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Abstract— Hand prehension requires a highly coordinated
control of contact forces. The high dimensional sensorimotor
system of the human hand although operates at ease, poses
several challenges when replicated for prosthetic control. This
study investigates how the dynamical synergies, coordinated
spatial patterns of contact forces, contribute to the contact
forces in a grasp, and whether the dynamical synergies could
potentially serve as candidates for feedforward and feedback
mechanisms. Ten right-handed subjects were recruited to grasp
and hold mass-varied objects. The contact forces during this
multidigit prehension were recorded using an instrumented
grip glove. The dynamical synergies were derived using
principal component analysis (PCA). The contact force
patterns during the grasps were reconstructed using the first
few synergies. The significance of the dynamical synergies and
the current challenges and possible applications of the
dynamical synergies were discussed along with the integration
of the dynamical synergies into prosthetics and exoskeletons
that can possibly enable near-natural control.

Clinical Relevance—This research presents dynamical
synergies observed in contact forces during hand grasps. These
dynamical synergies could help in improving feedforward force
control and sensory feedback in hand prosthetics and
exoskeletons.

I. INTRODUCTION

The human hand is a dexterous and sophisticated
sensorimotor system, capable of performing complex motor
functions. Currently, a large population of individuals is
suffering from the loss of hand mobility, including
amputations, stroke, and spinal cord injury. Loss of dexterity
can significantly affect the level of autonomy and the
capability of individuals to perform their activities of daily
living (ADL), and they need the compensation of assistive
devices, prosthetics or exoskeletons. Current prosthetic
solutions can substitute the appearance and function of the
limb and accomplish motor control by providing basic
functions. However, two of the major limitations still
constrict the completion and dexterity of the normal hand
motor capabilities. One is the high-dimensional control and
another is the sensory feedback [1][2].

It has been hypothesized that the central nervous system
(CNS) is able to control the complex movements of the
human hand by controlling synergies instead of controlling
the individual joints or individual degrees of freedom (DoF),
thus reducing the computational burden [3]. Mathematically,
by using linear and nonlinear dimensionality reduction
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methods and matrix factorization methods, the synergies are
derived from different measurements of hand movements and
from joint angular velocities, such as kinematic synergies
[4][5] postural synergies from hand postures [6][7], and
dynamical synergies derived from the contact forces during
the grip tasks [8]. According to [16], the dimensionality
reduction using synergies is not only limited to the motor
control, and but also can be used to reduce a large number of
sensory inputs to a small set of manageable and controllable
representations in the prosthetic design.

During a grasp, the hand formulates the manipulative
contact forces based on the task environment, the task
constraints and the task requirements while maintaining a
stable grasp [9][10]. The optimal contact forces must be not
too small to cause slippage or not too large to damage either
the hand or the object under grasp. Since such a grasp
involves a larger number of DoFs that need to be controlled
simultaneously, several studies have hypothesized and
observed that this could also happen in a lower-dimensional
space [11]. Similar to kinematic synergies, we hypothesize
that the dynamical synergies can characterize coordinated
contact force patterns in low dimensional space. Since the
interaction of the motor and sensory function are important to
help restore hand function, whether the integration of these
dynamical synergies into prosthetics can improve their
performance may provide alternative solutions to simplify the
challenge.

In this study, we focused primarily on how the dynamical
synergies i.e., the synergies derived from the contact forces in
different object grasping tasks contribute to the coordination
of contact forces from multiple hand areas, and how these
patterns of coordination vary across the different weights of
the objects, replicating our tasks in the activities of daily
living.

II. METHODS AND ANALYSIS

A. Experiment protocol

A total of ten right-handed, healthy subjects (4 male and 6
female) were included in this experiment under the approved
IRB protocol at the Stevens Institute of Technology. They
were asked to sit in front of a table to perform four object
grasping tasks—ball, door handle, bottle cap and water bottle
corresponding to four typical hand postures—whole hand
grasp, hook grasp, precision grasp and cylindrical grasp,
respectively. To investigate the effect of the weight of the
object on the grip force, these objects were prepared with
four different weights (170, 320, 470 and 620 grams). The
surface of the objects was wrapped by the same kind of
material to remove the bias induced by friction forces.
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During each trial of the experiment, the subjects first
placed their hands around the object as if they were grasping
it without contact. The minimal forces at this point that could
be due to the device noise were used as a baseline. After two
seconds, the subjects were cued by an auditory beep to grasp,
lift and steadily hold the object for four seconds. After
hearing the stop cue, the subjects put the object to the original
place and withdrew their hands back to the initial position.
The objects were grasped in random order, and 20 repetitions
were conducted for each weight. The contact force during the
whole period was recorded by a GripGlove (Tekscan,
Boston, MA), an instrumented glove embedded with sensors
to measure contact forces.

