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ABSTRACT

We report the discovery and analysis of a candidate triple-lens single-source (3L1S) microlensing event, OGLE-2019-BLG-
1470. This event was first classified as a normal binary-lens single-source (2L.1S) event, but a careful 2L.1S modelling showed
that it needs an additional lens or source to fit the observed data. It is found that the 3L1S model provides the best fit, but
the binary-lens binary-source (21.2S) model is only disfavoured by Ax2 ~ 18. All of the feasible models include a planet
with planet-to-host mass-ratios 107 < ¢ < 1072, A Bayesian analysis based on a Galactic model indicates that the planet is
super-Jovian, and the projected host-planet separation is about 3 au. Specifically, for the best-fitting 3L1S model, the two stars
have masses of M; = 0.571033Mg, and M, = 0.18")'|3M, with projected separation of 1.3703 au, and the planetary mass
is M5 = 2.2ﬂ:§MJupi[er. For the 2L2S model, the masses of the host star and the planet are O.55f8:§‘1‘MO and 4.6fg:gMJupﬂer,
respectively. By investigating the properties of all known microlensing planets in binary systems, we find that all planets in
binary systems published by the KMTNet survey are located inside the resonant caustics range with ¢ > 2 x 1073, indicating
the incompleteness of the KMTNet sample for planets in binary systems. Thus, planets in binary systems cannot be included in
the current study of the KMTNet mass-ratio function, and a systematic search for planetary anomalies in KMTNet microlensing
light curves of binary systems is needed.

Key words: gravitational lensing: micro — planets and satellites: detection.

orbital plane of the binary (Zanazzi & Lai 2018; Czekala et al.

1 INTRODUCTION

A substantial fraction of stars have one or more companion stars
(e.g. Duchéne & Kraus 2013; Moe & Di Stefano 2017). The
multiplicity frequency of main sequence stars is a steep monotonic
function of stellar mass from ~20 per cent for very low-mass stars
(mass <0.1M,) to >80 per cent for high-mass stars (mass = 16Mg,)
(Duchéne & Kraus 2013). The binary fraction has the same trend
(Moe & Di Stefano 2017). Both theoretical and observational studies
show that stellar binarity has various effects on the protoplanet
discs, e.g. driving wobbling jets with inhomogeneous accretion
(Jgrgensen et al. 2022) triggering misalignment in discs with the

* E-mail: renkunkuang @gmail.com
1 The KMTNet Collaboration.
1 The OGLE Collaboration.

2019; Yang et al. 2020) and driving spiral arms (Dong et al.
2016). Materials can also be delivered via streamers inside the
open gaps (Artymowicz & Lubow 1994) in discs to the region
near the binary (Nelson & Marzari 2016; Yang et al. 2017), which
can sustain supplementary materials in the circumstellar discs and
thus facilitate the formation of planets orbiting one of the stars
in binary systems. There are other dynamical influences from the
companion. For example, the companion perturbs the protoplanetary
disc, leading to a non-axisymmetric disc with non-zero eccentricity
(e.g. Kley, Papaloizou & Ogilvie 2008). The eccentric disc together
with the companion forms a complex environment and regulates the
dynamics of the planetesimals, thus influencing planet formation
(Thébault, Marzari & Scholl 2008; Marzari et al. 2013; Rafikov
2013; Rafikov & Silsbee 2015; Silsbee & Rafikov 2015). Due to
complicated formation scenarios, more insightful studies on the
planet formation in binary systems are still needed. The increasingly
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growing exoplanet census offers opportunities to reassess planet
formation theories.

To date, there are about 5000' confirmed exoplanets and about
400 exoplanets have been confirmed in binaries with >90 per cent of
these detected around FGK stars by the transit method (e.g. Kepler
16 b, Doyle et al. 2011, and Kepler 47 b, Orosz et al. 2012) or the
radial velocity method (e.g. HD 147513 b, Mayor et al. 2004, and
11 Com b, Liu et al. 2008). As the planet-in-binary sample size
grows, studies on comparing the characteristics of planets in binary
systems with planets around single stars have been done (e.g. Roell
et al. 2012). Using publicly available Kepler data, Armstrong et al.
(2014) found that the occurrence rate of circumbinary planets may
be consistent with or higher than that of planets orbiting a single star.
Besides, with Keck IT high resolution imaging for 382 Kepler Objects
of Interest, Kraus et al. (2016) found that the planet occurrence
rate in close binaries (with projected separation <50 au) is about
three times lower than in wide binaries or single stars. These results
indicate that the binarity may have a limited effect on the formation
of circumbinary planets and circumstellar planets with very wide
binary separations (>100au). However, for circumstellar planets?
in much closer binaries (with separation ~20 au), the situation is
different such that the planet formation efficiency would be strongly
affected (lowered) by the presence of the companion star (Thebault &
Haghighipour 2015).

Within the framework of gravitational collapse or core accretion,
some theoretical works indicate that a close companion would inhibit
planet formation. For example, by evaporating volatile materials due
to internal thermal energy generation in the disc (Nelson 2000),
or by increasing the eccentricity of the gas disc and the relative
velocity between dust and gas, thus reducing the coagulation and
the average mass of the particles (Zsom, Sandor & Dullemond
2011). The discovery of planets in close binaries implies that planet
formation is a robust process, and it has triggered a great interest in
testing and developing planet formation theories in such dynamically
active environments (Jang-Condell 2015). The apsidal alignment of
a protoplanetary disc with the binary orbit has been found to be one
of the critical conditions for planetesimal growth, which allows the
emergence of a dynamically quiet location in the disc (Silsbee &
Rafikov 2021).

Theories on planet formation in binary systems are under rapid
development. To obtain a more complete picture of how planets form
in binary systems, a larger sample would be beneficial. However,
currently, there are some observational biases. For example, most
circumbinary planets detected by Kepler are located near the stability
limit, i.e. they would be dynamically unstable if they were in a slightly
closer orbit (Holman & Wiegert 1999; Ballantyne et al. 2021). This
is thought to be caused by selection effects, i.e. the transit and radial
velocity methods require longer time coverage to detect longer period
planets.

The gravitational microlensing technique (Mao & Paczynski 1991;
Gould & Loeb 1992) is complementary to other exoplanet detection
methods due to its unique sensitivity for planets in binary systems
(e.g. Luhn, Penny & Gaudi 2016). With the microlensing method, the
planet signal is detectable either through its influence on the central
caustic formed by the stellar binary, or through the planetary caustic
formed by the planet. The time-scale of a typical microlensing event

Thttps://exoplanetarchive.ipac.caltech.edu/index.html

2For example, y Cephei A (Hatzes et al. 2003; Neuhuser et al. 2007), HD
41004 A (Zucker et al. 2004), and HD 41004 A (Correia et al. 2008; Chauvin
etal. 2011).
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towards the Galactic bulge is about one month. Unlike the transit and
radial velocity methods, the microlensing method does not require
years of observations due to the long orbital period of the planet or
the companion. For example, Bennett et al. (2016) reported the first
case of microlensing circumbinary planet. In this case, the projected
separation between the planet and the centre of mass is ~40 times
larger than the separation between the two stars, well beyond the
stability limit. This detection indicates that circumbinary planets with
stable orbits may be quite common. However to date, only seven
unambiguous planets in binary systems have been discovered by
microlensing. Here we restrict the stellar binary mass-ratio, g, > 0.1.
These events include OGLE-2006-BLG-284 (Bennett et al. 2020),
OGLE-2007-BLG-349 (Bennett et al. 2016), OGLE-2008-BLG-092
(Poleski et al. 2014), OGLE-2013-BLG-0341 (Gould et al. 2014),
OGLE-2016-BLG-0613 (Han et al. 2017),> OGLE-2018-BLG-1700
(Han et al. 2020), and KMT-2019-BLG-1715 (Han et al. 2021a).*

There are two main challenges in detecting planets in binary
systems via the microlensing method. First, the perturbations on
a microlensing light curve from the stellar binary are often much
stronger than those from a planetary companion, for which one first
needs careful binary-lens single-source (2L1S) modelling to isolate
the signal from the stellar binary and then search for the planetary
signals. However, in many cases, modellers would lose interest in
the light curves with obvious stellar-binary features. Second, the
triple-lens single-source (3L1S) modelling is computationally much
more expensive than the 2L1S modelling due to a higher-dimensional
parameter space and more complex image and caustics topology.

