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Abstract—Unmanned Aerial Vehicles (UAVs) find increasing
use in mission critical tasks both in civilian and military opera-
tions. Most UAVs rely on Inertial Measurement Units (IMUs) to
calculate vehicle attitude and track vehicle position. Therefore,
an incorrect IMU reading can cause a vehicle to destabilize, and
possibly even crash. In this paper, we describe how a strategic
adversary might be able to introduce spurious IMU values that
can deviate a vehicle from its mission-specified path while at
the same time evade customary anomaly detection mechanisms,
thereby effectively perpetuating a ““stealthy attack’ on the system.
We explore the feasibility of a Deep Neural Network (DNN)
that uses a vehicle’s state information to calculate the applicable
IMU values to perpetrate such an attack. The eventual goal is to
cause a vehicle to perturb enough from its mission parameters
to compromise mission reliability, while, from the operator’s
perspective, the vehicle still appears to be operating normally.

Index Terms—UAYV, IMU, Deep Learning

I. INTRODUCTION

There is a growing interest in exploring the use of Un-
manned Aerial Vehicles (UAVs) in contexts such as agri-
culture [1], logistics [2], military [3]-[5] etc. In the current
(2022) Ukraine conflict, various types of UAVs, including
commercial-grade UAVs [6] are being used for military
surveillance [7] and attack [8] purposes. The Internet of Things
(IoT) All signs point to continued, if not increased, use of
UAVs in various use cases, both in civilian and military con-
texts. Given this status quo, understanding the vulnerabilities
of UAV systems is crucial for identifying potential threats and
finding countermeasures against threats.

There are various types of UAVs, but for the purposes
of our current work we limit our focus to quadrotors: a
multi-copter aircraft with four rotors. Since most UAVs use
Inertial Measurement Units (IMUs) for navigation, we start
by exploring whether the IMUs can be manipulated to exploit
any resulting vulnerabilities. Others [9], [10] have looked
into manipulating IMUs a few different ways, and also found
[11] that naive manipulation of IMUs can alert the anomaly
detection system thereby triggering the recovery mechanisms.
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Existing attacks on IMUs lack fine control of the system.
We want to exercise precise control of UAVs by manipulating
the IMU values more effectively. To this end, we explore the
possibility of an adversary introducing spurious IMU values
that evade the anomaly detection system. Specifically, we aim
to (i) examine and establish the necessary conditions for UAVs
to deviate from mission parameters, and (ii) explore the range
of control capabilities of an adversary that can inject malicious
values in readings from IMU sensors [12]. Injecting spurious
or malicious values in a system can be termed as “spoofing”.
A UAV sensor is considered spoofed when the attacker can
deviate the UAV’s position and velocity estimates (hence,
mission parameters) by injecting malicious sensor readings.

Our goal is to develop IMU spoofing attacks that are
stealthy, i.e., attacks that can practically drive UAVs off
their mission without raising alarms based on state estimators
commonly used in UAV systems to detect sensor anomalies
[13]. We analyze the dynamics of UAV control loops to assess
the practicality of launching such stealthy attacks, and test our
hypothesis using realistic simulations.

A real-world instance of stealthy IMU spoofing can be
deployed in a scenario similar to the multi-UAV surveillance
mission described by Manyam et al. [14] where UAVs patrol
a designated area and report back to the base. The mission
involves UAVs searching for sightings of enemy units using
various cameras (e.g., optical, infrared, and ultraviolet). By
compromising one or more UAVs via IMU spoofing in such a
mission, an enemy can evade detection by the UAVs that are
deployed to search and report enemy units.

Figure 1 shows an example of such a mission and a possible
result of the attack. When the mission is executed in the
absence of attacks, the UAVs detect the enemies, as shown
in Figure 1-a. An ideal manipulation resulting from an attack
will cause the UAV to take a similar route but entirely miss
the enemies, as shown in Figure 1-b. A successful instance of
IMU spoofing attack by the enemy can perturb the trajectory
of the compromised UAV just enough for the enemy’s ground
units to evade detection, as shown in Figure 1-c.

A. Contributions

Our contributions through this paper are as follows:
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Fig. 1: (Left) UAV following the mission path in a surveillance
mission and successfully detecting the enemy ground units.
(Middle) The ideal UAV deviation, away from the mission
path, resulting in enemy units evading the detection. (Right)
The deviation path possible due to IMU spoofing but stil
resulting in enemy units evading the detection.

