L)

Check for
updates

SchedGuard++: Protecting against Schedule Leaks Using
Linux Containers on Multi-Core Processors

JIYANG CHEN, Technische Universitit Miinchen, Munich, Germany

TOMASZ KLODA, LAAS-CNRS, Université de Toulouse, INSA, Toulouse, France
ROHAN TABISH, AYOOSH BANSAL, CHIEN-YING CHEN, BO LIU, and
SIBIN MOHAN, University of Illinois at Urbana Champaign, Urbana Champaign, Illinois
MARCO CACCAMO, Technische Universitit Miinchen, Munich, Germany

LUI SHA, University of Illinois at Urbana Champaign, Urbana Champaign, Illinois

Timing correctness is crucial in a multi-criticality real-time system, such as an autonomous driving system.
It has been recently shown that these systems can be vulnerable to timing inference attacks, mainly due to
their predictable behavioral patterns. Existing solutions like schedule randomization cannot protect against
such attacks, often limited by the system’s real-time nature. This article presents “SchedGuard++": a tempo-
ral protection framework for Linux-based real-time systems that protects against posterior schedule-based
attacks by preventing untrusted tasks from executing during specific time intervals. SchedGuard++ supports
multi-core platforms and is implemented using Linux containers and a customized Linux kernel real-time
scheduler. We provide schedulability analysis assuming the Logical Execution Time (LET) paradigm, which
enforces I/O predictability. The proposed response time analysis takes into account the interference from
trusted and untrusted tasks and the impact of the protection mechanism. We demonstrate the effectiveness
of our system using a realistic radio-controlled rover platform. Not only is “SchedGuard++” able to protect
against the posterior schedule-based attacks, but it also ensures that the real-time tasks/containers meet their
temporal requirements.

CCS Concepts: « Computer systems organization —» Embedded software; Real-time operating systems;
Robotic control;

Additional Key Words and Phrases: Response time analysis, Linux containers, Logical Execution Time,
security

The material presented in this article is based upon work supported by the Office of Naval Research (ONR) under grant
number N00014-17-1-2783 and by the National Science Foundation (NSF) under grant numbers CNS 1646383, CNS 1932529,
CNS 1815891, and SaTC 1718952. M. Caccamo was also supported by an Alexander von Humboldt Professorship endowed
by the German Federal Ministry of Education and Research. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily reflect the views of the sponsors.

Authors’ addresses:]. Chen and M. Caccamo, Technische Universitait Minchen, Miinchen, Germany; emails:
jiyang.chen@tum.edu, mcaccamo@tum.de; T. Kloda, LAAS-CNRS, Université de Toulouse, INSA, Toulouse, France; email:
tkloda@laas.fr; R. Tabish, A. Bansal, C.-Y. Chen, B. Liu, S. Mohan, and L. Sha, University of Illinois at Urbana Champaign,
Urbana, Illinois, USA; emails: {rtabis, ayooshb2, cchen140, boliul, sibin, lrs}@illinois.edu.

Current address: S. Mohan, George Washington University; email: sibin.mohan@gwu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2378-962X/2023/02-ART6 $15.00

https://doi.org/10.1145/3565974

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

https://orcid.org/0000-0002-5716-890X
https://orcid.org/0000-0003-0822-4976
https://orcid.org/0000-0001-5406-9829
https://orcid.org/0000-0002-4848-6850
https://orcid.org/0000-0002-4727-694X
https://orcid.org/0000-0002-9383-9205
https://orcid.org/0000-0002-3295-0233
https://orcid.org/0000-0003-2328-044X
https://orcid.org/0000-0002-5578-0791
mailto:permissions@acm.org
https://doi.org/10.1145/3565974
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3565974&domain=pdf&date_stamp=2023-02-20

6:2 J. Chen et al.

ACM Reference format:

Jiyang Chen, Tomasz Kloda, Rohan Tabish, Ayoosh Bansal, Chien-Ying Chen, Bo Liu, Sibin Mohan, Marco
Caccamo, and Lui Sha. 2023. SchedGuard++: Protecting against Schedule Leaks Using Linux Containers on
Multi-Core Processors. ACM Trans. Cyber-Phys. Syst. 7, 1, Article 6 (February 2023), 25 pages.
https://doi.org/10.1145/3565974

1 INTRODUCTION

In the race to achieve full autonomy, the software complexity of vehicles is increasing. Current
state-of-the-art vehicles are equipped with driver assistance technology such as adaptive cruise
control, lane departure warning, and emergency brake assistance, which all require real-time sens-
ing and actuating. On the other hand, non-safety-critical tasks such as infotainment systems are
also essential. As a result, it is common for automobile manufacturers to apply a mixed-criticality
design [11, 55] to run safety-critical tasks simultaneously with other non-safety-critical tasks. It is
vital to ensure the timing isolation of safety-critical tasks and protect all safety-critical components
against failure propagation and unintended use.

It has been shown in the literature that multimedia and connected services featured in vehicles
can be exploited as entry points and open different attack surfaces for an intruder to get control of
the safety-critical components [1, 31, 32]. Exploiting these attack surfaces gives the intruder a way
to get into the system. There have been works in the real-time security community that demon-
strated how an intruder once inside the system can launch schedule-based attacks to compromise
system security by running along with other trusted and useful tasks [6]. This kind of attack tar-
gets the exact time the victim finishes execution or interacts with the outside world through I/O
channels. Examples include bias-injection attacks [51], zero-dynamics attacks [21-23, 39, 51, 52],
and replay attacks [33]. These attacks steal or compromise the victim task’s data integrity by sched-
uling themselves right after completing the victim task where important crypto-related informa-
tion might still be available in the shared caches or DRAM. In order to defend against such at-
tacks, two orthogonal approaches, cache-flush-based defense mechanisms [35, 40] and schedule
randomization-based defenses, have been proposed (7, 60, 61]. However, recently Nasri et al. [36]
suggested that randomization-based approaches sometimes fail to defend against schedule-based
attacks as they are incompatible with isolation-based defenses and might result in inflated tasks’
worst-case execution time (WCET). Also, cache-flush-based approaches might fall short, especially
if the I/O channels are targeted.

We noticed that for schedule-based attacks to be effective, they have to be deployed/executed
within a specific time window relative to the execution of the victim task (before, after, in the
middle). In this article, we define this time for the attacker task as the attack effective window
(AEW). If the attack is launched outside the AEW, it is ineffective. An example of the AEW has
been successfully demonstrated in ScheduLeak [6], in which the authors determined the AEW for
a control output overwrite attack to be 8.3 ms after actuation.

In our previous work [9], we proposed a new systematic approach called SchedGuard (schedule
guard) that blocks untrusted tasks from running right after the victim task. It is based on the idea
of AEW and is implemented using cgroup, one of the main techniques used for enabling Linux
containers. However, one drawback is that it only works for single-core with one victim task. In
this work, we extended the model to cover multi-core systems and modified the implementation
to support multiple victims. The main contributions of this work include:

e We provide worst-case response time analysis for trusted and untrusted tasks with multiple
victims under SchedGuard++ on the multi-core platform.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

https://doi.org/10.1145/3565974

Protecting against Schedule Leaks Using Linux Containers on Multi-Core Processors 6:3

e We implement our proposed SchedGuard++ approach in the Linux scheduler and demon-
strate its effectiveness on commercial-off-the-shelf (COTS) RC cars with multi-core
support.

o We evaluate the extended implementation with experiments on a commercial-off-the-shelf
multi-core platform.

2 BACKGROUND
2.1 Trusted and Untrusted Tasks

We consider a mixed-criticality system where tasks of different criticalities, such as safety-critical
and non-safety-critical, both exist. For example, in an autonomous car system, engine and brake
control are considered safety-critical tasks, while infotainment, navigation, logging are seen as
non-safety-critical ones. Experience shows that a low-criticality task, such as an entertainment
system, is often the entry point to attack safety-critical system components, such as transmission
and braking [32]. Mixed-criticality scheduling can prevent high-critical task overruns but disre-
gards security issues. In our approach, we divide the tasks into trusted and untrusted.

The system developer generally analyzes tasks with high-criticality to ensure that their timing
and functional correctness always hold. Under such an assumption, we consider a security model
where all high-criticality tasks are considered as trusted tasks as they have gone through rigorous
timing checks during the development and deployment phase. All other tasks are considered as
untrusted tasks since they have not been examined thoroughly and can be a potential attacker. Each
task is assigned the minimum set of required capabilities following the principle of least privilege.

2.2 Schedule-Based Attacks

An attacker able to determine the precise schedule of system activities (e.g., I/O updates) can launch
targeted attacks. Based on the timing relationship between the attacker’s execution and the victim
task, the schedule-based attack has been categorized into different categories [36]: (a) Posterior
attack model. Attack launched after the victim has completed its execution; (b) Anterior attack
model. Attack mounted before the execution of the victim task; (c¢) Pincer attack model. Attack
runs before and after the victim task where the attacker analyzes the victim task at load time
and monitors its behavior after the victim task has completed execution; (d) Concurrent attack
model. Attack performed while the victim is running and can be mounted by executing between
the execution window of the victim task’s job. In this article, we only consider defense against the
posterior attack model.

2.3 Attack Effective Window

We assume that an attack must be launched within a specific time interval to be successful. For
instance, based on the small UAV case study, the control output overwrite attack [6] can make the
control loop unstable if the attack is executed within a time interval of 8.3ms after the actuator’s
update. Otherwise, if the attack occurs after that time, the system performance can be degraded, but
the system stability will be preserved. Here we formally define the attack effective window (AEW).

Definition 2.1. The attack effective window is the time interval of duration Q,, > 0 during which
schedule-based attacks are effective for task 7, and ineffective otherwise.

