
  

  

Abstract— Hand prehension requires a highly coordinated 
control of contact forces. The high dimensional sensorimotor 
system of the human hand although operates at ease, poses 
several challenges when replicated for prosthetic control. This 
study investigates how the dynamical synergies, coordinated 
spatial patterns of contact forces, contribute to the contact 
forces in a grasp, and whether the dynamical synergies could 
potentially serve as candidates for feedforward and feedback 
mechanisms. Ten right-handed subjects were recruited to grasp 
and hold mass-varied objects. The contact forces during this 
multidigit prehension were recorded using an instrumented 
grip glove. The dynamical synergies were derived using 
principal component analysis (PCA). The contact force 
patterns during the grasps were reconstructed using the first 
few synergies. The significance of the dynamical synergies and 
the current challenges and possible applications of the 
dynamical synergies were discussed along with the integration 
of the dynamical synergies into prosthetics and exoskeletons 
that can possibly enable near-natural control.  
 

Clinical Relevance—This research presents dynamical 
synergies observed in contact forces during hand grasps. These 
dynamical synergies could help in improving feedforward force 
control and sensory feedback in hand prosthetics and 
exoskeletons.   

I. INTRODUCTION 

The human hand is a dexterous and sophisticated 
sensorimotor system, capable of performing complex motor 
functions. Currently, a large population of individuals is 
suffering from the loss of hand mobility, including 
amputations, stroke, and spinal cord injury. Loss of dexterity 
can significantly affect the level of autonomy and the 
capability of individuals to perform their activities of daily 
living (ADL), and they need the compensation of assistive 
devices, prosthetics or exoskeletons. Current prosthetic 
solutions can substitute the appearance and function of the 
limb and accomplish motor control by providing basic 
functions. However, two of the major limitations still 
constrict the completion and dexterity of the normal hand 
motor capabilities. One is the high-dimensional control and 
another is the sensory feedback [1][2]. 

It has been hypothesized that the central nervous system 
(CNS) is able to control the complex movements of the 
human hand by controlling synergies instead of controlling 
the individual joints or individual degrees of freedom (DoF), 
thus reducing the computational burden [3]. Mathematically, 
by using linear and nonlinear dimensionality reduction 
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methods and matrix factorization methods, the synergies are 
derived from different measurements of hand movements and 
from joint angular velocities, such as kinematic synergies 
[4][5] postural synergies from hand postures [6][7], and 
dynamical synergies derived from the contact forces during 
the grip tasks [8]. According to [16], the dimensionality 
reduction using synergies is not only limited to the motor 
control, and but also can be used to reduce a large number of 
sensory inputs to a small set of manageable and controllable 
representations in the prosthetic design.  

During a grasp, the hand formulates the manipulative 
contact forces based on the task environment, the task 
constraints and the task requirements while maintaining a 
stable grasp [9][10]. The optimal contact forces must be not 
too small to cause slippage or not too large to damage either 
the hand or the object under grasp. Since such a grasp 
involves a larger number of DoFs that need to be controlled 
simultaneously, several studies have hypothesized and 
observed that this could also happen in a lower-dimensional 
space [11]. Similar to kinematic synergies, we hypothesize 
that the dynamical synergies can characterize coordinated 
contact force patterns in low dimensional space. Since the 
interaction of the motor and sensory function are important to 
help restore hand function, whether the integration of these 
dynamical synergies into prosthetics can improve their 
performance may provide alternative solutions to simplify the 
challenge.  

In this study, we focused primarily on how the dynamical 
synergies i.e., the synergies derived from the contact forces in 
different object grasping tasks contribute to the coordination 
of contact forces from multiple hand areas, and how these 
patterns of coordination vary across the different weights of 
the objects, replicating our tasks in the activities of daily 
living. 