There have been several approaches to calculate 3L.1S light curves.
Previous analyses of 3L1S events (e.g. the first microlensing two-
planet event OGLE-2006-BLG-109, Gaudi et al. 2008; Bennett et al.
2010) are mainly based on the inverse ray-shooting method (Kayser,
Refsdal & Stabell 1986; Schneider & Weiss 1987), including the
image centred ray-shooting method (Bennett & Rhie 1996) and the
‘map-making’ method (Dong et al. 2006, 2009b). In addition, Me-
diavilla et al. (2006), Mediavilla et al. (2011) proposed an approach
based on inverse polygon mapping. In the low-magnification regime,
one can use the hexadecapole approximation (Gould 2008; Pejcha &
Heyrovsky 2009). Recently, Kuang et al. (2021) implemented a
general contour integration method (Gould & Gaucherel 1997;
Dominik 1998b) for 3L1S and made this microlensing 3L1S code
publicly available.’

In this paper, we present the first application of the code to a real
3L1S event, OGLE-2019-BLG-1470, for which the lens system is
composed of a super-Jovian planet and a low-mass stellar binary.
The anomaly of this event was found by the Korea Microlensing
Telescope Network (KMTNet, Kim et al. 2016) AnomalyFinder
(Zang et al. 2021) applied to its 2019 subprime-field sample (cadence
I' < 2hr™"), and careful 2L1S modelling conducted by H. Wang
suggested that it needs an additional lens or source to fit the light
curve.

The paper is structured as follows. We first introduce the observa-
tions and data reduction for this event in Section 2. We then present

3For OGLE-2016-BLG-0613, there is a degenerate solution with ¢, =
0.029 =+ 0.002 favoured by Ax? =10 (Han et al. 2017).

4We count those events with clear interpretations without other competing
degenerate models. Other likely candidate events of planet in binary with
unresolved degenerate models include OGLE-2019-BLG-0304 (Han et al.
2021b), where the triple-lens model is favoured over the two-lens-two-source
model with Ax? ~ 8. With the available data, the degeneracy cannot be
securely resolved.

Shttps://github.com/rkkuang/triplelens
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Table 1. Data used in the analysis with corresponding data reduction method (HID" = HID — 2450000).

Collaboration Site Name Filter Time coverage (HID')  Ngata Reduction method (k, emin)
OGLE LCO OGLE 1 8530.9-8763.6 313 Wozniak (2000) (1.446, 0.000)
KMTNet SAAO KMTS 1 8584.5-8777.3 137 pysis! (1.746, 0.000)
KMTNet CTIO KMTC 1 8546.8-8777.6 390 PYSIS (1.510, 0.010)
KMTNet SSO KMTA 1 8563.2-8777.9 291 PYSIS (1.554, 0.000)
KMTNet CTIO KMTC I 8546.8-8777.6 390 PYDIA2 -
KMTNet CTIO KMTC Vv 8542.9-8773.5 42 PYDIA -

Notes. ' Albrow et al. (2009).
2 Albrow (2017).

the light-curve modelling process in Section 3 and the physical
parameters of the lens system in Section 4. Finally, we discuss the
implications derived from an examination of all microlensing planets
in binary systems in Section 5.

2 OBSERVATIONS AND DATA REDUCTION

The microlensing event OGLE-2019-BLG-1470 at equatorial co-
ordinates (o, 8)jp000 = (18:07:47.81, —27:02:00.8), and Galactic
coordinates (¢, b) = (4.1043, —3.2794) was announced as a candidate
microlensing event by the Early Warning System (Udalski et al.
1994; Udalski 2003) of the Optical Gravitational Lensing Experiment
(OGLE, Udalski, Szymanski & Szymariski 2015) on 2019 September
22 and independently found by the KMTNet EventFinder algorithm
(Kim et al. 2018) as KMT-2019-BLG-2814 using all the data from
the 2019 season. The OGLE observations were taken using its 1.3-
m Warsaw Telescope equipped with a 1.4 deg> FOV mosaic CCD
camera at Las Campanas Observatory (LCO) in Chile. The KMTNet
data were taken using the three identical 1.6 m-telescopes equipped
with 4 deg? FOV cameras at the Cerro Tololo Inter-American Obser-
vatory (CTIO) in Chile (KMTC), the South African Astronomical
Observatory (SAAO) in South Africa (KMTS), and the Siding Spring
Observatory (SSO) in Australia (KMTA). OGLE-2019-BLG-1470
lies in the OGLE BLG518 field and KMTNet BLG32 field with
cadences of I' ~1-3 night~! and I ~ 0.4 hr™!, respectively. For both
surveys, images were mainly taken in the /-band with occasional
observations in the V-band for the source colour measurements. We
summarize the data sets used in this work in Table 1.

The data used in the light-curve analysis were reduced using
custom implementations of the difference image analysis technique
(Tomaney & Crotts 1996; Alard & Lupton 1998; Bramich 2008):
Wozniak (2000) for the OGLE data and PYSIS (Albrow et al. 2009) for
the KMTNet data. For the KMTC data, we conduct PYDIA photometry
(Albrow 2017) to measure the source colour. The /-band magnitude
of the data has been calibrated to the standard /-band magnitude using
the OGLE-II star catalogue (Udalski et al. 2002). Due to systematics,
the photometric error bars of data estimated by photometry pipelines
are often underestimated. We thus follow the method proposed by
Yee et al. (2012) to adjust the error bars for each data set i using the
formula

ai/,j :ki\/aiz,j +ei2,min’ (D

where o ; and o] ; are the original and renormalized error bars in
magnitudes of the j-th data point in the i-th data set. The error-bar
correction parameters k; and e; i, are adjusted such that x2/dof =1
and the cumulative sum of x? are approximately linear as a function
of source magnification, where ‘dof” is the degree of freedom. We
follow the procedures above and derive the error-bar correction
parameters using the best-fitting model, and other models adopt
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Figure 1. Light curve of the microlensing event OGLE-2019-BLG-1470.
The dots with different colours represent the observed data from different
data sets. The black solid curve is the best-fitting PSPL model. The three
arrows indicate the three anomalous peaks of an otherwise PSPL model,
marked as t1, 1, and #3.

the same error-bar correction parameters. We list the data reduction
methods and error-bar correction parameters for each data set in
Table 1.

3 LIGHT-CURVE ANALYSIS

Fig. 1 shows the observed data of OGLE-2019-BLG-1470. The
light curve exhibits three anomalous peaks relative to an otherwise
normal point-source point-lens (PSPL, Paczynski 1986) light curve
at HID" = HID — 2450000 ~ 8746.0, 8753.4, and 8756.6, marked
as 11, 1, and 13, respectively. The first anomaly is a smooth bump,
which may be due to a cusp approach. The second and third anomalies
together likely form a ‘U shape’, respectively corresponding to the
entrance and exit of a caustic-crossing feature. Such a light curve is
generally produced by a 2L 1S event (e.g. Koshimoto et al. 2017), so
we begin the light-curve analysis by the 2L1S modelling.

3.1 2L1S analysis

A static 2L1S light curve requires seven parameters (¢, Uo, Ig, S, g, &,
p) to calculate the 2L 1S magnification. ‘Static’ means that we do not
consider high-order effects such as the microlens parallax effect and
the orbital motion of the lens or the source. The first three parameters
of the 2L1S static model are the PSPL parameters. Of these, #, is the
time of closest approach of the source to the lens centre of mass and
ug is the closest distance of the source to the lens centre of mass in
units of the angular Einstein radius (fg). The third parameter fg is
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Table 2. 2L1S lensing parameters.

OGLE-2019-BLG-1470LABc 1707

Parameter Static High-order
ug >0 ug <0

Best fit MCMC Best fit MCMC Best fit MCMC
x?/dof 1265.25/1124 1181.49/1120 1181.27/1120
1o (HID') 8750.870 8750.95510175 8750.307 8750.265103% 8750.141 8750.228 103}
o 0.229 0.22715:508 0219 0.22870:013 -0.228 —0.22979013
g (days) 40.575 40.90771268 39.576 39.71543377 38.478 39.86173953
s 1.154 115275506 1.171 11621001 1.167 116170019
q(1073) 4.456 4.4767030% 5.803 4.92719-0%4 5.062 4.69171950
a (rad) 5.099 5.093T0:018 5.206 5.17310:9% 1.101 11157008
p(1073) 7.56 <9.01 (30)2 8.731 7.948+ 1100 8.271 7.65511 209
TEN - - —2.233 —2.004+2:306 2.190 1.84119:821
TEE - - 0716 —0.769+0161 —0.857 —0.86210144
ds/dr(yr=") - - ~1.233 —0.48910-758 —0.697 —0.354 7056
da/dr(yr=") - - —2.692 ~0.9967 3458 —0.137 1.048%1-6%0
fs.ooLE ! 0.194 0.19270:9% 0.184 0.19270:012 0.192 0.192+0:013
B, 0GLE 0.252 0.254+0:9%9 0.267 0.25910:013 0.259 0.258 0014

Notes. ! The flux is on an 18th magnitude scale, e.g. Is = 18 — 2.51og (fs). The reported (fs, oGLE. fB, oGLE) Values have been calibrated to the

standard /-band magnitude using the OGLE-II star catalogue (Udalski et al. 2002).