« We investigate the presence and extent of vulnerabilities
of UAV control systems through adversarial deviations in
IMU sensor readings.

« We propose a metric to measure the influence of IMU
spoofing in standard UAV systems through formalizing
the coupled dynamics of IMU spoofing attacks and UAV
control systems.

II. SYSTEM MODELS

In this section, we present the system model and how the
IMU is utilized in a flight controller. Then we discuss the
details of how Extended Kalman Filter (EKF) is utilized in a
flight controller.

Control Architecture. Inertial measurement units (IMUs)
measure the linear and angular acceleration which is used to
calculate the orientation and the trajectory of the vehicle. The
IMU conjunction with a set sensors (e.g., GPS, Barometer,
and Magnetometer) and using Extended Kalman Filter (EKF),
they can provide position and velocity along with the attitude.

Figure 2 shows the general diagram on how the UAVs
operate. Therefore, @ given a mission set point and current
physical state of the vehicle, @ the controller calculates the
actuation command required to keep the UAV stable and
ensure that the UAV is heading towards the set point. 9
The actuation command is sent to the actuators which actuates
the motors/engine. @ The actuation movement is picked up
by the IMU which is used to predict the position, velocity,
and attitude of the vehicle. @ The prediction is compared
against arriving sensor values and the updated estimated state
is published. @ The controller receives the newly updated
estimated state and the cycle repeats.

Extended Kalman Filter. The state of the vehicle refers to the
physical state / kinematics of the UAV (e.g., attitude, position,
velocity). The UAV control system uses an anomaly detector
to detect state deviations. In order to ensure the validity of
the sensory information and the corresponding control actions,

a state estimator is used to process the sensor data and the
previous state to calculate the approximate state for the current
condition. Extended Kalman Filter-Based state estimators are
often used to combine the information from the sensors to
ensure there are no anomalies (or attacks) directed at the UAV
sensors [15].

The core principle of a Kalman Filter (KF) is to combine
information from multiple sensors to estimate the state in a
linear fashion. An Extended Kalman Filter (EKF) is a Kalman
Filter variant to handle non-linear state estimation. An EKF
is composed of two stages: (a) predict (Equation 1) and (b)
update (Equation 2).
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During the prediction stage at time step ¢, estimated state
of previous time-step, Z;—; and the actuation command of
previous time-step u;—; are used to predict the current state
&y using the prediction function f(-). The predicted state
provides a context into what incoming sensor value should
be. That is accomplished by converting the predicted state
value to a sensor value using the transformation function
h(-). For instance, if the predicted x-position is 1m, then the
expected GPS value should correspond to 1m in x-position.
The difference in the predicted and the observed sensor value
is the innovation.

Kalman gain K is the set of weights that define how much
the innovation should influence the state estimation. Therefore,
sensor values with consistently higher innovation would have
lower Kalman gain and vice versa.

If the difference between the estimated and the actual state
is above a certain threshold, the anomaly detector raises an
alarm to the system to indicate an attack or sensor anomaly
and overrides the current control commands.

For instance, if the anomaly threshold was set to § = 0.1 and
the predicted state x-position was 1.2m but the GPS shows that
the x-position was 1m, the resulting innovation for x-position
is 0.2 > 6 which is an anomaly, therefore an alarm is activated.
EKF implementations have checks for this kind of anomalous
behavior. To evade this baseline behavior, the prediction due
to the spoofed IMUs must stay close enough to the upcoming
sensor value.

III. ADVERSARY MODEL.

We assume a grey-box attack model (i.e., the attacker does
not have the complete knowledge about the UAV). Specifically,
the adversary has the following knowledge:

o Mission parameter of the victim UAV
« Set of sensors used by the EKF
o Timing of when the sensors arrive
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Fig. 2: Operation of UAV controls using EKF
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The knowledge about the EKF is partial because the adversary
is only aware of the input and the output of the prediction
and the state update. The adversary is not aware of any
implementation specific latent variables. The adversary can:
« Manipulate the IMU readings by the sensor
o Calculate and inject the spoof values before new IMU is
used by the EKF

Therefore, the equations (3) and (4) describe the state of

the EKF during the attack
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We define IMU spoofing as injecting a value, a;, into the
IMU, w,;_1, before prediction occurs. Therefore when the
IMU is spoofed, the resulting predicted state, icf‘ 1> must
ensure that the corresponding innovation r{ = y; — h(fcfl 1)
is less than 6. We consider an attack to be successful if
the adversarial influenced predicted state is different from
uninfluenced predicted state (i.e., |Zy;—1 — £§|t71| > 0) while
r{ < 6. The result of the attack causes the control to make
unnecessary adjustments.

