, for tomo we use the 2D Shepp-Logan phantom, while for seismic we select the tectonic phantom. 
In all usages of the VPAL algorithm, we select a stopping tolerance of τ = 10−4 and limit the number of outer iterations to 
1, 000. For the bisection algorithm, we set τ1 = 0.01, τ2 = 0.02, limit the number of bisection steps to 10, and always use the 
safety parameter η = 1. Note that each bisection is a full solve of VPAL and thus the total maximum number of solves could 
be as high as 10, 000 with these settings. There is a trade-off between the accuracy of the desired root and the potential for 
high computational overhead by carrying out the bisection. We investigate calculating the optimal µ using the χ2 estimator 
for a fixed γ . We also investigate using the DP by applying bisection and root-finding for H(λ) = ‖Ax(λ) − b‖2

2/mσ 2 − 1.
We investigate each of these experiments for various image and data sizes. Our results are presented for four problem 

sizes with N ranging from 64 to 512, corresponding to image sizes n = N2 (4, 096, 16, 384, 65, 536, and 262, 144) for 
problem blur, tomo and seismic. The size of the data vector b varies with the application, where m = n for blur, 
m = 16, 380, 32, 580, 65, 160, and 130, 320 for tomo and m = 8, 192, 32, 768, 131, 072, and 524, 288 for seismic. These 
experiments correspond to m = n for all the blur cases, m > n for seismic (over-determined), and with tomo m < n
(under-determined) for the two larger experiments. In each of these experiments, we investigate white noise levels of 10%
and 20%, corresponding to SNR of 20 and 13.98 in each case. The results are summarized in Figs. 9, 10, 11.

To describe the plots, we note that we first fix γ and estimate µχ2 , yielding the point (µχ2 , γ ) indicated with the red 
inverted triangle. Given µχ2 we also calculate an optimal choice for λ using the DP, yielding the point (µχ2 , λχ2 ) indicated 
with the green open circle. Then for known µmap we also apply the DP to find λ, yielding the point (µmap, λmap) indicated 
with the blue triangle. The solid red and dashed blue lines are obtained by fixing µχ2 and µmap, respectively, and then 
solving the problem for 50 choices of λ logarithmically spaced in the intervals [λχ2 /100, 100λχ2 ] and [λmap/100, 100λmap], 
respectively. Note that fixing µ and varying λ is also equivalent to fixing µ and varying γ .

In these figures, the oscillations in the relative error curves occur if the algorithm did not converge within 1, 000 itera-
tions, which is more prevalent for small values of λ. Given that µ is fixed on these curves, this corresponds to taking larger 
values of the shrinkage parameter γ . Flat portions of the curves indicate the relative lack of sensitivity to the choice of 
λ (respectively γ ) for a fixed µ, equivalently confirming that the optimal µ is largely independent of γ within a suitably 
determined range, dependent on the data and the problem.

We see immediately that finding µχ2 by the χ2-DF test yields smaller relative errors in the solutions than when the 
solution is generated using µmap, the circles and inverted triangles are lower than the triangles, and except where there 
are issues with convergence, the solid curves lie below the dashed curves. This is notwithstanding that the χ2 -DF test 
and the MAP estimators do not immediately apply for the tomo and seismic problems, since neither corresponds to a 
differentially Laplacian solution. Indeed, the Hubble space telescope image is also not a perfect example of such an image, 
but the results demonstrate that the approach still works reasonably well. On the other hand, comparing now inverted 
triangles and open circles contrasts the impact of finding µχ2 by the χ2-DF test (inverted triangle) and then assessing 
whether the standard DP to find λ (open circle) might be a better option. It is particularly interesting that the χ2-DF test 
does uniformly well on tomo and seismic problems, but there are a few cases with blur in which the DP finds a λ that 
yields a smaller relative error. Even in these cases, the results are good using the χ2-DF result. In all situations, it is clear 
that we would not expect to find an optimal λ that is at the minimum point of the respective relative error curve, but in 
general, the results are acceptably close to these minimum points. Overall, these results support the approach in which we 
pick a shrinkage parameter γ and find µχ2 using the χ2-DF test by bisection. The results presented for the DP approach 
to finding λ were provided to contrast the two directions for estimating the parameters. Indeed, it is clear that finding a 
µ to fit F (µ) given by eq. (21) to mσ 2 and then fitting the residual term also to mσ 2, by applying the DP to find λ, will 
necessarily increase the value of F (µ). This set of results demonstrates that there is no need to use the DP principle; rather, 
optimizing based on eq. (13) is appropriate for all the test problems.