2 30 means A% = 9 compared to the best-fitting p value.

the Einstein radius crossing time, which is defined as

Ok 4G mas
g = . ; Og = /KMy 7 K= Pau 8.144 M® , (2
where My is the lens mass and (77|, ire1) are the lens-source relative
(parallax, proper motion), /iy is the magnitude of the vector fye.
G, and ¢ are the gravitational constant and the speed of light,
respectively. The three additional parameters (s, ¢, o) define the
binary (M, and M;) geometry: s is the binary separation in units
of O, ¢ is the binary mass ratio, and « is the angle between the
source trajectory and the binary-lens axis. The last parameter, p,
represents the angular source radius normalized by Og, and it is
needed to describe finite-source effects (Gould 1994; Nemiroff &
Wickramasinghe 1994; Witt & Mao 1994) in caustic-crossing and/or
cusp-approach features. Besides, for each data set i, we introduce
two linear parameters (fs_;, fg,;) to represent the source flux and any
blended flux. We use the advanced contour integration code (Bozza
2010; Bozza et al. 2018) VBBinaryLensing® to calculate the
2L1S magnification at any time ¢.

The static 2L1S modelling includes two steps. First, we conduct
a grid search in the parameter space (logs, logg, «, p) to find the
local minima, which consists of 41 values of logs equally spaced
between —1.0 and 1.0, 61 values of log g equally spaced between
—6.0 and 0.0, 20 values equally spaced between 0° < o < 360°,
and five values of log p equally spaced between —3.5 and —1.5.
For each grid point, we explore the parameter space of (fy, uo, 5)
with the Markov Chain Monte Carlo (MCMC) method by using the
emcee ensemble sampler (Foreman-Mackey et al. 2013). We choose
the sample with the minimum x? in the MCMC chain, and further
refine it with the Nelder-Mead simplex algorithm’ (Nelder & Mead
1965; Gao & Han 2012). The x 2 improvement with the Nelder-Mead
algorithm relative to the best-fit sample in the MCMC chain is <1,
and all the best-fitting parameters are inside the 1o credible levels.

Shttp://www.fisica.unisa.it/Gravitation Astrophysics/VBBinaryLensing.htm
"Throughout the paper, this is done every time we run an MCMC sampling.

Second, for the local minima identified by the grid search, we refine
the solution by allowing all seven parameters to vary. We show the
parameters and error bars of the best-fitting model in Table 2. Note
that, as recommended by Hogg & Foreman-Mackey (2018), we use
the median of the MCMC chain as the measurement value, and the
16 percent, 84 percent quantiles as the lower and upper 1o error
bars.

The best-fitting static 2LL1S model and its residuals from the
observed data are shown in Fig. 2. This model predicts a magnifica-
tion higher than the observed data during 8720 < HJID" < 8734 and
8747 < HID' < 8752 while during 8763 < HID' < 8772, the model
magnification is not high enough to explain the data. In addition to
test the distribution of normalized residuals against a standard normal
distribution (with mean 0 and standard deviation 1), Fig. 3 shows the
Quantile-Quantile (Q-Q) plot (Wilk & Gnanadesikan 1968) gen-
erated with the normalized residuals during 8720 < HID' < 8780.
The upper left-hand panel shows the Q—Q plot of the static 2L1S
model. The quantiles calculated with normalized residuals of this
model obviously deviate from the standard normal distribution at
both the low and high ends. We also conduct a two-sample Anderson—
Darling test (Scholz & Stephens 1987) with the normalized residuals
against the standard normal distribution. The null hypothesis that the
residuals follow the standard normal distribution can be rejected
at the 0.5 percent significance level. We label the value of the
Anderson—Darling test statistic in Fig. 3, and show the critical values
for different significance levels in the caption. We are thus driven to
investigate whether the residuals can be fitted by high-order effects.

The first high-order effect is the microlensing parallax effect
(Gould 2000), which is due to the orbital acceleration of Earth
(observer). We parametrize the effect by two parameters, g n and
g E, the north and east components of the microlensing parallax
vector g in equatorial coordinates,

Tlrel Mrel

GE Mrel ’

3

g =

The second effect is the lens orbital motion (Dominik 1998a; Batista
et al. 2011; Skowron et al. 2011), which is described by two
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Figure 2. The observed data together with four models and their residuals. In the upper two panels, the dashed and solid black lines represent the best-fitting
2L 1S models without and with high-order effects, respectively. The solid magenta and red lines show the best-fitting 2L2S and 3L1S models. The lower four
panels show the residuals from each model.
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Figure 3. The Quantile—Quantile plots and the Anderson-Darling test
results for different models. The sample quantiles are calculated with the
normalized residuals during 8720 < HJD’ < 8780 (263 data points in total).
The theoretical quantiles are calculated for a standard normal distribution. The
red lines show the equality lines. The labelled red value at each panel shows the
value of the normalized two-sample Anderson-Darling test statistic. The first
sample contains 263 normalized residuals, while the second sample contains
107 random values drawn from the standard normal distribution. The critical
values for significance levels (25 per cent, 10 per cent, 5 per cent, 2.5 per cent,
1 percent, 0.5 percent, 0.1 percent) are (0.325, 1.226, 1.961, 2.718, 3.752,
4.592, 6.546), respectively. For the ‘2L1S Static’ model, the Anderson—
Darling test statistic 4.775 is larger than the critical value for 0.5 per cent
(4.592), but smaller than the critical value for 0.1 per cent (6.546). So the null
hypothesis that the normalized residuals of the ‘2L.1S Static’ model follow the
standard normal distribution can be rejected at the 0.5 per cent significance
level. For the 2L.2S and 3L 1S models, the null hypothesis cannot be rejected.
We used the Python packages statsmodels (Seabold & Perktold 2010)
and scipy (Virtanen et al. 2020).

parameters, ds/d¢ and do/df, the rates of instantaneous changes
at #( of the binary separation and orientation. We find that the orbital
motion effect is poorly constrained and thus restrict the MCMC trials
to B < 1.0, where B is the absolute value of the ratio of transverse
kinetic to potential energy (An et al. 2002; Dong et al. 2009a),

4= KE.| «Moy? 1 , s ’
T |PE, | 872 6 g + 75 /08
ds/dt da
= =), 4
r= (2245 @

where we adopt rg = 0.13 mas for parallax of the source based on the
mean distance to red giant stars in the direction of this event (Nataf
et al. 2013). We also consider the #y, > 0 and u, < 0 solutions to the
‘ecliptic degeneracy’ (Jiang et al. 2004; Poindexter et al. 2005).
The parameters from the MCMC and the best-fitting model are
shown in Table 2 and Fig. 2, respectively. We find that the inclusion
of high-order effects improves the fit by A x? ~ 80. However, there
are still unexplained features in this model. For example, the smooth
bump in the observed data peaks at around HID" = 8746, while both
2L1S Static” and 2L1S High-order’ models peak at HID" ~ 8750,
so they predict a higher magnification than what is observed during
8747 < HID' < 8752. The upper right-hand panel of Fig. 3 shows
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the Q—Q plot of this model, in which the sample quantiles agree
better with the theoretical quantiles than the static 2L.1S model,
but still deviate from the standard normal distribution at the low
end. From the Anderson—Darling test, the null hypothesis that the
residuals follow the standard normal distribution can be rejected at
the 5 per cent significance level. Moreover, according to the analysis
of Section 4, the O and 7y values of this model indicate a M <
15M, ptrer ~ 0.8 mas yr*1 lens system in the Galactic disc. The low
lens-source relative proper motion is of fairly low probability in the
Galactic dynamical model (see fig. 2 of Zhu et al. 2017), and the very
low-mass lens would be rare in the context of standard stellar mass
functions (e.g. Kroupa 2001). Hence, we consider models involving
four objects, i.e. 3L1S (Section 3.2) and binary-lens binary-source
(2L2S) (Section 3.3).

3.2 3L1S analysis

Relative to the 2L.1S model, the 3L1S model has three additional
parameters (s3, g3, ¥) to describe the third body M3 (the smallest
mass in our convention). Here s3 and g3 respectively represent the
separation in units of #g and mass ratio between M; and M3, and
Y denotes the orientation angle of M3 measured from the M;-M,
axis as seen from M. To avoid confusion, from now on we use s,,
¢» to represent the separation and mass ratio of M, to My, i.e. g =
M;,/M,. Due to the high-dimensional parameter space, it would be
computationally expensive to conduct a grid search to explore the
whole parameter space. Fortunately, the anomalies in the present
case can be approximately described by the superposition of two
2L1S perturbations (Bozza 1999; Han et al. 2001; Han 2005). That
is, the smooth bump at #; and the caustic-crossing feature between
t, and 13 can each be fitted by separate 2L.1S models. Under this
approximation, we conduct 2L1S modelling for two data subsets. In
addition, we also tried other combinations of (¢, t,, #3) and found that
the resulting 3L1S models are disfavoured by A x? > 80 relative to
the combination adopted here. For completeness, we describe those
models in Section 3.2.2.