IV. FRAMEWORK

The construction of our detection system consists of two
major stages as presented in Figure 3: (i) Offline training phase
for the DNN to learn stealthy injections (ii) An online phase
to run the pre-trained DNN model on a deployed UAV. In the
following, we present the details of each of the stages.
Offline Phase. Offline phase primarily deals with simulation.
To ensure that the simulation is reflective of the real-world
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Fig. 3: Pipeline for training and deploying attack.

its parameters must be adjusted (i.e., set of sensors, sensor
noise distribution and bias, sensor update frequency). After the
adjustment, the compromised UAV is tasked to run a mission
such as patrolling a designated area. During the mission, the
simulated UAV sends the information needed to train the DNN
model. Specifically, the information includes IMU values,
predicted state and other sensors. Therefore, the model must

maximize for the following:
True State

Mission Specified State
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The model is trained to generate values that successfully

spoof the IMU to cause the UAV to deviate from its set
point. In the event the spoofing is unsuccessful (i.e., caught
by anomaly detector), the simulation is reset.
Online Phase. In this phase, the simulation starts but the DNN
model only performs inference. The pre-trained attack model
from the offline phase is used to generate attack values during
inference time. The attack must not raise any alerts at any
point during the mission; otherwise, the attack will be deemed
a failure.

V. INITIAL EVALUATION

To evaluate our approach, first we must consider the type of
mission. In this paper, we consider three types of mission with
the following movement: stationary, lateral movement, and
vertical movement. Then we define the metric to measure the
influence of the attack: state error, prediction difference, and
innovation. The attack will be tested on a PX4 Software-In-
The-Loop(SITL) [16] flight controller simulation conjunction
with gazebo [17] physics simulator. Then we will examine
how the attack can influence in each mission types.

A. Mission Parameters

We consider three types of mission with the following
movement: stationary, lateral movement, and vertical move-
ment. Vertical movement mission primarily use barometer to



check to see if the UAV is in the mission specified altitude
and similarly lateral movement mission use GPS. Stationary
mission would rely on both.

Stationary. This requires the UAV to hold position at 20m
altitude while holding the same longitude and latitude as the
starting position.

Lateral Movement. This is when the UAV moves from side-
to-side. Specifically, the UAV must first lift off to 20m altitude
then move 5m to the east and then 10m west.

Vertical Movement. This is when the UAV moves from side-
to-side. Specifically, the UAV must first lift off to 20m altitude
then move 5m to the east and then 10m west.

B. Metrics

We measure the spoofing effectiveness by observing the
difference from the ground truth state vs the predicted state
which we call state error.

True State Predicted State
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We also need to measure the how much the state prediction
changed as a result of the spoofing.
Predicted State due to IMU Spoofing
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The innovation due to spoofing, shown in equation 4, must
also be recorded and measured. For the attack to be stealthy,
the innovation resulting from the attack must also remain
below the threshold §. We use these metrics to measure
the quality of the model. Therefore, we compared the state
error in nominal operation vs adversarial influenced operation
as well as the innovation. We should see some noticeable
difference between the state error while keeping the innovation
(i.e., difference between the predicted and the observed value)
below the threshold.

VI. INSIGHTS

To study the effect of different network hyperparameters
for training the attack models, we considered two training
configurations for a DNN with 50 fully connected layers:
(i) ReLU activation [18] and (ii) ELU activation [19]. ReLU
configuration is for preventing the exploding gradient problem,
which can result in unrealistically high attack value genera-
tions [20]. However, it maps to a limited range of values,
decreasing model capability. On the contrary, ELU generates a
smoother activation and can map to a wider range of values but
is more prone to suffer from the exploding gradient problem.
As expected during the offline phase, the ReLU-activated
model trained better than the ELU configuration due to its
mapping simplicity. However, during the online phase, some
models from both configurations were numerically unstable
(i.e., the model outputs a very large number). This is likely
due to the exploding gradient problem; therefore, we need to

make additional changes to the model’s architecture to avoid
this issue [20].