B. Processing

Data was recorded by Research Foot software (Tekscan,
Boston, MA) from GripGlove. As shown in Fig.1, the force
sensors were divided into 12 areas including upper palm
(UP), lower palm (LP), five distal phalanges (T1, Inl, M1,
R1 and P1 represent thumb to pinky respectively), thumb
proximal phalanx (T2) and four middle-proximal phalanges
(In2, M2, R2 and P2 represent index to pinky respectively, as
shown in Fig.1B). Two types of data were saved from the
steady-hold period in this study. One was the average force
within each of the above 12 areas (Fig.1C), and the other was
a spatial matrix of raw forces of the hand selected from the
fourth second represented as a pixelated spatial force map
(Fig.1D).

C. Reconstruction of Natural grasps and ASL postures

The contact force dynamics considered in this study, were
represented by the averaged force from the steady-hold
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Figure 1. (A) GripGlove (Tekscan, Boston, MA) with 12 sensors to
capture the contact forces in the 12 hand areas explained as follows.
(B) 12 areas from where hand forces were recorded, including upper
palm (UP), lower palm (LP), distal and proximal phalanx of thumb (T1
and T2), distal phalanges of index, middle, ring and pinky fingers (Inl,
M1, R1, P1) and middle-proximal phalanges of four fingers (In2, M2,
R2, P2). (C) Recorded average forces during the steady hold period.
Colors indicate the 12 areas. (D) Recorded spatial force maps pixelated
corresponding to the 12 hand areas.

period and the spatial force maps. The effects of the weight
of the object were analyzed individually to investigate how it
influences the movement dynamics and reconstruction of the
force patterns.

We hypothesized that the force patterns can be modeled
as a weighted linear combination of a few dynamical
synergies, and the first few synergies represent the most
variance among diverse grasp force patterns. Here, principal
component analysis (PCA) was performed using singular
value decomposition (SVD) to extract the dynamical
synergies as shown below:

y=UzS (1)

where V is the force matrix with dimensions m X n, where
m is the number of hand grasps and n is the number of forces
recorded from the hand areas. For the averaged force data,
the force matrix contains 12 forces, calculated from 12 hand
areas; for the spatial force maps, the forces are represented as
concatenated pixels, where a total of 361 pixels were
included. S contains the principal components (PCs), which
are considered as the dynamical synergies. > is a diagonal
matrix (with eigen values of Ai, A2, 43, ..., 4,) and the
magnitude of the PCs were determined as W=UY..

Three-fourths of the grasping tasks were used to extract
the dynamical synergies and the remaining one-fourth were
used for testing the synergies in reconstruction of force
patterns, and it was evaluated with a four-fold cross-
validation. After the dynamical synergies were derived, the
magnitude of the dynamical synergies for the testing data
were calculated by least squares approximation. The force
patterns were reconstructed by recruiting a few top order
dynamical synergies. The reconstruction error between the
recorded force pattern (£) and reconstructed force pattern (F")
was determined as follows:

Li(Fi —F)?

= 2iF; 2)

III. Resurts

The dynamical synergies were extracted from two types
of force patterns—the averaged force from the steady hold
period and spatial force maps. Since the top-ranked PCs or
the top order dynamical synergies, represent the most
significant variance directions among all the forces involved
in the hand grasps, the fraction of variance would help to
determine the number of dynamical synergies that could be
used for optimal force pattern reconstruction. The
reconstruction error of testing data across ten subjects and the
variance accounted are illustrated in Fig. 2.

For the averaged force (Fig. 2(A)), 12 PCs were
extracted. The first two synergies accounted for over 90% of
the variance, and the average reconstruction error reduced to
0.2. With the first four synergies the error further reduced
below 0.1. For the spatial force maps, 361 synergies were
extracted, and only the first 50 synergies are plotted in Fig.
2(B). The first synergy only accounted for 50% of the total
variance and the first five synergies accounted for 80% of the
variance approximately. The differences between the
synergies obtained from averaged forces and spatial
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Figure 2. The fraction of the variance accounted for, and the
reconstruction errors calculated using the top order synergies. The mean
and standard deviation was calculated across ten subjects. (A) 12
synergies were extracted from the averaged force vectors and (B) 361
synergies extracted from spatial force maps (only the first 50 synergies)
are shown here.

forcemaps are intuitive due to the larger dimensional space of
the data in spatial force maps.

As for the spatial force maps, each spatial force map
consists of 361 pixels and 361 synergies were calculated by
SVD. As it was previously shown in Fig. 2(B), the first few
synergies accounted for almost 90% of the variance but the
reconstruction errors were higher in the range of 0.31+0.06.
However, using the first 50 synergies, the reconstruction
error further reduced to 0.12+0.03. Thus, it can be noted that
reconstruction accuracy increases by recruiting more
synergies. However, with the use of fewer synergies (as
shown in Fig.3), it was possible to summarize the dominant
characteristics of the force patterns, such as the thumb, index
and middle fingertips which are the dominant force zones in
our activities of daily living. Fig.3 indicates that, by
recruiting only two dynamical synergies, the reconstructed
patterns could successfully capture the dominant grip areas.
Additionally, within the same type of grasp, incrementing the
weight of the object contributed not only to the increased