To assess the effectiveness of finding optimal regularization parameters using the automatic approach, we also performed 
a parameter sweep over a grid of values for (µ, λ) for the experiments that use 10% noise, corresponding to an SNR of 20. 
For each point on the grid, we calculated both the relative error e(x(µ, λ)) and the χ2 value, |F (µ, λ)/mσ 2 − 1|. The left 
panels and right panels in Figs. 12 to 14 show the contour plots for the relative errors and χ2 estimates, respectively. The 
circles correspond to the points with minimum error and the squares to the points with minimum χ2 value. If they are 
close we would assert that the χ2 is optimal for finding a good value for µ. In general, the contours are predominantly 
vertical, confirming that the solutions are less impacted by the choice of λ (and hence shrinkage γ ) than of µ. Further, it 
is necessary to examine the values for the contours, given in the color bar, in order to assess whether the χ2 is not giving 
a good solution. From Figs. 12 and 13 we can conclude that the difference in the relative error from using the χ2 estimate 
for µ rather than the optimal in terms of the minimal error is small; all values lie within the contours for low values as 
shown in the colorbars. Even for the seismic case shown in Fig. 14 the contour level for the relative error changes only 
from about 0.06 to 0.09. The captions give the actual calculated relative errors for the circle and squares.

Finally, to demonstrate the applicability of the bisection algorithm for other differentially Laplacian operators D, we 
present a small sample of results when D is the Laplace matrix. We use the same data sets blur, tomo and seismic, 
with the same noise levels corresponding to SNRs of 20 and 13.98, and the same problem sizes, and replace the TV matrix 
by the Laplace matrix. In Fig. 15 we collect the results for all problem sizes in one plot per test, where in each case the 
lines are solid, dashed, dotted and dash-dots for problem sizes 64, 128, 256 and 512, respectively. In each plot we show the 
relative error curves for a range of λ around the optimal µ for a specific shrinkage parameter γ (solid symbols) found using 
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Fig. 9. Results for blur example for varying λ and fixed regularization parameter µ, µmap and µχ2 for the solid blue and dashed red curves, respectively. 
Also marked for the given fixed µ choices are the optimal λ found using the DP. The first row shows relative errors for different image sizes (n =
642, 1282, 2562, and 5122) with a noise level of 10% corresponding to a signal-to-noise ratio (SNR) of 20. The second row shows relative errors with a 
noise level of 20% corresponding to an SNR of 13.98.

Fig. 10. Results for tomo example for varying λ and fixed regularization parameter µ, µmap and µχ2 for the solid blue and dashed red curves, respectively. 
Also marked for the given fixed µ choices are the optimal λ found using the DP. The first row shows relative errors for different image sizes (n =
642, 1282, 2562, and 5122) with a noise level of 10% corresponding to a signal-to-noise ratio (SNR) of 20. The second row shows relative errors with a 
noise level of 20% corresponding to an SNR of 13.98.

the χ2-DF test. The results again demonstrate the ability of the bisection algorithm with the χ2-DF test to find solutions 
with near-optimal relative errors.
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Fig. 11. Results for seismic example for varying λ and fixed regularization parameter µ, µmap and µχ2 for solid blue and dashed red curves, respectively. 
Also marked for the given fixed µ choices are the optimal λ found using the DP. The first row shows relative errors for different image sizes (n =
642, 1282, 2562, and 5122) with a noise level of 10% corresponding to a signal-to-noise ratio (SNR) of 20. The second row shows relative errors with a 
noise level of 20% corresponding to an SNR of 13.98.

Fig. 12. Problem blur: Calculating the relative error and χ2 departure from mσ 2 for a logarithmically uniform grid of points (µ, λ). The minimum relative 
error is at the red circle and the minimum for the χ2 is at the black square. The obtained minimum values for the relative errors at these points are 
0.1820 and 0.1840 and occur for shrinkage parameter γ = 0.0016, and 0.0013, respectively.

