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Abstract—The study of sleep is crucial for understanding 

how our bodies function, and electroencephalogram (EEG) 

offers a convenient way to examine sleep. Sleep can be 

categorized into wakefulness, rapid eye movement (REM) 

sleep, and stages 1-4, with 4 being the deepest stage of sleep. 

We strive to study how well EEG data help classify brain 

waves into these stages. The goal of this paper is to construct 

low dimensional features that are computationally efficient, 

robust, and effective for sleep detection and analysis. We 

experiment with EEG band power analysis, principal 

component analysis (PCA), and autoencoder to reduce the 

dimensionality of the EEG data and evaluate their 

performances in classification. We find that, even when highly 

compressed, two dimensional features are still sufficient to 

obtain satisfactory classification accuracies: 89.3%, 88.8%, 

and 90% from band power analysis (using delta and alpha 

waves), PCA, and autoencoder, respectively.  

Index Terms—Autoencoder, linear discriminant analysis 

(LDA), PCA, sleep stages classification  

I. INTRODUCTION 

Sleep is a naturally occurring state of rest where, apart 
from dreams, the mind resides in unconsciousness. On 
average, humans spend one third of their lives sleeping and 
cannot survive more than a few days without it. Insufficient 
sleep has been linked to many health problems such as type 2 
diabetes, cardiovascular disease, obesity, and depression, 
which plague human society and reduce the quality of life 
[1].  

A full night of rest should take us through 4 to 5 cycles of 
sleep stages: rapid eye movement (REM) sleep and stages 1-
4, which are categorized by brain wave frequencies and used 
to determine the depth of sleep. Of the many ways for 
studying sleep, electroencephalogram (EEG) data collected 
through specialized electrodes and circuits can effectively 
display the inner levels of brain activity. 

Sleep has been extensively studied in multiple fields, and 
researchers from the machine learning society have 
developed numerous approaches to classify sleep stages. For 
example, supervised learning methods such as support vector 
machines (SVM) [2]-[3] and neural networks [4]-[5] are 

commonly used to develop classifiers for sleep detection. 
Semi-supervised learning and transfer learning also offer 
promising approaches for sleep states classification [6]-[7]. 
However, these machine learning methods often require a 
large amount of labeled data and are computationally 
demanding in training and operation. This becomes 
especially apparent for the scenarios with constraints in 
computation and power, e.g., wearable computing—
collecting brain wave signals and estimating brain status 
using compact wearable devices.     

To address the above mentioned challenges, this paper 
studies the dimensionality reduction issue in constructing 
effective features from EEG data. Our goal is to find robust 
low dimensional features for sleep stages classification. We 
investigate the geometrical characteristics of EEG data in the 
low dimensional space and strive to gain intuition on how 
well the EEG data cluster in the compressed feature space. 
This can help us not only build classifiers directly from these 
low dimensional features but also incorporate clustering 
information of unlabeled EEG data in training the classifiers. 
In this paper, we experiment with three methods—EEG band 
power analysis, principal component analysis (PCA), and 
autoencoder—to search for low dimensional features. We 
find that the EEG band power is an informative and reliable 
source for construction of low dimensional EEG features: 
band-power related features with only two dimensions 
obtained by any of the three methods mentioned above are 
able to obtain satisfactory classification accuracies (higher 
than 88%).   

The rest of the paper is organized as follows. Section II 
explains the methods, and Section III presents the 
experimental results and discusses the observations and 
insights from the results. Section IV concludes the study.  

II. METHODS

A. Filtering Procedure

The EEG data came from PhysioNet [8]. We only used
the first data file for consistency, and the data contained 
records of brain waves during sleep of a 33 year old female. 
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The collected raw data were recorded at a frequency of 100 
Hz in 30 second intervals. We filtered this 3000 dimensional 
vector using a second-order Butterworth filter (MATLAB 
Signal Processing Toolbox) with cutoff frequencies of 1-4 
Hz for delta wave, 5-8 Hz for theta wave, 9-12 Hz for alpha 
wave, and 13-25 Hz for beta wave. Their band powers can be 
used as 4 dimensional features representing the strength of 
the four brain wavebands. From here, we applied the PCA, 
autoencoders, and original brainwave band powers to extract 
low dimensional features (described in the following 
subsections).  