3.2.1 A bump versus a pair of caustic crossings

For the first data subset, we exclude the data around the caustic-
crossing feature, i.e. 8752 < HID' < 8762. We conduct a 2L1S
grid search and then refine the solutions by the MCMC with all
2L1S parameters free. We restrict the blended flux f5, ogLe > —0.2
to exclude solutions with severe negative blended flux. We find
five solutions and designate them as ‘Binary A’ to ‘Binary E’,
respectively. Their parameters are presented in Table 3, and their
model light curves are shown in Fig. 4. Based on the caustic
geometries and source trajectories shown in Fig. 5, we find that
the solutions ‘Binary A’ to ‘Binary D’ can be regarded as two pairs
of solutions with s, > 1 and s, < 1. For the solution ‘Binary E’,
its source trajectory is almost parallel to the binary axis, and such
a geometry has been discovered in several previous cases (e.g. Han
et al. 2017; Zhang et al. 2020). For the second data subset, we
exclude the data around the smooth bump, i.e. 8735 < HID’ < 8752.
A planetary model with (log s3, log ¢3) =~ (0.05, —2.4) can explain
this data subset, and there is no degenerate solution.

We obtain the initial parameters of 3L.1S models by combining the
parameters of the planetary model and each of the five binary models.
Details about how to combine two 2L1S models are presented in
appendix A including a detailed recipe in appendix A3. The four
3L1S solutions, which correspond to ‘Binary A’ to ‘Binary D’, can
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Table 3. 2L1S lensing parameters obtained from excluding a portion of the data set.

R. Kuang et al.

Parameter Binary Planetary
A< 1) B(s2>1) C(sa<1) D(s2> 1) E
%% /dof 1078.49/1082 1080.59/1082 1078.24/1082 1079.08/1082 1072.86/1082 1033.06/1040
o (HID') 8750.1807000  8750.43270788 8753.51770%4 8751.41870272 8753.79470212 875294470343
0 026G o oaedgll o eseil ol
g, (days) 35.26773053 3237873318 33.274739% 33.5787333% 283321507 443461359
52 (for Binary) or 0.46970.03¢ 2.225M0302 0.48470:5%0 1.4220-0%0 L16170:0%8 113075019
s3 (for Planetary)
g2 01 g3 0.595703%2 0.0681003% 0.905%9% 0.10610039 0.22670-093 4.3427 1 18(x1073)
a (rad) 4.08170083 4.18170:0% 24877035 18117003 0.12470.0%8 4.9367003
p(1072) <5.00(30) <5.00(30) <5.00 (30) <4.99 (30) <4.98 (30) <1.26 30)
fs. 061LE 0.225%5 53 03727635 03107053 02807045 052475065 01575 626
fo.06LE 022475657 007675153 01397573 01697553 —0.075" 5097 029175575
T T curve of the best-fit 3L1S solution (‘3L1S A’) is shown in Fig. 2.
[ —— Planetary OGLE (I) . . . - s
1760 Binary A KMTA3Z () The combination of the solution ‘Binary E’ and the planetary model
17 s — Binary B Eu_}g%zz ((I[))* cannot produce a 3L1S model that explains all the anomalies, and
“[—— Binary C the resulting model from the MCMC is one of the 3L1S solutions
g

f ---- Binary D
[ ---- Binary E

|
60

—8730° ‘57508750 87
HJD — 2450000

Figure 4. The best-fitting 2L.1S model light curves obtained by excluding a
portion of the data. For the planetary model (solid black), the data inside the
range of 8735 < HJD' < 8752 are excluded. For the binary models, the data
inside the region 8752 < HID' < 8762 are excluded. Their corresponding
caustic structure and source trajectories are shown in Fig. 5. The three vertical
dashed lines correspond to HID' = 8735, 8752, and 8762, respectively.

TBinary C'(, <1) | fBinary E
M% MZ ] 0.5%
ME:} MZ
0.0 . Ll |
-0.5F 4
—(‘!,5 U‘U O‘YS 1.0 —l‘),S U‘U U‘YS 1‘0
o T T T T T T
Binary D (s, > 1) Planetary |

g hi/[/lt<> Moo M M

Il Il Il Il Il Il Il Il Il
~10-0500 05 10 1.5 20 25 -05 00 05 10 15 0.0 05 1.0
Xs Xs Xs

Figure 5. Caustic geometries of the 2L 1S solutions obtained by excluding
a portion of the data. Their corresponding model light curves are shown in
Fig. 4.

explain all the features in the observed data well with A2 < 5
relative to the best-fitting model. We designate these 3L1S solutions
as ‘3L1S A’ to ‘3L1S D’. Table 4 presents the parameters of the four
solutions. Their caustic structure and magnification maps together
with the source trajectories are shown in Fig. 6. The model light
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from another combination of (¢, f,, t3). We thus exclude this 3L1S
solution which corresponds to ‘Binary E’.

We note that some of the reported 3L1S model parameters and
uncertainties (Table 4) may be different from the 2L1S models
(Table 3) they are built upon. For example, the values of uy are
different for ‘Binary D’ in Table 3 and ‘3L1S D’ in Table 4. This
is because by adding a planetary mass into the binary models,
parameters like 75, 1 are better constrained by the caustic crossing
feature in the light curve caused by the planet mass. Other parameters
would also be constrained better since parameters are correlated.
Actually, after obtaining the 2L.1S models for each data subset, one
could further do a joint fit before 3L1S modelling. Because for each
pair of ‘Binary’ and ‘Planetary’ models, they should have at least the
same 7g and p.

We find that the inclusion of high-order effects improve the fit by
Ax? >~ 3 and the 1o uncertainty of parallax is o (g, ) >~ 0.2 and
o(mg, 1)~ 1.0, where g and g, | are the component of g that is
parallel and perpendicular with the direction of Earth’s acceleration.
In addition, the other 3L1S parameters are consistent with those of
the static 3L1S models at 1o. Such a weak constraint on g has
little effect (< 5 per cent) on the physical parameters derived from
the Bayesian analysis in Section 4.2. Hence, we adopt the static 3L1S
models as the final results.

3.2.2 Other combinations of features

Currently, the solutions of most known 3L1S events were found by
the superposition of two 2L1S perturbations. The strategy of finding
3L1S models from combinations of 2L.1S models is mainly arrived
at by inspecting the features of the observed light curve. If the data
coverage of each anomaly is good and thus the shape of each anomaly
is clear, then the combinations are relatively straightforward. For
example, the two planetary signals of the 3L1S event OGLE-2012-
BLG-0026 (Han et al. 2013) clearly consist of a bump and a dip, so
only one combination of light curve features is feasible. However, in
the present case, the coverage at the caustic crossings of the ‘U shape’
anomaly (7, and 3) is sparse, so it raises the question of whether or
not other combinations of (¢, t,, #3) can yield a reasonable 3L1S
solution.
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Table 4. 3L1S lensing parameters together with 6, and 0.

OGLE-2019-BLG-1470LABc 1711

Parameter A(s, < 1) B(s; > 1) C(s,<1) D(s;>1)
Best fit MCMC Best fit MCMC Best fit MCMC Best fit MCMC
x2/dof 1121.45/1121 1124.81/1121 1126.78/1121 1126.26/1121
1y (HID') 8751.021 8751.032+01% 8741.156 8739.94073650 8753.446 8753.2621022 8718.708  8716.2947% 16!
o 0.187 0.19279018 —0.049 —0.06879032 0.295 0.2857001 0.936 0.962+0:953
15 (days) 42.595 41.725%} 8 45.378 46.8907 271 36.243 36.302 0340 55.622 56.03712-30
5 0.439 0.4467902 2.749 278610053 0457 0.45179013 2.700 276870098
¢ 0.359 0.3227005% 0.173 0.1807 03 0.975 101975385 0.695 0.708™ 0061
o (rad) 3.900 3.89015:02 3.913 3.8881003 2.416 2.424109% 2.234 2.2387 003
53 1.108 111255017 1.059 1.053790% 1.019 LOI1E00S 0.870 0.8677 0014
g3(1073) 3472 3.8787 )13 4953 5.14979%0 8.643 9.359" 190 4275 3.9961 091
¥ (rad) 4.993 499810033 5.184 5.153790%7 4.093 4.08715:033 3.615 3.609700
p(1072) 0.121 <1.148 (30) 0.885 <1.138 (30) 0.928 <1.321(30) 0.572 <0.955 (30)
Jfs.06LE 0.158 0.163+0:01 0.181 0.17175518 0.247 0.24279012 0.194 0.19370013
3,008 0.290 0.2851901 0.267 0.27810018 0.201 0.207901 0.253 0.2547001¢
0. (pas) 0.62 0.631008 0.66 0.64100% 0.78 0.77+5 0% 0.69 0.697008
0 (mas) 0.51 >0.055 (30) 0.075 >0.056 (30) 0.084 >0.058 (30) 0.12 >0.072 30)
1 T T T | 1.2 T T
(f) oM; 1 n h B
ik 1 of || 1
T i i 1
i y ] 0,8;___*_9_!'¢_JL———1
B !