In summary, we observe empirically that VPAL converges particularly fast with only a few iterations, when a near-optimal 
regularization parameter is selected using the χ2-DF test. Moreover, due to the efficiency of the approach, it is completely 
feasible to use VPAL for the multiple solves that are required in a root-finding algorithm to estimate µχ2 for fixed λ.

6. Discussion & conclusions

In this work, we presented a new method for solving generalized lasso problems using variable projection and inexact 
solves within a standard inner iteration. The resulting VPAL algorithm yields an efficient and provably convergent method. 
Our investigations included various numerical experiments illustrating the efficiency and effectiveness of our new VPAL
method for different regularization operators D. The feasibility of using VPAL within the context of automatic determination 
of the regularization parameter for image restoration problems using a simple bisection root-finding method is also verified.

311



M. Chung and R.A. Renaut Applied Numerical Mathematics 192 (2023) 297–318

Fig. 13. Problem tomo: Calculating the relative error and χ2 departure from mσ 2 for a logarithmically uniform grid of points (µ, λ). The minimum relative 
error is at the red circle and the minimum for the χ2 is at the black square. The obtained minimum values for the relative errors at these points are 
0.1301 and 0.1449 and occur for shrinkage parameter γ = 0.2499, and 0.0076, respectively.

Fig. 14. Problem seismic: Calculating the relative error and χ2 departure from mσ 2 for a logarithmically uniform grid of points (µ, λ). The minimum 
relative error is at the red circle and the minimum for the χ2 is at the black square. The obtained minimum values for the relative errors at these points 
are 0.0569 and 0.0846 and occur for shrinkage parameter γ = 0.0853, and 0.8125, respectively.

Our investigation of the variable projection augmented Lagrangian method provides a new angle on solving generalized 
lasso problems and suggests several directions for future study. As already noted in Remark 6 necessary convergence results 
given in Theorem 3.4 for Algorithm 2 apply more generally. It is of future interest to investigate specific rate of convergence 
results for the inexact formulation, utilizing results from inexact ADMM methods e.g., [45]. Second, although we utilize a 
CG update for the inner iteration, other update strategies may be employed. Since this is a nonlinear problem we may for 
instance utilize LBFGS updates or nonlinear Krylov subspace methods. Third, estimating a good regularization parameter 
µ remains a costly task. In [23] iterative regularization approaches estimating µ on a subspace were investigated and 
demonstrated a computational advantage. It remains to be seen whether the same direction is robust when integrated 
within VPAL. Fourth, while here we consider !2 − !1 norm regularization, the developed approach extends also to other 
!p − !q norm problems [20,18] and even to more general objective functions. We will investigate the convergence and 
numerical advantages and disadvantages of utilizing a variable projection approach for such !p − !q problems and for 
supervised learning loss function fitting within this framework. Fifth, row action methods have been developed to solve 
least squares and Tikhonov-type problems of extremely large scale where the forward operator A is too large to keep 
in computer memory [22,75]. We will investigate how VPAL can be extended to such settings and investigate convergence 
properties and sampled regularization approaches. Sixth, we will investigate and extend our variable projection optimization 
method to other suitable optimization problems such as for efficiently solving the Sylvester equations [7]. Further, due to 
the nature of the variable projection approach VPAL extends naturally to nonlinear models A : Rn → Rm which will be a 
topic of future investigation.
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Fig. 15. Results for the blur, tomo and seismic problems using the Laplace operator for D. Here solid blue, dashed red, dotted yellow, and dash-
dot purple curves and solid symbols correspond to results for problems of image sizes n = 642, 1282, 2562, and 5122, respectively. The solid symbols 
indicate the points selected by using the bisection algorithm applied to satisfy the χ2-DF test. The first row shows relative errors with a noise level of 10%
corresponding to a signal-to-noise ratio (SNR) of 20. The second row shows relative errors with a noise level of 20% corresponding to an SNR of 13.98.
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Appendix A. Matlab code

