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A B S T R A C T 

We report the disco v ery and analysis of a candidate triple-lens single-source (3L1S) microlensing event, OGLE-2019-BLG- 

1470. This event was first classified as a normal binary-lens single-source (2L1S) event, but a careful 2L1S modelling showed 

that it needs an additional lens or source to fit the observed data. It is found that the 3L1S model provides the best fit, but 

the binary-lens binary-source (2L2S) model is only disfa v oured by �χ2 ≃ 18. All of the feasible models include a planet 

with planet-to-host mass-ratios 10 
−3 � q � 10 

−2 . A Bayesian analysis based on a Galactic model indicates that the planet is 

super-Jovian, and the projected host-planet separation is about 3 au. Specifically, for the best-fitting 3L1S model, the two stars 

have masses of M 1 = 0 . 57 
+ 0 . 43 
−0 . 32 M ⊙, and M 2 = 0 . 18 

+ 0 . 15 
−0 . 10 M ⊙ with projected separation of 1 . 3 

+ 0 . 5 
−0 . 5 au, and the planetary mass 

is M 3 = 2 . 2 
+ 1 . 8 
−1 . 3 M Jupiter . For the 2L2S model, the masses of the host star and the planet are 0 . 55 

+ 0 . 44 
−0 . 31 M ⊙ and 4 . 6 

+ 3 . 7 
−2 . 6 M Jupiter , 

respectiv ely. By inv estigating the properties of all known microlensing planets in binary systems, we find that all planets in 

binary systems published by the KMTNet surv e y are located inside the resonant caustics range with q � 2 × 10 
−3 , indicating 

the incompleteness of the KMTNet sample for planets in binary systems. Thus, planets in binary systems cannot be included in 

the current study of the KMTNet mass-ratio function, and a systematic search for planetary anomalies in KMTNet microlensing 

light curves of binary systems is needed. 

Key words: gravitational lensing: micro – planets and satellites: detection. 

1  I N T RO D U C T I O N  

A substantial fraction of stars have one or more companion stars 

(e.g. Duch ̂ ene & Kraus 2013 ; Moe & Di Stefano 2017 ). The 

multiplicity frequency of main sequence stars is a steep monotonic 

function of stellar mass from ∼20 per cent for very low-mass stars 

(mass ≤0 . 1M ⊙) to ≥80 per cent for high-mass stars (mass � 16M ⊙) 

(Duch ̂ ene & Kraus 2013 ). The binary fraction has the same trend 

(Moe & Di Stefano 2017 ). Both theoretical and observational studies 

show that stellar binarity has various effects on the protoplanet 

discs, e.g. driving wobbling jets with inhomogeneous accretion 

(Jørgensen et al. 2022 ) triggering misalignment in discs with the 

⋆ E-mail: renkunkuang@gmail.com 

† The KMTNet Collaboration. 

‡ The OGLE Collaboration. 

orbital plane of the binary (Zanazzi & Lai 2018 ; Czekala et al. 

2019 ; Yang et al. 2020 ) and driving spiral arms (Dong et al. 

2016 ). Materials can also be delivered via streamers inside the 

open gaps (Artymowicz & Lubow 1994 ) in discs to the region 

near the binary (Nelson & Marzari 2016 ; Yang et al. 2017 ), which 

can sustain supplementary materials in the circumstellar discs and 

thus facilitate the formation of planets orbiting one of the stars 

in binary systems. There are other dynamical influences from the 

companion. F or e xample, the companion perturbs the protoplanetary 

disc, leading to a non-axisymmetric disc with non-zero eccentricity 

(e.g. Kle y, P apaloizou & Ogilvie 2008 ). The eccentric disc together 

with the companion forms a complex environment and regulates the 

dynamics of the planetesimals, thus influencing planet formation 

(Th ́ebault, Marzari & Scholl 2008 ; Marzari et al. 2013 ; Rafikov 

2013 ; Rafikov & Silsbee 2015 ; Silsbee & Rafikov 2015 ). Due to 

complicated formation scenarios, more insightful studies on the 

planet formation in binary systems are still needed. The increasingly 
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growing exoplanet census offers opportunities to reassess planet 

formation theories. 

To date, there are about 5000 1 confirmed exoplanets and about 

400 e xoplanets hav e been confirmed in binaries with > 90 per cent of 

these detected around FGK stars by the transit method (e.g. Kepler 

16 b, Doyle et al. 2011, and Kepler 47 b, Orosz et al. 2012 ) or the 

radial velocity method (e.g. HD 147513 b, Mayor et al. 2004 , and 

11 Com b, Liu et al. 2008 ). As the planet-in-binary sample size 

grows, studies on comparing the characteristics of planets in binary 

systems with planets around single stars have been done (e.g. Roell 

et al. 2012 ). Using publicly av ailable K epler data, Armstrong et al. 

( 2014 ) found that the occurrence rate of circumbinary planets may 

be consistent with or higher than that of planets orbiting a single star. 

Besides, with Keck II high resolution imaging for 382 Kepler Objects 

of Interest, Kraus et al. ( 2016 ) found that the planet occurrence 

rate in close binaries (with projected separation � 50 au) is about 

three times lower than in wide binaries or single stars. These results 

indicate that the binarity may have a limited effect on the formation 

of circumbinary planets and circumstellar planets with very wide 

binary separations ( � 100 au). Ho we ver, for circumstellar planets 2 

in much closer binaries (with separation ∼20 au), the situation is 

different such that the planet formation efficiency would be strongly 

af fected (lo wered) by the presence of the companion star (Thebault & 

Haghighipour 2015 ). 

Within the framework of gravitational collapse or core accretion, 

some theoretical works indicate that a close companion would inhibit 

planet formation. For example, by e v aporating volatile materials due 

to internal thermal energy generation in the disc (Nelson 2000 ), 

or by increasing the eccentricity of the gas disc and the relative 

velocity between dust and gas, thus reducing the coagulation and 

the average mass of the particles (Zsom, S ́andor & Dullemond 

2011 ). The disco v ery of planets in close binaries implies that planet 

formation is a robust process, and it has triggered a great interest in 

testing and developing planet formation theories in such dynamically 

active environments (Jang-Condell 2015 ). The apsidal alignment of 

a protoplanetary disc with the binary orbit has been found to be one 

of the critical conditions for planetesimal gro wth, which allo ws the 

emergence of a dynamically quiet location in the disc (Silsbee & 

Rafikov 2021 ). 

Theories on planet formation in binary systems are under rapid 

development. To obtain a more complete picture of how planets form 

in binary systems, a larger sample would be beneficial. Ho we ver, 

currently, there are some observational biases. F or e xample, most 

circumbinary planets detected by Kepler are located near the stability 

limit, i.e. they would be dynamically unstable if they were in a slightly 

closer orbit (Holman & Wiegert 1999 ; Ballantyne et al. 2021 ). This 

is thought to be caused by selection effects, i.e. the transit and radial 

velocity methods require longer time coverage to detect longer period 

planets. 

The gravitational microlensing technique (Mao & Paczynski 1991 ; 

Gould & Loeb 1992 ) is complementary to other exoplanet detection 

methods due to its unique sensitivity for planets in binary systems 

(e.g. Luhn, Penny & Gaudi 2016 ). With the microlensing method, the 

planet signal is detectable either through its influence on the central 

caustic formed by the stellar binary, or through the planetary caustic 

formed by the planet. The time-scale of a typical microlensing event 

1 https://e xoplanetarchiv e.ipac.caltech.edu/index.html 
2 F or e xample, γ Cephei A (Hatzes et al. 2003 ; Neuh ̈auser et al. 2007 ), HD 

41004 A (Zucker et al. 2004 ), and HD 41004 A (Correia et al. 2008 ; Chauvin 

et al. 2011 ). 

towards the Galactic bulge is about one month. Unlike the transit and 

radial velocity methods, the microlensing method does not require 

years of observations due to the long orbital period of the planet or 

the companion. For example, Bennett et al. ( 2016 ) reported the first 

case of microlensing circumbinary planet. In this case, the projected 

separation between the planet and the centre of mass is ∼40 times 

larger than the separation between the two stars, well beyond the 

stability limit. This detection indicates that circumbinary planets with 

stable orbits may be quite common. Ho we ver to date, only seven 

unambiguous planets in binary systems have been disco v ered by 

microlensing. Here we restrict the stellar binary mass-ratio, q 2 > 0.1. 

These events include OGLE-2006-BLG-284 (Bennett et al. 2020 ), 

OGLE-2007-BLG-349 (Bennett et al. 2016 ), OGLE-2008-BLG-092 

(Poleski et al. 2014 ), OGLE-2013-BLG-0341 (Gould et al. 2014 ), 

OGLE-2016-BLG-0613 (Han et al. 2017 ), 3 OGLE-2018-BLG-1700 

(Han et al. 2020 ), and KMT-2019-BLG-1715 (Han et al. 2021a ). 4 

There are two main challenges in detecting planets in binary 

systems via the microlensing method. First, the perturbations on 

a microlensing light curve from the stellar binary are often much 

stronger than those from a planetary companion, for which one first 

needs careful binary-lens single-source (2L1S) modelling to isolate 

the signal from the stellar binary and then search for the planetary 

signals. Ho we v er, in man y cases, modellers would lose interest in 

the light curves with obvious stellar-binary features. Second, the 

triple-lens single-source (3L1S) modelling is computationally much 

more e xpensiv e than the 2L1S modelling due to a higher-dimensional 

parameter space and more complex image and caustics topology. 

There have been several approaches to calculate 3L1S light curves. 

Previous analyses of 3L1S events (e.g. the first microlensing two- 

planet event OGLE-2006-BLG-109, Gaudi et al. 2008 ; Bennett et al. 

2010 ) are mainly based on the inverse ray-shooting method (Kayser, 

Refsdal & Stabell 1986 ; Schneider & Weiss 1987 ), including the 

image centred ray-shooting method (Bennett & Rhie 1996 ) and the 

‘map-making’ method (Dong et al. 2006 , 2009b ). In addition, Me- 

diavilla et al. ( 2006 ), Mediavilla et al. ( 2011 ) proposed an approach 

based on inverse polygon mapping. In the low-magnification regime, 

one can use the hexadecapole approximation (Gould 2008 ; Pejcha & 

He yro vsk ́y 2009 ). Recently, K uang et al. ( 2021 ) implemented a 

general contour integration method (Gould & Gaucherel 1997 ; 

Dominik 1998b ) for 3L1S and made this microlensing 3L1S code 

publicly available. 5 

In this paper, we present the first application of the code to a real 

3L1S event, OGLE-2019-BLG-1470, for which the lens system is 

composed of a super-Jovian planet and a low-mass stellar binary. 

The anomaly of this event was found by the Korea Microlensing 

Telescope Network (KMTNet, Kim et al. 2016 ) AnomalyFinder 

(Zang et al. 2021 ) applied to its 2019 subprime-field sample (cadence 

Ŵ < 2 hr −1 ), and careful 2L1S modelling conducted by H. Wang 

suggested that it needs an additional lens or source to fit the light 

curve. 

The paper is structured as follows. We first introduce the observa- 

tions and data reduction for this event in Section 2 . We then present 

3 For OGLE-2016-BLG-0613, there is a degenerate solution with q 2 = 

0.029 ± 0.002 fa v oured by �χ2 = 10 (Han et al. 2017 ). 
4 We count those events with clear interpretations without other competing 

degenerate models. Other likely candidate events of planet in binary with 

unresolv ed de generate models include OGLE-2019-BLG-0304 (Han et al. 

2021b ), where the triple-lens model is fa v oured o v er the tw o-lens-tw o-source 

model with �χ2 ≈ 8. With the available data, the de generac y cannot be 

securely resolved. 
5 ht tps://github.com/rkkuang/t riplelens 
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Table 1. Data used in the analysis with corresponding data reduction method (HJD ′ = HJD − 2450000). 

