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Abstract— Investigations on how the central nervous system
(CNS) effortlessly conducts complex hand movements have led
to an extensive study of synergies or movement primitives. Of
the different types of hand synergies, kinematic and muscle
synergies have been widely studied in literature, but only a few
studies have fused both. In this paper kinematic and muscle
activities recorded from the activities of daily living were first
fused and then dimensionally reduced through principal
component analysis (PCA). By using these principal components
or musculoskeletal synergies in a weighted linear combination,
the recorded kinematics and muscle activities were
reconstructed. The performance of these musculoskeletal
synergies in reconstructing the movements was compared to the
kinematic and muscle synergies reported previously in the
literature by us and others. The results from these findings
indicate that musculoskeletal synergies perform better than the
synergies extracted without fusion. These newly demonstrated
musculoskeletal synergies might improve neural control of
robotics, prosthetics and exoskeletons.

Clinical Relevance— In this paper, musculoskeletal synergies
were extracted from the fusion of kinematic and muscle activities
recorded from the activities of daily living. These newly
demonstrated musculoskeletal synergies might enhance our
understanding of neural control of robotics, prosthetics and
exoskeletons.

I. INTRODUCTION

Evolution and natural selection have promoted the
development of a longer opposable thumb and shorter fingers
in humans, enabling us to perform myriad grasping actions.
But even the very basic activities that we perform in our daily
lives with minimal dexterity have been a remarkably complex
challenge to be replicated by robots. The challenge is in
replicating how the central nervous system (CNS) can select
appropriate groups of muscles to achieve a specific hand
movement. The human hand has more than 20 degrees of
freedom, which makes this challenge even more complex.
Astoundingly the CNS has no difficulty in handling such
complexity in controlling the human hand.

Several hypotheses like elimination hypothesis,
optimization hypothesis and modularity hypothesis have been
proposed by researchers to express how the CNS effortlessly
achieves complex hand movements. Out of these, modularity
hypothesis introduced by Bernstein in 1967 [1] proposes that
a single variable named “synergy” controls a group of
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functional units and each of this group is formed by CNS. This
hypothesis addressed the challenge of control and coordination
of hand with vast degrees of freedom (DoF).

Inspired by the modularity hypothesis by Bernstein, many
researchers came forward to solve the DoF problem through
different concepts of synergies. Of them, some of the popular
synergies includes postural synergies [2] kinematic synergies
[3], dynamical synergies and muscle synergies [4]. It can be
summarized that the complex interaction of neuromuscular
processes leads to musculoskeletal movements and
consequently an action is performed. At the musculoskeletal
level, two complex tasks are achieved efficiently by this
human biomechanical system. First, a group of muscles are
selected by the CNS to perform the task at hand. Studies
related to muscle patterns such as [5] found that muscle
activity patterns can be reconstructed through a weighted
linear combination of a limited number of muscle synergies.
Second, a group of skeletal finger joints are actuated to enact
the task. Findings from[2] [3] suggest that through a weighted
linear combination of a limited number of kinematic synergies,
joint angular velocities can be reconstructed.

Though kinematic and muscle synergies were studied
separately, to our understanding, only a few studies have
combined muscle and kinematic synergies. By fusing muscle
and kinematic activities together as a single dataset and then
performing dimensionality reduction, in this paper, we extract
“musculoskeletal” synergies, that can enable collaboration
between kinematic and muscle synergies. This formulation
allows for kinematic and muscle synergies to inform each
other about their covariant characteristics.

In this paper, the objective is to identify how
musculoskeletal synergies compare to individual synergies in
the reconstruction of movement kinematics and muscle
activities. Findings from this paper might provide better
insights to the use of synergies in the field of robotics,
neurorehabilitation, prostheses, and exoskeletons.