-108 ¢ .

=156 b L b L g
-=0.5 0.0 05 1.0 1.5 2.0 2.
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-16 -0.8 00 08 16
Xy

Figure 6. Caustic geometries of the 3L1S solutions. From top to bottom, the
panels show the solutions A (s2 < 1), B (s2 > 1),C (s2 < 1),and D (s > 1),
respectively. In each row, the left-hand panel exhibits the global view of the
system, the solid black line with arrow shows the source trajectory, and the
blue circles represent the locations of the lens components marked as M, M»,
and M3. The right-hand panel displays the magnification map in which the
dashed white lines with arrows indicate the times (1, t2, t3) of the anomalies
and red dots indicate the corresponding source positions.

Figure 7. Caustic geometries of solutions ‘3L1S F’” and ‘3L1S G’. The two
solutions are found by assuming that the anomalies at #; and 73 are caused by
one 2L 1S solution and the anomaly at #, alone is produced by the other 2L1S
solution. The right-hand panels display a close-up of positions for the three
anomalies at (71, f2, 3). The corresponding model light curves are shown in
Fig. 8.

The first combination assumes that the anomalies at #; and 3
are caused by one 2L1S solution and the anomaly at #, alone is
produced by the other 2L1S solution. We first exclude the data
at 1, i.e. 8752 < HID' < 8754.5, and conduct a 2L1S grid search
with the remaining data, which yields two solutions. As shown in
Fig. 7, two cusp approaches with a resonant caustic produce the
anomalies at #; and #3. Then, we find several planetary solutions that
can explain the bump feature at z,. However, the 3L1S solutions from
this combination are all disfavoured with A x2 > 80 relative to the
‘3L1S A’ solution, and these 3L1S solutions cannot fit the anomalies
at #, and 3. For simplicity, we only display two representatives
of these 3L1S solutions (designated as ‘3L1S F’ and ‘3L1S G’).
Their parameters and model curves are shown in Table 5 and Fig. 8,
respectively.
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Table 5. 3L1S lensing parameters of ‘3L1S F” and ‘3L1S G’.

Parameter F G

Best fit MCMC Best fit MCMC
x?/dof 1207.04/1121 1200.80/1121
to (HID') 8755.747 8755.60670208 8751.555 8751.5607013¢
o 0.775 0.732100% 0.229 0.24070.03¢
g, (days) 27.250 27.47113% 36.801 357931322
5 0.887 0.902+0:92 1.163 115410041
o 0.274 0.242+0:063 1.802 (x 1072) 17660211 (x 1072)
o (rad) 0.040 0.05275:036 1.444 145170012
53 1.388 1.33975:062 1.037 1.01570:04¢
¢3(1073) 0.793 126775338 0.680 0.89470418
¥ (rad) 1.549 1.555+0:94 2753 2.768+0:921
p(1072) 1.822 <2.905 (30) 1.196 <1.828 30)
fs,06LE 0.761 0.5827004) 0.203 0.21410:033
fa, 06LE 0312 —0.13310:07 0.246 0.23570:0%

| | L | | I
8750 8752 8754 8756 8758 8760 876
T T T T

— 3LISF OGLE (I)
sk 31156 KMTA32 ()
— KMTC32 (I
178 SLISA h KMTS’;Z N
32 (D
o18.0 F ]
]
ft i

E 18.2F | % B

Residuals Residuals

Figure 8. Comparison between ‘3L1S F” and ‘3L1S G’ solutions with the
best-fit 3L1S solution (‘3L1S A’). The two solutions are disfavoured by A x>
~ 80.

The second combination assumes that the anomalies at 7; and t,
are produced by one 2L.1S system. We exclude data around #3, i.e.
8754.5 < HID' < 8757.5. However, we cannot find any 2L1S model
that can explain the remaining data. Thus, this approach is infeasible.

Although our attempts above did not yield a new competitive
3L1S solution and the anomalies at 7, and #; together indeed form a
‘U shape’, one may need to be cautious about the strategies of 2L1S
combinations with numerous 3L1S events detected by the ongoing
KMTNet survey and the Nancy Grace Roman Space Telescope
(Spergel et al. 2015; Penny et al. 2019) in the future.

We note that in finding 3L1S solutions, we tried only the supposi-
tion method and have not conducted a thorough grid search over the
3L1S parameter space. We believe there is little chance for this event
to have other 3L 1S solutions. We have already tested all combinations
of anomaly features in the above sections and conducted thorough
grid searches for both the binary and planetary 2L1S models that

MNRAS 516, 1704—1720 (2022)

can produce the anomaly features in the observed light curve. In this
event, the planet (M3) with mass-ratio gz ~ 1073 has little effect on
the caustic of the binary (M; and M,). So the binary-superposition
method would be valid for this event.

3.3 2L2S analysis

There have been several events with plausible 3L1S planetary
solutions that proved to be 2L2S events (e.g. Jung et al. 2017) or
have competitive 2L2S solutions (e.g. Suzuki et al. 2018). The total
magnification of a 2L2S model is the superposition of two 2L1S
models involved with the individual source stars,

Arfiat A2 Al faiorAs _
AA = B fralio,A = L
Sio+ fan I+ fratio.r Sia

where A, is the total magnification, and f; ; is the baseline flux at
wavelength A of each source with i = 1 and 2 corresponding to
the primary and the secondary sources, respectively. To include the
second source, we require four additional parameters, (¢, 2, o, 2, P2,
Jratio,1) (Hwang et al. 2013). fy , is the time at which the second
source is closest to the centre of mass of the lens, ug, » is the lens-
source separation at that time, p, is the normalized radius of the
second source, and fiuio, 1 1S the source flux ratio in the /-band.
We use the best-fitting parameters of the static 2LL1S model as
the initial parameters of (i, uo, 1, tg, S, ¢, &, p1), and use the
MCMC method to generate samples from the posterior distribution,
and search for the best-fitting 2L.2S model with the Nelder-Mead
algorithm.

Table 6 lists the parameters of the 2L2S model, Fig. 2 shows
its model curve and its residuals. It is found that the 2L2S model
provides a better fit than the 2L1S model by Ax? = 126. The
goodness of fit improved because the second source is relatively
‘delayed’ compared with the first source. Fig. 9 shows the trajectories
of the two sources. At time #,, the first source is nearly at its closest
approach to the primary lens, thus would cause a strong bump, as is
the case in the static 2L1S model. In the mean time, the second source
is located at the low magnification region between two spikes, which
causes the total magnification at time #, to be lower and improves
the goodness of fit. The 2L.2S model has a Ax? ~ 18 compared
to the 3L1S model, the Ax? is mainly accumulated at time around
the caustic crossing region. See Fig. 10 for the cumulative A2

)
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Table 6. 2L2S lensing parameters together with 6, and 0.

