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Abstract—The study of sleep is crucial for understanding
how our bodies function, and electroencephalogram (EEG)
offers a convenient way to examine sleep. Sleep can be
categorized into wakefulness, rapid eye movement (REM)
sleep, and stages 1-4, with 4 being the deepest stage of sleep.
We strive to study how well EEG data help classify brain
waves into these stages. The goal of this paper is to construct
low dimensional features that are computationally efficient,
robust, and effective for sleep detection and analysis. We
experiment with EEG band power analysis, principal
component analysis (PCA), and autoencoder to reduce the
dimensionality of the EEG data and evaluate their
performances in classification. We find that, even when highly
compressed, two dimensional features are still sufficient to
obtain satisfactory classification accuracies: 89.3%, 88.8%,
and 90% from band power analysis (using delta and alpha
waves), PCA, and autoencoder, respectively.

Index Terms—Autoencoder, linear discriminant analysis
(LDA), PCA, sleep stages classification

I. INTRODUCTION

Sleep is a naturally occurring state of rest where, apart
from dreams, the mind resides in unconsciousness. On
average, humans spend one third of their lives sleeping and
cannot survive more than a few days without it. Insufficient
sleep has been linked to many health problems such as type 2
diabetes, cardiovascular disease, obesity, and depression,
which plague human society and reduce the quality of life

[1].

A full night of rest should take us through 4 to 5 cycles of
sleep stages: rapid eye movement (REM) sleep and stages 1-
4, which are categorized by brain wave frequencies and used
to determine the depth of sleep. Of the many ways for
studying sleep, electroencephalogram (EEG) data collected
through specialized electrodes and circuits can effectively
display the inner levels of brain activity.

Sleep has been extensively studied in multiple fields, and
researchers from the machine learning society have
developed numerous approaches to classify sleep stages. For
example, supervised learning methods such as support vector
machines (SVM) [2]-[3] and neural networks [4]-[5] are
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commonly used to develop classifiers for sleep detection.
Semi-supervised learning and transfer learning also offer
promising approaches for sleep states classification [6]-[7].
However, these machine learning methods often require a
large amount of labeled data and are computationally
demanding in training and operation. This becomes
especially apparent for the scenarios with constraints in
computation and power, e.g., wearable computing—
collecting brain wave signals and estimating brain status
using compact wearable devices.

To address the above mentioned challenges, this paper
studies the dimensionality reduction issue in constructing
effective features from EEG data. Our goal is to find robust
low dimensional features for sleep stages classification. We
investigate the geometrical characteristics of EEG data in the
low dimensional space and strive to gain intuition on how
well the EEG data cluster in the compressed feature space.
This can help us not only build classifiers directly from these
low dimensional features but also incorporate clustering
information of unlabeled EEG data in training the classifiers.
In this paper, we experiment with three methods—EEG band
power analysis, principal component analysis (PCA), and
autoencoder—to search for low dimensional features. We
find that the EEG band power is an informative and reliable
source for construction of low dimensional EEG features:
band-power related features with only two dimensions
obtained by any of the three methods mentioned above are
able to obtain satisfactory classification accuracies (higher
than 88%).

The rest of the paper is organized as follows. Section II
explains the methods, and Section III presents the
experimental results and discusses the observations and
insights from the results. Section IV concludes the study.

II. METHODS

A. Filtering Procedure

The EEG data came from PhysioNet [8]. We only used
the first data file for consistency, and the data contained
records of brain waves during sleep of a 33 year old female.
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The collected raw data were recorded at a frequency of 100
Hz in 30 second intervals. We filtered this 3000 dimensional
vector using a second-order Butterworth filter (MATLAB
Signal Processing Toolbox) with cutoff frequencies of 1-4
Hz for delta wave, 5-8 Hz for theta wave, 9-12 Hz for alpha
wave, and 13-25 Hz for beta wave. Their band powers can be
used as 4 dimensional features representing the strength of
the four brain wavebands. From here, we applied the PCA,
autoencoders, and original brainwave band powers to extract
low dimensional features (described in the following
subsections).