Collaboration Site Name Filter Time co v erage (HJD ′ ) N data Reduction method ( k , e min ) 

OGLE LCO OGLE I 8530.9–8763.6 313 Wozniak ( 2000 ) (1.446, 0.000) 

KMTNet SAAO KMTS I 8584.5–8777.3 137 PYSIS 1 (1.746, 0.000) 

KMTNet CTIO KMTC I 8546.8–8777.6 390 PYSIS (1.510, 0.010) 

KMTNet SSO KMTA I 8563.2–8777.9 291 PYSIS (1.554, 0.000) 

KMTNet CTIO KMTC I 8546.8–8777.6 390 PYDIA 2 –

KMTNet CTIO KMTC V 8542.9–8773.5 42 PYDIA –

Notes . 1 Albrow et al. ( 2009 ). 
2 Albrow ( 2017 ). 

the light-curve modelling process in Section 3 and the physical 

parameters of the lens system in Section 4 . Finally, we discuss the 

implications derived from an examination of all microlensing planets 

in binary systems in Section 5 . 

2  OBSERVATIONS  A N D  DATA  R E D U C T I O N  

The microlensing event OGLE-2019-BLG-1470 at equatorial co- 

ordinates ( α, δ) J2000 = (18:07:47.81, −27:02:00.8), and Galactic 

coordinates ( ℓ , b ) = (4.1043, −3.2794) was announced as a candidate 

microlensing event by the Early Warning System (Udalski et al. 

1994 ; Udalski 2003 ) of the Optical Gravitational Lensing Experiment 

(OGLE, Udalski, Szyma ́nski & Szyma ́nski 2015 ) on 2019 September 

22 and independently found by the KMTNet EventFinder algorithm 

(Kim et al. 2018 ) as KMT-2019-BLG-2814 using all the data from 

the 2019 season. The OGLE observations were taken using its 1.3- 

m Warsaw Telescope equipped with a 1.4 deg 2 FOV mosaic CCD 

camera at Las Campanas Observatory (LCO) in Chile. The KMTNet 

data were taken using the three identical 1.6 m-telescopes equipped 

with 4 deg 2 FOV cameras at the Cerro Tololo Inter-American Obser- 

vatory (CTIO) in Chile (KMTC), the South African Astronomical 

Observatory (SAAO) in South Africa (KMTS), and the Siding Spring 

Observatory (SSO) in Australia (KMTA). OGLE-2019-BLG-1470 

lies in the OGLE BLG518 field and KMTNet BLG32 field with 

cadences of Ŵ ∼1–3 night −1 and Ŵ ∼ 0.4 hr −1 , respectiv ely. F or both 

surv e ys, images were mainly taken in the I -band with occasional 

observations in the V -band for the source colour measurements. We 

summarize the data sets used in this work in Table 1 . 

The data used in the light-curve analysis were reduced using 

custom implementations of the difference image analysis technique 

(Tomaney & Crotts 1996 ; Alard & Lupton 1998 ; Bramich 2008 ): 

Wozniak ( 2000 ) for the OGLE data and PYSIS (Albrow et al. 2009 ) for 

the KMTNet data. For the KMTC data, we conduct PYDIA photometry 

(Albrow 2017 ) to measure the source colour. The I -band magnitude 

of the data has been calibrated to the standard I -band magnitude using 

the OGLE-II star catalogue (Udalski et al. 2002 ). Due to systematics, 

the photometric error bars of data estimated by photometry pipelines 

are often underestimated. We thus follow the method proposed by 

Yee et al. ( 2012 ) to adjust the error bars for each data set i using the 

formula 

σ ′ 
i ,j = k i 

√ 

σ 2 
i ,j + e 2 i, min , (1) 

where σ i , j and σ ′ 
i ,j are the original and renormalized error bars in 

magnitudes of the j -th data point in the i -th data set. The error-bar 

correction parameters k i and e i, min are adjusted such that χ2 /dof = 1 

and the cumulative sum of χ2 are approximately linear as a function 

of source magnification, where ‘dof’ is the degree of freedom. We 

follow the procedures abo v e and deriv e the error-bar correction 

parameters using the best-fitting model, and other models adopt 

Figure 1. Light curve of the microlensing event OGLE-2019-BLG-1470. 

The dots with different colours represent the observed data from different 

data sets. The black solid curve is the best-fitting PSPL model. The three 

arrows indicate the three anomalous peaks of an otherwise PSPL model, 

marked as t 1 , t 2 , and t 3 . 

the same error-bar correction parameters. We list the data reduction 

methods and error-bar correction parameters for each data set in 

Table 1 . 

3  L I G H T  - C U RV E  A NA L  YSIS  

Fig. 1 shows the observed data of OGLE-2019-BLG-1470. The 

light curve exhibits three anomalous peaks relative to an otherwise 

normal point-source point-lens (PSPL, Paczy ́nski 1986 ) light curve 

at HJD 
′ = HJD − 2450000 ∼ 8746.0, 8753.4, and 8756.6, marked 

as t 1 , t 2 , and t 3 , respectively. The first anomaly is a smooth bump, 

which may be due to a cusp approach. The second and third anomalies 

together likely form a ‘U shape’, respectively corresponding to the 

entrance and exit of a caustic-crossing feature. Such a light curve is 

generally produced by a 2L1S event (e.g. Koshimoto et al. 2017 ), so 

we begin the light-curve analysis by the 2L1S modelling. 

3.1 2L1S analysis 

A static 2L1S light curv e requires sev en parameters ( t 0 , u 0 , t E , s , q , α, 

ρ) to calculate the 2L1S magnification. ‘Static’ means that we do not 

consider high-order effects such as the microlens parallax effect and 

the orbital motion of the lens or the source. The first three parameters 

of the 2L1S static model are the PSPL parameters. Of these, t 0 is the 

time of closest approach of the source to the lens centre of mass and 

u 0 is the closest distance of the source to the lens centre of mass in 

units of the angular Einstein radius ( θE ). The third parameter t E is 
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Table 2. 2L1S lensing parameters. 

Parameter Static High-order 

u 0 > 0 u 0 < 0 

Best fit MCMC Best fit MCMC Best fit MCMC 

χ2 / dof 1265.25/1124 1181.49/1120 1181.27/1120 

t 0 (HJD ′ ) 8750.870 8750 . 955 + 0 . 176 
−0 . 172 8750.307 8750 . 265 + 0 . 200 

−0 . 214 8750.141 8750 . 228 + 0 . 191 
−0 . 224 

u 0 0.229 0 . 227 + 0 . 008 
−0 . 009 0.219 0 . 228 + 0 . 013 

−0 . 015 −0.228 −0 . 229 + 0 . 015 
−0 . 015 

t E (days) 40.575 40 . 907 + 1 . 268 
−1 . 106 39.576 39 . 715 + 3 . 377 

−1 . 736 38.478 39 . 861 + 5 . 993 
−1 . 895 

s 1.154 1 . 152 + 0 . 006 
−0 . 006 1.171 1 . 162 + 0 . 010 

−0 . 011 1.167 1 . 161 + 0 . 010 
−0 . 012 

q (10 −3 ) 4.456 4 . 476 + 0 . 392 
−0 . 366 5.803 4 . 927 + 0 . 991 

−1 . 168 5.062 4 . 691 + 1 . 061 
−1 . 599 

α (rad) 5.099 5 . 093 + 0 . 016 
−0 . 017 5.206 5 . 173 + 0 . 034 

−0 . 045 1.101 1 . 115 + 0 . 065 
−0 . 038 

ρ(10 −3 ) 7.56 < 9 . 01 (3 σ ) 2 8.731 7 . 948 + 1 . 101 
−1 . 222 8.271 7 . 655 + 1 . 106 

−1 . 299 

πE, N – – −2.233 −2 . 004 + 2 . 306 
−0 . 706 2.190 1 . 841 + 0 . 821 

−3 . 198 

πE, E – – −0.716 −0 . 769 + 0 . 161 
−0 . 183 −0.857 −0 . 862 + 0 . 144 

−0 . 173 

d s /d t (yr −1 ) – – −1.233 −0 . 489 + 0 . 788 
−0 . 697 −0.697 −0 . 354 + 0 . 865 

−0 . 782 

d α/d t (yr −1 ) – – −2.692 −0 . 996 + 2 . 488 
−1 . 728 −0.137 1 . 048 + 1 . 650 

−2 . 656 

f S , OGLE 
1 0.194 0 . 192 + 0 . 009 

−0 . 009 0.184 0 . 192 + 0 . 012 
−0 . 015 0.192 0 . 192 + 0 . 013 

−0 . 013 

f B, OGLE 0.252 0 . 254 + 0 . 009 
−0 . 009 0.267 0 . 259 + 0 . 015 

−0 . 012 0.259 0 . 258 + 0 . 014 
−0 . 013 

Notes. 1 The flux is on an 18th magnitude scale, e.g. I S = 18 − 2.5 log ( f S ). The reported ( f S, OGLE , f B, OGLE ) values have been calibrated to the 

standard I -band magnitude using the OGLE-II star catalogue (Udalski et al. 2002 ). 
2 3 σ means �χ2 = 9 compared to the best-fitting ρ value. 

the Einstein radius crossing time, which is defined as 

t E = 
θE 

µrel 
; θE = 

√ 

κM L πrel ; κ ≡
4 G 

c 2 au 
≃ 8 . 144 

mas 

M ⊙
, (2) 

where M L is the lens mass and ( πrel , µrel ) are the lens-source relative 

(parallax, proper motion), µrel is the magnitude of the vector µrel . 

G , and c are the gravitational constant and the speed of light, 

respectively. The three additional parameters ( s , q , α) define the 

binary ( M 1 and M 2 ) geometry: s is the binary separation in units 

of θE , q is the binary mass ratio, and α is the angle between the 

source trajectory and the binary-lens axis. The last parameter, ρ, 

represents the angular source radius normalized by θE , and it is 

needed to describe finite-source effects (Gould 1994 ; Nemiroff & 

W ickramasinghe 1994 ; W itt & Mao 1994 ) in caustic-crossing and/or 

cusp-approach features. Besides, for each data set i , we introduce 

two linear parameters ( f S, i , f B, i ) to represent the source flux and any 

blended flux. We use the advanced contour integration code (Bozza 

2010 ; Bozza et al. 2018 ) VBBinaryLensing 6 to calculate the 

2L1S magnification at any time t . 

The static 2L1S modelling includes two steps. First, we conduct 

a grid search in the parameter space (log s , log q , α, ρ) to find the 

local minima, which consists of 41 values of log s equally spaced 

between −1.0 and 1.0, 61 values of log q equally spaced between 

−6.0 and 0.0, 20 values equally spaced between 0 ◦ ≤ α < 360 ◦, 

and five values of log ρ equally spaced between −3.5 and −1.5. 

For each grid point, we explore the parameter space of ( t 0 , u 0 , t E ) 

with the Markov Chain Monte Carlo (MCMC) method by using the 

emcee ensemble sampler (F oreman-Macke y et al. 2013 ). We choose 

the sample with the minimum χ2 in the MCMC chain, and further 

refine it with the Nelder–Mead simplex algorithm 
7 (Nelder & Mead 

1965 ; Gao & Han 2012 ). The χ2 impro v ement with the Nelder–Mead 

algorithm relative to the best-fit sample in the MCMC chain is � 1, 

and all the best-fitting parameters are inside the 1 σ credible levels. 

6 ht tp://www.fisica.unisa.it /GravitationAstr ophysics/VBBinar yLensing.htm 
7 Throughout the paper, this is done every time we run an MCMC sampling. 

Second, for the local minima identified by the grid search, we refine 

the solution by allowing all seven parameters to vary. We show the 

parameters and error bars of the best-fitting model in Table 2 . Note 

that, as recommended by Hogg & F oreman-Macke y ( 2018 ), we use 

the median of the MCMC chain as the measurement value, and the 

16 per cent, 84 per cent quantiles as the lower and upper 1 σ error 

bars. 

The best-fitting static 2L1S model and its residuals from the 

observed data are shown in Fig. 2 . This model predicts a magnifica- 

tion higher than the observed data during 8720 < HJD 
′ < 8734 and 

8747 < HJD 
′ < 8752 while during 8763 < HJD 

′ < 8772, the model 

magnification is not high enough to explain the data. In addition to 

test the distribution of normalized residuals against a standard normal 

distribution (with mean 0 and standard deviation 1), Fig. 3 shows the 

Quantile–Quantile (Q–Q) plot (Wilk & Gnanadesikan 1968 ) gen- 

erated with the normalized residuals during 8720 < HJD 
′ < 8780. 