An example of AEW is shown in Figure 1. The window is associated with victim task 7, and is
marked in green. 7, is a higher priority trusted task, and z,, is a lower priority untrusted task that
might be a potential attacker. We define a window as covered when trusted tasks utilize all their
time slots. In this case, a large part of AEW is not covered and leaves a place for the untrusted task
to execute. This is considered unsafe.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

6:4 J. Chen et al.

. . | N R
R e

= I

0 1 2 3 4 5 6 7 8 9

Fig. 1. Attack effective window of 7. Task parameters: 7, = (0.5,2), and 7, = (4,8), and 7o, = (1,4) with
attack effective window of length Q. = 2.

g————— Logical Execution Time —— |

logical
—_—

physical
—_—
_—
-—

read : : write
. start suspend resume completed
input output

Fig. 2. Logical execution time.

The following subsection identifies the time instants at which the safety-critical tasks update
their outputs. An AEW starting at such instants can effectively protect the system from the poste-
rior output overwrite attacks.

2.4 Logical Execution Time

The safety-critical tasks deployed in the current generation of vehicles require time-deterministic
I/O behavior. Typically, these tasks follow the Logical Execution Time (LET) model [17]. The LET
abstraction is a part of the AUTOSAR timing extensions [54], has been successfully adopted in the
automotive domain [16, 44, 57, 63], and is receiving increasing attention from the research com-
munity [12]. The LET model enforces a deterministic input/output timing behavior by performing
the read and write operations at fixed time instants.

The LET is a fixed time interval from task input sensor read to task output actuation update, as
shown in Figure 2. Both are static time-triggered events and do not depend on the physical execu-
tion of the task. At release time, the task copies its inputs into its local memory and then becomes
ready for execution, during which it can work only on the local data stored in the local memory.
The task outputs are made available (i.e., copied from the task local to global memory or written
to the actuators) at the end of the LET interval regardless of how quickly the task is completed. Al-
though the results are not published immediately upon the task completion, the LET model brings
time- and value-determinism to the task execution as it eliminates jitter and avoids data race condi-
tions. By decoupling the application design from the hardware aspects, the software development
process is facilitated throughout the phases of implementation (separation of functionality and tim-
ing), verification (time- and value-determinism), and maintenance (platform independence). These
are some of the reasons that have proved the LET concept to be very attractive for the automotive
industry to cope with the increasing complexity of embedded software [12, 14].

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

Protecting against Schedule Leaks Using Linux Containers on Multi-Core Processors 6:5

Table 1. Notation used in this article

Notation Description
Ci task 7; worst-case execution time
T; task 7; period or minimum inter-arrival time
D; task 7; relative deadline
R; task 7; worst-case response time
d;; absolute deadline of the j-th job of task z;
Q, victim task 7, attack effective window length
hp(i) tasks with higher priority than z;
thp(i) trusted tasks with higher priority than z;
uhp(i) untrusted tasks with higher priority than r;
Vv set of all victim tasks
deadlines (t1,t2) victim task 7, absolute deadlines within [ty, t5]
aewy (1, t2) victim task 7, trusted execution time within [#1, £3]
aew(ty, t2) trusted execution time within [t;, t;] of all victim tasks
a(A) minimal trusted execution time within any interval of length A
B(A) maximal trusted execution time within any interval of length A
AEW Attack Effective Window
LET Logical Execution Time

3 SYSTEM MODEL

We consider an electronic control unit (ECU) containing a multi-core processor running a finite set
of real-time tasks. Each task is mapped to a single processor and cannot migrate (i.e., partitioned
scheduling). Tasks are individually scheduled on each processor by a fixed-priority preemptive
scheduling algorithm as applied in AUTOSAR [53] and OSEK/VDX operating system [38]. The
task can be periodic or sporadic, and task priorities are unique. Priorities can be assigned using
any static priority assignment rule. Table 1 summarizes the task sets notations relative to the
task 7;’s priority. Each task 7; is characterized by a tuple (C;, T;, D;) where C; is its worst-case
execution time (WCET), T; is its period or the minimum inter-arrival time between releases of its
jobs, and D; < T; its relative deadline that can be less than or equal to the period (i.e., constrained
deadlines). All the above parameters are positive integers. The scheduling and context switch over-
heads are assumed to be included in the task worst-case execution times. Each task gives rise to an
infinite sequence of identical jobs (instances) with the first job arriving at time instant 0 (i.e., syn-
chronous arrival) and successive job arrivals separated by, respectively, exactly T; time units for
periodic and at least T; time units for sporadic activation pattern model. The worst-case response
time R; for task 7; is the longest time between the release of a job of the task z; until its completion.
The task is schedulable if its worst-case response time is less than or equal to its deadline (R; < D;).
Each task is either trusted or untrusted. We do not assume any particular priority order between
trusted and untrusted tasks, and their priorities can interleave arbitrarily. Moreover, tasks from
different trust levels can be mapped on the same processor, and tasks from the same trust level can
span other processors. The task set may contain one or more victim tasks that are prone to the
posterior I/O attacks (e.g., control tasks that write the data to the actuators or external devices).
We denote a set of all victim tasks by V. All victim tasks fall into the category of trusted tasks. We

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

6:6 J. Chen et al.

Table 2. Linux Capability Attributes

Capability Description
CAP_SYS_NICE Controls a process permission to change parameters such as scheduling policy, period, and priority.
CAP_SYS_RAWIO | Controls a process permission to read/write to an I/O device

assume that all victim tasks are periodic and follow the LET model, which is particularly suitable
for control applications [17] (e.g., no jitter and constant sampling period). Each victim task 7, € V
is characterized by a constant AEW duration of 0 < Q,, < T,,. The outputs are always updated at
the task deadline. An attack is considered successful if the attacker can overwrite the task output
(e.g., actuators) within the AEW starting from the last task output update: [d,, j, do,j + Q.] where
dyj = Ty - (j = 1) + Dy, is the j-th absolute deadline of task .. The tasks that do not fall in the
victim task subset can be periodic or sporadic.

4 THREAT MODEL

In our threat model, we assume the attacker’s goal is to perform a posterior attack successfully. We
categorize the attacker’s capabilities into technical ones and operational ones. Technical capabili-
ties rely on the assumptions that the target platform and binary victim applications are available to
the attacker. Using such capabilities, the attacker can extract the execution time of the victim task
and period on the given platform. One way to extract such information is to run as one of the tasks
in the system and rely on techniques such as [6]. Operational capabilities refer to the attacker’s
ability to implement the attack by exploiting the vulnerable attack surfaces offered as a feature
on the current cyber-physical systems. Examples of such features include wireless networks and
configurations. It has been demonstrated in the literature that attackers can exploit these commu-
nications protocols remotely to install malware and launch the attack [58]. Tencent’s recent attack
on Tesla demonstrated to hack a Tesla through legacy browser software remotely. The attack was
possible because the web browser used an old version of QtWebkit with many vulnerabilities. Ex-
ploiting such vulnerability allowed the injection of arbitrary code execution in the center display
console of the Tesla.

This article considers the attacks where the attacker only has remote access and exploits the at-
tack surfaces to get into the system. Following such a model, we assume a capability-based security
system where a program requires specific “capabilities” to achieve the desired goal. Capabilities
are a known concept in Linux-based operating systems. For example, starting with Linux 2.2, supe-
ruser privileges are divided into distinct units known as capabilities, and they can be independently
enabled and disabled for each process. Only superusers can assign capabilities to other processes.
Table 2 summarizes the two crucial capabilities that Linux offers to control a process’s behavior in
terms of its execution time, period, scheduling, and I/O access. We argue that it is not uncommon
for communication modules (such as radio) to have access to hardware I/O, but unusual for them
to have the capability to change scheduling parameters. The attacker could gain device I/O access
by remotely exploiting the communication module but cannot achieve the capability to modify the
scheduling system. Note that although we assume the attacker can access I/O, we do not consider
Denial-of-Service (DoS) attack on I/O in this article. The DoS attack can be mitigated, for example,
by rate-limiting some system-critical resources [8].

We assume that the attacker cannot exploit kernel vulnerabilities and gain root privilege inside
the target system. Although in the aforementioned attack, the security team was able to achieve
privilege escalation to gain root access in the system, they attribute their success to the fact that the
system used an old version of the Linux kernel (2.6.36) which does not have many exploit mitiga-
tion applied. They also commended Tesla’s response that patched all known kernel vulnerabilities
in the old kernel and introduced new kernels (4.4.35) in newer models. With security concerns

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

Protecting against Schedule Leaks Using Linux Containers on Multi-Core Processors 6:7

| e m

=

0 1 2 3 4 5 6 7 8 9

Fig. 3. Schedule of three tasks without any protection.

rising for the Cyber-physical system (CPS), it will become more difficult for attackers to achieve
privilege escalation in the newer generation of CPS. However, these do not stop the attacker from
getting into the system and launch attacks that do not require root privileges.

The timing of the AEW depends on the type of associated schedule-based attack. For the anterior
attack, the AEW will exist before the execution of the victim task, while for the posterior attack,
the AEW is after the execution of the victim task. To successfully carry out the attack, the attacker
needs to execute during the AEW following the execution of the victim task such that the victim’s
secret can be stolen, corrupted, or overwritten.

As described earlier, the attacker considered in this article can only penetrate the system through
remote code execution on the target platform and gain device I/O access but can neither gain
scheduling capabilities nor kernel privileges. Hence, we assume the system kernel (including the
scheduler) is secure from manipulating an attacker. The attacker aims to successfully initiate a
posterior schedule-based attack which means the attacker needs to execute during the AEW for
the chosen attack.