For the IMU spoofing to be stealthy, the resulting spoof
must be within 6 of the sensor values. The expected result is
that the UAV will oscillate around the mission-specified set
point. Therefore, successful stealthy IMU spoofing is bound
by the timing interval between each arrival of sensor values.

The bound implies the UAV stays in the deviated path
for a longer distance if the velocity is higher. Therefore in
the previously described surveillance evasion scenario, it is
possible for the UAV to achieve the ideal deviation path if the
UAV velocity is high enough.

The impact of the IMU spoof is greater when the rate of the
external positioning system values are lower. For instance, if
the GPS signal is infrequent enough (especially if the UAV has
to pass through GPS denied environment), the attacker may
have enough time to deviate the UAV and return back to the
mission path. Therefore, when the UAV is in a dead-reckoning
state, IMU-spoofing will have full control over the vehicle’s
movement.

Even if the IMU spoofing does not result in large path
deviations, if the UAV has to aim for a particular target or
direction, even a slight change in the attitude can be sufficient
to compromise the mission. IMU is a crucial sensor in the
UAYV, and more work is needed to secure the UAV against
such attacks.

A. Limitations.

Spoofing only the IMU cannot cause the UAV to perma-
nently deviate away from the mission path because by the
time other sensors arrive, the EKF adjusts its state based on
the sensors and the control corrects based on the adjusted state.

There are also practical limitations. The attacker needs
to know exact timing of the attack as well as ensure that
the inference can run at 250Hz which means the inference
must run quicker than 4ms. There are two places to run the
inference: on the drone or on a remote machine. If the model
were to run on the drone, the model need to significantly
minimize its computational footprint to avoid affecting other
functionalities of the UAV. Currently, a single-board computer
such as raspberry-pi cannot handle 250 inferences a second. If
the model were to run on a remote machine, the model must
account for the latency where if the latency is large enough,
the received data from the UAV is outdated. Therefore, the
model needs to predict incoming sensors values to generate
the spoof values.

VII. RELATED WORK

In this section, we highlight the work related to cyber-
physical systems (CPS) safety and anomaly detection mech-
anisms and recent work on the adversarial attacks to evade
these mechanisms, particularly on UAVs.

Spoofing the sensors of safety-critical systems to explore
security risks recently attracted much interest. For instance,
stealthy manipulation attacks against road navigation system



controllers to trigger fake navigation turns and deviate the sys-
tem were proposed against intelligent vehicles [21]. Mendes
et. al. [22] explored the possible effects of sensor spoofing
attacks with different attack models. However, the attacks
shown in this work are not strategically executed to tamper
with the UAVs for the specific purpose of impacting mission
objectives such as connectivity. Similar work [13] showed a
take-over attack on UAVs by spoofing optical flow sensors. By
spoofing optical flow sensor inputs to manipulate the perceived
environment of the victim, they assume implicit control over
the mission route. However, their attack is directed against
optical flow sensors and does not tamper with industry-grade
controllers and corresponding anomaly detectors for UAVs.
Khazrei et. al. [23] utilizes deep-learning-based models to
perform vulnerability analysis in various cyber-physical sys-
tems, including UAVs. Our work is different as we aim to find
semantic deviation traces that would impact a specific mission
objective and parameter, such as connectivity and surveillance
visibility.

Recently, it has been demonstrated that taking over UAV
command and control capabilities is possible through spoofing
UAV sensors. Kerns et. al. [24] showed that taking over UAVs
is possible through strategic GPS spoofings. However, their
work focuses primarily on GPS sensor spoofings and does
not address mission-specific deviation capabilities. Similarly,
Gaspar et. al. [25] proposed a Software-Defined Radio with
GPS spoofing capabilities to deviate UAVs from mission
traces and assert control over unauthorized UAVs. In contrast,
we demonstrate the strategic spoofing capabilities to deviate
mission traces through IMU, an inertial sensors module.
Moreover, we consider an adversary that performs stealthy
strategic spoofs to deviate UAVs from realistic mission task
element traces.
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