Parameter Best fit MCMC
x2/dof 1139.25/1120

0,1 (HID') 8746.251 8746.51070373
0,2 (HID') 8757.144 8757.096 70447
o, 1 0.150 0.16579013
"o, 2 -0.238 —0.26010033
g, (days) 36.729 35.544119%
5 1.215 1.2187901!
q(1073) 7.558 8.0831115¢
a (rad) 5.696 5.654700%
Jratio, 1 1.600 1.533754%
p1(1072) 0.092 <0.665 (30)
2(1072) 0.039 <21.3(30)
/s, 0GLE 0.194 0.210%0:03;
fB.0GLE 0.255 0.239+0:023
0 (pas) 0.69 0.7210:19
9 (mas) 0.75 >0.11

0.4
0.3
0.2
0.1
0.0
1 -01
S -0.2
4 -0.3

SETTTTTT T T T T T

i —O.S‘ . ‘0.0‘ L ‘OAS‘ L ‘1A0‘ —3 _p.4! A4‘ H_O"Z‘ . ‘OAO‘ L OA2‘ P

Figure 9. Caustic geometry and source trajectories of the 2L2S model. The
red curve shows the caustic. The black lines with arrows show the trajectories
of the two sources. In the right-hand panel, we mark the source positions at
time t1, tp, and £3 with crosses.
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Figure 10. Cumulative A2 of different models relative to the best-fitting
3L1S model.
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Figure 11. Colour-magnitude diagram (CMD) for field stars (black dots)
within 180 arcsec centred on OGLE-2019-BLG-1470 using the OGLE-II
catalogue stars (Udalski et al. 2002). The red asterisk indicates the centroid
of the red giant clump, and the blue dot represents the microlensing source
star.

relative to the 3L1S model as a function of time. However, we
cannot firmly resolve the degeneracy between this model and the
3L1S models with the current data. The lower left-hand and lower
right-hand panels of Fig. 3 show the Q-Q plots of the 2L2S and
the 3L1S models, respectively. For both models, the null hypothesis
that the residuals follow the standard normal distribution cannot be
firmly rejected. Including the parallax effect in the 2L2S model only
improves the x2 by 1.7, so we adopt the static 2L.2S model as the
result for simplicity.

4 PHYSICAL LENS PROPERTIES

For a lensing object, the mass (M) and distance (D) of the lens
system are related to the angular Einstein radius 6 and microlensing
parallax 7 by (Gould 2000)
O au
My, = —; D= ——. (6)
KT 7O + 7Ts
In the present case, because neither 6 nor g is unambiguously
measured, we conduct a Bayesian analysis by incorporating priors
from a Galactic model to estimate the physical parameters of the lens
system. Before the Bayesian procedures, we estimate the angular
source radius 6, by a colour magnitude diagram (CMD, Yoo et al.
2004) analysis and then obtain the constraint on 6g through g =
0./p.

4.1 Colour magnitude diagram and angular source radius

We construct a V — I versus I colour-magnitude diagram (CMD)
using the OGLE-II catalogue (Udalski et al. 2002) for field stars
within 180arcsec centred on the event. The CMD is shown in
Fig. 11. We find the centroid of the red giant clump of (V —
I, g = (2.02 £ 0.01, 15.50 £ 0.02) and adopt (V — I, D)oo =
(1.06, 14.33) (Bensby et al. 2013; Nataf et al. 2013) as the intrinsic
colour and de-reddened magnitude of the red giant clump. For the
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Table 7. Physical parameters of the lens system from a Bayesian analysis.

Parameter 3L1S 21.2S
A(s2<1) B(sa>1) C(s2<1) D(s2>1)

M; Mo) 0.5710% 0.5804 0.56104% 0.601043 0.55+04
My Mg) 0.18751 0.1075:08 0.5570% 0.427939 -
Ms (My) 2243 3043 54137 2547 4.613¢
71,2 (au) 13753 7.873% 1.670°¢ 9.5733 -
ri. 3 (au) 3.24172 2,971 35013 3.0t 3.2%12
Dy (kpe) 59712 56733 6.171 51007 6.11)%
trel (mas yr—1) 4.9738 43734 6.475¢ 4.875) 4.673%

source colour, which is model independent, we obtain (V — I)s =
1.81 £ 0.07 from a regression of the KMTC V versus [ flux as
the lensing magnification changes and a calibration to the OGLE-II
magnitudes. Because the four 3L1S solutions have different source
fluxes, we begin with the angular source radius of solution ‘3L1S
A’, 0, 4, using Is = 19.97f8:(1)‘7‘. We obtain the source de-reddened
colour and magnitude as

V—=ILDso=WV-1,Ds—=V —=1,Da+V —1I,Dayo
= (0.85 £0.08, 18.8003). (7)

Using the colour/surface-brightness relation for dwarfs and sub-
giants of Adams, Boyajian & von Braun (2018), we obtain 6, 4 =
0.631’8:82 pas. Then, for any model with source magnitude /s, one can
infer 0, = 0, 4 x 10702Us=1997 We list 9, of each 3L1S solutions
in Table 4.

4.2 Bayesian analysis

The Galactic model used for the Bayesian analysis has three parts:
the mass function of the lens, the stellar number density profile and
the dynamical distributions. For the lens mass function, we apply
the initial mass function (IMF) of Kroupa (2001) and add a 1.3Mg
and 1.1Mg upper-end truncation for the disc and the bulge lenses,
respectively Zhu et al. (2017). For the stellar number density, we
choose the models used by Yang et al. (2021). For the disc velocity
distribution, we use the ‘Model C* of Yang et al. (2021), which is
dynamically self-consistent with the density profile. For the bulge
dynamical distributions, we adopt the model used by Zhu et al.
(2017) and assume that the bulge stars have a zero mean velocity and
120 km s~! velocity dispersion along each direction.

We create a sample of 10® simulated events drawn from the
Galactic model. For each simulated event, i, whose parameters
consist of O ;, i, i, and tg ;, we weight it by

®Gal,i = Og,i X Mreli X L(tg,i)L(6E;). (8)

where L(tg;) is the probability of #g ; given the error distributions
of tg derived from the MCMC chain, and £(6g ;) is the probability
of Ok, ;. To derive the probability distribution of 6, we first draw
the probability distribution of p by the lower envelope of x> versus
p diagram from MCMC. See fig. 6 of Jung et al. (2020) for an
example. Then, we create a sample of 10° simulated fg using the p
distribution and the 6, distribution from the CMD analysis, which
yields the probability distribution of 0. Here, we only consider the
primary lens alone, so #g; and 0 ; are a factor of /T + ¢ + q3
smaller than the values defined for the triple system.

In Table 7, we summarize the posterior distributions (the median,
16 per cent, and 84 per cent quantiles) of the physical lens parameters,
including the masses of the three lens components, (M, M,, M3),
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the projected separation of M, and M3 to the position of M, (r, »
and r, 3), the distance to the lens system, Dy, and the lens-source
relative proper motion, (. We find that the four solutions all consist
of a super-Jovian planet in a binary system, but the interpretations
of their planetary orbits are different. The ratios of the projected
semimajor axes in all four cases are very close to or exceed the
conditions for stability (Holman & Wiegert 1999). Of course, the
projected semimajor axes are only the minimum separations between
the primary and its companions. The stellar companion can lie
substantially inside the planet orbit (P-type orbit), or outside of the
planet orbit (S-type orbit). As with many Kepler planets orbiting
binaries (the first was Doyle et al. 2011, see Martin & Fabrycky
2021 for a complete list), detectability considerations create a bias
toward planets near (in the case of Kepler) or appearing to be near
(in the case of microlensing) the stability limits (Madsen & Zhu
2019). Thus, the most likely interpretation for the solutions ‘3L1S
A’ and ‘3L1S C’, the planet likely orbits the barycentre of a close
stellar binary, i.e. a P-type orbit and a circumbinary planet. For the
solutions ‘3L1S B’ and ‘3L1S D’, the planet probably orbits the more
massive companion of the stellar binary, i.e. a S-type orbit. However,
we cannot rule out configurations for any of the four solutions in
which the relative locations of the companions are reversed with
respect to the primary.

5 DISCUSSION

The light curve of the microlensing event OGLE-2019-BLG-1470
shows three distinct features. The first is a smooth bump generated
by cusp approach, the other two features originate from a resonant
caustic crossing. Our analysis indicates that this event could be
explained either by a 3L1S model or by a slightly worse 2L2S
model. The 2L.2S model is disfavoured by Ay? ~ 18 relative to
the best-fitting 3L1S model, its cumulative A x? relative to the best-
fitting 3L1S model rises mainly during the caustic crossing region.
However, we cannot firmly rule out the 2L2S model with statistical
tests. These degenerate models would be resolved if there were high-
cadence observations over the peak region.

In this event, the planet manifests itself by generating a resonant
caustic which allows forming a detectable anomaly feature when the
source passes through the caustic. This is similar to events OGLE-
2016-BLG-0613 (Han et al. 2017) and OGLE-2018-BLG-1700 (Han
et al. 2020). Planets are still detectable even with small planetary
caustics. Actually, this includes a substantial fraction of microlensing
planets in binary systems, such as in events OGLE-2006-BLG-284
(Bennett et al. 2020), OGLE-2008-BLG-092 (Poleski et al. 2014),
OGLE-2013-BLG-0341 (Gould et al. 2014), and KMT-2019-BLG-
1715 (Han et al. 2021a). It seems that the second case (planetary
caustics) happens more frequently. However, it is not clear whether
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Figure 12. (logs, log ¢) diagram for microlensing planetary events adapted
from fig. 11 of Yee et al. (2021). The black points represent planets around a
single star. Magenta and red colours, respectively represent planets in binary
systems detected during 20062015 and since 2016. The asterisk is the planet
found in this paper, and we adopt the parameters of the best-fit 3L1S solution
(‘3L1S A’). Solutions are considered to be ‘unique’ (filled points), if there
are no competing solutions within Ax2 < 10. Otherwise, they are shown
by pairs of open circles linked by a line segment. 10 planets are excluded
because their g differs by more than a factor of two. The two green solid lines
represent the boundaries between resonant and non-resonant caustics using
equation (59) of Dominik (1999), and the two green dashed lines depict the
boundaries for ‘near-resonant’ caustics proposed by Yee et al. (2021).

this is due to the sample size being small or due to other reasons. On
the one hand, the parameter space for generating planetary caustics is
larger than that for generating resonant caustics. On the other hand,
the sensitivity to planet is higher when there is a resonant caustic.
The relative fraction will of course depend on the intrinsic properties
of planets in binary systems in the Galaxy. From the theoretical side,
it is worth studying the detection probabilities of planets in different
configurations of binary systems.