5 DEFENSE APPROACHES
5.1 Philosophy

The successful execution of an attacker task during AEW is crucial to the attack’s success. Hence,
our defense focuses on using scheduling techniques to block all untrusted tasks from executing
during AEW. To this end, we define two approaches: (a) paranoid approach and (b) trusted execu-
tion approach.

5.2 PAraNoID Approach

A simple, brute-force approach would be to block all tasks from execution during AEW, using the
system idle task to occupy this window. This would be equivalent to introducing the Flush task
approach to prevent information leakage used by Mohan et al. [35] and Pellizzoni et al. [40]. This
can fulfill our defense goal but at the cost of reducing the schedulability of the system. The schedule
for three tasks without any protection is shown in Figure 3 and the schedule of the proposed
approach for the same three tasks is shown in Figure 4. We consider this the base approach and is
the conservative but safe approach.

5.3 Trusted Execution Approach

Blocking all tasks from executing during the window wastes CPU cycles and reduces system uti-
lization. We propose the trusted execution approach to blocking only untrusted tasks during AEW,
since trusted tasks are considered safe. An example schedule is shown in Figure 5.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

6:8 J. Chen et al.

el il
o lerey | e

] — s

0 1 2 3 4 5 6 7 8 9

Fig. 4. Schedule of three tasks with with paranoid protection approach.

| m lm o w lm

. Tl T-Q

e

0 1 2 3 4 5 6 7 8 9

T

Fig. 5. Schedule of three tasks with trusted protection approach.

6 RESPONSE TIME ANALYSIS

This section provides response time analysis for both paranoid and trusted execution approaches
under fixed-priority preemptive scheduling. As the AEWs can block the tasks, we first quantify
the amount of blocking time (Section 6.1). In the response time analysis for the paranoid approach
(Section 6.2), we add a blocking factor for the cumulative length of all AEWs during which all
tasks must be suspended. For trusted execution approach (Section 6.3), given that only untrusted
tasks are blocked, we derive two separate analyses for trusted and untrusted tasks (respectively,
Sections 6.3.1 and 6.3.2).

6.1 Trusted Execution Time Estimation

During the AEW, the untrusted tasks are blocked, and the trusted tasks can execute without inter-
ference from the untrusted tasks. Therefore, the response time analysis for untrusted tasks requires
estimating the amount of maximal blocking that these tasks can suffer due to the AEW. Likewise,
the response time analysis for trusted tasks requires information about the minimal amount of
AEW during which the trusted tasks can occupy the processor without interference from untrusted
tasks.

We first characterize the amount of AEWs generated by a single victim task 7, € V where V is
the set of all victim tasks. To do this, we introduce an auxiliary set deadlines, (1, t;) that consists
of all absolute deadlines of task 7, within time interval [¢;, #,]. By abuse of notation, for #; < 0,
we allow the deadlines to be less than zero. Formally, deadlines, (t1,t;) = {j - T, + Dy fort; <
j- Ty + D, < t; andj € Z}. Using this definition, we denote a set of all time instants that belong
to AEW of task r,, within time interval [t;, t2] as follows:

aewy (ty,) = [t1, t2] N {[do,dy, + Qo] ford, € deadlines, (t; — Ty, 1)} . (1)

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

Protecting against Schedule Leaks Using Linux Containers on Multi-Core Processors 6:9

[-
| e T

1
1 2

o

3 4 5 6

~
<]
©
o
—_
.y
-
n
-
w

Fig. 6. Trusted attack effective windows overlapping.

In the above formula, we must consider the absolute deadline of the last 7, instance released before
time instant ¢; as its AEW might overlap with the beginning of the time interval [#, t,].

Consider example from Figure 6 with two victim tasks. The first victim task 7; is characterized
by the worst-case execution time C; = 1, period Ty = 4, deadline D; = 1 and AEW of length
Q; = 1. Between time instants t; = 0 and t, = 12, there are three 7; instances each having its
AEW within the time interval [0, 12]. By Equation (1), aew;(0,12) = [0,12] N {[d},d; + 1] for d; €
deadlines; (0—4, 12)} where deadlines;(—4,12) = {-3, 1,5, 9}. By evaluating Formula (1), we obtain
aew(0,12) = {[1,2],[5,6],[9,10]} (time interval [-3, —2] is discarded as [0, 12] N [-3, —2] = {0};
it would overlap only for AEW larger than 3; we consider that the remaining part of such AEW
spanning two task instances is activated for the first time at time instant 0, so the same analy-
sis can be applied for each task instance, arriving at the system start or later time). Please note
that in this articler, we aim to protect from the posterior I/O attacks, and consequently, Equa-
tion (1) considers that each AEW starts at the victim’s output update. However, it is possible to
define other time-triggered AEW patterns and apply the following analysis without any further
modifications.

The time reserved for trusted tasks comes from multiple AEW's of different victim tasks that
can potentially overlap. We define aew(t1, t2) as the set of trusted execution time intervals from
all victim tasks over time interval [, t5].

aew(ty, tz) = U aewy(ty, t2), (2)

T,V

where V is the set of all victim tasks. Consider the second victim task 7, in example from Figure 6.
Its worst-case execution time is C; = 2, deadline D, = 4 and Q, = 3. In the interval [0, 12], we have
aew(0,12) = aew;(0,12) U aew,(0,12) = {[1, 2], [4, 7], [9, 10]} as shown in the bottom of Figure 6.

We now quantify the total amount of trusted execution time. The cumulative length of the
trusted execution time within time interval [, ;] is defined by the following metric on a set
aew(ty, t3):

jaew(tt)l = > f-s, (3)

[s.fleaew(ty, 1)

where s and f > s are, respectively, the start and finish time of a contiguous interval with trusted
execution [s, f] € aew(ty, t;). For instance, in the example from Figure 6, we have |aew(0,12)| =
(2-1)+(7—4) + (10— 9) = 5. We can now use the above definition to get the maximum blocking
time that an untrusted task can experience due to AEWs and the minimal trusted time during
which a trusted task can run without interference. The total minimal amount (length) of trusted
execution in any generic interval of length A > 0 is represented by:

a(h) = r;lggllaew(t,t+ A)| (4)

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

6:10 J. Chen et al.

I | |
F

T T T

|
1

¢1 H— ¢ H H H G2 H — ¢
Fig. 7. Trusted execution calculation in an interval covering multiple hyperperiods.

and the total maximum amount of trusted execution in any generic interval of length A > 0 by:

p(A) = max|aew(t,t +A)] ©)

Coming back to our running example from Figure 6, we can see that a(4) = 1 (e.g., from 0 to 4)
or f(4) = 3 (e.g., from 4 to 8).

Finding the exact values of the above functions involves checking the entire hyperperiod (i.e., the
least common multiplier of all periods) of victim tasks. For a large number of victims and high
values of hyperperiod, it might be computationally intractable. Therefore, we will introduce the
upper bounds with a lower computational complexity besides the exact method.

We start with the exact method. In the first stage, we look for the set aew(0, H) where H =
lem({T, | t, € V}) is the least common multiplier of all victim task periods. Please recall that V is
the set of all victim tasks in the system, including those running on different cores. By the property
of periodic schedule [28], the pattern of AEW's is the same in every hyperperiod H. For each vic-
tim task 7, € V we generate a set of non-overlapping intervals with z,’s attack effective windows
aew, (0, H) accordingly to Formula (1). Next, to obtain aew(0, H), we need to merge the AEWs
from all victim tasks (see Formula (2)). This can be done as follows. We first sort all the AEWs by
their starting times. Then, we take the window with the earliest starting time and check whether it
overlaps with the next window. If so, we merge these windows and repeat the same procedure with
the next window given in the starting time non-decreasing order. Otherwise, if the windows do not
overlap, we save the current window and check the overlapping for the next two windows. We ob-
tain a list of merged windows by repeating this procedure for all remaining windows. Consider the
example in Figure 6. We have aew;(0,12) = {(1,2), (5,6), (9, 10)} and aew,(0, 12) = {(4,7)}. After
sorting the windows by their starting times, we obtain the following list {(1, 2), (4, 7), (5, 6), (9, 10) }.
The first and the second windows do not overlap. We save the first window and check whether
the second and the third window can overlap. As they do, we merge these two windows. Then,
we check the new window against the last one. We save both windows as they do not overlap. Fi-
nally, we obtain the set aew(0, H) = {(1, 2), (4,7), (9, 10)}. From the set aew(0, H), we can extract
subset aew(ty, ;) for any 0 < t; < t, < H by finding the intervals that lay between ¢; and f,. The
AEW's cumulative length |aew(t1, t;)| from ¢ to t; can be then obtained by summing the lengths
of all windows in aew(ty, tz). For arbitrary ¢; and ¢, (i.e., spanning for more than one hyperperiod),
the cumulative length of the AEW's can be obtained by first checking how many full hyperperiods
are executed from t; to t,. Then, we add two remaining parts that do not fit the full hyperperiod
execution: the initial one from ¢, to the first hyperperiod start, and the terminal one from the last
hyperperiod end to t;. Figure 7 illustrates our approach. Similar approaches have already been
suggested in [2] and [25].

laew(¢1, P2)] ifp; < ¢ppandt, —t; <H
laew(¢p1, H)| + n - |aew(0, H)| + |aew(0, ¢2)| otherwise
where ¢ = t; mod H, ¢ = t, mod H,and n = (t, — t; — (H — ¢1) — ¢2)/H.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

laew(ty, t2)| = {

Protecting against Schedule Leaks Using Linux Containers on Multi-Core Processors 6:11

We can therefore refine Equations (4) and (5) for computation of the total, respectively, minimal
and maximal amount of trusted execution in any generic interval of length A > 0 by considering
only t € [0,H):

a(A) = 0I<I}inH|aew(t,z‘+A)l (6)
BA) = OrsnteLXHlaeW(t,HA)l (7)

The method’s complexity is exponential in the number of victim tasks since it considers the win-
dows in the entire hyperperiod which grows exponentially as a function of the largest task period.
However, the method can be used in many practical applications where the number of victim tasks
and the hyperperiod are restricted to be low. Otherwise, we can use the simple bounds on the min-
imal and on the maximal amount of the trusted execution time computed in a polynomial-time as:

a(A) > g)laené T%J -Q, (8)
B(A) < min Z Alla,A 9)
- T, €V Tv -

Formula (8) assumes that all victim task windows overlap with the largest window and Formula (9),
on the contrary, assumes that the victims’ windows do not overlap.