The upper left-hand panel shows the Q–Q plot of the static 2L1S 

model. The quantiles calculated with normalized residuals of this 

model obviously deviate from the standard normal distribution at 

both the low and high ends. We also conduct a two-sample Anderson–

Darling test (Scholz & Stephens 1987 ) with the normalized residuals 

against the standard normal distribution. The null hypothesis that the 

residuals follow the standard normal distribution can be rejected 

at the 0.5 per cent significance level. We label the value of the 

Anderson–Darling test statistic in Fig. 3 , and show the critical values 

for different significance levels in the caption. We are thus driven to 

investigate whether the residuals can be fitted by high-order effects. 

The first high-order effect is the microlensing parallax effect 

(Gould 2000 ), which is due to the orbital acceleration of Earth 

(observer). We parametrize the effect by two parameters, πE, N and 

πE, E , the north and east components of the microlensing parallax 

vector πE in equatorial coordinates, 

πE ≡
πrel 

θE 

µrel 

µrel 
. (3) 

The second effect is the lens orbital motion (Dominik 1998a ; Batista 

et al. 2011 ; Skowron et al. 2011 ), which is described by two 
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Figure 2. The observed data together with four models and their residuals. In the upper two panels, the dashed and solid black lines represent the best-fitting 

2L1S models without and with high-order ef fects, respecti vely. The solid magenta and red lines show the best-fitting 2L2S and 3L1S models. The lower four 

panels show the residuals from each model. 
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Figure 3. The Quantile–Quantile plots and the Anderson–Darling test 

results for different models. The sample quantiles are calculated with the 

normalized residuals during 8720 < HJD ′ < 8780 (263 data points in total). 

The theoretical quantiles are calculated for a standard normal distribution. The 

red lines show the equality lines. The labelled red value at each panel shows the 

value of the normalized two-sample Anderson-Darling test statistic. The first 

sample contains 263 normalized residuals, while the second sample contains 

10 7 random values drawn from the standard normal distribution. The critical 

values for significance levels (25 per cent, 10 per cent, 5 per cent, 2.5 per cent, 

1 per cent, 0.5 per cent, 0.1 per cent) are (0.325, 1.226, 1.961, 2.718, 3.752, 

4.592, 6.546), respectiv ely. F or the ‘2L1S Static’ model, the Anderson–

Darling test statistic 4.775 is larger than the critical value for 0.5 per cent 

(4.592), but smaller than the critical value for 0.1 per cent (6.546). So the null 

hypothesis that the normalized residuals of the ‘2L1S Static’ model follow the 

standard normal distribution can be rejected at the 0.5 per cent significance 

lev el. F or the 2L2S and 3L1S models, the null hypothesis cannot be rejected. 

We used the Python packages statsmodels (Seabold & Perktold 2010 ) 

and scipy (Virtanen et al. 2020 ). 

parameters, d s/ d t and d α/ d t , the rates of instantaneous changes 

at t 0 of the binary separation and orientation. We find that the orbital 

motion effect is poorly constrained and thus restrict the MCMC trials 

to β < 1.0, where β is the absolute value of the ratio of transverse 

kinetic to potential energy (An et al. 2002 ; Dong et al. 2009a ), 

β ≡
∣

∣

∣

∣

KE ⊥ 

PE ⊥ 

∣

∣

∣

∣

= 
κM ⊙yr 2 

8 π2 

πE 

θE 
γ 2 

(

s 

πE + πS /θE 

)3 

; 

γ ≡
(

d s/ d t 

s 
, 

d α

d t 

)

, (4) 

where we adopt πS = 0.13 mas for parallax of the source based on the 

mean distance to red giant stars in the direction of this event (Nataf 

et al. 2013 ). We also consider the u 0 > 0 and u 0 < 0 solutions to the 

‘ecliptic de generac y’ (Jiang et al. 2004 ; Poinde xter et al. 2005 ). 

The parameters from the MCMC and the best-fitting model are 

shown in Table 2 and Fig. 2 , respectively. We find that the inclusion 

of high-order effects impro v es the fit by �χ2 ≃ 80. However, there 

are still unexplained features in this model. For example, the smooth 

bump in the observed data peaks at around HJD 
′ = 8746, while both 

‘2L1S Static’ and ‘2L1S High-order’ models peak at HJD 
′ ∼ 8750, 

so they predict a higher magnification than what is observed during 

8747 < HJD 
′ < 8752. The upper right-hand panel of Fig. 3 shows 

the Q–Q plot of this model, in which the sample quantiles agree 

better with the theoretical quantiles than the static 2L1S model, 

but still deviate from the standard normal distribution at the low 

end. From the Anderson–Darling test, the null hypothesis that the 

residuals follow the standard normal distribution can be rejected at 

the 5 per cent significance lev el. Moreo v er, according to the analysis 

of Section 4 , the θE and πE values of this model indicate a M L � 

15 M J , µrel ∼ 0 . 8 mas yr −1 lens system in the Galactic disc. The low 

lens-source relative proper motion is of fairly low probability in the 

Galactic dynamical model (see fig. 2 of Zhu et al. 2017 ), and the very 

low-mass lens would be rare in the context of standard stellar mass 

functions (e.g. Kroupa 2001 ). Hence, we consider models involving 

four objects, i.e. 3L1S (Section 3.2 ) and binary-lens binary-source 

(2L2S) (Section 3.3 ). 

3.2 3L1S analysis 

Relative to the 2L1S model, the 3L1S model has three additional 

parameters ( s 3 , q 3 , ψ) to describe the third body M 3 (the smallest 

mass in our convention). Here s 3 and q 3 respectively represent the 

separation in units of θE and mass ratio between M 1 and M 3 , and 

ψ denotes the orientation angle of M 3 measured from the M 1 - M 2 

axis as seen from M 1 . To a v oid confusion, from now on we use s 2 , 

q 2 to represent the separation and mass ratio of M 2 to M 1 , i.e. q 2 = 

M 2 / M 1 . Due to the high-dimensional parameter space, it would be 

computationally e xpensiv e to conduct a grid search to explore the 

whole parameter space. Fortunately, the anomalies in the present 

case can be approximately described by the superposition of two 

2L1S perturbations (Bozza 1999 ; Han et al. 2001 ; Han 2005 ). That 

is, the smooth bump at t 1 and the caustic-crossing feature between 

t 2 and t 3 can each be fitted by separate 2L1S models. Under this 

approximation, we conduct 2L1S modelling for two data subsets. In 

addition, we also tried other combinations of ( t 1 , t 2 , t 3 ) and found that 

the resulting 3L1S models are disfa v oured by �χ2 � 80 relative to 

the combination adopted here. For completeness, we describe those 

models in Section 3.2.2 . 

3.2.1 A bump versus a pair of caustic crossings 

For the first data subset, we exclude the data around the caustic- 

crossing feature, i.e. 8752 < HJD 
′ < 8762. We conduct a 2L1S 

grid search and then refine the solutions by the MCMC with all 

2L1S parameters free. We restrict the blended flux f B, OGLE > −0.2 

to exclude solutions with severe negative blended flux. We find 

five solutions and designate them as ‘Binary A’ to ‘Binary E’, 

respectively. Their parameters are presented in Table 3 , and their 

model light curves are shown in Fig. 4 . Based on the caustic 

geometries and source trajectories shown in Fig. 5 , we find that 

the solutions ‘Binary A’ to ‘Binary D’ can be regarded as two pairs 

of solutions with s 2 > 1 and s 2 < 1. For the solution ‘Binary E’, 

its source trajectory is almost parallel to the binary axis, and such 

a geometry has been disco v ered in sev eral previous cases (e.g. Han 

et al. 2017 ; Zhang et al. 2020 ). For the second data subset, we 

exclude the data around the smooth bump, i.e. 8735 < HJD 
′ < 8752. 

A planetary model with (log s 3 , log q 3 ) ≃ (0.05, −2.4) can explain 

this data subset, and there is no degenerate solution. 

We obtain the initial parameters of 3L1S models by combining the 

parameters of the planetary model and each of the five binary models. 

Details about how to combine two 2L1S models are presented in 

appendix A including a detailed recipe in appendix A3 . The four 

3L1S solutions, which correspond to ‘Binary A’ to ‘Binary D’, can 
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Table 3. 2L1S lensing parameters obtained from excluding a portion of the data set. 

Parameter Binary Planetary 

A ( s 2 < 1) B ( s 2 > 1) C ( s 2 < 1) D ( s 2 > 1) E 

χ2 / dof 1078.49/1082 1080.59/1082 1078.24/1082 1079.08/1082 1072.86/1082 1033.06/1040 

t 0 (HJD ′ ) 8750 . 180 + 0 . 710 
−0 . 731 8750 . 432 + 0 . 748 

−2 . 742 8753 . 517 + 0 . 644 
−0 . 563 8751 . 418 + 0 . 272 

−0 . 354 8753 . 794 + 0 . 212 
−0 . 217 8752 . 944 + 0 . 313 

−0 . 299 

u 0 0 . 263 + 0 . 035 
−0 . 038 0 . 297 + 0 . 135 

−0 . 176 0 . 362 + 0 . 101 
−0 . 083 0 . 374 + 0 . 060 

−0 . 048 0 . 564 + 0 . 042 
−0 . 048 0 . 203 + 0 . 020 

−0 . 023 

t E (days) 35 . 267 + 3 . 763 
−3 . 037 32 . 378 + 5 . 376 

−4 . 783 33 . 274 + 4 . 452 
−3 . 780 33 . 578 + 3 . 536 

−3 . 874 28 . 332 + 1 . 892 
−1 . 941 44 . 346 + 3 . 650 

−2 . 662 

s 2 (for Binary) or 0 . 469 + 0 . 036 
−0 . 021 2 . 225 + 0 . 272 

−0 . 154 0 . 484 + 0 . 021 
−0 . 020 1 . 422 + 0 . 090 

−0 . 101 1 . 161 + 0 . 028 
−0 . 029 1 . 130 + 0 . 010 

−0 . 011 

s 3 (for Planetary) 

q 2 or q 3 0 . 595 + 0 . 362 
−0 . 293 0 . 068 + 0 . 058 

−0 . 025 0 . 905 + 1 . 060 
−0 . 441 0 . 106 + 0 . 030 

−0 . 023 0 . 226 + 0 . 055 
−0 . 045 4 . 342 + 1 . 179 

−0 . 762 ( ×10 −3 ) 

α (rad) 4 . 081 + 0 . 119 
−0 . 093 4 . 181 + 0 . 062 

−0 . 073 2 . 487 + 0 . 163 
−0 . 228 1 . 811 + 0 . 045 

−0 . 046 0 . 124 + 0 . 028 
−0 . 026 4 . 936 + 0 . 031 

−0 . 028 

ρ(10 −2 ) < 5 . 00 (3 σ ) < 5 . 00 (3 σ ) < 5 . 00 (3 σ ) < 4 . 99 (3 σ ) < 4 . 98 (3 σ ) < 1 . 26 (3 σ ) 

f S, OGLE 0 . 225 + 0 . 037 
−0 . 036 0 . 372 + 0 . 156 

−0 . 099 0 . 310 + 0 . 113 
−0 . 083 0 . 280 + 0 . 083 

−0 . 049 0 . 524 + 0 . 077 
−0 . 069 0 . 157 + 0 . 018 

−0 . 020 

f B, OGLE 0 . 224 + 0 . 036 
−0 . 037 0 . 076 + 0 . 098 

−0 . 155 0 . 139 + 0 . 083 
−0 . 112 0 . 169 + 0 . 049 

−0 . 083 −0 . 075 + 0 . 069 
−0 . 077 0 . 291 + 0 . 020 

−0 . 018 

Figure 4. The best-fitting 2L1S model light curves obtained by excluding a 

portion of the data. For the planetary model (solid black), the data inside the 

range of 8735 < HJD ′ < 8752 are e xcluded. F or the binary models, the data 

inside the region 8752 < HJD ′ < 8762 are excluded. Their corresponding 

caustic structure and source trajectories are shown in Fig. 5 . The three vertical 

dashed lines correspond to HJD ′ = 8735, 8752, and 8762, respectively. 