II. METHODS AND ANALYSIS 

A. Experiment protocol 
A total of ten right-handed, healthy subjects (4 male and 6 

female) were included in this experiment under the approved 
IRB protocol at the Stevens Institute of Technology. They 
were asked to sit in front of a table to perform four object 
grasping tasks—ball, door handle, bottle cap and water bottle 
corresponding to four typical hand postures–whole hand 
grasp, hook grasp, precision grasp and cylindrical grasp, 
respectively. To investigate the effect of the weight of the 
object on the grip force, these objects were prepared with 
four different weights (170, 320, 470 and 620 grams). The 
surface of the objects was wrapped by the same kind of 
material to remove the bias induced by friction forces. 
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During each trial of the experiment, the subjects first 
placed their hands around the object as if they were grasping 
it without contact. The minimal forces at this point that could 
be due to the device noise were used as a baseline. After two 
seconds, the subjects were cued by an auditory beep to grasp, 
lift and steadily hold the object for four seconds. After 
hearing the stop cue, the subjects put the object to the original 
place and withdrew their hands back to the initial position. 
The objects were grasped in random order, and 20 repetitions 
were conducted for each weight. The contact force during the 
whole period was recorded by a GripGlove (Tekscan, 
Boston, MA), an instrumented glove embedded with sensors 
to measure contact forces.  

B. Processing 
Data was recorded by Research Foot software (Tekscan, 

Boston, MA) from GripGlove. As shown in Fig.1, the force 
sensors were divided into 12 areas including upper palm 
(UP), lower palm (LP), five distal phalanges (T1, In1, M1, 
R1 and P1 represent thumb to pinky respectively), thumb 
proximal phalanx (T2) and four middle-proximal phalanges 
(In2, M2, R2 and P2 represent index to pinky respectively, as 
shown in Fig.1B). Two types of data were saved from the 
steady-hold period in this study. One was the average force 
within each of the above 12 areas (Fig.1C), and the other was 
a spatial matrix of raw forces of the hand selected from the 
fourth second represented as a pixelated spatial force map 
(Fig.1D). 

C. Reconstruction of Natural grasps and ASL postures 
The contact force dynamics considered in this study, were 

represented by the averaged force from the steady-hold 

period and the spatial force maps. The effects of the weight 
of the object were analyzed individually to investigate how it 
influences the movement dynamics and reconstruction of the 
force patterns. 

We hypothesized that the force patterns can be modeled 
as a weighted linear combination of a few dynamical 
synergies, and the first few synergies represent the most 
variance among diverse grasp force patterns. Here, principal 
component analysis (PCA) was performed using singular 
value decomposition (SVD) to extract the dynamical 
synergies as shown below: 

 V= UΣS (1) 

where V is the force matrix with dimensions m × n, where 
m is the number of hand grasps and n is the number of forces 
recorded from the hand areas. For the averaged force data, 
the force matrix contains 12 forces, calculated from 12 hand 
areas; for the spatial force maps, the forces are represented as 
concatenated pixels, where a total of 361 pixels were 
included. S contains the principal components (PCs), which 
are considered as the dynamical synergies. ∑ is a diagonal 
matrix (with eigen values of λ1, λ2, λ3, …, λn) and the 
magnitude of the PCs were determined as W=U∑.  

Three-fourths of the grasping tasks were used to extract 
the dynamical synergies and the remaining one-fourth were 
used for testing the synergies in reconstruction of force 
patterns, and it was evaluated with a four-fold cross-
validation. After the dynamical synergies were derived, the 
magnitude of the dynamical synergies for the testing data 
were calculated by least squares approximation. The force 
patterns were reconstructed by recruiting a few top order 
dynamical synergies. The reconstruction error between the 
recorded force pattern (F) and reconstructed force pattern (F') 
was determined as follows: 

 
 

(2) 

III. RESULTS 

The dynamical synergies were extracted from two types 
of force patterns—the averaged force from the steady hold 
period and spatial force maps. Since the top-ranked PCs or 
the top order dynamical synergies, represent the most 
significant variance directions among all the forces involved 
in the hand grasps, the fraction of variance would help to 
determine the number of dynamical synergies that could be 
used for optimal force pattern reconstruction. The 
reconstruction error of testing data across ten subjects and the 
variance accounted are illustrated in Fig. 2.  