6.2 Response Time Analysis for Paranoid Approach

We first consider the scheduling problem with the paranoid defense mechanism where none of the
tasks is executed within AEW. The task under analysis might suffer interference from the AEW's
and all tasks with higher priority, whether trusted or untrusted. The interference from AEW can be
seen as a virtual task with the highest priority, and its amount can be quantified using previously
introduced Formulas (7) or (9). A safe upper bound on the worst-case response time R; of task z;
can be given by the smallest positive integer satisfying the following relation:

R:
Ri = Ci+ BR) +) [ﬂ G (10)
jehp()"
The solution can be found through a classic fixed-point iteration that starts with R; = C; and

terminates when the LHS and the RHS of the above relation are equal.

6.3 Response Time Analysis for Trusted Execution Approach

This section provides a response time analysis under the Trusted Execution Approach. The trusted
tasks are now allowed to execute within the AEW s while untrusted tasks are still blocked. We break
the analysis into two parts: for trusted tasks (Section 6.3.1) and for untrusted tasks (Section 6.3.2).
We assume that the schedulability test is performed in decreasing priority order, starting with the
highest priority task first.

6.3.1 Trusted Task Response Time Analysis. We now compute the worst-case response time R;
of trusted task 7;. Each trusted task is protected from the interference of higher priority untrusted
tasks during the AEWs and can execute without any blocking during that time. However, the
AEW s can also have a detrimental effect on the trusted tasks. Each AEW might lead to an increased
interference of the untrusted task due to the accumulated execution during the AEW that must be
executed after its end. We break our analysis into two separate cases. We will denote by Ri"#5¢ ed
the worst-case response of task 7; under the assumption that it is fully executed during the trusted

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

6:12 J. Chen et al.

B S i —

" ! i I

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 8. Interference from higher priority untrusted tasks (critical instant).

[s = R s [|

b [|
[ooew sm |

0 1 2 3 4 5 6 7 8 9 10 11 12 13

T

=

Fig. 9. Interference from higher priority untrusted tasks (critical instant counter-example).

Table 3. Task Parameters for the Example from Figure 8

Task | T | C | D | Q | R | Type
Ty 4.0 1.0 2.0 2.0 1.0 trusted
T 6.0 1.0 2.0 2.0 1.5 untrusted
3 8.0 3.0 8.0 - 8.0 trusted

time and by R;“’””“l under the assumption that it is fully executed during a normal time when
trusted and untrusted tasks compete for the processor. We consider R; = min(Rf’”“ed,Rl’."’””“l)
to be the minimum of these two response times.

By blocking the untrusted tasks during the AEWs, the interference of these tasks can increase.
Consider the example of three tasks shown in Figure 8. The task parameters are listed in Table 3.
The figure shows the critical instant for task z3. We note that task 7, is not released synchronously
with the other tasks. Task 7, released at time instant 2 is instantaneously blocked by the trusted
task AEW. The first instance of 7, released at 4, will interfere with 73 and the next instance of 7,
released at 8, will also interfere with 3. In the case of synchronous release of all tasks, which is
the critical instant for classic preemptive fixed-priority scheduling [29], the second instance of 7,
will not interfere with 73 as shown in Figure 9.

We model the higher priority untrusted task deferred interference with a release jitter. The
untrusted task can be considered as a self-suspending task that self-suspends its execution during
the AEWs. The interference of the self-suspending task 7; can be modeled by assuming a release
jitter equal to the task’s latest possible starting time R; — C; as proved in [3], [10], and [20]. Let
Ritor mal be the task 7; worst-case response time under the assumption that it is fully executed
during the normal time when trusted and untrusted tasks compete for the processor. Its value is
less than or equal to the smallest positive integer satisfying the following relation:

normal
R””’"“Z—C+Z{ G+)

jethp(i) jeuhp(i)

1
Rl(lorma + Rj - Cj
Tj

Ne! (11)

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

Protecting against Schedule Leaks Using Linux Containers on Multi-Core Processors 6:13

e e =—in
Ul w w Iw m

73

Fig. 10. Attack effective window protection for trusted tasks.

Table 4. Task Parameters for the Example from Figure 10

Task ‘ T ‘ C ‘ D ‘ Q ‘ R ‘ Type
71 4.0 0.5 2.0 2.0 0.5 trusted
Ty 2.0 0.5 2.0 - 1.0 trusted
T3 8.0 2.0 8.0 - 8.0 untrusted
T4 8.0 1.5 8.0 - 4.0 trusted

The time within AEWs is reserved exclusively for the trusted tasks. Consider the example shown
in Figure 10 and task set parameters listed in Table 4. Over any time interval of length A = 4, at
least 2 time units of processor time are reserved exclusively for the trusted tasks. When tasks 7,
completes its execution during the AEW, task 74 can use the remaining window trusted execution
time. The following condition checks if there is enough trusted execution time reserved for task z;
and other higher priority trusted tasks within time interval R"4s’¢d;

trusted
i

a (Rrwsted) > ¢+ -Cj (12)

jethp(i) [T]

To find the solution of the above equation, one can start the iteration with Rf rusted — C, Then,
we set R;"s ¢d to the RHS. If the RHS does not increase over two subsequent iterations and the
relation is not satisfied, we set Rf rusted {4 the next value at which the LHS increases.

Suppose the trusted execution time is insufficient to complete task 7; and other higher priority
trusted tasks. In that case, we check if the tasks can be executed in the normal mode withstanding
the interference from the higher priority untrusted tasks. The worst-case response time R; of the
trusted task 7; is upper bounded by the smallest value given by Equations (11) and (12):

R; = min (Rl{rusted’R;wrmal) (13)

6.3.2 Untrusted Task Response Time Analysis. An untrusted task z; during its execution can be
blocked by the AEW's and by the higher priority tasks. Since the trusted higher priority tasks can
freely execute during the AEWs, the part of their interference overlapping with AEW's might be
ignored. Consider the example from Figure 11 representing a sample schedule of three tasks. The
task parameters are given in Table 5. Three instances of task 7; (trusted) overlap with the AEWs
of task 72, and as a result, task z; (untrusted) does not suffer any interference from these three 7
instances. It is, therefore, unnecessary to take into account the interference from the trusted task
instances that overlap with the AEWs.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

6:14 J. Chen et al.

R - - -
U L |

o] —

0 1 2 3 4 5 6 7 8 9 10 11 12 13

T

Fig. 11. Blocking by untrusted attack effective window.

Table 5. Task Parameters for the Example from Figure 11

Task | T | C | D | @ [R | Type
T 2.0 0.5 2.0 - 0.5 trusted
Ty 12.0 2.0 3.0 7.0 3.0 trusted
3 12.0 1.0 12.0 - 11.5 | untrusted

The jobs of trusted higher priority tasks executed within the AEW can be excluded from the set
of the interfering jobs. For trusted higher priority task 7;, we derive a lower bound on the number
of its jobs that must be entirely covered by an AEW of length A. Figure 12 illustrates our approach.

We look for a minimal number of task 7; jobs that must fit entirely any time interval of length A.
This happens when the time interval A starts immediately after the fastest completion of task ;
instance (i.e., the task instance starts right after its release and completes as soon as possible).
The last 7; instance released within time interval A should start as late as possible to minimize
the amount of its execution that overlaps with A. Since task 7; is assumed to be schedulable, we
assume that it starts R; — C; after its release and completes R; after its release. Please recall that
the trusted tasks can follow a sporadic or periodic activation model. We also acknowledge that a
tighter bound can be found for the periodic activation model.

A —R;
overlap;j(A) > max 0, = -Cj (14)
J
We define f;(t1, ;) as an upper bound on the blocking time of the AEW's within time inter-
val [, t;] excluding the interference of the trusted higher priority tasks thp(i) that must overlap
within AEWs during this interval.

Biltnt) < > |f-s=) overlap(f -s) (15)

[s.fleaew(t,) Jjethp(i)

For each interval [s, f] € a(t,t;), we compute its length, f — s, and subtract the amount of the
minimal execution overlap;(f —s) of higher priority trusted jobs that can fall into any time interval
of length f —s. We can now compute f;(A) an upper bound on the blocking time of the AEW's over
any time interval of length A > 0 without the interference of the trusted jobs with priorities higher
than i that must overlap within AEW's during this interval. To do so, as explained in Section 6.1,
we must check all intervals starting within the hyperperiod of the victim tasks.

Bi(A) < Orgntg)%ﬁi(t,HA) (16)

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

Protecting against Schedule Leaks Using Linux Containers on Multi-Core Processors 6:15

kS

I | | |
I T T |

Fig. 12. Task r; minimal amount of execution within a generic interval A.