Figure 5. Caustic geometries of the 2L1S solutions obtained by excluding 

a portion of the data. Their corresponding model light curves are shown in 

Fig. 4 . 

explain all the features in the observed data well with �χ2 � 5 

relative to the best-fitting model. We designate these 3L1S solutions 

as ‘3L1S A’ to ‘3L1S D’. Table 4 presents the parameters of the four 

solutions. Their caustic structure and magnification maps together 

with the source trajectories are shown in Fig. 6 . The model light 

curve of the best-fit 3L1S solution (‘3L1S A’) is shown in Fig. 2 . 

The combination of the solution ‘Binary E’ and the planetary model 

cannot produce a 3L1S model that explains all the anomalies, and 

the resulting model from the MCMC is one of the 3L1S solutions 

from another combination of ( t 1 , t 2 , t 3 ). We thus exclude this 3L1S 

solution which corresponds to ‘Binary E’. 

We note that some of the reported 3L1S model parameters and 

uncertainties (Table 4 ) may be different from the 2L1S models 

(Table 3 ) they are built upon. For example, the values of u 0 are 

different for ‘Binary D’ in Table 3 and ‘3L1S D’ in Table 4 . This 

is because by adding a planetary mass into the binary models, 

parameters like t E , u 0 are better constrained by the caustic crossing 

feature in the light curve caused by the planet mass. Other parameters 

would also be constrained better since parameters are correlated. 

Actually, after obtaining the 2L1S models for each data subset, one 

could further do a joint fit before 3L1S modelling. Because for each 

pair of ‘Binary’ and ‘Planetary’ models, they should have at least the 

same t E and ρ. 

We find that the inclusion of high-order effects impro v e the fit by 

�χ2 ≃ 3 and the 1 σ uncertainty of parallax is σ ( πE, � ) ≃ 0.2 and 

σ ( πE, ⊥ ) ≃ 1.0, where πE, � and πE, ⊥ are the component of πE that is 

parallel and perpendicular with the direction of Earth’s acceleration. 

In addition, the other 3L1S parameters are consistent with those of 

the static 3L1S models at 1 σ . Such a weak constraint on πE has 

little effect ( < 5 per cent ) on the physical parameters derived from 

the Bayesian analysis in Section 4.2 . Hence, we adopt the static 3L1S 

models as the final results. 

3.2.2 Other combinations of features 

Currently, the solutions of most known 3L1S events were found by 

the superposition of two 2L1S perturbations. The strategy of finding 

3L1S models from combinations of 2L1S models is mainly arrived 

at by inspecting the features of the observed light curve. If the data 

co v erage of each anomaly is good and thus the shape of each anomaly 

is clear, then the combinations are relativ ely straightforward. F or 

example, the two planetary signals of the 3L1S event OGLE-2012- 

BLG-0026 (Han et al. 2013 ) clearly consist of a bump and a dip, so 

only one combination of light curve features is feasible. Ho we ver, in 

the present case, the co v erage at the caustic crossings of the ‘U shape’ 

anomaly ( t 2 and t 3 ) is sparse, so it raises the question of whether or 

not other combinations of ( t 1 , t 2 , t 3 ) can yield a reasonable 3L1S 

solution. 
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Table 4. 3L1S lensing parameters together with θ∗ and θE . 

Parameter A ( s 2 < 1) B ( s 2 > 1) C ( s 2 < 1) D ( s 2 > 1) 

Best fit MCMC Best fit MCMC Best fit MCMC Best fit MCMC 

χ2 / dof 1121.45/1121 1124.81/1121 1126.78/1121 1126.26/1121 

t 0 (HJD ′ ) 8751.021 8751 . 032 + 0 . 190 
−0 . 173 8741.156 8739 . 940 + 1 . 680 

−2 . 020 8753.446 8753 . 262 + 0 . 212 
−0 . 195 8718.708 8716 . 294 + 4 . 161 

−3 . 698 

u 0 0.187 0 . 192 + 0 . 018 
−0 . 011 −0.049 −0 . 068 + 0 . 032 

−0 . 036 0.295 0 . 285 + 0 . 016 
−0 . 018 0.936 0 . 962 + 0 . 053 

−0 . 051 

t E (days) 42.595 41 . 725 + 1 . 827 
−3 . 111 45.378 46 . 890 + 2 . 544 

−2 . 113 36.243 36 . 302 + 1 . 340 
−0 . 880 55.622 56 . 037 + 2 . 599 

−1 . 990 

s 2 0.439 0 . 446 + 0 . 021 
−0 . 017 2.749 2 . 786 + 0 . 085 

−0 . 083 0.457 0 . 451 + 0 . 012 
−0 . 013 2.700 2 . 768 + 0 . 094 

−0 . 078 

q 2 0.359 0 . 322 + 0 . 088 
−0 . 073 0.173 0 . 180 + 0 . 023 

−0 . 020 0.975 1 . 019 + 0 . 185 
−0 . 200 0.695 0 . 708 + 0 . 061 

−0 . 065 

α (rad) 3.900 3 . 890 + 0 . 029 
−0 . 026 3.913 3 . 888 + 0 . 045 

−0 . 037 2.416 2 . 424 + 0 . 021 
−0 . 062 2.234 2 . 238 + 0 . 042 

−0 . 036 

s 3 1.108 1 . 112 + 0 . 017 
−0 . 011 1.059 1 . 053 + 0 . 009 

−0 . 010 1.019 1 . 011 + 0 . 016 
−0 . 020 0.870 0 . 867 + 0 . 014 

−0 . 014 

q 3 (10 −3 ) 3.472 3 . 878 + 1 . 132 
−0 . 545 4.953 5 . 149 + 0 . 604 

−0 . 501 8.643 9 . 359 + 1 . 676 
−1 . 400 4.275 3 . 996 + 0 . 391 

−0 . 421 

ψ (rad) 4.993 4 . 998 + 0 . 034 
−0 . 032 5.184 5 . 153 + 0 . 057 

−0 . 050 4.093 4 . 087 + 0 . 033 
−0 . 087 3.615 3 . 609 + 0 . 054 

−0 . 055 

ρ(10 −2 ) 0.121 < 1 . 148 (3 σ ) 0.885 < 1 . 138 (3 σ ) 0.928 < 1 . 321 (3 σ ) 0.572 < 0 . 955 (3 σ ) 

f S, OGLE 0.158 0 . 163 + 0 . 021 
−0 . 010 0.181 0 . 171 + 0 . 018 

−0 . 018 0.247 0 . 242 + 0 . 012 
−0 . 015 0.194 0 . 193 + 0 . 015 

−0 . 019 

f B, OGLE 0.290 0 . 285 + 0 . 010 
−0 . 021 0.267 0 . 278 + 0 . 018 

−0 . 018 0.201 0 . 207 + 0 . 015 
−0 . 012 0.253 0 . 254 + 0 . 019 

−0 . 016 

θ∗ ( µas) 0.62 0 . 63 + 0 . 08 
−0 . 06 0.66 0 . 64 + 0 . 08 

−0 . 08 0.78 0 . 77 + 0 . 08 
−0 . 08 0.69 0 . 69 + 0 . 08 

−0 . 09 

θE (mas) 0.51 > 0 . 055 (3 σ ) 0.075 > 0 . 056 (3 σ ) 0.084 > 0 . 058 (3 σ ) 0.12 > 0 . 072 (3 σ ) 

Figure 6. Caustic geometries of the 3L1S solutions. From top to bottom, the 

panels show the solutions A ( s 2 < 1), B ( s 2 > 1), C ( s 2 < 1), and D ( s 2 > 1), 

respecti vely. In each ro w, the left-hand panel exhibits the global view of the 

system, the solid black line with arrow shows the source trajectory, and the 

blue circles represent the locations of the lens components marked as M 1 , M 2 , 

and M 3 . The right-hand panel displays the magnification map in which the 

dashed white lines with arrows indicate the times ( t 1 , t 2 , t 3 ) of the anomalies 

and red dots indicate the corresponding source positions. 

Figure 7. Caustic geometries of solutions ‘3L1S F’ and ‘3L1S G’. The two 

solutions are found by assuming that the anomalies at t 1 and t 3 are caused by 

one 2L1S solution and the anomaly at t 2 alone is produced by the other 2L1S 

solution. The right-hand panels display a close-up of positions for the three 

anomalies at ( t 1 , t 2 , t 3 ). The corresponding model light curves are shown in 

Fig. 8 . 

The first combination assumes that the anomalies at t 1 and t 3 
are caused by one 2L1S solution and the anomaly at t 2 alone is 

produced by the other 2L1S solution. We first exclude the data 

at t 2 , i.e. 8752 < HJD 
′ < 8754 . 5, and conduct a 2L1S grid search 

with the remaining data, which yields two solutions. As shown in 

Fig. 7 , two cusp approaches with a resonant caustic produce the 

anomalies at t 1 and t 3 . Then, we find several planetary solutions that 

can explain the bump feature at t 2 . Ho we ver, the 3L1S solutions from 

this combination are all disfa v oured with �χ2 � 80 relative to the 

‘3L1S A’ solution, and these 3L1S solutions cannot fit the anomalies 

at t 2 and t 3 . For simplicity, we only display two representatives 

of these 3L1S solutions (designated as ‘3L1S F’ and ‘3L1S G’). 

Their parameters and model curves are shown in Table 5 and Fig. 8 , 

respectively. 
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Table 5. 3L1S lensing parameters of ‘3L1S F’ and ‘3L1S G’. 

Parameter F G 

Best fit MCMC Best fit MCMC 

χ2 / dof 1207.04/1121 1200.80/1121 

t 0 (HJD ′ ) 8755.747 8755 . 606 + 0 . 298 
−0 . 301 8751.555 8751 . 560 + 0 . 136 

−0 . 121 

u 0 0.775 0 . 732 + 0 . 073 
−0 . 081 0.229 0 . 240 + 0 . 031 

−0 . 026 

t E (days) 27.250 27 . 471 + 1 . 224 
−1 . 164 36.801 35 . 793 + 3 . 242 

−2 . 825 

s 2 0.887 0 . 902 + 0 . 023 
−0 . 022 1.163 1 . 154 + 0 . 041 

−0 . 043 

q 2 0.274 0 . 242 + 0 . 063 
−0 . 055 1.802 ( × 10 −2 ) 1 . 766 + 0 . 277 

−0 . 230 ( ×10 −2 ) 

α (rad) 0.040 0 . 052 + 0 . 036 
−0 . 029 1.444 1 . 451 + 0 . 015 

−0 . 015 

s 3 1.388 1 . 339 + 0 . 062 
−0 . 062 1.037 1 . 015 + 0 . 046 

−0 . 033 

q 3 (10 −3 ) 0.793 1 . 267 + 0 . 518 
−0 . 371 0.680 0 . 894 + 0 . 478 

−0 . 353 

ψ (rad) 1.549 1 . 555 + 0 . 049 
−0 . 049 2.753 2 . 768 + 0 . 027 

−0 . 028 

ρ(10 −2 ) 1.822 < 2 . 905 (3 σ ) 1.196 < 1 . 828 (3 σ ) 

f S, OGLE 0.761 0 . 582 + 0 . 041 
−0 . 074 0.203 0 . 214 + 0 . 033 

−0 . 029 

f B, OGLE −0.312 −0 . 133 + 0 . 074 
−0 . 041 0.246 0 . 235 + 0 . 029 

−0 . 033 

Figure 8. Comparison between ‘3L1S F’ and ‘3L1S G’ solutions with the 

best-fit 3L1S solution (‘3L1S A’). The two solutions are disfa v oured by �χ2 

∼ 80. 

The second combination assumes that the anomalies at t 1 and t 2 
are produced by one 2L1S system. We exclude data around t 3 , i.e. 

8754 . 5 < HJD 
′ < 8757 . 5. Ho we ver, we cannot find any 2L1S model 

that can explain the remaining data. Thus, this approach is infeasible. 