Including the candidate lens system, OGLE-2019-BLG-
1470LABc, reported in this paper, eight microlensing planets in
binary systems have been detected. In Fig. 12, we plot them together
with other published microlensing planets in the log g versus logs
plane. We separate the eight planets in binary systems into two
groups. The magenta points represent the planets detected before
2016, while the red ones are the planets found since 2016. We
find that the discovery rate of planets in binary systems has at least
doubled since 2016. This is mainly due to the regular operation of
KMTNet since 2016 because KMTNet played a major role in all four
discoveries since 2016.

However, the two groups exhibit different properties in two
aspects: planet-to-host mass ratios and the types of caustic. For the
four planets detected before 2016, all of them are located outside the
near-resonant range (Yee et al. 2021) with planet-to-host mass ratios
logg < —2.8. As illustrated by Zang et al. (2021), wide-area high-
cadence surveys are sensitive to planets outside the near-resonant
range, which is consistent with the detection channels for the four
planets in binary systems detected before 2016. Three of them were
detected by a pure-survey mode by OGLE and the Microlensing

OGLE-2019-BLG-1470LABc 1715
Observations in Astrophysics (MOA, Sumi et al. 2016) experiments,
and OGLE-2007-BLG-349LABc was found by a combination of
survey and follow-up. Because KMTNet is more powerful than the
previous surveys, it is expected that KMTNet is sensitive to planets
out of the near-resonant range for all mass-ratio regions. However,
the four planets® since 2016 were all detected by a resonant-caustic
channel with planet-to-host mass ratios g > 2 x 1073,

This contradiction is similar to the ‘missing planetary caustics’
problem advocated by Zang et al. (2021), but it is more severe
considering the lack of low mass-ratio (logg < —3) planets. The
four detections before 2016 suggest that low-mass-ratio planets in
binary systems are not rare, and the ~20 low-mass-ratio planets in
single systems detected by KMTNet have demonstrated its sensitivity
to them. Therefore, the problem is likely due to the way we search
for planetary signals in binary systems. Indeed, this is proven to be
the case for planets orbiting a single star: the advent of systematic
KMTNet planetary anomaly searches has started to yield more
planets with planetary caustic crossings (Zang et al. 2021, 2022;
Gould et al. 2022; Hwang et al. 2022; Wang et al. 2022). These
systematic anomaly searches not only increase the total number
of known microlensing planets, but also provide complete and
homogeneous statistical planetary samples for the studying of, e.g.
the planet-to-host mass ratio function.

Previously, the largest such sample was obtained from the wide-
area, high-cadence Microlensing Observations in Astrophysics II
(MOA-II) survey from 2007 to 2012 (Suzuki et al. 2016). The authors
found 23 planets out of 1474 microlensing events with a broken
power law for the planet-to-host mass ratio function. Combining
planets from two previous studies (Gould et al. 2010; Cassan et al.
2012), they built a sample of 30 planets and found that the power
law breaks at mass ratio gy, = 1.7 X 1074, i.e. cold Neptunes are
likely the most common type of planets beyond the snow line (for
late dwarfs). Furthermore, a statistical work based on long period
(22 yr) transiting planet candidates from the prime Kepler mission
found a compatible result that the long-period Neptune-sized planets
are at least as common as the Jupiter-sized ones (for FGK dwarfs,
Kawahara & Masuda 2019). The authors pointed out that it is
essential to quantify the completeness of smaller planets to facilitate
more detailed comparisons.

We note that there are two microlensing events of planet in binary
system during 2007-2012. The first is OGLE-2007-BLG-349 (MOA-
2007-BLG-379, Bennett et al. 2016), which contains a planet with
mass ratio g ~ 3.4 x 107 This planet was included as one of the 23
planets in the statistical study of Suzuki et al. (2016).° The second
event, OGLE-2008-BLG-092 (Poleski et al. 2014), is not a MOA
event. The fraction of planets in binary systems appears to be low
(1/23) in the sample of Suzuki et al. (2016).

However, as more planets in binary systems are discovered, one
may need to be cautious about whether these planets can be included
in such statistical studies. For the KMTNet data, the AnomalyFinder
algorithm is efficient in uncovering the buried planetary signals (Zang
etal.2021), including signals from low-mass ratio (¢ < 10~*) planets

8There is one more case if we count the event OGLE-2019-BLG-0304 (Han
et al. 2021b) as a candidate of planet in binary system. The 3L1S model of
OGLE-2019-BLG-0304 includes a planet with planet-to-host mass ratio ¢ =
1.82 4 0.26 x 103, The planet also generates a resonant caustic.

This planet was also included as one of the six planets used to statistically
investigate the frequency of solar-like systems and of ice and gas giants
(Gould et al. 2010). The authors have realized that the OGLE-2007-BLG-
349 system contains a third body, but difficult to fully characterize at that
time.
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(Hwang et al. 2022). But the AnomalyFinder algorithm has not
been applied to KMTNet binary events to find potential planetary
anomalies. The lack of planetary caustics in the current KMTNet
sample of planets in binary systems indicates that this sample may
be incomplete. Thus, these planets (in binaries) cannot be included
in the current study of KMTNet mass-ratio function. Systematic
KMTNet planetary anomaly searches for planets in binary systems
are therefore needed. With the successful implementation of the
current KMTNet AnomalyFinder algorithm, one may naturally think
of applying this algorithm to the residuals of 2L1S light curves.
However, this approach requires a significant effort on careful 2L1S
modelling (about 200 events per year) with the inclusion of high-
order effects (parallax and orbital motion of the stellar binary) in
many cases, as well as substantial additional work for data reductions.
On the other hand, the reward is also rich because it will give, for
the first time, the statistics of microlensing planets in binary systems.
We plan to pursue this in the future.
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APPENDIX A: COMBINING TWO 2L1S
MODELS TO FORM A 3L1S MODEL

The magnification pattern produced by a triple-lens system is
complex and difficult to calculate. Previous studies showed that the
magnification of a triple-lens system which contains two planets
can be calculated as the summation of the magnifications from two
binary-lens systems (binary superposition). This is valid for high
magnification cases (Rattenbury et al. 2002; Ryu, Chang & Park
2011) as well as for both planetary caustics (Han et al. 2001) and
central caustics (Han 2005).

For the case of a planet in a binary-star system, the superposition
of magnifications is no longer valid. In Han et al. (2001), they found
that if the heavier companion mass ratios 20.05, the magnification
deviation from the binary superposition becomes considerable. An
intuitive explanation is that the caustics produced by the planet will
be easily affected by the binary-star system. Instead of seeking for
valid superposition for magnification calculations, we expect that in
some cases, topologically the overall caustic structure corresponding
to the planet remains the same after we add the planet component to
a binary-star model. In this case, the binary superposition is ‘valid’
in the sense that the caustic structure required to produce all anomaly
features in the light curve still exist. The resulting triple-lens model
can be taken as an initial approximation for more accurate modelling.

Now we investigate how to combine two binary-lens models to
form an initial triple-lens model. Specifically, we focus on combining
a binary-star model and a planetary model. Readers who are not
interested in the technical details can directly go to appendix A3
which gives a short recipe for the procedures.

We denote the parameters of the binary-star model and the
planetary model as (fy g, Uo, B, tE, B> OB, SB> ¢8> &B) and (fy, ¢, Uo, ¢, g, ¢»
Pe» Ses Ge» A), respectively.'” The goal is to obtain the parameters (),
up, tg, P, $2, 42, 83, 3, o, ¥ ) of the triple-lens system. For parameters
other than (s3, g3, ¥), we use the same values as the binary-star
system:

(to, uo, e, P, 82, q2, @) = (fo,B, Uo,B, E.B> OB, B> dB, AB), (A1)

since the extra planet would not change these parameters signifi-
cantly. We derive the remaining parameters, i.e. (s3, g3, ¥) from the
two binary-lens models.