We can use the same approach as the one discussed in Section 6.1 and illustrated in Figure 7 for
computing f;(A) for larger values of A’s length. A bound with polynomial-time complexity can
be derived by combining Formulas (9) and (14) as follows:

Bi(A) < min Z [—} Q- Z overlap;j(Qy) |, A (17)
jethp(i)

Finally, we can state that the upper bound R; on the worst-case response time of untrusted task z;

is given by the smallest positive integer satisfying the following relation:

R;
Ri = Ci + fi(R) +) H'CJ— (18)
jehp(!)

7 IMPLEMENTATION

In this section, we describe how SchedGuard++ was implemented in the Linux kernel before eval-
uating it in Section 8. To achieve the SchedGuard++ functionality in the Linux kernel, we modified
the kernel scheduler and made necessary changes to the cgroup interface as we chose to support
containers. Containers offer low performance-overhead, support for Linux-based OS, ease of port-
ing software, and isolation enforced by namespace [47]. They can be controlled through cgroups,
making them compatible with the proposed security models. The implementation of SchedGuard++
assumes that all trusted tasks run in containers and do not share containers with untrusted tasks.
This implementation targets a partitioned multi-core system.

Linux cgroups are hierarchical groups that organize different resources for a collection of pro-
cesses to perform resource allocation and monitoring. Examples include CPU, memory, device I/O,
network, and the like. The CPU subsystem controls cgroup tasks access to the CPU. Each victim
task should be configured to run in a cgroup pinned to only one CPU with its trusted tasks. If all
trusted tasks and the victim cannot be fitted to a single CPU, some trusted tasks can be moved
to a cgroup pinned to another CPU. More cgroups can be added as long as there are remaining
CPUs not assigned to this trusted task set. Each cgroup has an added parameter to hold the task set
identification number. To enable SchedGuard++ blocking, one should first specify the protection
window’s length for the victim’s cgroup. In our extension of the cgroup implementation, this can
be achieved using the cgroup file system by setting the cpu.window_us attribute to a non-zero
value. The cpu.window_us value is used to set the expiration time of the SchedGuard++ hrtimer in
the kernel.

To use the SchedGuard++, the victim task at the run time calls our newly added system call
named cpu_block right before calling yield. The cpu_block shown in Function 2 ensures two

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

6:16 J. Chen et al.

functionalities: (1) it sets the kernel scheduler into protection mode (line-4); and (2) it programs
the SchedGuard++ hrtimer to fire in the future (line-7). It returns success if protection mode is
set successfully and returns fail if the CPU is already in protection mode set by another task set.
The victim should keep calling cpu_block until it returns success. In the protection mode, the
kernel scheduler dequeues all rt_rqs on all available CPUs (Function 1 Line-5) that have real-time
tasks ready to execute except the rt_rq of the victim’s cgroup and the rt_rq of root task group’s
as it may have real-time kernel tasks. Suppose there are no real-time tasks ready for execution
from the victim’s cgroup or the root task group during protection mode(Function 1 Line-6). In
that case, the kernel scheduler will skip scheduling all SCHED_NORMAL tasks (usually handled
by the CFS scheduler) and select the system idle task for running until the protection window is
finished. When the SchedGuard++ hrtimer expires, it runs Function 3 to reset the kernel scheduler
back to normal mode and enqueues all dequeued rt_rqs (Function 3 line-5). Since the blocking
affects all CPUs, it is crucial to make sure the sum of all victims’ protection window length does
not exceed the available runtime of a single CPU. Otherwise, the entire system will be blocked
indefinitely.

FUNCTION 1: Pick next rt task

1: function PICK_NEXT_TAK_RT(struct rq *rq)

2 p = _pick_next_task_rt(rq);
3 if protection = true and p # kernel_task and p — rt_rq # victim_rq then
4 list_add(blocked_rq_list[cpul,p — rt_rq);
5
6
7

sched_rt_rq_dequeue(p — rt_rq);
return None;
end if
return p;
8: end function

FUNCTION 2: CPU Block

1: function cpu_BLoCK(struct task_struct *p)
2 spin_lock(&rt_glock)

3 if protection = false then

4 protection = true;

5: monitor_task = p;

6 spin_unlock(&rt_glock);

7 hrtimer_start(victim — timer);
8 resched_cpus(); return success;
9 end if

10: spin_unlock(&rt_glock); return fail;
11: end function

8 EXPERIMENTS

This section describes the experimental setup where we have demonstrated our proposed ap-
proach’s results on a realistic platform, a radio-controlled rover (RC) car. The implementation
of SchedGuard++ does not require the victim tasks to follow the LET model but can accept a more
generic execution pattern. In the experiments, we do not enforce any execution pattern of the
victim tasks to show SchedGuard++ ability.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

Protecting against Schedule Leaks Using Linux Containers on Multi-Core Processors 6:17

Schedule of 4 tasks on 4 cores obtained by trace-cmd

| [1 |

o il i b i

(victim_1) .
1

1 1

1 1

| | |

o, -

(victim_2) :
1

1 1

1 1

1

cpu 2 !
(normal_1)

. J S T T X S A A7

164.754 164.774 164.893 164.903 164.955 164.975 165.108 165.098
Timeline (s)

Fig. 13. Schedule of two victims and two background tasks on four cores.

FUNCTION 3: CPU Unblock Function

1: function cPU_uUNBLOCK(struct task_struct *p)

2 for_each_online_cpu(cpu)

3 while !ist_empty(&blocked_rq_list[cpu])

4 rt_rq = list_entry(blocked_rq_list[cpu].next);
5: sched_rt_rq_enqueue(rt_rq);

6: end while

7: end for

8: protection = false;

9: resched_cpus();

10: end function

8.1 Experimental Results on RC Car

The computing unit on the RC car employs a Raspberry PI 4B. It has quad-core cortex A-72 cores
that run at 1.5 GHz each and comes with Linux kernel 4.19 pre-installed. To validate our approach’s
effectiveness, we first show the schedule of two victims with some synthetic untrusted task run-
ning on the Raspberry PI 4B with SchedGuard++ enabled. This uses all four cores of the platform.
Then to prove the defense capability, we show the results when SchedGuard++ is used with a syn-
thetic victim task and the ScheduLeak attack. Finally, we show how it can protect the RC car’s au-
topilot application against a combined attack of ScheduLeak and output overwriting. Since Sched-
uLeak was developed for a single-core system, the last two experiments were done with only one
core enabled.

8.1.1 Schedule of multi-victim on multi-core platform with SchedGuard++. This experiment
shows the schedule of multiple victims on a multi-core platform when SchedGuard is enabled.
All four cores on the Raspberry Pi 4B are used. The victim task has an execution time of around 30
ms and a period of 100 ms and is assigned with Linux real-time priority. The background task runs
indefinitely with Linux normal priority. For core 0 and 1, each core is deployed with one victim
task. For cores 2 and 3, each core is deployed with one background task. The victim task on core
0 is assigned a window time of 10 ms, while the victim task on core 1 is assigned a window time
of 20 ms. trace-cmd is used to record the system schedule and displayed with kernelshark.

The schedule of the four tasks on four cores is shown in Figure 13. Whenever a victim task
finishes execution, all cores will be blocked for the window time, including cores running other
victim tasks.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

6:18 J. Chen et al.

Inference error on inital offset

0.045 -
XX X X XX X X X X
0040 1 00 6D NN [XN I J We 00 000 O NN o0
§ XX XRRK XM R XXX RGP XX XK DEXX XEKXX MFOFE XXX XK X
g0-035’ e e meed RO R W W e
qt) 00307 e @ o o® ®® g. .X o © oo [] (Ll I 1]
3
< 0.025-)
8 x
‘€ 0.020- e
x e with SchedGuard
0.015 1 x without SchedGuard
0 20 40 60 80 100

Fig. 14. ScheduLeak inference on task initial offset with and without SchedGuard++.

8.1.2 Defense against timing inference attack. There are works such as ScheduLeak [6] that ex-
ploit scheduling side-channel information to reconstruct a periodic victim task initial offset (i.e.,
the arrival time) and best-case execution time. An attacker can carry out an accurate timing-based
attack without leaving any footprint with this information. SchedGuard++ can affect the inference
on execution time since it blocks the attacker task from obtaining any information during the pro-
tection window. Note that ScheduLeak is developed and verified on a single core system with one
victim task. This experiment uses the same setup: enables only one core out of the four available
cores with one victim task in the system.

The defense is demonstrated in the following example. The ScheduLeak algorithm is used to
infer the victim task r,,’s initial offset a,, (i.e., the arrival time) and best-case execution time e,,.
The observer task from ScheduLeak is configured as a SCHED_FIFO task with the lowest real-time
priority in the system. The victim task is a periodic real-time task that runs with a 100-ms period.
The measured average and best-case execution times for the victim task are 30 ms and 19 ms,
respectively. We run only one periodic task (the victim task) in the system (excluding ScheduLeak
itself and kernel threads) as this increases the chance the inference can succeed. The victim’s period
is passed to ScheduLeak as it is a prerequisite condition for it to succeed. To protect the victim task
with SchedGuard++, the victim runs in a dedicated container alone, and a blocking window of
10 ms is assigned. This container is assigned a rt_runtime around 400 ms over a period of 1,000 ms
to make sure its execution is not affected by the cgroup’s RT throttling mechanism. The ScheduLeak
algorithm runs in a different container following the vendor-oriented security assumption, and
the rest of the system’s remaining rt_runtime (550 ms) is assigned to it to increase its success rate.
After the victim starts execution, ScheduLeak is invoked to run for 10 victim’s period following
the original article’s recommendation.

The ScheduLeak algorithm is run 100 times for both SchedGuard++ enabled and disabled cases.
Inference results on the victim’s initial offset and best-case execution time are shown in Figures 14
and 15. Figure 14 shows the percentage error in the victim task initial offset inference for both
configurations. ScheduLeak can derive a very accurate a, for the victim with only minor errors
in both cases. This is because the SchedGuard++ does not prevent the attacker from obtaining
this information.