Although our attempts abo v e did not yield a new competitive 

3L1S solution and the anomalies at t 2 and t 3 together indeed form a 

‘U shape’, one may need to be cautious about the strategies of 2L1S 

combinations with numerous 3L1S events detected by the ongoing 

KMTNet surv e y and the Nanc y Grace Roman Space Telescope 

(Spergel et al. 2015 ; Penny et al. 2019 ) in the future. 

We note that in finding 3L1S solutions, we tried only the supposi- 

tion method and have not conducted a thorough grid search o v er the 

3L1S parameter space. We believe there is little chance for this event 

to have other 3L1S solutions. We have already tested all combinations 

of anomaly features in the abo v e sections and conducted thorough 

grid searches for both the binary and planetary 2L1S models that 

can produce the anomaly features in the observed light curve. In this 

event, the planet ( M 3 ) with mass-ratio q 3 ∼ 10 −3 has little effect on 

the caustic of the binary ( M 1 and M 2 ). So the binary-superposition 

method would be valid for this event. 

3.3 2L2S analysis 

There have been several events with plausible 3L1S planetary 

solutions that pro v ed to be 2L2S ev ents (e.g. Jung et al. 2017 ) or 

hav e competitiv e 2L2S solutions (e.g. Suzuki et al. 2018 ). The total 

magnification of a 2L2S model is the superposition of two 2L1S 

models involved with the individual source stars, 

A λ = 
A 1 f 1 ,λ + A 2 f 2 ,λ

f 1 ,λ + f 2 ,λ
= 

A 1 + f ratio ,λA 2 

1 + f ratio ,λ
; f ratio ,λ ≡

f 2 ,λ

f 1 ,λ
, (5) 

where A λ is the total magnification, and f i, λ is the baseline flux at 

wavelength λ of each source with i = 1 and 2 corresponding to 

the primary and the secondary sources, respectively. To include the 

second source, we require four additional parameters, ( t 0, 2 , u 0, 2 , ρ2 , 

f ratio, I ) (Hwang et al. 2013 ). t 0, 2 is the time at which the second 

source is closest to the centre of mass of the lens, u 0, 2 is the lens- 

source separation at that time, ρ2 is the normalized radius of the 

second source, and f ratio, I is the source flux ratio in the I -band. 

We use the best-fitting parameters of the static 2L1S model as 

the initial parameters of ( t 0, 1 , u 0, 1 , t E , s , q , α, ρ1 ), and use the 

MCMC method to generate samples from the posterior distribution, 

and search for the best-fitting 2L2S model with the Nelder–Mead 

algorithm. 

Table 6 lists the parameters of the 2L2S model, Fig. 2 shows 

its model curve and its residuals. It is found that the 2L2S model 

provides a better fit than the 2L1S model by �χ2 = 126. The 

goodness of fit impro v ed because the second source is relatively 

‘delayed’ compared with the first source. Fig. 9 shows the trajectories 

of the two sources. At time t 1 , the first source is nearly at its closest 

approach to the primary lens, thus would cause a strong bump, as is 

the case in the static 2L1S model. In the mean time, the second source 

is located at the low magnification region between two spikes, which 

causes the total magnification at time t 1 to be lower and impro v es 

the goodness of fit. The 2L2S model has a �χ2 ≃ 18 compared 

to the 3L1S model, the �χ2 is mainly accumulated at time around 

the caustic crossing region. See Fig. 10 for the cumulative �χ2 
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Table 6. 2L2S lensing parameters together with θ∗ and θE . 

Parameter Best fit MCMC 

χ2 / dof 1139.25/1120 

t 0, 1 (HJD ′ ) 8746.251 8746 . 510 + 0 . 375 
−0 . 322 

t 0, 2 (HJD ′ ) 8757.144 8757 . 096 + 0 . 445 
−0 . 461 

u 0, 1 0.150 0 . 165 + 0 . 012 
−0 . 013 

u 0, 2 −0.238 −0 . 260 + 0 . 034 
−0 . 042 

t E (days) 36.729 35 . 544 + 1 . 959 
−2 . 130 

s 1.215 1 . 218 + 0 . 017 
−0 . 015 

q (10 −3 ) 7.558 8 . 083 + 1 . 154 
−1 . 128 

α (rad) 5.696 5 . 654 + 0 . 039 
−0 . 048 

f ratio, I 1.600 1 . 533 + 0 . 405 
−0 . 320 

ρ1 (10 −2 ) 0.092 < 0 . 665 (3 σ ) 

ρ2 (10 −2 ) 0.039 < 21 . 3 (3 σ ) 

f S, OGLE 0.194 0 . 210 + 0 . 031 
−0 . 023 

f B, OGLE 0.255 0 . 239 + 0 . 023 
−0 . 031 

θ∗ ( µas) 0.69 0 . 72 + 0 . 10 
−0 . 09 

θE (mas) 0.75 > 0.11 

Figure 9. Caustic geometry and source trajectories of the 2L2S model. The 

red curve shows the caustic. The black lines with arrows show the trajectories 

of the two sources. In the right-hand panel, we mark the source positions at 

time t 1 , t 2 , and t 3 with crosses. 

Figure 10. Cumulative �χ2 of different models relative to the best-fitting 

3L1S model. 

Figure 11. Colour-magnitude diagram (CMD) for field stars (black dots) 

within 180 arcsec centred on OGLE-2019-BLG-1470 using the OGLE-II 

catalogue stars (Udalski et al. 2002 ). The red asterisk indicates the centroid 

of the red giant clump, and the blue dot represents the microlensing source 

star. 

relative to the 3L1S model as a function of time. However, we 

cannot firmly resolve the degeneracy between this model and the 

3L1S models with the current data. The lower left-hand and lower 

right-hand panels of Fig. 3 show the Q–Q plots of the 2L2S and 

the 3L1S models, respectiv ely. F or both models, the null hypothesis 

that the residuals follow the standard normal distribution cannot be 

firmly rejected. Including the parallax effect in the 2L2S model only 

impro v es the χ2 by 1.7, so we adopt the static 2L2S model as the 

result for simplicity. 

4  PHYSI CAL  LENS  PROPERTIES  

For a lensing object, the mass ( M L ) and distance ( D L ) of the lens 

system are related to the angular Einstein radius θE and microlensing 

parallax πE by (Gould 2000 ) 

M L = 
θE 

κπE 
; D L = 

au 

πE θE + πS 
. (6) 

In the present case, because neither θE nor πE is unambiguously 

measured, we conduct a Bayesian analysis by incorporating priors 

from a Galactic model to estimate the physical parameters of the lens 

system. Before the Bayesian procedures, we estimate the angular 

source radius θ∗ by a colour magnitude diagram (CMD, Yoo et al. 

2004 ) analysis and then obtain the constraint on θE through θE = 

θ∗/ ρ. 

4.1 Colour magnitude diagram and angular source radius 

We construct a V − I versus I colour-magnitude diagram (CMD) 

using the OGLE-II catalogue (Udalski et al. 2002 ) for field stars 

within 180 arcsec centred on the event. The CMD is shown in 

Fig. 11 . We find the centroid of the red giant clump of ( V −
I , I ) cl = (2.02 ± 0.01, 15.50 ± 0.02) and adopt ( V − I , I ) cl, 0 = 

(1.06, 14.33) (Bensby et al. 2013 ; Nataf et al. 2013 ) as the intrinsic 

colour and de-reddened magnitude of the red giant clump. For the 
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Table 7. Physical parameters of the lens system from a Bayesian analysis. 

Parameter 3L1S 2L2S 

A ( s 2 < 1) B ( s 2 > 1) C ( s 2 < 1) D ( s 2 > 1) 

M 1 (M ⊙) 0 . 57 + 0 . 43 
−0 . 32 0 . 58 + 0 . 43 

−0 . 32 0 . 56 + 0 . 44 
−0 . 32 0 . 60 + 0 . 43 

−0 . 32 0 . 55 + 0 . 44 
−0 . 31 

M 2 (M ⊙) 0 . 18 + 0 . 15 
−0 . 10 0 . 10 + 0 . 08 

−0 . 06 0 . 55 + 0 . 45 
−0 . 32 0 . 42 + 0 . 30 

−0 . 23 –

M 3 ( M J ) 2 . 2 + 1 . 8 −1 . 3 3 . 1 + 2 . 3 −1 . 7 5 . 4 + 4 . 3 −3 . 1 2 . 5 + 1 . 8 −1 . 4 4 . 6 + 3 . 7 −2 . 6 

r ⊥ , 2 (au) 1 . 3 + 0 . 5 −0 . 5 7 . 8 + 2 . 8 −2 . 8 1 . 6 + 0 . 6 −0 . 6 9 . 5 + 3 . 5 −3 . 4 –

r ⊥ , 3 (au) 3 . 2 + 1 . 2 −1 . 2 2 . 9 + 1 . 1 −1 . 1 3 . 5 + 1 . 3 −1 . 3 3 . 0 + 1 . 1 −1 . 1 3 . 2 + 1 . 2 −1 . 2 

D L (kpc) 5 . 9 + 1 . 2 −2 . 7 5 . 6 + 1 . 4 −2 . 7 6 . 1 + 1 . 1 −2 . 5 5 . 1 + 1 . 9 −2 . 5 6 . 1 + 1 . 0 −2 . 5 

µrel (mas yr −1 ) 4 . 9 + 3 . 6 −2 . 0 4 . 3 + 3 . 4 −1 . 8 6 . 4 + 4 . 4 −2 . 6 4 . 8 + 4 . 1 −2 . 2 4 . 6 + 3 . 1 −1 . 8 

source colour, which is model independent, we obtain ( V − I ) S = 

1.81 ± 0.07 from a regression of the KMTC V versus I flux as 

the lensing magnification changes and a calibration to the OGLE-II 

magnitudes. Because the four 3L1S solutions have different source 

flux es, we be gin with the angular source radius of solution ‘3L1S 

A’, θ∗, A , using I S = 19 . 97 + 0 . 14 
−0 . 07 . We obtain the source de-reddened 

colour and magnitude as 

( V − I , I ) S , 0 = ( V − I , I ) S − ( V − I , I ) cl + ( V − I , I ) cl , 0 

= 
(

0 . 85 ± 0 . 08 , 18 . 80 + 0 . 15 
−0 . 08 

)

. (7) 

Using the colour/surface-brightness relation for dwarfs and sub- 

giants of Adams, Boyajian & von Braun ( 2018 ), we obtain θ∗,A = 

0 . 63 + 0 . 08 
−0 . 06 µas. Then, for any model with source magnitude I S , one can 

infer θ∗ = θ∗,A × 10 −0 . 2( I S −19 . 97) . We list θ∗ of each 3L1S solutions 

in Table 4 . 

4.2 Bayesian analysis 

The Galactic model used for the Bayesian analysis has three parts: 

the mass function of the lens, the stellar number density profile and 

the dynamical distributions. For the lens mass function, we apply 

the initial mass function (IMF) of Kroupa ( 2001 ) and add a 1.3M ⊙
and 1.1M ⊙ upper-end truncation for the disc and the bulge lenses, 

respectively Zhu et al. ( 2017 ). For the stellar number density, we 

choose the models used by Yang et al. ( 2021 ). For the disc velocity 

distribution, we use the ‘Model C’ of Yang et al. ( 2021 ), which is 

dynamically self-consistent with the density profile. For the bulge 

dynamical distributions, we adopt the model used by Zhu et al. 

( 2017 ) and assume that the bulge stars have a zero mean velocity and 

120 km s −1 velocity dispersion along each direction. 

We create a sample of 10 8 simulated events drawn from the 

Galactic model. For each simulated event, i , whose parameters 

consist of θE, i , µrel, i , and t E, i , we weight it by 

ω Gal ,i = θE ,i × µrel ,i × L ( t E ,i ) L ( θE ,i ) . (8) 

where L ( t E ,i ) is the probability of t E, i given the error distributions 

of t E derived from the MCMC chain, and L ( θE ,i ) is the probability 

of θE, i . To derive the probability distribution of θE , we first draw 

the probability distribution of ρ by the lower envelope of χ2 versus 

ρ diagram from MCMC. See fig. 6 of Jung et al. ( 2020 ) for an 

example. Then, we create a sample of 10 6 simulated θE using the ρ

distribution and the θ∗ distribution from the CMD analysis, which 

yields the probability distribution of θE . Here, we only consider the 

primary lens alone, so t E, i and θE, i are a factor of 
√ 

1 + q 2 + q 3 
smaller than the values defined for the triple system. 