For the averaged force (Fig. 2(A)), 12 PCs were 
extracted. The first two synergies accounted for over 90% of 
the variance, and the average reconstruction error reduced to 
0.2. With the first four synergies the error further reduced 
below 0.1. For the spatial force maps, 361 synergies were 
extracted, and only the first 50 synergies are plotted in Fig. 
2(B). The first synergy only accounted for 50% of the total 
variance and the first five synergies accounted for 80% of the 
variance approximately. The differences between the 
synergies obtained from averaged forces and spatial 

 
Figure 1. (A) GripGlove (Tekscan, Boston, MA) with 12 sensors to 
capture the contact forces in the 12 hand areas explained as follows. 
(B) 12 areas from where hand forces were recorded, including upper 
palm (UP), lower palm (LP), distal and proximal phalanx of thumb (T1 
and T2), distal phalanges of index, middle, ring and pinky fingers (In1, 
M1, R1, P1) and middle-proximal phalanges of four fingers (In2, M2, 
R2, P2). (C) Recorded average forces during the steady hold period. 
Colors indicate the 12 areas. (D) Recorded spatial force maps pixelated 
corresponding to the 12 hand areas. 
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forcemaps are intuitive due to the larger dimensional space of 
the data in spatial force maps.  

As for the spatial force maps, each spatial force map 
consists of 361 pixels and 361 synergies were calculated by 
SVD. As it was previously shown in Fig. 2(B), the first few 
synergies accounted for almost 90% of the variance but the 
reconstruction errors were higher in the range of 0.31±0.06. 
However, using the first 50 synergies, the reconstruction 
error further reduced to 0.12±0.03. Thus, it can be noted that 
reconstruction accuracy increases by recruiting more 
synergies. However, with the use of fewer synergies (as 
shown in Fig.3), it was possible to summarize the dominant 
characteristics of the force patterns, such as the thumb, index 
and middle fingertips which are the dominant force zones in 
our activities of daily living. Fig.3 indicates that, by 
recruiting only two dynamical synergies, the reconstructed 
patterns could successfully capture the dominant grip areas. 
Additionally, within the same type of grasp, incrementing the 
weight of the object contributed not only to the increased 

contact area and more fingers recruited in grasping but also 
an increase in the force intensities. The grip zones enlarged 
from fingertips to whole fingers even to some parts of the 
palm with the addition of weights.  

The dynamical synergies across four different weights 
were observed. Fig. 4 illustrates the contribution of each hand 
area or finger in the first four synergies. The first two 
synergies shared common load force zones and the dominant 
areas are located at the thumb and middle finger. High 
correlations across four weights were found for the first two 
synergies. This may suggest that the first two dynamical 
synergies contain the functional basis for the majority of 
hand dynamics across different weights. The dynamical 
synergies derived from spatial force maps are shown in Fig.5. 
Similar to Fig.4, the first two synergies shared similar force 
distribution among object weights, and the most common 

characteristics across varied weights are represented on the 
thumb and middle finger. For higher-order synergies (third 
and above), the dominant load force zones differ for different 
weights. 

IV. DISCUSSION 

During the steady hand prehension period, a large number 
of contact areas, considered as DoFs, are involved in a certain 
grasp. There are redundant DoFs participating in a grasping 
task that increase the computational load of control by the 
CNS [3]. The results in this paper suggest that the prehension 
forces could be characterized by coordination patterns 
(addressed as dynamical synergies in this paper) and thus 
reduce the DoFs involved in cortical control to achieve the 
grasp forces. We hypothesize that the dynamical synergies 
could represent the primitives of hand prehension dynamics. 
In other words, the distribution of prehension forces can be 
considered as a linear superposition of synchronized 
dynamical synergies. Furthermore, by increasing the 

 
Figure 2. The fraction of the variance accounted for, and the 
reconstruction errors calculated using the top order synergies. The mean 
and standard deviation was calculated across ten subjects. (A) 12 
synergies were extracted from the averaged force vectors and (B) 361 
synergies extracted from spatial force maps (only the first 50 synergies) 
are shown here. 