II. METHODS AND ANALYSIS

A. Experiment

After careful evaluation and consideration, a publicly
available dataset was used for data analysis in this paper. This
publicly available dataset KIN-MUS UJI [6] consisting of
twenty-two right-handed subjects of which 12 are males and
10 are females with a mean age of 35 + 9 years. All the subjects
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had no prior upper limb movement disorders. Prior to the
experiment, all participants were required to provide a written
informed consent. All the experiments were conducted in
alignment with the rules and regulations of the Ethics
Committee of the Universitat Jaume I, Spain. In order to check
the ability and quality of hand while performing activities of
daily living Sollerman Hand Function Test (SHFT) was
performed.

Hand movements were captured by the CyberGlove
(CyberGloveSystems, San Jose, CA) at a sampling rate of 100
Hz. Ten of the sensors that correspond to the
metacarpophalangeal (MCP) and interphalangeal (IP) joints of
the thumb and the MCP and proximal interphalangeal (PIP)
joints of the other four fingers were used. Muscle activities
were recorded by an 8-channel surface electromyography
(sEMG, Biometrics, Ltd.) device at a sampling rate of 1000
Hz. The electrodes were placed in seven most representative
areas of the forearm to capture major muscle activities. These
were — (i) Flexor carpi ulnaris (FCU) (ii) Flexor carpi radialis
(FCR) and palmaris longus (PL) (iii) Flexor digitorum
superficialis (FDS), Flexor digitorum profundus (FDP) and
Flexor pollicis longus (FPL) (iv) Abductor pollicis longus
(APL) and externsor pollicis longus (EPL), and brevis (EPB)
(v) Extensor digitorum communis (EDC) (vi) Extensor Carpi
Ulnaris (ECU) (vii) Brachioradialis (BR), Pronator teres (PT),
Extensor carpi radialis brevis (ECRB) and longus (ECRL).

B. Preprocessing

The raw sensor data recorded from the CyberGlove were
converted to joint angles. The conversion procedures
performed were based on non-linear calibration protocols
discussed in [7]. These joint angles were then normalized by
the maximum joint angle for each subject. Finally, the data
were filtered with a second-order low-pass Butterworth filter
and Savitzky-Golay filter. The sEMG data collected was
normalized by the maximum sEMG values recorded for that
particular area for each subject. The SEMG were ultimately
filtered with a fourth-order bandpass filter between 25-500 Hz,
rectified, filtered by a fourth-order low-pass filter at 8 Hz, and
gaussian smoothing. Both joint angles and SEMG datasets
were then synchronized by the acquisition software as
mentioned in [6] to match the start and stop instants of each
movement. The dataset consisting of 26 activities of daily
living (ADL) and instrumented activities of daily living
(IADL) tasks as mentioned in [6] was split into two sets
containing equivalent tasks — a training set with 16 tasks that
were used for extraction of synergies and a testing set with 10
tasks that were used for testing the reconstruction with the
extracted synergies.

C. Derivation of Synergies

In this paper, synergies were derived from hand kinematics
and muscle activities. These synergies were used to
reconstruct the testing data comprising of new hand kinematics
and muscle activities, thus realizing the generalizability of
kinematic and muscle synergies. Of the several models
available, we used both time invariant and time-variant
synergy models [3]. But we found that time variant synergy
model provides the best results, hence for this paper we make
use of time variant synergy mode. In a time-variant synergy
model, a time-varying movement pattern can be generated by

combining the time-varying synergies with scaling
coefficients. Hence, different movement patterns can be
obtained by changing the time shifts and scaling coefficients.
The following equation describes a time-variant synergy-
based movement generation model expressed as a weighted
linear combination of principal components or synergies.

N

M@© = ) A4S -t

where, M (t) represents the generated movement at time t, A;
represents the coefficient or weight, S; represents the i
synergy and N is the number of synergies. For determining the
optimal number of synergies, based on our prior works, we
used approximately 90% of the variance accounted for curve
(see Fig. 1).