In Table 7 , we summarize the posterior distributions (the median, 

16 per cent, and 84 per cent quantiles) of the physical lens parameters, 

including the masses of the three lens components, ( M 1 , M 2 , M 3 ), 

the projected separation of M 2 and M 3 to the position of M 1 , ( r ⊥ , 2 

and r ⊥ , 3 ), the distance to the lens system, D L , and the lens-source 

relative proper motion, µrel . We find that the four solutions all consist 

of a super-Jovian planet in a binary system, but the interpretations 

of their planetary orbits are different. The ratios of the projected 

semimajor axes in all four cases are very close to or exceed the 

conditions for stability (Holman & Wiegert 1999 ). Of course, the 

projected semimajor axes are only the minimum separations between 

the primary and its companions. The stellar companion can lie 

substantially inside the planet orbit (P-type orbit), or outside of the 

planet orbit (S-type orbit). As with many Kepler planets orbiting 

binaries (the first w as Do yle et al. 2011 , see Martin & F abryck y 

2021 for a complete list), detectability considerations create a bias 

toward planets near (in the case of Kepler) or appearing to be near 

(in the case of microlensing) the stability limits (Madsen & Zhu 

2019 ). Thus, the most likely interpretation for the solutions ‘3L1S 

A’ and ‘3L1S C’, the planet likely orbits the barycentre of a close 

stellar binary, i.e. a P-type orbit and a circumbinary planet. For the 

solutions ‘3L1S B’ and ‘3L1S D’, the planet probably orbits the more 

massive companion of the stellar binary, i.e. a S-type orbit. Ho we ver, 

we cannot rule out configurations for any of the four solutions in 

which the relative locations of the companions are reversed with 

respect to the primary. 

5  DI SCUSSI ON  

The light curve of the microlensing event OGLE-2019-BLG-1470 

shows three distinct features. The first is a smooth bump generated 

by cusp approach, the other two features originate from a resonant 

caustic crossing. Our analysis indicates that this event could be 

explained either by a 3L1S model or by a slightly worse 2L2S 

model. The 2L2S model is disfa v oured by �χ2 ≃ 18 relative to 

the best-fitting 3L1S model, its cumulative �χ2 relative to the best- 

fitting 3L1S model rises mainly during the caustic crossing region. 

Ho we ver, we cannot firmly rule out the 2L2S model with statistical 

tests. These degenerate models would be resolved if there were high- 

cadence observations o v er the peak region. 

In this event, the planet manifests itself by generating a resonant 

caustic which allows forming a detectable anomaly feature when the 

source passes through the caustic. This is similar to events OGLE- 

2016-BLG-0613 (Han et al. 2017 ) and OGLE-2018-BLG-1700 (Han 

et al. 2020 ). Planets are still detectable even with small planetary 

caustics. Actually, this includes a substantial fraction of microlensing 

planets in binary systems, such as in events OGLE-2006-BLG-284 

(Bennett et al. 2020 ), OGLE-2008-BLG-092 (Poleski et al. 2014 ), 

OGLE-2013-BLG-0341 (Gould et al. 2014 ), and KMT-2019-BLG- 

1715 (Han et al. 2021a ). It seems that the second case (planetary 

caustics) happens more frequently. Ho we ver, it is not clear whether 
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Figure 12. (log s , log q ) diagram for microlensing planetary events adapted 

from fig. 11 of Yee et al. ( 2021 ). The black points represent planets around a 

single star. Magenta and red colours, respectively represent planets in binary 

systems detected during 2006–2015 and since 2016. The asterisk is the planet 

found in this paper, and we adopt the parameters of the best-fit 3L1S solution 

(‘3L1S A’). Solutions are considered to be ‘unique’ (filled points), if there 

are no competing solutions within �χ2 < 10. Otherwise, they are shown 

by pairs of open circles linked by a line segment. 10 planets are excluded 

because their q differs by more than a factor of two. The two green solid lines 

represent the boundaries between resonant and non-resonant caustics using 

equation (59) of Dominik ( 1999 ), and the two green dashed lines depict the 

boundaries for ‘near-resonant’ caustics proposed by Yee et al. ( 2021 ). 

this is due to the sample size being small or due to other reasons. On 

the one hand, the parameter space for generating planetary caustics is 

larger than that for generating resonant caustics. On the other hand, 

the sensitivity to planet is higher when there is a resonant caustic. 

The relative fraction will of course depend on the intrinsic properties 

of planets in binary systems in the Galaxy. From the theoretical side, 

it is worth studying the detection probabilities of planets in different 

configurations of binary systems. 

Including the candidate lens system, OGLE-2019-BLG- 

1470LABc, reported in this paper, eight microlensing planets in 

binary systems have been detected. In Fig. 12 , we plot them together 

with other published microlensing planets in the log q versus log s 

plane. We separate the eight planets in binary systems into two 

groups. The magenta points represent the planets detected before 

2016, while the red ones are the planets found since 2016. We 

find that the disco v ery rate of planets in binary systems has at least 

doubled since 2016. This is mainly due to the regular operation of 

KMTNet since 2016 because KMTNet played a major role in all four 

disco v eries since 2016. 

Ho we ver, the two groups exhibit different properties in two 

aspects: planet-to-host mass ratios and the types of caustic. For the 

four planets detected before 2016, all of them are located outside the 

near-resonant range (Yee et al. 2021 ) with planet-to-host mass ratios 

log q < −2.8. As illustrated by Zang et al. ( 2021 ), wide-area high- 

cadence surv e ys are sensitiv e to planets outside the near-resonant 

range, which is consistent with the detection channels for the four 

planets in binary systems detected before 2016. Three of them were 

detected by a pure-surv e y mode by OGLE and the Microlensing 

Observations in Astrophysics (MOA, Sumi et al. 2016 ) experiments, 

and OGLE-2007-BLG-349LABc was found by a combination of 

surv e y and follow-up. Because KMTNet is more powerful than the 

previous surv e ys, it is e xpected that KMTNet is sensitive to planets 

out of the near-resonant range for all mass-ratio regions. Ho we ver, 

the four planets 8 since 2016 were all detected by a resonant-caustic 

channel with planet-to-host mass ratios q � 2 × 10 −3 . 

This contradiction is similar to the ‘missing planetary caustics’ 

problem advocated by Zang et al. ( 2021 ), but it is more severe 

considering the lack of low mass-ratio (log q < −3) planets. The 

four detections before 2016 suggest that low-mass-ratio planets in 

binary systems are not rare, and the ∼20 low-mass-ratio planets in 

single systems detected by KMTNet have demonstrated its sensitivity 

to them. Therefore, the problem is likely due to the way we search 

for planetary signals in binary systems. Indeed, this is pro v en to be 

the case for planets orbiting a single star: the advent of systematic 

KMTNet planetary anomaly searches has started to yield more 

planets with planetary caustic crossings (Zang et al. 2021 , 2022 ; 

Gould et al. 2022 ; Hwang et al. 2022 ; Wang et al. 2022 ). These 

systematic anomaly searches not only increase the total number 

of known microlensing planets, but also provide complete and 

homogeneous statistical planetary samples for the studying of, e.g. 

the planet-to-host mass ratio function. 

Previously, the largest such sample was obtained from the wide- 

area, high-cadence Microlensing Observations in Astrophysics II 

(MOA-II) surv e y from 2007 to 2012 (Suzuki et al. 2016 ). The authors 

found 23 planets out of 1474 microlensing events with a broken 

power law for the planet-to-host mass ratio function. Combining 

planets from two previous studies (Gould et al. 2010 ; Cassan et al. 

2012 ), they built a sample of 30 planets and found that the power 

law breaks at mass ratio q br ≡ 1.7 × 10 −4 , i.e. cold Neptunes are 

likely the most common type of planets beyond the snow line (for 

late dwarfs). Furthermore, a statistical work based on long period 

( � 2 yr) transiting planet candidates from the prime Kepler mission 

found a compatible result that the long-period Neptune-sized planets 

are at least as common as the Jupiter-sized ones (for FGK dwarfs, 

Kawahara & Masuda 2019 ). The authors pointed out that it is 

essential to quantify the completeness of smaller planets to facilitate 

more detailed comparisons. 

We note that there are two microlensing events of planet in binary 

system during 2007-2012. The first is OGLE-2007-BLG-349 (MOA- 

2007-BLG-379, Bennett et al. 2016 ), which contains a planet with 

mass ratio q ≃ 3.4 × 10 −4 . This planet was included as one of the 23 

planets in the statistical study of Suzuki et al. ( 2016 ). 9 The second 

event, OGLE-2008-BLG-092 (Poleski et al. 2014 ), is not a MOA 

event. The fraction of planets in binary systems appears to be low 

(1/23) in the sample of Suzuki et al. ( 2016 ). 

Ho we ver, as more planets in binary systems are disco v ered, one 

may need to be cautious about whether these planets can be included 

in such statistical studies. For the KMTNet data, the AnomalyFinder 

algorithm is efficient in unco v ering the buried planetary signals (Zang 

et al. 2021 ), including signals from low-mass ratio ( q � 10 −4 ) planets 

8 There is one more case if we count the event OGLE-2019-BLG-0304 (Han 

et al. 2021b ) as a candidate of planet in binary system. The 3L1S model of 

OGLE-2019-BLG-0304 includes a planet with planet-to-host mass ratio q = 

1.82 ± 0.26 × 10 −3 . The planet also generates a resonant caustic. 
9 This planet was also included as one of the six planets used to statistically 

investigate the frequency of solar-like systems and of ice and gas giants 

(Gould et al. 2010 ). The authors have realized that the OGLE-2007-BLG- 

349 system contains a third body, but difficult to fully characterize at that 

time. 
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(Hwang et al. 2022 ). But the AnomalyFinder algorithm has not 

been applied to KMTNet binary events to find potential planetary 

anomalies. The lack of planetary caustics in the current KMTNet 

sample of planets in binary systems indicates that this sample may 

be incomplete. Thus, these planets (in binaries) cannot be included 

in the current study of KMTNet mass-ratio function. Systematic 

KMTNet planetary anomaly searches for planets in binary systems 

are therefore needed. With the successful implementation of the 

current KMTNet AnomalyFinder algorithm, one may naturally think 

of applying this algorithm to the residuals of 2L1S light curves. 

Ho we ver, this approach requires a significant effort on careful 2L1S 

modelling (about 200 events per year) with the inclusion of high- 

order effects (parallax and orbital motion of the stellar binary) in 

many cases, as well as substantial additional work for data reductions. 

On the other hand, the reward is also rich because it will give, for 

the first time, the statistics of microlensing planets in binary systems. 

We plan to pursue this in the future. 

AC K N OW L E D G E M E N T S  

We thank the referee Daniel Bramich for a critical report that 

impro v ed the paper significantly. R.K., W.Zang, H.Y., S.M., and 

W.Zhu acknowledge support by the National Science Foundation 

of China (Grant No. 12133005). This research has made use of 

the KMTNet system operated by the Korea Astronomy and Space 

Science Institute (KASI) and the data were obtained at three host sites 

of CTIO in Chile, SAAO in South Africa, and SSO in Australia. Work 

by C.H. was supported by the grants of National Research Foundation 

of Korea (2019R1A2C2085965 and 2020R1A4A2002885). J.C.Y. 

acknowledges support from N.S.F Grant No. AST-2108414. W.Zhu 

acknowledges the science research grants from the China Manned 

Space Project with No. CMS-CSST-2021-A11. Y.S. acknowledges 

support from BSF Grant No. 2020740. The authors acknowledge 

the Tsinghua Astrophysics High-Performance Computing platform 

at Tsinghua University for providing computational and data storage 

resources that have contributed to the research results reported within 

this paper. This research has made use of the NASA Exoplanet 

Archive, which is operated by the California Institute of Technology, 

under contract with the National Aeronautics and Space Administra- 

tion under the Exoplanet Exploration Program. 

DATA  AVAILABILITY  

The data underlying this article will be shared on reasonable request 

to the corresponding author. 