 
 
Figure 3. Reconstructed spatial force maps for whole hand grasp for 
four different weights using the first two synergies for subject 6. Most 
of the force intensity is concentrated at thumb and middle fingertips 
when holding the object at 170g. The reconstructed maps using only two 
synergies could successfully capture the dominant force zones. When 
extra weights are added to the objects, the force zone enlarges, and 
fingers involved in grasp increase. Color bar indicates the scale of the 
contact forces. Increase in the color bar scale indicates increase in the 
forces due to increase in the weights.   

 
 
Figure 4. Dynamical synergies extracted from averaged force vectors 
of subject 8. The first and second synergies share the common load 
force zones regardless of the object weight. The middle digits (M1 and 
M2) and thumb (T1 and T2) carried the most dominant force 
characteristics. High correlations were observed among four weights. 
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resolution of the pixels in the spatial force maps we can 
understand precise contact areas and force points that can be 
of significant benefit to understanding human movement 
control as well as augmenting or assisting human movement.  

Results showed that the top-ranked synergies shared 
similar force distribution among object weights, and for 
higher-order synergies, the dominant load force zones differ 
for different weights. These could be subtle force adjustments 
that cannot be necessarily attributed to dominant force 
patterns observed across varied object configurations or 
different individuals. Nevertheless, the shared patterns of the 
first synergy suggest that the finger digits that contributed the 
most to the prehension forces are consistent across various 
weights and various prehension tasks, providing the 
probability of diverse types of grip force production using the 
same set of dynamical synergies. This may suggest that the 
most significant synergies accounted for variability across 
various prehensions; the higher-order synergies contain 
subtle information attributed to specific prehension tasks and 
are helpful in fine control of hand prehensions [12]. 

Dynamical synergies intuitively represent the dominant 
contact areas and force vectors (as shown in Fig.4 and Fig. 
5), revealing the common or shared representations across 
various hand prehensions. According to the similarity of the 
synergy patterns across different object weights, the 
dynamical synergies can be used for feedforward force 
control for precise grip and to provide sensory adjustment in 
the feedback for precise prehension. Using these dynamical 
synergies in the context of prosthetics can functionally 
improve the feedforward control of prosthetics and the 
sensory feedback from prosthetics to the user. Additionally, 

the higher-order synergies can assist to accomplish subtleties 
in precise force control. These higher-order synergies that 
seem to differ across subjects and weights can preserve 
anatomical and physiological differences in grasps across 
individuals.  

V. CONCLUSION 
This study provided critical insights and information 

about the dynamical synergies in hand prehension that can 
help reduce the grip force variables in biomimetic robotics, 
prosthetics and exoskeletons. Using these dynamical 
synergies (force vectors and spatial force maps) in the 
context of prosthetics can functionally improve the 
feedforward control of prosthetics and the sensory feedback 
from prosthetics back to the user. While the consistency of 
lower-order synergies provides functionality, the specificity 
of higher-order synergies could provide the user with an 
increased sense of ownership of the prosthetic and realize 
finer control. Overall, these dynamical synergies would 
enhance our understanding on how the CNS might 
implement a synergistic control of hand prehension. 
Questions remain unanswered as to how the biomechanical 
constraints and the neural control contribute to the 
development of synergies and can integrating kinematic and 
dynamic synergies improve the performance of prosthetics 
and exoskeletons. 
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Figure 5. First four dynamical synergies extracted from spatial force 
maps of subject 8. Similar to Fig. 4, the first two synergies share the 
common load force zones and there is variability across synergies. 
Color bar indicates the normalized scale of forces obtained from 
principal components.  
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