We designate the masses of the three lens objects as M, M,, and M3
(with M|, > M, > M5 and 213:1 M; = 1). We use the same coordinate
system as in Kuang et al. (2021). M; and M, are located along the
horizontal axis, and their centre of mass is the origin. Specifically,
their masses and positions (x;, y;) are:

M, = 1/(1+ g2+ q3), My = g2 M}, M5 = g3 M,

x1 = —q252/(1 + qo), =0,

x2 = 52/(1+q2), 2 =0,

X3 = X1 + s3co8 Y, y3 = y; + s38in . (A2)

10We note that the (g, p) will not be the same from two individual 2L1S
modelling with two different data subsets, such as the models shown in
Table 3. One can obtain two 2L1S models with the same (7, p) with a joint
fit.
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Figure Al. An illustration of combining two binary-lens models to form a triple-lens model. In the upper left-hand panel, we show the first binary-lens model
M, —M; with parameters (sg, gg, o) = (0.439, 0.359, 223°), produces a diamond-shaped caustic (in blue) near the origin. The lower left-hand panel shows the
second binary-lens model with parameters (sc, gc, @c) = (1.108, 3.472 x 1073, 293°), which produces a resonant caustic (in green). The right-hand panel shows
the resulting triple-lens model constructed by combining the two binary-lens models in the left-hand panel. The red curve shows the caustics of the triple-lens
model. The blue curve is the same caustic as in the upper left-hand panel, the green curve is plotted by rotating by an angle so that it lies on the line (dashed
magenta) connecting M3 and the origin. The black dots are the lenses. The black solid lines with arrows show the source trajectories.

We show two example cases, corresponding to close (sg < 1) and
wide (sg > 1) binary-star system, respectively.

A1 Close binary-star system (sg < 1)

For the first case, (s., g.) of the planetary lens system can be taken
as (s3, q3), and ¥ calculated by subtracting o from op,

$3 = Sc,
q3 = qc;
V= o — o. (A3)

Fig. Al shows the related geometries. The upper left-hand panel
shows the caustics (in blue) of the binary-star model. The lower left-
hand panel shows the caustics (in green) of the planetary model.
In the right-hand panel, the red curve is the caustics produced
by the resulting triple-lens model. The overall caustic structure
remain the same as the two individual binary-lens models. So, the
combined triple-lens model can be taken as an initial model for
further optimising.

We note that the caustic corresponding to M3 is not along the
line connecting M3 and M, (the orange dashed line), but close to a
line (the magenta dashed line) connecting M3 and the origin, i.e. the
centre of mass of M,—M,. So, one can regard M,—M, as a whole and
has a net effect on Ms3. In this case, the position and planet-to-host

MNRAS 516, 1704—1720 (2022)

mass ratio of the planet, parametrized with (s., ¢., ¥) are relative to
the ‘effective’ mass of M;—M,, instead of being relative only to M.
The extreme case is that sg — 0, i.e. M; and M, are merged into one
object.

The effective lensing position of a component in the binary lens
system is shifted toward its companion (Di Stefano & Mao 1996;
An & Han 2002). A lens component i will shift toward its companion
j by an amount (Chung et al. 2005):

M;/M; Ok.i

Axpiy o~ — 220 TBL
Tl = S ) /(0 /0e) G

(A4)

where M;, M; are the masses of the individual lens components, 0 ;
and Oy are the Einstein ring radius corresponding to M; and M; +
M;, respectively. In our case, the effective lensing position of M, will
shift toward M, by an amount of

qB ~ SBYB
(p+s5)(1+gs) 1+gs

AXy_y (AS)

i.e. for the case of sg < 1, the effective lensing position of M, is close
to the centre of mass of M; and M,. If we regard M, and M, are
effectively located at the origin with a mass M; 4+ M,, then we have
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Figure A2. The same as Fig. Al. The binary-star M;—M, are in wide orbit that (s, ¢g, ag) = (2.700, 0.695, 128°). The planetary lens system in the bottom
left-hand panel is the same as in Fig. Al. The green curve in the right-hand panel is plotted by rotating an angle and then shifting leftwards so that it lies in the
line connecting M3 and the geometric centre (calculate numerically, x &~ —0.955) of the diamond-shaped caustic near M.

the following relations,

My/My = g5,  M3/(My 4+ M>) = q.. o M=1,
1//0 = g — U,
X3 = 5c €08 Yy, V3 = Sc sin ¥,

(A6)

where Vg = ZM,0M3, O is the origin. We can derive (s3, g3, V) to
match our coordinate definition as

q3 = qc(1 + gp),
3= /(3 —x)2 + (3 — y1)%,
¥ = arctan((y3 — y1)/(x3 — x1)). (AT)

Equations (A3) and (A7) are two different ways of adding a
planetary mass component into an existing binary-star model. For
a close binary system, the resulting caustics have similar structure.
So both equations are valid for obtaining an initial triple-lens model.

A2 Wide binary-star system (sg > 1)

For the second case, ¢. of the planetary model can be taken as ¢s.
However, we cannot simply take s. as s3. This is because M, has
smaller effect on M3 when sg > 1. The extreme case is that sg —
~+o00. In the planetary 2L.1S model, the total mass ~M; + M3, while
in the resultant 3L1S model, the total mass equals to M| + M, +
M3, they correspond to different 6g’s. So considering s, and s3 are in

units of different f’s, we have

53 = sev/ (1 + o) /(1 + gc + gp),
q3 = {qc,
v = ap — . (A8)

In this way we can retain the caustic structure produced by the planet,
as shown in Fig. A2. Similar to the previous case in appendix Al,
the caustic corresponding to M3 is also not along the line connecting
M5 and M, (the orange dashed line). Instead, the caustic lies close to
the line (the magenta dashed line) connecting M3 and the geometric
centre of the diamond-shaped caustic (the one close to M;). The
position of this geometric centre (the mean values of the coordinates
of all points at that caustic) is calculated numerically after we
obtained the caustic shown in the upper left-hand panel. We can
also estimate the effective lensing position of M, in this case, as in
equation (AS),

qB ~ qB
(sg +sg (1 +gp)  se(l+ qs)’

AXjn = (A9)

For the example case shown in Fig. A2, (s, ¢gg) = (2.700, 0.695),
the effective lensing position of M is:

4qBSB qB

— ~ —0.955,
I+gs  ss(l+gp)

X1+ Axio = (A10)

which is exactly equal to the position of the numerically calculated
geometric centre of the diamond-shaped caustic near M, .
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In summary, for the above two examples, the effective lensing
position of M, will shift towards M, by

9B <1
s, SB Ly
Axin, = 'has T >1 (AL1)
l+quB s N:

The above equations may not be applied for other values of (sg, ¢g).
For example, the separation at which the binary-lens system can be
regarded as ‘wide binary’ (when there are isolated regions of magni-
fication) depends on the mass ratio between the binary components
(Di Stefano & Mao 1996). Besides, in triple-lens system, the location
and mass of the third lens (M3) need to be taken into account. We
leave the determination of the effective lensing position and mass of
the M,—M, binary system, as seen from M3, as a future work.

A3 Recipe

In Appendixes A1-A2, we give detailed justifications for how to
combine two 2L1S models. Here we give a short recipe of the
procedures to obtain an initial triple-lens model applicable to the case
where a light curve shows distinct anomalies from a binary system
and a planetary system as in this event, OGLE-2019-BLG-1470.

(i) Excluding part of the data points in corresponding anomaly
(planetary or binary) regions. Obtaining two different data subsets.

(i) Modelling with 2L1S model for these two data subsets.
Obtaining two sets of 2L.1S model parameters, i.e. (fo, 5, 4o, B, /& B>
PB, SB, g8, o) for the binary-star system and (¢, ¢, Uo, c» IE, s Pcs Sc»
e, ) for the planetary system.

(iii) Combining these two sets of 2L.1S model parameters to form
the initial parameters (ty, o, tg, 0, $2, 42, 53, 43, &, ¥) of the triple-
lens model which will retain the required caustic structure. For the
case of close binary (sg < 1), the parameters of the initial triple-lens
model can be obtained from equations (A2) and (A3) (or A7). While
for the case of wide binary (sg > 1), one can use equations (A2) and
(A8).

MNRAS 516, 1704-1720 (2022)

(iv) Finally, in both example cases, the planet has little effect on
the caustics produced by the binary star. On the other hand, the
caustics produced by the planet can be easily affected by the binary-
star system. After obtaining the rough parameters for a triple model
and before further optimisation, one may need to manually fine-tune
the triple-lens parameters (mainly on s3, g3, V) to adjust the caustics
to the desired position.
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