170g

Figure 3. Reconstructed spatial force maps for whole hand grasp for
four different weights using the first two synergies for subject 6. Most
of the force intensity is concentrated at thumb and middle fingertips
when holding the object at 170g. The reconstructed maps using only two
synergies could successfully capture the dominant force zones. When
extra weights are added to the objects, the force zone enlarges, and
fingers involved in grasp increase. Color bar indicates the scale of the
contact forces. Increase in the color bar scale indicates increase in the
forces due to increase in the weights.

contact area and more fingers recruited in grasping but also
an increase in the force intensities. The grip zones enlarged
from fingertips to whole fingers even to some parts of the
palm with the addition of weights.

The dynamical synergies across four different weights
were observed. Fig. 4 illustrates the contribution of each hand
area or finger in the first four synergies. The first two
synergies shared common load force zones and the dominant
areas are located at the thumb and middle finger. High
correlations across four weights were found for the first two
synergies. This may suggest that the first two dynamical
synergies contain the functional basis for the majority of
hand dynamics across different weights. The dynamical
synergies derived from spatial force maps are shown in Fig.5.
Similar to Fig.4, the first two synergies shared similar force
distribution among object weights, and the most common
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Figure 4. Dynamical synergies extracted from averaged force vectors
of subject 8. The first and second synergies share the common load
force zones regardless of the object weight. The middle digits (M1 and
M2) and thumb (Tl and T2) carried the most dominant force
characteristics. High correlations were observed among four weights.

characteristics across varied weights are represented on the
thumb and middle finger. For higher-order synergies (third
and above), the dominant load force zones differ for different
weights.

IV. DISCUSSION

During the steady hand prehension period, a large number
of contact areas, considered as DoFs, are involved in a certain
grasp. There are redundant DoFs participating in a grasping
task that increase the computational load of control by the
CNS [3]. The results in this paper suggest that the prehension
forces could be characterized by coordination patterns
(addressed as dynamical synergies in this paper) and thus
reduce the DoFs involved in cortical control to achieve the
grasp forces. We hypothesize that the dynamical synergies
could represent the primitives of hand prehension dynamics.
In other words, the distribution of prehension forces can be
considered as a linear superposition of synchronized
dynamical synergies. Furthermore, by increasing the
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Figure 5. First four dynamical synergies extracted from spatial force
maps of subject 8. Similar to Fig. 4, the first two synergies share the
common load force zones and there is variability across synergies.
Color bar indicates the normalized scale of forces obtained from
principal components.

resolution of the pixels in the spatial force maps we can
understand precise contact areas and force points that can be
of significant benefit to understanding human movement
control as well as augmenting or assisting human movement.

Results showed that the top-ranked synergies shared
similar force distribution among object weights, and for
higher-order synergies, the dominant load force zones differ
for different weights. These could be subtle force adjustments
that cannot be necessarily attributed to dominant force
patterns observed across varied object configurations or
different individuals. Nevertheless, the shared patterns of the
first synergy suggest that the finger digits that contributed the
most to the prehension forces are consistent across various
weights and various prehension tasks, providing the
probability of diverse types of grip force production using the
same set of dynamical synergies. This may suggest that the
most significant synergies accounted for variability across
various prehensions; the higher-order synergies contain
subtle information attributed to specific prehension tasks and
are helpful in fine control of hand prehensions [12].

Dynamical synergies intuitively represent the dominant
contact areas and force vectors (as shown in Fig.4 and Fig.
5), revealing the common or shared representations across
various hand prehensions. According to the similarity of the
synergy patterns across different object weights, the
dynamical synergies can be used for feedforward force
control for precise grip and to provide sensory adjustment in
the feedback for precise prehension. Using these dynamical
synergies in the context of prosthetics can functionally
improve the feedforward control of prosthetics and the
sensory feedback from prosthetics to the user. Additionally,

the higher-order synergies can assist to accomplish subtleties
in precise force control. These higher-order synergies that
seem to differ across subjects and weights can preserve
anatomical and physiological differences in grasps across
individuals.

V. CONCLUSION

This study provided critical insights and information
about the dynamical synergies in hand prehension that can
help reduce the grip force variables in biomimetic robotics,
prosthetics and exoskeletons. Using these dynamical
synergies (force vectors and spatial force maps) in the
context of prosthetics can functionally improve the
feedforward control of prosthetics and the sensory feedback
from prosthetics back to the user. While the consistency of
lower-order synergies provides functionality, the specificity
of higher-order synergies could provide the user with an
increased sense of ownership of the prosthetic and realize
finer control. Overall, these dynamical synergies would
enhance our understanding on how the CNS might
implement a synergistic control of hand prehension.
Questions remain unanswered as to how the biomechanical
constraints and the neural control contribute to the
development of synergies and can integrating kinematic and
dynamic synergies improve the performance of prosthetics
and exoskeletons.
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