RE FERENCES  

Adams A. D., Boyajian T. S., von Braun K., 2018, MNRAS , 473, 3608 

Alard C., Lupton R. H., 1998, ApJ , 503, 325 

Albrow M. D., 2017, Michaeldalbrow/Pydia: Initial Release On Github. 

Zenodo, available at https://zenodo.org/r ecor d/268049#.YxLOAHZBzIU 

Albrow M. D. et al., 2009, MNRAS , 397, 2099 

An J. H., Han C., 2002, ApJ , 573, 351 

An J. H. et al., 2002, ApJ , 572, 521 

Armstrong D. J., Osborn H. P., Brown D. J. A., Faedi F., G ́omez Maqueo 

Chew Y., Martin D. V., Pollacco D., Udry S., 2014, MNRAS , 444, 1873 

Artymowicz P., Lubow S. H., 1994, ApJ , 421, 651 

Ballantyne H. A. et al., 2021, MNRAS , 507, 4507 

Batista V. et al., 2011, A&A , 529, A102 

Bennett D. P., Rhie S. H., 1996, ApJ , 472, 660 

Bennett D. P. et al., 2010, ApJ , 713, 837 

Bennett D. P. et al., 2016, AJ , 152, 125 

Bennett D. P. et al., 2020, AJ , 160, 72 

Bensby T. et al., 2013, A&A , 549, A147 

Bozza V., 1999, A&A, 348, 311 

Bozza V., 2010, MNRAS , 408, 2188 

Bozza V., Bachelet E., Bartoli ́c F., Heintz T. M., Hoag A. R., Hundertmark 

M., 2018, MNRAS , 479, 5157 

Bramich D. M., 2008, MNRAS , 386, L77 

Cassan A. et al., 2012, Nature , 481, 167 

Chauvin G., Beust H., Lagrange A. -M., Eggenberger A., 2011, A&A , 528, 

A8 

Chung S.-J. et al., 2005, ApJ , 630, 535 

Correia A. C. M. et al., 2008, A&A , 479, 271 

Czekala I., Chiang E., Andrews S. M., Jensen E. L. N., Torres G., Wilner D. 

J., Stassun K. G., Macintosh B., 2019, ApJ , 883, 22 

Di Stefano R., Mao S., 1996, ApJ , 457, 93 

Dominik M., 1998a, A&A, 329, 361 

Dominik M., 1998b, A&A, 333, L79 

Dominik M., 1999, A&A, 349, 108 

Dong S. et al., 2006, ApJ , 642, 842 

Dong S. et al., 2009a, ApJ , 695, 970 

Dong S. et al., 2009b, ApJ , 698, 1826 

Dong R., Zhu Z., Fung J., Rafikov R., Chiang E., Wagner K., 2016, ApJ , 816, 

L12 

Doyle L. R. et al., 2011, Science , 333, 1602 

Duch ̂ ene G., Kraus A., 2013, ARA&A , 51, 269 

F oreman-Macke y D., Hogg D. W., Lang D., Goodman J., 2013, PASP , 125, 

306 

Gao F., Han L., 2012, Comput. Optim. Appl. , 51, 259 

Gaudi B. S. et al., 2008, Science , 319, 927 

Gould A., 1994, ApJ , 421, L75 

Gould A., 2000, ApJ , 542, 785 

Gould A., 2008, ApJ , 681, 1593 

Gould A., Gaucherel C., 1997, ApJ , 477, 580 

Gould A., Loeb A., 1992, ApJ , 396, 104 

Gould A. et al., 2010, ApJ , 720, 1073 

Gould A. et al., 2014, Science , 345, 46 

Gould A. et al., 2022, A&A , 664, 13 

Han C., 2005, ApJ , 629, 1102 

Han C., Chang H.-Y., An J. H., Chang K., 2001, MNRAS , 328, 986 

Han C. et al., 2013, ApJ , 762, L28 

Han C. et al., 2017, AJ , 154, 223 

Han C. et al., 2020, AJ , 159, 48 

Han C. et al., 2021a, AJ , 161, 270 

Han C. et al., 2021b, AJ , 162, 203 

Hatzes A. P., Cochran W. D., Endl M., McArthur B., Paulson D. B., Walker 

G. A. H., Campbell B., Yang S., 2003, ApJ , 599, 1383 

Hogg D. W., F oreman-Macke y D., 2018, ApJS , 236, 11 

Holman M. J., Wiegert P. A., 1999, AJ , 117, 621 

Hwang K.-H. et al., 2013, ApJ , 778, 55 

Hwang K.-H. et al., 2022, AJ , 163, 43 

Jang-Condell H., 2015, ApJ , 799, 147 

Jiang G. et al., 2004, ApJ , 617, 1307 

Jung Y. K. et al., 2017, ApJ , 841, 75 

Jung Y. K. et al., 2020, AJ , 160, 255 

Jørgensen J. K., Kuruwita R. L., Harsono D., Haugblle T., Kristensen L. E., 

Bergin E. A., 2022, Nature , 606, 272 

Kawahara H., Masuda K., 2019, AJ , 157, 218 

Kayser R., Refsdal S., Stabell R., 1986, A&A, 166, 36 

Kim S.-L. et al., 2016, J. Korean Astron. Soc. , 49, 37 

Kim D.-J. et al., 2018, AJ , 155, 76 

Kley W., Papaloizou J. C. B., Ogilvie G. I., 2008, A&A , 487, 671 

Koshimoto N. et al., 2017, AJ , 154, 3 

Kraus A. L., Ireland M. J., Huber D., Mann A. W., Dupuy T. J., 2016, AJ , 

152, 8 

Kroupa P., 2001, MNRAS , 322, 231 

Kuang R., Mao S., Wang T., Zang W., Long R. J., 2021, MNRAS , 503, 6143 

Liu Y. J. et al., 2008, ApJ , 672, 553 

Luhn J. K., Penny M. T., Gaudi B. S., 2016, ApJ , 827, 61 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
6
/2

/1
7
0
4
/6

6
7
1
5
5
0
 b

y
 H

a
rv

a
rd

 L
ib

ra
ry

 u
s
e
r o

n
 0

6
 J

u
ly

 2
0
2
3



OGLE-2019-BLG-1470LABc 1717 

MNRAS 516, 1704–1720 (2022) 

Madsen S., Zhu W., 2019, ApJ , 878, L29 

Mao S., Paczynski B., 1991, ApJ , 374, L37 

Martin D. V., F abryck y D. C., 2021, AJ , 162, 84 

Marzari F., Thebault P., Scholl H., Picogna G., Baruteau C., 2013, A&A , 553, 

A71 

Mayor M., Udry S., Naef D., Pepe F., Queloz D., Santos N. C., Burnet M., 

2004, A&A , 415, 391 

Mediavilla E., Mu ̃ noz J. A., Lopez P., Mediavilla T., Abajas C., Gonzalez- 

Morcillo C., Gil-Merino R., 2006, ApJ , 653, 942 

Media villa E., Media villa T., Mu ̃ noz J. A., Ariza O., Lopez P., Gonzalez- 

Morcillo C., Jimenez-Vicente J., 2011, ApJ , 741, 42 

Moe M., Di Stefano R., 2017, ApJS , 230, 15 

Nataf D. M. et al., 2013, ApJ , 769, 88 

Nelder J. A., Mead R., 1965, Computer Journal , 7, 308 

Nelson A. F., 2000, ApJ , 537, L65 

Nelson A. F., Marzari F., 2016, ApJ , 827, 93 

Nemiroff R. J., Wickramasinghe W. A. D. T., 1994, ApJ , 424, L21 

Neuh ̈auser R., Mugrauer M., Fukagawa M., Torres G., Schmidt T., 2007, 

A&A , 462, 777 

Orosz J. A. et al., 2012, Science , 337, 1511 

Paczy ́nski B., 1986, ApJ , 304, 1 

Pejcha O., He yro vsk ́y D., 2009, ApJ , 690, 1772 

Penny M. T., Gaudi B. S., Kerins E., Rattenbury N. J., Mao S., Robin A. C., 

Calchi Novati S., 2019, ApJS , 241, 3 

Poindexter S., Afonso C., Bennett D. P., Glicenstein J.-F., Gould A., 

Szyma ́nski M. K., Udalski A., 2005, ApJ , 633, 914 

Poleski R. et al., 2014, ApJ , 795, 42 

Rafikov R. R., 2013, ApJ , 765, L8 

Rafikov R. R., Silsbee K., 2015, ApJ , 798, 69 

Rattenbury N. J., Bond I. A., Skuljan J., Yock P. C. M., 2002, MNRAS , 335, 

159 

Roell T., Neuh ̈auser R., Seifahrt A., Mugrauer M., 2012, A&A , 542, A92 

Ryu Y.-H., Chang H.-Y., Park M.-G., 2011, MNRAS , 412, 503 

Schneider P., Weiss A., 1987, A&A, 171, 49 

Scholz F. W., Stephens M. A., 1987, J. Am. Stat. Assoc., 82, 918 

Seabold S., Perktold J., 2010, 9th Python in Science Conference. statsmodels: 

Econometric and statistical modeling with python 

Silsbee K., Rafikov R. R., 2015, ApJ , 798, 71 

Silsbee K., Rafikov R. R., 2021, A&A , 652, A104 

Skowron J. et al., 2011, ApJ , 738, 87 

Spergel D. et al., 2015, preprint ( arXiv:1503.03757 ) 

Sumi T. et al., 2016, ApJ , 825, 112 

Suzuki D. et al., 2016, ApJ , 833, 145 

Suzuki D. et al., 2018, AJ , 155, 263 

Thebault P., Haghighipour N., 2015, in Jin S., Haghighipour N., Ip W.-H., 

eds, Planetary Exploration and Science: Recent Results and Advances. 

Springer, Berlin, Heidelberg, p. 309 

Th ́ebault P., Marzari F., Scholl H., 2008, MNRAS , 388, 1528 

Tomaney A. B., Crotts A. P. S., 1996, AJ , 112, 2872 

Udalski A., 2003, Acta Astron., 53, 291 

Udalski A., Szymanski M., Kaluzny J., Kubiak M., Mateo M., Krzeminski 

W., Paczynski B., 1994, Acta Astron., 44, 227 

Udalski A. et al., 2002, Acta Astron., 52, 217 

Udalski A., Szyma ́nski M. K., Szyma ́nski G., 2015, Acta Astron., 65, 1 

Virtanen P. et al., 2020, Nat. Methods , 17, 261 

Wang H. et al., 2022, MNRAS , 510, 1778 

Wilk M., Gnanadesikan R., 1968, Biometrika, 55, 1 

Witt H. J., Mao S., 1994, ApJ , 430, 505 

Wozniak P. R., 2000, Acta Astron., 50, 421 

Yang Y. et al., 2017, AJ , 153, 7 

Yang Y. et al., 2020, ApJ , 889, 140 

Yang H., Mao S., Zang W., Zhang X., 2021, MNRAS , 502, 5631 

Yee J. C. et al., 2012, ApJ , 755, 102 

Yee J. C. et al., 2021, AJ , 162, 180 

Yoo J. et al., 2004, ApJ , 603, 139 

Zanazzi J. J., Lai D., 2018, MNRAS , 473, 603 

Zang W. et al., 2021, AJ , 162, 163 

Zang W. et al., 2022, MNRAS , 515, 928 

Zhang X. et al., 2020, AJ , 159, 116 

Zhu W. et al., 2017, AJ , 154, 210 

Zsom A., S ́andor Z., Dullemond C. P., 2011, A&A , 527, A10 

Zucker S., Mazeh T., Santos N. C., Udry S., Mayor M., 2004, A&A , 426, 695 

APPENDI X  A :  C O M B I N I N G  TWO  2 L 1 S  

M O D E L S  TO  F O R M  A  3 L 1 S  M O D E L  

The magnification pattern produced by a triple-lens system is 

complex and difficult to calculate. Previous studies showed that the 

magnification of a triple-lens system which contains two planets 

can be calculated as the summation of the magnifications from two 

binary-lens systems (binary superposition). This is valid for high 

magnification cases (Rattenbury et al. 2002 ; Ryu, Chang & Park 

2011 ) as well as for both planetary caustics (Han et al. 2001 ) and 

central caustics (Han 2005 ). 