The inference results on the victim task’s BCET are shown in Figure 15 for both configurations.
The actual inference value instead of the percentage error is shown. The victim task has a true
BCET of 19,000 us, while the majority of inference results fall between 20,000 us to 24,000 us when
SchedGuard++ is disabled. When SchedGuard++ is enabled with a 10 ms (Q = 10ms) protection

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

Protecting against Schedule Leaks Using Linux Containers on Multi-Core Processors 6:19

Inferred best case execution time

e with SchedGuard
40000 1 x without SchedGuard
[] []
[]
__ 35000 °
3 M, NN QB0 Q, H o off® VOB 0 ma, Ommeces o
3 L4 ®oo °
g30000— ° XXX X EUUXXT] 00.0‘0- e oo o
= X
25000 XXk KX XK RS 3)OURE I pgEX gl AN X
x X x X x
200004 XX X XXXXX XX X X X 5K XX X xx XK X xxxx xxx

0 20 40 60 80 100

Fig. 15. Scheduleak inference on victim task BCET with and without SchedGuard++.

window, most results range from 30,000 us to 34,000 us. Compared with the no protection case,
the difference is the protection window size. This proves that SchedGuard++ prevents the attacker
from executing within 10 ms after the victim finishes and gives the attacker an impression that
the victim has a longer execution time. With this false execution time, the attacker will launch a
posterior attack at the wrong moment. If the protection window is longer than the attack effective
window for that specific attack, the system is protected by SchedGuard++.

8.1.3 Defense against posterior control overwrite attack. In this experiment, we demonstrate the
practibility of the proposed defense approach against an actual attack on an off-the-shelf RC car
with Raspberry Pi 4 and Navio 2 sensor board.! The RoverBot software is utilized as the autopilot.
RoverBot? is a modularized software stack that runs on Raspberry Pi 4 with a Navio 2 sensor board.
RoverBot autopilot comprises functionally separated modules that may run in separate processes,
such as Radio input, Localizer, Actuator, and so on. Communication among different modules im-
plements a publish-subscribe mechanism using FastDDS?® framework. To perform autonomous
waypoint navigation, the Intel RealSense T265 tracking camera* is connected to the Raspberry Pi
4 computer to provide localization. The Intel RealSense SDK 2.0° is used to stream the vehicle’s
real-time positions RoverBot autopilot system, which drives the vehicle to waypoint locations.

This experiment adopts the same setup as the previous one: single core with one victim task. We
launch the control output overwrite attack [6] that aims to override the PWM outputs governed
by the Actuator task on the car system. To create a simpler environment for evaluating the attack
and defense results, only the Actuator task is deployed as a SCHED_FIFO real-time task while
others are run as non-real-time tasks. The Actuator task runs at a frequency of 100 Hz and has an
average execution time of around 167 us. The container that runs the Actuator task is configured
with rt_runtime as 400 ms, which ensures the task’s execution is not throttled. To infer the Actuator
task’s initial offset, we launch a ScheduLeak attack as non real-time task in a separate container.
The obtained initial offset is then used to launch the control output overwrite attack. In this attack,
the attacker aims to override the steering to make the car turn right while the car is set to move
straight. The experiment results are shown by the car’s trajectories recorded under different test

Thttps://navio2.emlid.com/.
Zhttps://github.com/bo-rc/Rover/blob/master/cpp/RoverBot.
Shttps://github.com/eProsima/Fast-DDS.
*https://www.intelrealsense.com/tracking-camera-t265/.
Shttps://github.com/IntelRealSense/librealsense.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

https://navio2.emlid.com/
https://github.com/bo-rc/Rover/blob/master/cpp/RoverBot
https://github.com/eProsima/Fast-DDS
https://www.intelrealsense.com/tracking-camera-t265/
https://github.com/IntelRealSense/librealsense

6:20 J. Chen et al.

AY (meters)

—— No Attack
081 . 0=1500us
—<— Q=1000us
=0.81|—— Q=500us
-1.0 ‘ ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0
AX (meters)

Fig. 16. The RC car’s trajectories without an attack (the blue line) and with attacks under various w, settings
are shown. In this experiment, the car’s target is to move straight along the X-axis while the attacker tries
to override the steering to make the car turn right.

settings as displayed in Figure 16. The blue line shows the car’s trajectory without an attack as
a reference. As the figure shows, the attack can make a sharp right-turn when no protection is
involved (Q = 0). As the window length increases, the turn becomes flat and shaky. This is because
the attacker is no longer occupying the AEW. The resulting PWM signal mixes the updates from
the Actuator task and the attacker. As a result, the attacker cannot gain complete control of the
car at will.

9 RELATED WORK

Logical Execution Time (LET) was first introduced in the Giotto programming language [17] which
suggested using a time-triggered timing model with fixed reading/writing points at the beginning
and the end of the task period for periodic hard real-time applications. One of the first studies about
LET from OEM is Hennig et al. [16] from Daimler, who worked on a parallelizing legacy single-core
application for a multi-core platform using LET programming paradigm. They identified indepen-
dent tasks by analyzing dataflow architecture and ensuring their functional correctness through
the implementation of the LET programming model on the multi-core platform with the help of
Timing Definition Language (TDL) [43]. They also called for attention to integrate LET into AU-
TOSAR (AUTomotive Open System ARchitecture). Their effort is successful as now LET has been
included in the AUTOSAR timing extension [54] and is being explored by both OEMs and Tier-1
suppliers. Resmerita et al. [44], working with Toyota, explored applying LET to legacy embedded
control software. They parse the program’s abstract syntax tree and control flow graph to optimize
required I/O variables for efficient buffering. They implemented the approach in a tool suite and
evaluated using industrial engine control software. Ziegenbein et al. [63] from Bosch presented a
systematic co-engineering method between control and real-time analysis for automotive systems
design. LET with worst-case response time (WCRT) brings determinism into the system, which
eases the verification effort but at the cost of achieving a lower utilization of the targeted HW
platform. They suggested using LET combined with typical worst-case response time (TWCRT),
which is far smaller than WCRT for software design. They used simulation and formal verifica-
tion to show the merits of the proposed approach. All the researches mentioned above focused
on the application and implementation of LET into the automotive system with legacy software.
However, they were not focusing on the security issues in the automotive system.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

Protecting against Schedule Leaks Using Linux Containers on Multi-Core Processors 6:21

There have been several existing works that analyzed the attack surface of automotive sys-
tems [5, 27, 31, 41, 45, 49]. More and more attacks are focusing on the sensors or devices that inter-
act with the physical world. A security team demonstrated that they could hack a Tesla through its
WiFi system [37]. Several works have shown that the perception system of a car, such as cameras
and LiDARs, can be attacked. Petit et al. [42] were able to perform blinding and confusing auto
controls attacks on the camera system. They also successfully injected fake objects into the LIDAR
by using relaying and spoofing attacks. Yan et al. [59] performed various attacks on the ultrasonic
sensors, radars, and cameras and did demos using Tesla, Audi, Volkswagen, and Ford vehicles. Shin
et al. [46] also used relaying attack to spoof LiDAR sensors to make it believe objects are closer
than they are. They were also able to initiate a novel saturation attack to stop LiDAR from giving
information in a particular direction. Cao et al. [4] built on Shin’s work, controlled the spoofed
points to trick the machine learning model, and modeled this as an optimization problem. Cao et al.
[13] recently investigated the security issues in a Multi-Sensor Fusion system with a camera and
LiDAR for autonomous driving. They developed an attack to show that an adversarial 3D-printed
object can make both camera and LiDAR simultaneously ignore physical objects. They tested the
proposed methods on real-world roads with real cars. Monowar and Mohan [15] implemented in-
variant checking within ARM TrustZone to protect the actuators under the same adversary model
as employed in this article. However, based on the rover control case study, the measured runtime
overhead of 43ms was several times higher than the worst-case execution times.

Side-channel attacks have been considered one of the major threats in the security community.
A variety of them has been studied in the past in [19], [24], and [26]. Solutions such as cache flush-
ing [18] and hardware/architectural [34, 50, 62, 64] modifications have been proposed as defense
mechanisms without real-time constraints in mind.

The first work that demonstrated the leakage of information when scheduling tasks in a real-
time environment is [48]. To defend a fixed-priority scheduler from leaking information, Volp
et al. [56] suggest the use of a system idle thread. This approach does not consider what happens
after the victim task has been completed. Similarly, works in [35] and [40] suggest defending
against the schedule-based information leakage between the high- and low-security tasks by the
introduction of flush tasks. This mechanism, however, introduces large overheads, resulting in
poor response time of all the tasks in the system and effectively reducing system schedulability.

Another category of work to defend against the schedule-based attacks is to randomize the
schedule [7, 60, 61]. However, these randomization-based approaches are not very effective and can
easily be susceptible to attacks [36]. Our proposed work does not follow a schedule-randomization-
based approach but instead tries to defend against the schedule-based attack by introducing the
AEW and not allowing the attacker to run during this window.

Also, automotive networks are exposed to different kinds of cyber-attacks. For instance, if
the attacker knows the victim message identifiers, a compromised device with access to a bus
can perform spoofing or denial of service attacks. Lukasiewycz et al. [30] proposed to vary the
message identifiers to mitigate these types of attacks. Since the message identifiers can determine
the message priorities, as in the case of Controller Area Network, Lukasiewycz et al. provided the
response time analysis to ensure that the message deadlines are not violated.