B. PCA 

PCA is a commonly used technique for dimensionality 

reduction. In this paper, we implemented PCA on a set of 4 

dimensional vectors each containing the band powers of the 

filtered delta, theta, alpha, and beta waves. From our dataset 

(a total of 2650 data points), we performed a training/testing 

split in which 75% of the values were randomly chosen to 

be utilized for training, and the remaining 25% for testing. 

After normalizing all of the data, we fit PCA on the training 

set and then applied the mapping on both the training and 

testing sets. We used the linear discriminant analysis (LDA) 

(trained and tested with the same data used earlier) to 

calculate fair accuracies of classification. Specifically, we fit 

the LDA model with the 2 dimensional vectors (principal 

components) extracted by PCA from the training set, and 

evaluated the LDA model with the testing set.  

 
Fig. 1. Example of the waveforms of raw EEG signal 

and various frequency bands. 

C. Autoencoder 

An autoencoder is a specific type of neural network that 

is trained to produce an output which closely mirrors the 

input. It has a “bottle neck” in the middle where the 

dimensionality is reduced and the input data is compressed. 

We used the band powers of the filtered delta, theta, alpha, 

and beta waves as the 4 dimensional input to the 

autoencoder. We used the same 75%/25% training/testing 

split as used for the PCA and LDA. We experimented a set 

of autoencoders on Python with multiple architectures 

including 3, 5, and 7 layers, varying the number of nodes in 

each layer. The accuracies were calculated with the LDA 

using the same process as was used for the PCA. We fit the 

2 dimensional features extracted from the autoencoder 

during training into the LDA model. Then, we tested it using 

the features from testing the autoencoder. 

D. Original Wavebands 

We also applied the LDA directly on the band powers of 
the four EEG waves, comparing the accuracies of using 
different combinations of the band powers of the EEG 
waves. Using the same data and training/testing split the 
same way as before, we fit the LDA on different wavebands 
and ran it on the testing data to achieve the accuracy scores.  

III. RESULTS AND DISCUSSIONS 

A. Raw Waveforms 

Fig. 1 shows an example of waveforms of the raw EEG 

signal and the four filtered frequency bands: delta, theta, 

alpha, and beta waves. 
 

B. Waveband Powers as Low Dimensional Features 

We investigated different combinations of waveband 

powers, which were directly used as low dimensional 

features for sleep stages classification with an LDA model. 

The accuracy results of the LDA classifier are summarized 

in Table I. It can be seen that among the four wavebands, 

the delta wave alone was able to produce respectable 

classification results (with an accuracy of 86.8% ± 2.0%).  

Also, surprisingly, the two wavebands delta and alpha in 

combination formed excellent features (with an accuracy of 

89.3% ± 2.0% in classification) that outperformed using 

three or four filtered wavebands as features. Fig. 2 

visualizes the clustering and classification results using band 

powers of delta and alpha waves as features for the LDA. 

 
TABLE I 

ACCURACY RESULTS OF LDA USING DIFFERENT COMBINATIONS OF 

WAVEBAND POWERS AS FEATURES 

 
 

Features 

 

Accuracy (standard 

deviation) 

Delta 86.8% (± 2.0%) 

Theta 78.5% (± 1.9%) 

Alpha 74.2% (± 1.4%) 

Beta 73.8% (± 1.3%) 

Delta and theta 89.2% (± 1.5%) 

Delta and alpha 89.3% (± 2.0%) 

Delta and beta 87.8% (± 1.7%) 

Theta and alpha 86.9% (± 2.2%) 

Theta and beta 86.5% (± 2.1%) 

Alpha and beta 88.6% (± 1.9%) 

Delta, theta, and alpha 88.2% (± 2.7%) 

Delta, theta, and beta 87.4% (± 2.2%) 

Delta, alpha, and beta  89.4% (± 2.4%) 

Theta, alpha, and beta 87.3% (± 3.3%) 

Delta, theta, alpha, and beta 88.0% (± 2.6%) 
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Fig. 2. Clustering and classification results using band powers of 

delta and alpha waves as features for the LDA.  

 

 

 

 

Fig. 3. Clustering and classification results using the 

first two PCs as features for the LDA.  