A.1. vpal.m

function [x, f, info] = vpal(A, b, options)
% function [x, f, info] = vpal(A, b, options)
%
% Authors:
% (c) Matthias Chung (e-mail: matthias.chung@emory.edu) in June 2023
% Rosemary Renaut
%

313



M. Chung and R.A. Renaut Applied Numerical Mathematics 192 (2023) 297–318

% MATLAB Version: 9.10.0.1649659 (R2021a) Update 1
%
% Version 1.0 (simple)
%
% Description:
% Variable projected augmented Lagrangian method for solving l_1
% regularized problems
%
% x = argmin_x f(x) = 1/2||Ax-b||^2 + mu ||Dx||_1
%
% where D is the convolution operator, mu > 0 (optional s.t. xmin <= x <= xmax)
%
% Input arguments:
% A - forward model (m x n) may be an object
% if A is scalar or empty, method is denoising
% b - observation vector (m x 1) (column vector)
% options [further options of algorithm]
% .x - inital guess of x [default x = 0]
% .mu - regularization parameter
% .lambda - Lagrange multiplier
% .tol - tolerance [default 1e-4 ]
% .D - dOperator object in regularization term ||Dx||_1
% .maxIter - maximal number of iterations [ 10 * length(b) ]
% .display - print to display [ {’off’} | ’iter’ | ’final’ ]
%
% Output arguments:
% x - local minimizer
% f - normalized loss (Ax-b)/norm(b)
% iter - number of SB iterations used -needed for sanity check RR8 remove later
% info [additional info on algorithm]
% .iter - number of iterations
% .f - function value
% .tol - selected tolerance
% .maxIter - selected maximum number of iterations
% .mu - regularization parameter during iteration
% .lambda - Lagrange multiplier during iteration lambda^2
% .stop - stopping criteria during iteration (f, x, maxIter)
% .D - d-operator
%

% initialize default input options
maxIter = 10*size(b,1); display = ’off’; tol = 1e-4; xtrue = []; lambda = 1; mu = 0;

if nargin == nargin(mfilename) % rewrite default parameters if needed
for j = 1:2:length(options)

eval([options{j},’= options{j+1};’])
end

end

if nargout > 2, getInfo = 1; else, getInfo = 0; end

if getInfo % general info of method
info.tol = tol;
info.maxIter = maxIter;

end

% display and algorithm info
if strcmp(display, ’iter’) || strcmp(display,’final’)
fprintf(’\nvpal algorithm (simple) (c) M. Chung & R. Renaut, June 2023\n’);
if strcmp(display,’final’) == 0

fprintf(’\n %-10s %-7s %-10s \n’,’iter’,’loss’,’stop criteria’);
end

end

if max(size(A)) == 1; n_A = size(b,1); else, n_A = size(A,2); end % get number of unknowns

if ~exist(’D’,’var’) % no operator is provided, default is identity
D = dOperator(’identity’,n_A);

elseif isa(D,’dOperator’) % operator is provided and of class dOperator
m_D = D.sizes(1);

else
m_D = size(D,1); % operator is provided and is matrix

end

c = zeros(m_D,1); y = c; normb = norm(b); f = inf; xOld = inf; % initialize
iter = 1; lambda2 = lambda^2;
if exist(’x’,’var’)

Dx = D*x; r = A*x-b;
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else
Dx = c; x = zeros(n_A,1); r = -b;

end

while 1

% step 1 Tikonov CG update
g = A’*r + lambda2 *(D’*(Dx - (y-c)));
Ag = A*g; Dg = D*g;
x = x - ((g’*g)/((Ag’*Ag) + lambda2*(Dg’*Dg)))*g;

% update Dx and residual
r = A*x - b; Dx = D*x;

% step 2 shrinkage
c = Dx + c; y = sign(c).*max(abs(c) - mu/lambda2, 0);

% step 3 update c
c = c - y;

% calculate loss
fOld = f; f = 0.5*norm(r)^2 + mu*norm(Dx,1);