10 CONCLUSION

The SchedGuard++ defense mechanism was introduced to defend against the posterior schedule-
based attack using Linux containers on a multi-core processor. SchedGuard++ prevents un-
trusted tasks from execution during the specified AEW. We proposed an exact method and a
polynomial-time upper- and lower-bounds to compute the trusted execution time within a
generic time interval, and response time analysis for trusted and untrusted tasks. We evaluated

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

6:22 J. Chen et al.

SchedGuard++ with hardware experiments on an embedded platform with a real attack scenario.
The results proved the effectiveness of the SchedGuard++ defense mechanism.

REFERENCES

[1] [n.d.]. Hackers Remotely Kill a Jeep on the Highway-With Me in It. https://www.wired.com/2015/07/hackers-
remotely-kill-jeep-highway. Accessed: 2022-02-01.

[2] S.K.Baruah. 1998. Feasibility analysis of recurring branching tasks. In Proceedings of the 10th EUROMICRO Workshop

on Real-Time Systems (Cat. No.98EX168). 138-145. https://doi.org/10.1109/EMWRTS.1998.685078

Konstantinos Bletsas, Neil Audsley, Wen-Hung Huang, Jian-Jia Chen, and Geoffrey Nelissen. 2018. Errata for three

papers (2004-05) on fixed-priority scheduling with self-suspensions. Leibniz Transactions on Embedded Systems 5,

1(2018), 02-1-02:20. https://doi.org/10.4230/LITES-v005-i1001-a002

Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Rampazzi, Qi Alfred Chen, Kevin Fu, and

Z. Morley Mao. 2019. Adversarial sensor attack on LIDAR-based perception in autonomous driving. In Proceedings of

the 2019 ACM SIGSAC Conference on Computer and Communications Security. 2267-2281.

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, Stefan Savage, Karl Koscher,

Alexei Czeskis, Franziska Roesner, Tadayoshi Kohno. 2011. Comprehensive experimental analyses of automotive at-

tack surfaces. In Proceedings of the USENIX Security Symposium, Vol. 4. San Francisco, 447-462.

Chien-Ying Chen, Sibin Mohan, Rodolfo Pellizzoni, Rakesh B. Bobba, and Negar Kiyavash. 2019. A novel side-

channel in real-time schedulers. In Proceedings of the 25th IEEE Real-Time and Embedded Technology and Applica-

tions Symposium (RTAS 2019), (Montreal, QC, Canada, April 16-18, 2019), Bjoérn B. Brandenburg (Ed.). IEEE, 90-102.

https://doi.org/10.1109/RTAS.2019.00016

Chien-Ying Chen, Monowar Hasan, AmirEmad Ghassami, Sibin Mohan, and Negar Kiyavash. 2018. REORDER: Secur-

ing dynamic-priority real-time systems using schedule obfuscation. arXiv preprint arXiv:1806.01393 (2018).

[8] Jiyang Chen, Zhiwei Feng, Jen-Yang Wen, Bo Liu, and Lui Sha. 2019. A container-based dos attack-resilient control
framework for real-time UAV systems. In Proceedings of the 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE’19). IEEE, 1222-1227.

[9] Jiyang Chen, Tomasz Kloda, Ayoosh Bansal, Rohan Tabish, Chien-Ying Chen, Bo Liu, Sibin Mohan, Marco Caccamo,
and Lui Sha. 2021. SchedGuard: Protecting against schedule leaks using Linux containers. In Proceedings of the 2021
IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS’21). 14-26. https://doi.org/10.1109/
RTAS52030.2021.00010

[10] Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang, Bjorn Brandenburg, Konstantinos Bletsas, Cong
Liu, Pascal Richard, Frédéric Ridouard, Neil Audsley, Raj Rajkumar, Dionisio Niz, and Georg Briggen. 2019. Many
suspensions, many problems: A review of self-suspending tasks in real-time systems. Real-Time Systems 55, 1 (2019),
144-207.

[11] Rolf Ernst and Marco Di Natale. 2016. Mixed criticality systems -A history of misconceptions? IEEE Design Test 33,
5 (2016), 65-74. https://doi.org/10.1109/MDAT.2016.2594790

[12] Rolf Ernst, Stefan Kuntz, Sophie Quinton, and Martin Simons. 2018. The logical execution time paradigm: New per-
spectives for multicore systems (Dagstuhl seminar 18092). Dagstuhl Reports 8, 2 (2018), 122—149. https://doi.org/10.
4230/DagRep.8.2.122

[13] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Rampazzi, Qi Alfred Chen, Kevin Fu, and Z.
Morley Mao. 2019. Adversarial sensor attack on lidar-based perception in autonomous driving. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security. 2267-2281.

[14] Kai-Bjérn Gemlau, Leonie Kohler, Rolf Ernst, and Sophie Quinton. 2021. System-level logical execution time: Aug-
menting the logical execution time paradigm for distributed real-time automotive software. ACM Trans. Cyber-Phys.
Syst. 5, 2, Article 14 (Jan. 2021), 27 pages. https://doi.org/10.1145/3381847

[15] Monowar Hasan and Sibin Mohan. 2019. Protecting actuators in safety-critical IoT systems from control spoofing
attacks. In Proceedings of the 2nd International ACM Workshop on Security and Privacy for the Internet-of-Things (IoT
S&P’19) (London, United Kingdom). ACM, New York, 8-14. https://doi.org/10.1145/3338507.3358615

[16] Julien Hennig, Hermann von Hasseln, Hassan Mohammad, Stefan Resmerita, Stefan Lukesch, and Andreas Nader-
linger. 2016. Poster abstract: Towards parallelizing legacy embedded control software using the LET programming
paradigm. In Proceedings of the 2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’16).
1-1. https://doi.org/10.1109/RTAS.2016.7461355

[17] Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. 2001. Giotto: A time-triggered language
for embedded programming. In Embedded Software, Thomas A. Henzinger and Christoph M. Kirsch (Eds.). Springer
Berlin, Berlin, 166-184.

E

—

[4

[laaw}

5

—_

G

—

[7

—

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway
https://doi.org/10.1109/EMWRTS.1998.685078
https://doi.org/10.4230/LITES-v005-i001-a002
https://doi.org/10.1109/RTAS.2019.00016
https://doi.org/10.1109/RTAS52030.2021.00010
https://doi.org/10.1109/MDAT.2016.2594790
https://doi.org/10.4230/DagRep.8.2.122
https://doi.org/10.1145/3381847
https://doi.org/10.1145/3338507.3358615
https://doi.org/10.1109/RTAS.2016.7461355

Protecting against Schedule Leaks Using Linux Containers on Multi-Core Processors 6:23

[18] Wei-Ming Hu. 1992. Lattice scheduling and covert channels. In Proceedings of the 1992 IEEE Computer Society Sympo-
sium on Research in Security and Privacy. IEEE Computer Society, 52-52.

[19] Wei-Ming Hu. 1992. Reducing timing channels with fuzzy time. Journal of Computer Security 1, 3-4 (1992), 233-254.

[20] Wen-Hung Huang, Jian-Jia Chen, Husheng Zhou, and Cong Liu. 2015. PASS: Priority assignment of real-time tasks
with dynamic suspending behavior under fixed-priority scheduling. In Proceedings of the 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC’15). 1-6. https://doi.org/10.1145/2744769.2744891

[21] Hamidreza Jafarnejadsani, Hanmin Lee, Naira Hovakimyan, and Petros Voulgaris. 2017. Dual-rate L 1 adaptive con-
troller for cyber-physical sampled-data systems. In Proceedings of the 2017 IEEE 56th Annual Conference on Decision
and Control (CDC’17). IEEE, 6259-6264.

[22] Jihan Kim, Gyunghoon Park, Hyungbo Shim, and Yongsoon Eun. 2016. Zero-stealthy attack for sampled-data control
systems: The case of faster actuation than sensing. In Proceedings of the 2016 IEEE 55th Conference on Decision and
Control (CDC’16). IEEE, 5956-5961.

[23] Jihan Kim, Gyunghoon Park, Hyungbo Shim, and Yongsoon Eun. 2018. A zero-stealthy attack for sampled-data control
systems via input redundancy. arXiv preprint arXiv:1801.03609 (2018).

[24] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. 2012. {STEALTHMEM }: System-level protection against cache-
based side channel attacks in the cloud. In Proceedings of the 21st {USENIX} Security Symposium ({USENIX} Security
12). 189-204.

[25] Tomasz Kloda, Bruno d’Ausbourg, and Luca Santinelli. 2016. EDF schedulability test for the E-TDL time-triggered
framework. In Proceedings of the 2016 11th IEEE Symposium on Industrial Embedded Systems (SIES’16). 1-10. https:
//doi.org/10.1109/SIES.2016.7509414

[26] Paul C. Kocher. 1996. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Proceed-
ings of the Annual International Cryptology Conference. Springer, 104-113.

[27] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno, Stephen Checkoway, Damon Mc-
Coy, Brian Kantor, Danny Anderson, Hovav Shacham, Hovav Shacham, and Stefan Savage. 2020. Experimental secu-
rity analysis of a modern automobile. In The Ethics of Information Technologies. Routledge, 119-134.

[28] Joseph Y.-T. Leung and M. L. Merrill. 1980. A note on preemptive scheduling of periodic, real-time tasks. Inform.
Process. Lett. 11, 3 (1980), 115-118. https://doi.org/10.1016/0020-0190(80)90123-4

[29] Chung Laung Liu and James W. Layland. 1973. Scheduling algorithms for multiprogramming in a hard-real-time

environment. Journal of the ACM (JACM) 20, 1 (1973), 46-61.

Martin Lukasiewycz, Philipp Mundhenk, and Sebastian Steinhorst. 2016. Security-aware obfuscated priority assign-

ment for automotive can platforms. ACM Transactions on Design Automation of Electronic Systems (TODAES) 21, 2

(2016), 1-27.