Kinematic and Muscle Synergies

To obtain kinematic synergies, first, a posture matrix was
prepared as discussed in [3] with 16 columns corresponding to
the 16 ADL tasks grouped under training dataset. Each column
was formed by cascading normalized angular velocities of 10
hand joints as listed under Section II(A). Then, principal
component analysis (PCA) was performed on this matrix to
obtain PCs that account for maximum variance. We observed
that the first 7 PCs were able to account for a variance greater
than 90%. These PCs were termed as kinematic synergies.

Similar procedure was repeated on muscle activities to
obtain muscle synergies. Here, a muscle activity matrix was
prepared with 16 columns corresponding to 16 ADL tasks
grouped under training dataset. Each column was formed by
cascading normalized root mean squared (RMS) muscle
activities from 7 muscle areas listed under Section II(A). It was
noted that the first 3 PCs were able to account for a variance
greater than 90%. These PCs were termed as muscle synergies.

Musculoskeletal Synergies

To obtain musculoskeletal synergies, the normalized
muscle activities were fused or concatenated with normalized
joint angular velocities. Before this fusion, we performed an
important step of changing the polarity of extensor muscles (4
through 7) to negative to match with the negative polarity of
extension of joint angular velocities. Resultant matrix formed

0.9

= Muscle
—— Kinematic
Musculoskeletal

Cumulative Variance Accounted by PCs

NumberofPcs. = °

Fig. 1. Mean of muscle (in blue), kinematic (in red) and musculoskeletal
(in green) variance of each PC for all subjects with error bars indicating
standard deviation are illustrated here.
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has 16 columns corresponding to 16 tasks. Each column was
obtained by concatenating the normalized activities of muscles
and joint angular velocities. This matrix was further
normalized with zero mean and unit variance. PCA was
performed on this matrix resulting in PCs, now termed as
musculoskeletal synergies. It was noted that the first 6
musculoskeletal synergies accounted for 90% of total
variance. The musculoskeletal synergies were then split into
musculoskeletal kinematic synergies and musculoskeletal
muscle synergies. As an example, Fig. 2 represents the first 6
musculoskeletal synergies of subject 1. To enable the
comparison between the usage of kinematic, muscle and
musculoskeletal synergies in reconstruction, it was required
that we either use the same number of components or use same
variance that is over a given threshold variance (= 90% here).
Considering the same number of components implies
comparison using the same number of synergies which is ideal
for this study’s use case. Thus, throughout this paper we will
be using 6 PCs for each type of synergies.

D. Reconstruction of Kinematics and Muscle Activities

The joint angular velocities and the muscle activities in 10
testing tasks were reconstructed by the four types of synergies.
Kinematic synergies and musculoskeletal kinematic synergies
reconstructed the recorded movement kinematics. Muscle
synergies and musculoskeletal muscle synergies reconstructed
the recorded muscle activities. Reconstruction was performed
by using the /;-norm minimization detailed in [8]. The
reconstruction error between the recorded movements (M;)
and the reconstructed patterns (X) was determined as follows.

orr = Yi(M; — X)?
X M?

III. RESULTS

From movement kinematics and muscle activities recorded
from 16 ADL and IADL tasks, six muscle synergies and six
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kinematic synergies were extracted using PCA. On an average,
for all the subjects, the first synergy accounted roughly around
55% of the total variance. As mentioned in [8], in this paper as
well it was noted that, while the first synergy significantly
contributed to more than 50% of the total variance. This
indicates that a relatively small set of the total number of
synergies could adequately represent the movement. As shown
in Fig. 1, 6 PCs accounted to about 87% of total variance for
kinematic synergies. 6 PCs accounted for 96% of total
variance for muscle synergies. 6 PCs accounted for 90 % of
total variance for musculoskeletal synergies. 10 DoF joint
kinematics had highest variance, then was the fused kinematic
and muscle activities and lastly was 7 DoF muscle activities
with least variance. Musculoskeletal synergies obtained from
fusion were then split to musculoskeletal kinematic and
musculoskeletal muscle synergies as shown for subject 1 in
Fig. 2.