For the case of a planet in a binary-star system, the superposition 

of magnifications is no longer valid. In Han et al. ( 2001 ), they found 

that if the heavier companion mass ratios � 0.05, the magnification 

deviation from the binary superposition becomes considerable. An 

intuitiv e e xplanation is that the caustics produced by the planet will 

be easily affected by the binary-star system. Instead of seeking for 

valid superposition for magnification calculations, we expect that in 

some cases, topologically the o v erall caustic structure corresponding 

to the planet remains the same after we add the planet component to 

a binary-star model. In this case, the binary superposition is ‘valid’ 

in the sense that the caustic structure required to produce all anomaly 

features in the light curve still exist. The resulting triple-lens model 

can be taken as an initial approximation for more accurate modelling. 

Now we investigate how to combine two binary-lens models to 

form an initial triple-lens model. Specifically, we focus on combining 

a binary-star model and a planetary model. Readers who are not 

interested in the technical details can directly go to appendix A3 

which gives a short recipe for the procedures. 

We denote the parameters of the binary-star model and the 

planetary model as ( t 0, B , u 0, B , t E, B , ρB , s B , q B , αB ) and ( t 0, c , u 0, c , t E, c , 

ρc , s c , q c , αc ), respectively. 10 The goal is to obtain the parameters ( t 0 , 

u 0 , t E , ρ, s 2 , q 2 , s 3 , q 3 , α, ψ) of the triple-lens system. For parameters 

other than ( s 3 , q 3 , ψ), we use the same values as the binary-star 

system: 

( t 0 , u 0 , t E , ρ, s 2 , q 2 , α) = ( t 0 , B , u 0 , B , t E , B , ρB , s B , q B , αB ) , (A1) 

since the extra planet would not change these parameters signifi- 

cantly. We derive the remaining parameters, i.e. ( s 3 , q 3 , ψ) from the 

two binary-lens models. 

We designate the masses of the three lens objects as M 1 , M 2 , and M 3 

(with M 1 > M 2 > M 3 and � 
3 
i= 1 M i = 1). We use the same coordinate 

system as in Kuang et al. ( 2021 ). M 1 and M 2 are located along the 

horizontal axis, and their centre of mass is the origin. Specifically, 

their masses and positions ( x i , y i ) are: 

M 1 = 1 / (1 + q 2 + q 3 ) , M 2 = q 2 M 1 , M 3 = q 3 M 1 , 

x 1 = −q 2 s 2 / (1 + q 2 ) , y 1 = 0 , 

x 2 = s 2 / (1 + q 2 ) , y 2 = 0 , 

x 3 = x 1 + s 3 cos ψ, y 3 = y 1 + s 3 sin ψ. (A2) 

10 We note that the ( t E , ρ) will not be the same from two individual 2L1S 

modelling with two different data subsets, such as the models shown in 

Table 3 . One can obtain two 2L1S models with the same ( t E , ρ) with a joint 

fit. 
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Figure A1. An illustration of combining two binary-lens models to form a triple-lens model. In the upper left-hand panel, we show the first binary-lens model 

M 1 –M 2 with parameters ( s B , q B , αB ) = (0.439, 0.359, 223 ◦), produces a diamond-shaped caustic (in blue) near the origin. The lower left-hand panel shows the 

second binary-lens model with parameters ( s c , q c , αc ) = (1.108, 3.472 × 10 −3 , 293 ◦), which produces a resonant caustic (in green). The right-hand panel shows 

the resulting triple-lens model constructed by combining the two binary-lens models in the left-hand panel. The red curve shows the caustics of the triple-lens 

model. The blue curve is the same caustic as in the upper left-hand panel, the green curve is plotted by rotating by an angle so that it lies on the line (dashed 

magenta) connecting M 3 and the origin. The black dots are the lenses. The black solid lines with arrows show the source trajectories. 

We show two example cases, corresponding to close ( s B < 1) and 

wide ( s B > 1) binary-star system, respectively. 

A1 Close binary-star system ( s B < 1) 

For the first case, ( s c , q c ) of the planetary lens system can be taken 

as ( s 3 , q 3 ), and ψ calculated by subtracting αc from αB , 

s 3 = s c , 

q 3 = q c , 

ψ = αB − αc . (A3) 

Fig. A1 shows the related geometries. The upper left-hand panel 

shows the caustics (in blue) of the binary-star model. The lower left- 

hand panel shows the caustics (in green) of the planetary model. 

In the right-hand panel, the red curve is the caustics produced 

by the resulting triple-lens model. The o v erall caustic structure 

remain the same as the two individual binary-lens models. So, the 

combined triple-lens model can be taken as an initial model for 

further optimising. 

We note that the caustic corresponding to M 3 is not along the 

line connecting M 3 and M 1 (the orange dashed line), but close to a 

line (the magenta dashed line) connecting M 3 and the origin, i.e. the 

centre of mass of M 1 –M 2 . So, one can regard M 1 –M 2 as a whole and 

has a net effect on M 3 . In this case, the position and planet-to-host 

mass ratio of the planet, parametrized with ( s c , q c , ψ) are relative to 

the ‘ef fecti ve’ mass of M 1 –M 2 , instead of being relative only to M 1 . 

The extreme case is that s B → 0, i.e. M 1 and M 2 are merged into one 

object. 

The ef fecti ve lensing position of a component in the binary lens 

system is shifted toward its companion (Di Stefano & Mao 1996 ; 

An & Han 2002 ). A lens component i will shift toward its companion 

j by an amount (Chung et al. 2005 ): 

�x L,i→ j ≃ 
M j /M i 

( s + s −1 ) / ( θE , i /θE ) 

θE , i 

θE 
, (A4) 

where M i , M j are the masses of the individual lens components, θE, i 

and θE are the Einstein ring radius corresponding to M i and M i + 

M j , respectively. In our case, the effective lensing position of M 1 will 

shift toward M 2 by an amount of 

�x 1 → 2 ≃ 
q B 

( s B + s −1 
B )(1 + q B ) 

≈
s B q B 

1 + q B 
, (A5) 

i.e. for the case of s B < 1, the ef fecti ve lensing position of M 1 is close 

to the centre of mass of M 1 and M 2 . If we regard M 1 and M 2 are 

ef fecti vely located at the origin with a mass M 1 + M 2 , then we have 
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Figure A2. The same as Fig. A1 . The binary-star M 1 –M 2 are in wide orbit that ( s B , q B , αB ) = (2.700, 0.695, 128 ◦). The planetary lens system in the bottom 

left-hand panel is the same as in Fig. A1 . The green curve in the right-hand panel is plotted by rotating an angle and then shifting leftwards so that it lies in the 

line connecting M 3 and the geometric centre (calculate numerically, x ≈ −0.955) of the diamond-shaped caustic near M 1 . 

the following relations, 

M 2 /M 1 = q B , M 3 / ( M 1 + M 2 ) = q c , � 
3 
i= 1 M i = 1 , 

ψ 0 = αB − αc , 

x 3 = s c cos ψ 0 , y 3 = s c sin ψ 0 , 

(A6) 

where ψ 0 ≡ ∠ M 2 OM 3 , O is the origin. We can derive ( s 3 , q 3 , ψ) to 

match our coordinate definition as 

q 3 = q c (1 + q B ) , 

s 3 = 

√ 

( x 3 − x 1 ) 2 + ( y 3 − y 1 ) 2 , 

ψ = arctan (( y 3 − y 1 ) / ( x 3 − x 1 )) . (A7) 

Equations ( A3 ) and ( A7 ) are two different ways of adding a 

planetary mass component into an existing binary-star model. For 

a close binary system, the resulting caustics have similar structure. 

So both equations are valid for obtaining an initial triple-lens model. 

A2 Wide binary-star system ( s B > 1) 

For the second case, q c of the planetary model can be taken as q 3 . 

Ho we ver, we cannot simply take s c as s 3 . This is because M 2 has 

smaller effect on M 3 when s B > 1. The extreme case is that s B → 

+∞ . In the planetary 2L1S model, the total mass ∼M 1 + M 3 , while 

in the resultant 3L1S model, the total mass equals to M 1 + M 2 + 

M 3 , they correspond to different θE ’s. So considering s c and s 3 are in 

units of different θE ’s, we have 

s 3 = s c 
√ 

(1 + q c ) / (1 + q c + q B ) , 

q 3 = q c , 

ψ = αB − αc . (A8) 

In this way we can retain the caustic structure produced by the planet, 

as shown in Fig. A2 . Similar to the previous case in appendix A1 , 

the caustic corresponding to M 3 is also not along the line connecting 

M 3 and M 1 (the orange dashed line). Instead, the caustic lies close to 

the line (the magenta dashed line) connecting M 3 and the geometric 

centre of the diamond-shaped caustic (the one close to M 1 ). The 

position of this geometric centre (the mean values of the coordinates 

of all points at that caustic) is calculated numerically after we 

obtained the caustic shown in the upper left-hand panel. We can 

also estimate the ef fecti ve lensing position of M 1 in this case, as in 

equation ( A5 ), 

�x 1 → 2 ≃ 
q B 

( s B + s −1 
B )(1 + q B ) 

≈
q B 

s B (1 + q B ) 
. (A9) 

F or the e xample case shown in Fig. A2 , ( s B , q B ) = (2.700, 0.695), 

the ef fecti ve lensing position of M 1 is: 

x 1 + �x 1 → 2 = −
q B s B 

1 + q B 
+ 

q B 

s B (1 + q B ) 
≈ −0 . 955 , (A10) 

which is exactly equal to the position of the numerically calculated 

geometric centre of the diamond-shaped caustic near M 1 . 
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In summary, for the abo v e two e xamples, the ef fecti ve lensing 

position of M 1 will shift towards M 2 by 

�x 1 → 2 = 

{ 
q B 

1 + q B 
s B , s B � 1 , 

q B 
1 + q B 

s −1 
B , s B � 1 . 

(A11) 

The abo v e equations may not be applied for other values of ( s B , q B ). 

F or e xample, the separation at which the binary-lens system can be 

regarded as ‘wide binary’ (when there are isolated regions of magni- 

fication) depends on the mass ratio between the binary components 

(Di Stefano & Mao 1996 ). Besides, in triple-lens system, the location 

and mass of the third lens ( M 3 ) need to be taken into account. We 

leave the determination of the ef fecti ve lensing position and mass of 

the M 1 –M 2 binary system, as seen from M 3 , as a future work. 

A3 Recipe 

In Appendixes A1 –A2 , we give detailed justifications for how to 

combine two 2L1S models. Here we give a short recipe of the 

procedures to obtain an initial triple-lens model applicable to the case 

where a light curve shows distinct anomalies from a binary system 

and a planetary system as in this event, OGLE-2019-BLG-1470. 

(i) Excluding part of the data points in corresponding anomaly 

(planetary or binary) regions. Obtaining two different data subsets. 

(ii) Modelling with 2L1S model for these two data subsets. 

Obtaining two sets of 2L1S model parameters, i.e. ( t 0, B , u 0, B , t E, B , 

ρB , s B , q B , αB ) for the binary-star system and ( t 0, c , u 0, c , t E, c , ρc , s c , 

q c , αc ) for the planetary system. 

(iii) Combining these two sets of 2L1S model parameters to form 

the initial parameters ( t 0 , u 0 , t E , ρ, s 2 , q 2 , s 3 , q 3 , α, ψ) of the triple- 

lens model which will retain the required caustic structure. For the 

case of close binary ( s B < 1), the parameters of the initial triple-lens 

model can be obtained from equations ( A2 ) and ( A3 ) (or A7 ). While 

for the case of wide binary ( s B > 1), one can use equations ( A2 ) and 

( A8 ). 

(iv) Finally, in both example cases, the planet has little effect on 

the caustics produced by the binary star. On the other hand, the 

caustics produced by the planet can be easily affected by the binary- 

star system. After obtaining the rough parameters for a triple model 

and before further optimisation, one may need to manually fine-tune 

the triple-lens parameters (mainly on s 3 , q 3 , ψ) to adjust the caustics 

to the desired position. 
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