B. PCA

PCA is a commonly used technique for dimensionality
reduction. In this paper, we implemented PCA on a set of 4
dimensional vectors each containing the band powers of the
filtered delta, theta, alpha, and beta waves. From our dataset
(a total of 2650 data points), we performed a training/testing
split in which 75% of the values were randomly chosen to
be utilized for training, and the remaining 25% for testing.
After normalizing all of the data, we fit PCA on the training
set and then applied the mapping on both the training and
testing sets. We used the linear discriminant analysis (LDA)
(trained and tested with the same data used earlier) to
calculate fair accuracies of classification. Specifically, we fit
the LDA model with the 2 dimensional vectors (principal
components) extracted by PCA from the training set, and
evaluated the LDA model with the testing set.
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Fig. 1. Example of the waveforms of raw EEG signal
and various frequency bands.

C. Autoencoder

An autoencoder is a specific type of neural network that
is trained to produce an output which closely mirrors the
input. It has a “bottle neck” in the middle where the
dimensionality is reduced and the input data is compressed.
We used the band powers of the filtered delta, theta, alpha,
and beta waves as the 4 dimensional input to the
autoencoder. We used the same 75%/25% training/testing
split as used for the PCA and LDA. We experimented a set
of autoencoders on Python with multiple architectures
including 3, 5, and 7 layers, varying the number of nodes in
each layer. The accuracies were calculated with the LDA
using the same process as was used for the PCA. We fit the
2 dimensional features extracted from the autoencoder
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during training into the LDA model. Then, we tested it using
the features from testing the autoencoder.

D. Original Wavebands

We also applied the LDA directly on the band powers of
the four EEG waves, comparing the accuracies of using
different combinations of the band powers of the EEG
waves. Using the same data and training/testing split the
same way as before, we fit the LDA on different wavebands
and ran it on the testing data to achieve the accuracy scores.

III. RESULTS AND DISCUSSIONS

A. Raw Waveforms

Fig. 1 shows an example of waveforms of the raw EEG
signal and the four filtered frequency bands: delta, theta,
alpha, and beta waves.

B. Waveband Powers as Low Dimensional Features

We investigated different combinations of waveband
powers, which were directly used as low dimensional
features for sleep stages classification with an LDA model.
The accuracy results of the LDA classifier are summarized
in Table I. It can be seen that among the four wavebands,
the delta wave alone was able to produce respectable
classification results (with an accuracy of 86.8% + 2.0%).
Also, surprisingly, the two wavebands delta and alpha in
combination formed excellent features (with an accuracy of
89.3% + 2.0% in classification) that outperformed using
three or four filtered wavebands as features. Fig. 2
visualizes the clustering and classification results using band
powers of delta and alpha waves as features for the LDA.

TABLE1
ACCURACY RESULTS OF LDA USING DIFFERENT COMBINATIONS OF
WAVEBAND POWERS AS FEATURES

Accuracy (standard

Features deviation)
Delta 86.8% (+2.0%)
Theta 78.5% (£ 1.9%)
Alpha 74.2% (£ 1.4%)
Beta 73.8% (+ 1.3%)
Delta and theta 89.2% (£ 1.5%)
Delta and alpha 89.3% (£2.0%)
Delta and beta 87.8% (£ 1.7%)
Theta and alpha 86.9% (£ 2.2%)
Theta and beta 86.5% (£2.1%)
Alpha and beta 88.6% (£ 1.9%)

Delta, theta, and alpha 88.2% (£ 2.7%)

Delta, theta, and beta 87.4% (£2.2%)
Delta, alpha, and beta 89.4% (£ 2.4%)
Theta, alpha, and beta 87.3% (£ 3.3%)
Delta, theta, alpha, and beta 88.0% (£2.6%)
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Fig. 2. Clustering and classification results using band powers of
delta and alpha waves as features for the LDA.
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Fig. 3. Clustering and classification results using the
first two PCs as features for the LDA.