Reconstruction of the 10 ADL and IADL test tasks were
performed using the muscle synergies, kinematic synergies
and musculoskeletal muscle synergies and musculoskeletal
kinematic synergies. Fig. 3 presents an example of
reconstruction of recorded activity using these four types of
synergies for subject 1 for task 8 of picking up the phone and
placing it on the ear and hanging up. As mentioned in Section
II(D), the reconstructed movement kinematic and muscle
activities were compared with recorded activities using the
least squares error between them. Figure 4 represents a
comparison of the reconstruction of 10 testing tasks
reconstructed using kinematic synergies and musculoskeletal
kinematic ~ synergies, and muscle synergies and
musculoskeletal muscle synergies, across all subjects.
Comparing the reconstruction errors across all tasks and all
types of synergies, musculoskeletal synergies performed better
than the synergies extracted without fusion.

Musculoskeletal Muscle Synergies
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Fig. 2. First six musculoskeletal kinematic (left) and musculoskeletal muscle (right) synergies extracted from the training data of subject 1 are illustrated
here. The joint angular velocities of 10 joints (MCPs of four fingers and thumb, IP of thumb and PIP of other 4 fingers) and RMS of the muscle activities

from seven major muscle groups were shown here.
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Fig. 3. Reconstruction of test task 8 (picking up the phone, placing it on
his/her ear and hanging up the phone) of both movement kinematics
(left) and muscle activities (right) of subject 1 is shown here.

IV. DIiScUSSION

This paper presents a new method of fusion of movement
kinematics and muscle activities and then derives
musculoskeletal synergies. To our best knowledge, this is one
of the first attempts to simultaneously extract kinematic and
muscle synergies. Such fusion enables full interaction across
multiple recording modalities such as kinematics and sSEMG.
We hypothesized that such mutually informed interaction will
lead to improved representations in lowdimensional spaces.
Before we performed the fusion, we added a critical step of
changing the polarity of extensor muscles as explained in
Section II(C). Thus, when the fusion occurs, the extension in
kinematics is strengthened by the extension reflected in muscle
activities. Without this change in polarity all RMS muscle
activities remain positive for both flexor and extensor muscles
and in contrast, all kinematic activities remain positive for
flexion and negative for extension. Fusion, without taking this
polarity into account can be detrimental.

Several studies have demonstrated strong correlations
between neural, muscle and kinematic synergies. In [4] it was
shown that muscle synergies align with kinematic synergies.
In [9] muscles synergies were used as a predictive framework
for the EMG patterns of new hand postures. In [10] it was
found that spinal motor neuronal activities exhibit a synergistic
organization that could be reflected in the neural drive received
by muscle synergies. Inspired by these studies, in this paper,
we allowed for the fusion of two modalities: movement
kinematics and muscle activities. This fusion encourages the
collaboration of both activities thus promoting learning
between each other. Overall, the results reflect that the
musculoskeletal synergies obtained from such fusion perform
better in reconstruction of movements as shown in Fig. 4 when
compared to the synergies extracted without fusion.

V. CONCLUSION

In this paper, we proposed a new method to extract
musculoskeletal synergies using fusion and PCA. In the near
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Fig. 4. Reconstruction error obtained while reconstructing the 10 ADL
test tasks using synergies obtained with and without fusion for all
subjects are shown here. Overall musculoskeletal synergies performed
better than synergies extracted without fusion. Bars indicate mean and
errors bars indicate standard deviation across all subjects.

future, we will substantiate these results over larger datasets,
and we will further improve these fusion synergies by
incorporating other dimensionality reduction methods such as
independent component analysis, independent vector analysis
and nonnegative matrix factorization. Embedding these fusion
synergies into robotics [11] and exoskeletons can possibly
enhance their performance.
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