% stopping criteria
stop1 = abs(fOld - f) <= tol * (1 + f);
stop2 = norm(xOld - x,’inf’) <= sqrt(tol) * (1 + norm(x,’inf’));
stop3 = iter > maxIter-1;

if getInfo
info.f(iter) = f;

end

if strcmp(display,’iter’) % display iteration results
fprintf(’%5d %14.6e %4d%1d%1d\n’, iter, f, stop1, stop2, stop3);

end

if (stop1 && stop2) || stop3 % check stop criteria
if stop3
warning(’Matlab:vpal:maxIter’,...
’Maximum number of iterations reached. Return with recent values.’)

end
break;

end

xOld = x; iter = iter + 1;

end

if (strcmp(display,’iter’) || strcmp(display,’final’)) && ~stop3 % display
fprintf(’\nLocal minimizer found. Function value is %1.8e.\n’, f);

end

A.2. dOperator.m

classdef dOperator
% classdef dOperator
%
% Authors:
% (c) Matthias Chung (matthias.chung@emory.edu) and Rosemary Renaut in June 2023
%
% MATLAB Version: 9.11.0.1769968 (R2021b)
%
% Version 1.0 (simple)
%
% Description:
% dOperator provides a class fo finite-difference
%
% D = dOperator(dimension)
%
% Properties:
% dimension - provides dimension of object for matrix with object dimension m x n
% sizes - provides the dimension of the matrix D
% transposed - flag if operator is transposed or not

properties
dimension
sizes
transposed

end
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methods

% initialize D operator
function D = dOperator(dimension)

D.dimension = dimension; % provide dimension of operator
D.sizes = [2*prod(D.dimension)-sum(D.dimension), prod(D.dimension)];
D.transposed = false;

end

% transpose method
function D = ctranspose(D)

D.transposed = not(D.transposed);
D.sizes = flip(D.sizes);

end

% size method
function s = size(D,dim)

if nargin < 2
s = D.sizes;

else
s = D.sizes(dim);

end
end

% mtimes method
function x = mtimes(D, x)

if D.sizes(2)~=size(x,1), error(’size mismatch’); end
if ~D.transposed

x = reshape(x,D.dimension(1),D.dimension(2));
x = [reshape(diff(x,1,1), D.dimension(2)*(D.dimension(1)-1),1); ...

reshape(diff(x,1,2), D.dimension(1)*(D.dimension(2)-1),1)];
else % transposed case

z1 = zeros(1,D.dimension(2)); % augment zeros
z2 = zeros(D.dimension(1),1); % augment zeros
split = D.dimension(2)*(D.dimension(1)-1);
x1 = x(1:split);
x2 = x(split+1:end); % split
x1 = reshape(x1, D.dimension(1)-1, D.dimension(2) );
x2 = reshape(x2, D.dimension(1), D.dimension(2)-1);
x = -reshape(diff([z1;x1;z1],1,1) + diff([z2,x2,z2],1,2),prod(D.dimension),1);

end

end

end
end

A.3. driverDenoisingExample.m

% This is a matlab driver file for a denoising example using the vpal
% method. The corresponding optimization problem is
% min_x 1/2||x-b||^2 + mu*|Dx||_1,
% where D is the finite difference operator. This example requires the
% following files: vpal.m and dOperator.m
%
%(c) Matthias Chung (e-mail: matthias.chung@emory.edu) and Rosemary Renaut in June 2023
%
clc, clear, close all % set fresh start

rng(0) % set random seed for consistent result
xtrue = double(imread(’cameraman.tif’)); [m,n] = size(xtrue); % load image
A = 1; b = xtrue + 10*randn(m,n); % setup denoising problem
D = dOperator([m,n]); % define finite difference operator
[x, ~, info] = vpal(A,b(:),{’D’,D,’mu’,5,’display’,’iter’}); % run vpal method

sgtitle(’Simple Denoising Example’) % visualize results
subplot(1,3,1), imshow(xtrue,[]), title(’true’) % original image
subplot(1,3,2), imshow(b,[]), title(’noisy image’) % noisy image
xlabel([’rel. error: ’, num2str(norm(b(:) - xtrue(:))/norm(xtrue(:)))])
subplot(1,3,3), imshow(reshape(x,m,n),[]), title(’vpal reconstruction’) % reconstructed image
xlabel([’rel. error: ’, num2str(norm(x - xtrue(:))/norm(xtrue(:)))])
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