C. Extracting Low Dimensional Features Using PCA

Fitting PCA on the training set (each data point being a
four dimensional vector of EEG waveband powers)
achieved variances of 0.5822 and 0.4042 for the first and
second principal components (PCs), respectively, and these
two PCs in total explained variance of approximately
0.9864. After applying these two PCs as the low
dimensional features, the LDA classifier achieved an
accuracy of 88.8% (£ 2.0%). Fig. 3 visualizes the clustering
and classification results using the first two PCs as features
for the LDA.
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D. Autoencoder

The autoencoder was built and tested with varying
architectures. Table II lists the accuracy results of LDA
using the two dimensional features obtained by the
autoencoder (using the outputs of the two nodes in the
middle layer of the autoencoder as features). Each number
under the “structure” column represents the number of
nodes in a layer of the autoencoder. For example, “4 2 4”
represents a 3 layer autoencoder with 4 nodes in the input
layer, 2 nodes in the middle layer, and 4 nodes in the output
layer. The highest accuracy was 90.0% (+ 2.0%), which was
obtained with the simplest autoencoder of three layers. Fig.
4 shows the clustering and classification results using the
two features (denoted by x; and x,) extracted by the “best”
autoencoder.

TABLE 11
ACCURACY RESULTS OF LDA USING FEATURES EXTRACTED FROM
AUTOENCODER
Structure of Accuracy (standard
autoencoder deviation)
42 4 90.0% (% 2.0%)
43234 88.7% (+ 1.4%)
44244 89.6% (+ 1.5%)
45254 88.8% (+ 1.6%)
46264 89.0% (+ 1.5%)
47272 88.4% (+ 1.8% )
48284 88.3% (£ 1.6%)
49294 88.6% (+ 1.4%)
4102104 88.7% ( 1.6%)
4112114 88.7% (£ 1.8%)
4122124 88.7% (£ 1.9%
4132134 88.6% (+ 1.5%)
4332334 88.6% (+ 1.8%)
4342432 88.5% (£ 1.4%)
4432344 88.9% (+1.8%)
4442444 88.7% (+ 1.4%)
4532354 88.4% (= 1.5%)
4632364 88.2% (£ 1.7%)
4542454 89.0% (+ 1.9%)
4642464 88.3% (+ 1.5%)
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Fig. 4. Clustering and classification results using the
two features extracted by the autoencoder.

E. Discussions

The highest accuracy result obtained by the autoencoder
was 90.0% (£ 2.0%). By comparison, we see that regular
EEG waveband powers directly can serve as effective
features for sleep stages classification, especially the delta
and alpha wavebands, with an accuracy of 89.3% (+ 2.0%).
Even the PCA achieved close results of 88.8% (£ 2.0%).

This contradicted our original expectation. For the
autoencoder, we surmised that the more complex 5 or 7
layer architectures would have greater success, but this was
not the case. Also, we did not expect for the two wavebands
alpha and delta to be such excellent low dimensional
features. Compared to the autoencoder, which is
computationally heavier, the delta and alpha waves are
robust indicators for sleep detection. This may be due to the
fact that delta waves are present during deep sleep, while
alpha waves occur more when we are awake or relaxed.

IV. CONCLUSION

Sufficient sleep is crucial for us to function properly and
maintain health. Professionals in many fields have studied it
using a range of methods. One such way to analyze sleep
patterns is through EEG. During sleep, the brain cycles
through 5 important stages (REM and stages 1-4) multiple
times. We seek to study the classification of brain waves
into these stages using EEG data. To do this, we attempt to
construct robust and computationally efficient low
dimensional features for sleep detection. We use machine
learning with EEG band power analysis, PCA, and
autoencoder to extract low dimensional features from the
EEG data. This allows us to evaluate their classification
performances. With classification accuracies of 89.3% (band
power analysis using delta and alpha waves), 88.8% (PCA),
and 90% (autoencoder), we discover that the highly
compressed two dimensional features are robust indicators
and obtain respectable accuracies.
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