[31] Charlie Miller and Chris Valasek. 2014. A survey of remote automotive attack surfaces. Black Hat USA 2014 (2014), 94.

[32] Charlie Miller and Chris Valasek. 2015. Remote exploitation of an unaltered passenger vehicle. Black Hat USA 2015,
S 91 (2015).

[33] Yilin Mo and Bruno Sinopoli. 2009. Secure control against replay attacks. In Proceedings of the 2009 47th Annual Allerton
Conference on Communication, Control, and Computing (Allerton). IEEE, 911-918.

[34] Sibin Mohan, Stanley Bak, Emiliano Betti, Heechul Yun, Lui Sha, and Marco Caccamo. 2013. S3A: Secure system
simplex architecture for enhanced security and robustness of cyber-physical systems. In Proceedings of the 2nd ACM
International Conference on High Confidence Networked Systems. 65-74.

[35] Sibin Mohan, Man Ki Yoon, Rodolfo Pellizzoni, and Rakesh Bobba. 2014. Real-time systems security through scheduler
constraints. In Proceedings of the 2014 26th EUROMICRO Conference on Real-Time Systems. IEEE, 129-140.

[36] Mitra Nasri, Thidapat Chantem, Gedare Bloom, and Ryan M. Gerdes. 2019. On the pitfalls and vulnerabilities of sched-
ule randomization against schedule-based attacks. In Proceedings of the 2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’19). IEEE, 103-116.

[37] Sen Nie, Ling Liu, and Yuefeng Du. 2017. Free-fall: Hacking tesla from wireless to can bus. Briefing, Black Hat USA

25 (2017), 1-16.

OSEK 2005. OSEK/VDX Operating System Specificatio. OSEK. https://www.irisa.fr/alf/downloads/puaut/TPNXT/

images/0s223.pdf.

[39] Gyunghoon Park, Hyungbo Shim, Chanhwa Lee, Yongsoon Eun, and Karl H. Johansson. 2016. When adversary en-

counters uncertain cyber-physical systems: Robust zero-dynamics attack with disclosure resources. In Proceedings of

the 2016 IEEE 55th Conference on Decision and Control (CDC’16). IEEE, 5085-5090.

Rodolfo Pellizzoni, Neda Paryab, Man-Ki Yoon, Stanley Bak, Sibin Mohan, and Rakesh B. Bobba. 2015. A generalized

model for preventing information leakage in hard real-time systems. In Proceedings of the 21st IEEE Real-Time and

Embedded Technology and Applications Symposium. IEEE, 271-282.

[41] Jonathan Petit and Steven E. Shladover. 2014. Potential cyberattacks on automated vehicles. IEEE Transactions on
Intelligent Transportation Systems 16, 2 (2014), 546—-556.

—

(30

-

(38

=

[40

-

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

https://doi.org/10.1145/2744769.2744891
https://doi.org/10.1109/SIES.2016.7509414
https://doi.org/10.1016/0020-0190(80)90123-4
https://www.irisa.fr/alf/downloads/puaut/TPNXT/images/os223.pdf

6:24 J. Chen et al.

[42] Jonathan Petit, Bas Stottelaar, Michael Feiri, and Frank Kargl. 2015. Remote attacks on automated vehicles sensors:
Experiments on camera and LiDAR. Black Hat Europe 11, 2015 (2015), 995.

[43] Wolfgang Pree and Josef Templ. 2008. Modeling with the timing definition language (TDL). In Model-Driven Develop-
ment of Reliable Automotive Services, Manfred Broy, Ingolf H. Kriiger, and Michael Meisinger (Eds.). Springer Berlin,
Berlin, 133-144.

[44] Stefan Resmerita, Andreas Naderlinger, Manuel Huber, Kenneth Butts, and Wolfgang Pree. 2015. Applying real-time
programming to legacy embedded control software. In Proceedings of the 2015 IEEE 18th International Symposium on
Real-Time Distributed Computing. 1-8. https://doi.org/10.1109/ISORC.2015.36

[45] Florian Sagstetter, Martin Lukasiewycz, Sebastian Steinhorst, Marko Wolf, Alexandre Bouard, William R. Harris,
Somesh Jha, Thomas Peyrin, Axel Poschmann, and Samarjit Chakraborty. 2013. Security challenges in automotive
hardware/software architecture design. In Proceedings of the 2013 Design, Automation & Test in Europe Conference &
Exhibition (DATE’13). IEEE, 458-463.

[46] Hocheol Shin, Dohyun Kim, Yujin Kwon, and Yongdae Kim. 2017. Illusion and dazzle: Adversarial optical channel
exploits against LIDARs for automotive applications. In Proceedings of the International Conference on Cryptographic
Hardware and Embedded Systems. Springer, 445-467.

[47] Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson. 2007. Container-based oper-
ating system virtualization: A scalable, high-performance alternative to hypervisors. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007. 275-287.

[48] Sang Hyuk Son, Craig Chaney, and Norris P. Thomlinson. 1998. Partial security policies to support timeliness in
secure real-time databases. In Proceedings of the 1998 IEEE Symposium on Security and Privacy (Cat. No. 98CB36186).
IEEE, 136-147.

[49] Ivan Studnia, Vincent Nicomette, Eric Alata, Yves Deswarte, Mohamed Kaéniche, and Youssef Laarouchi. 2013. Survey
on security threats and protection mechanisms in embedded automotive networks. In Proceedings of the 2013 43rd
Annual IEEE/IFIP Conference on Dependable Systems and Networks Workshop (DSN-W’13). IEEE, 1-12.

[50] G.Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. 2004. Secure program execution via dynamic infor-
mation flow tracking. ACM SIGPLAN Notices 39, 11 (2004), 85-96.

[51] André Teixeira, Daniel Pérez, Henrik Sandberg, and Karl Henrik Johansson. 2012. Attack models and scenarios for
networked control systems. In Proceedings of the 1st International Conference on High Confidence Networked Systems.
55-64.

[52] André Teixeira, Iman Shames, Henrik Sandberg, and Karl H. Johansson. 2012. Revealing stealthy attacks in control sys-
tems. In Proceedings of the 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
IEEE, 1806-1813.

[53] The AUTOSAR Consortium 2015. Specification of Operating System. The AUTOSAR Consortium. https://www.autosar.
org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_OS.pdf.

[54] The AUTOSAR Consortium 2018. AUTOSAR_RS_TimingExtensions, Specification of Timing Extensions.
The AUTOSAR Consortium. https://www.autosar.org/fileadmin/Releases_ TEMP/Classic_Platform_4.4.0/
MethodologyAndTemplates.zip.

[55] Steve Vestal. 2007. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assur-
ance. In Proceedings of the 28th IEEE International Real-Time Systems Symposium (RTSS’07). 239-243. https://doi.org/
10.1109/RTSS.2007.47

[56] Marcus Volp, Claude-Joachim Hamann, and Hermann Hértig. 2008. Avoiding timing channels in fixed-priority sched-
ulers. In Proceedings of the 2008 ACM Symposium on Information, Computer and Communications Security. 44-55.

[57] Franz Walkembach. 2016. White paper: Model-Driven Development for Safety-Critical Software Components. Tech-
nical Report MSU-CSE-06-2. Wind River. https://events.windriver.com/wrcd01/wrcm/2016/08/WP-model-driven-
development-for-safety-critical- software-components.pdf.

[58] Jean-Paul Yaacoub and Ola Salman. 2020. Security analysis of drones systems: Attacks, limitations, and recommenda-
tions. Internet of Things (2020), 100218.

[59] Chen Yan, Wenyuan Xu, and Jianhao Liu. 2016. Can you trust autonomous vehicles: Contactless attacks against sensors
of self-driving vehicle. Def Con 24, 8 (2016), 109.

[60] Man-Ki Yoon, Jung-Eun Kim, Richard Bradford, and Zhong Shao. 2019. TaskShuffler++: Real-time schedule random-
ization for reducing worst-case vulnerability to timing inference attacks. arXiv preprint arXiv:1911.07726 (2019).

[61] Man-Ki Yoon, Sibin Mohan, Chien-Ying Chen, and Lui Sha. 2016. Taskshuffler: A schedule randomization protocol
for obfuscation against timing inference attacks in real-time systems. In Proceedings of the 2016 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’16). IEEE, 1-12.

[62] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Jung-Eun Kim, and Lui Sha. 2013. SecureCore: A multicore-based intrusion
detection architecture for real-time embedded systems. In Proceedings of the 2013 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS’13). IEEE, 21-32.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

https://doi.org/10.1109/ISORC.2015.36
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_OS.pdf
https://www.autosar.org/fileadmin/Releases_TEMP/Classic_Platform_4.4.0/MethodologyAndTemplates.zip
https://doi.org/10.1109/RTSS.2007.47
https://events.windriver.com/wrcd01/wrcm/2016/08/WP-model-driven-development-for-safety-critical-software-components.pdf

Protecting against Schedule Leaks Using Linux Containers on Multi-Core Processors 6:25

[63] Dirk Ziegenbein and Arne Hamann. 2015. Timing-aware control software design for automotive systems. In Proceed-
ings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC’15). 1-6. https://doi.org/10.1145/2744769.
2747947

[64] Christopher Zimmer, Balasubramanya Bhat, Frank Mueller, and Sibin Mohan. 2010. Time-based intrusion detection
in cyber-physical systems. In Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems.
109-118.

Received 24 July 2021; revised 16 March 2022; accepted 14 September 2022

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 6. Publication date: February 2023.

https://doi.org/10.1145/2744769.2747947