 

C. Extracting Low Dimensional Features Using PCA  

Fitting PCA on the training set (each data point being a 

four dimensional vector of EEG waveband powers) 

achieved variances of 0.5822 and 0.4042 for the first and 

second principal components (PCs), respectively, and these 

two PCs in total explained variance of approximately 

0.9864. After applying these two PCs as the low 

dimensional features, the LDA classifier achieved an 

accuracy of 88.8% (± 2.0%). Fig. 3 visualizes the clustering 

and classification results using the first two PCs as features 

for the LDA. 

D. Autoencoder 

The autoencoder was built and tested with varying 

architectures. Table II lists the accuracy results of LDA 

using the two dimensional features obtained by the 

autoencoder (using the outputs of the two nodes in the 

middle layer of the autoencoder as features). Each number 

under the “structure” column represents the number of 

nodes in a layer of the autoencoder. For example, “4_2_4” 

represents a 3 layer autoencoder with 4 nodes in the input 

layer, 2 nodes in the middle layer, and 4 nodes in the output 

layer. The highest accuracy was 90.0% (± 2.0%), which was 

obtained with the simplest autoencoder of three layers. Fig. 

4 shows the clustering and classification results using the 

two features (denoted by x1 and x2) extracted by the “best” 

autoencoder.  

 
TABLE II 

ACCURACY RESULTS OF LDA USING FEATURES EXTRACTED FROM 

AUTOENCODER 

 

Structure of 

autoencoder 

Accuracy (standard 

deviation) 

4_2_4 90.0% (± 2.0%) 

4_3_2_3_4 88.7% (± 1.4%) 

4_4_2_4_4 89.6% (± 1.5%) 

4_5_2_5_4 88.8% (± 1.6%) 

4_6_2_6_4 89.0% (± 1.5%) 

4_7_2_7_2 88.4% (± 1.8% ) 

4_8_2_8_4 88.3% (± 1.6%) 

4_9_2_9_4 88.6% (± 1.4%) 

4_10_2_10_4 88.7% (± 1.6%) 

4_11_2_11_4 88.7% (± 1.8%) 

4_12_2_12_4 88.7% (± 1.9%  

4_13_2_13_4 88.6% (± 1.5%) 

4_3_3_2_3_3_4 88.6% (± 1.8%) 

4_3_4_2_4_3_2 88.5% (± 1.4%) 

4_4_3_2_3_4_4 88.9% (±1.8%) 

4_4_4_2_4_4_4 88.7% (± 1.4%) 

4_5_3_2_3_5_4 88.4% (± 1.5%) 

4_6_3_2_3_6_4 88.2% (± 1.7%) 

4_5_4_2_4_5_4 89.0% (± 1.9%)  

4_6_4_2_4_6_4 88.3% (± 1.5%) 
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Fig. 4. Clustering and classification results using the 

two features extracted by the autoencoder. 

E. Discussions 

The highest accuracy result obtained by the autoencoder 

was 90.0% (± 2.0%). By comparison, we see that regular 

EEG waveband powers directly can serve as effective 

features for sleep stages classification, especially the delta 

and alpha wavebands, with an accuracy of 89.3% (± 2.0%). 

Even the PCA achieved close results of 88.8% (± 2.0%). 

This contradicted our original expectation. For the 

autoencoder, we surmised that the more complex 5 or 7 

layer architectures would have greater success, but this was 

not the case. Also, we did not expect for the two wavebands 

alpha and delta to be such excellent low dimensional 

features. Compared to the autoencoder, which is 

computationally heavier, the delta and alpha waves are 

robust indicators for sleep detection. This may be due to the 

fact that delta waves are present during deep sleep, while 

alpha waves occur more when we are awake or relaxed.  

 

IV. CONCLUSION 

Sufficient sleep is crucial for us to function properly and 

maintain health. Professionals in many fields have studied it 

using a range of methods. One such way to analyze sleep 

patterns is through EEG. During sleep, the brain cycles 

through 5 important stages (REM and stages 1-4) multiple 

times. We seek to study the classification of brain waves 

into these stages using EEG data. To do this, we attempt to 

construct robust and computationally efficient low 

dimensional features for sleep detection. We use machine 

learning with EEG band power analysis, PCA, and 

autoencoder to extract low dimensional features from the 

EEG data. This allows us to evaluate their classification 

performances. With classification accuracies of 89.3% (band 

power analysis using delta and alpha waves), 88.8% (PCA), 

and 90% (autoencoder), we discover that the highly 

compressed two dimensional features are robust indicators 

and obtain respectable accuracies. 
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