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Abstract. Motivated by the strong cosmic censorship conjecture, we study
the linear scalar wave equation in the interior of subextremal strictly
charged Reissner—Nordstrom black holes by analyzing a suitably defined
“scattering map” at 0 frequency. The method can already be demon-
strated in the case of spherically symmetric scalar waves on Reissner—
Nordstrém: we show that assuming suitable (L*-averaged) upper and
lower bounds on the event horizon, one can prove (Lz—averaged) polyno-
mial lower bound for the solution

(1) on any radial null hypersurface transversally intersecting the Cauchy

horizon, and

(2) along the Cauchy horizon toward timelike infinity.
Taken together with known results regarding solutions to the wave equa-
tion in the exterior, (1) above in particular provides yet another proof of
the linear instability of the Reissner—Nordstrom Cauchy horizon. As an
application of (2) above, we prove a conditional mass inflation result for a
nonlinear system, namely the Einstein-Maxwell-(real)-scalar field system
in spherical symmetry. For this model, it is known that for a generic class
of Cauchy data G, the maximal globally hyperbolic future developments
are C*-future-inextendible. We prove that if a (conjectural) improved
decay result holds in the exterior region, then for the maximal globally
hyperbolic developments arising from initial data in G, the Hawking mass
blows up identically on the Cauchy horizon.

1. Introduction

In this paper, we consider the linear scalar wave equation (where O, denotes
the Laplace-Beltrami operator)

Oy¢ = 0. (1.1)
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FIGURE 1. Penrose diagram of Reissner-Nordstrom (space-
time (with 0 < |e|] < M) or Kerr spacetime (with 0 < |a|] <
M)

in the interior of Reissner—Nordstrom (with 0 < |e| < M) black holes. Hidden
in the interior of these black holes are the so-called Cauchy horizons, whose
stability and instability properties are of fundamental importance due to their
intimate connections with the strong cosmic censorship conjecture and the
problem of determinism; see further discussions in Sect. 1.1.

The equation (1.1) in the black hole interior region, for both the Reissner—
Nordstrom and the Kerr cases are rather well-understood. Let us just focus
on the following definitive C?-stability and non-degenerate energy-instability
results. (We refer the readers for instance to [2,4,9,12,13,18,25,26,30] and the
references therein for related results.)

e (Stability [10,11,14,24]) On both Reissner—Nordstrom (with 0 < |e| <
M) and Kerr (with 0 < |a|] < M), solutions ¢ arising from smooth
and compactly supported Cauchy data on ¥y (see Fig. 1) are uniformly
bounded up to the Cauchy horizon and are continuously extendible to
the Cauchy horizon. In fact, |¢| decays along the Cauchy horizon toward
timelike infinity.

e (Instability [4,21,24]) On both Reissner—Nordstrom (with 0 < |e| < M)
and Kerr (with 0 < |a] < M), if an L?-averaged lower bound for the
derivative for ¢ holds on the event horizon, then ¢ has infinite non-
degenerate energy on a null hypersurface intersecting the Cauchy horizon
transversely. In particular, the derivatives of ¢ blow up at the Cauchy
horizon.

Moreover, using the results of [1,15,21], this assumed L2-averaged lower
bound on the event horizon is proven to be satisfied by solutions arising
from generic smooth and compactly supported Cauchy data on .

Even though the stability results for (1.1) are necessarily quite weak!
because of the instability results, they are very robust. In particular, a slight
modification of the proof gives similar stability results for very general systems

1For instance, in terms of (isotropic) Holder and Sobolev spaces, it can be deduced in the
Reissner—Nordstrom case using the result in [1,4,12] that a generic solution is neither in any
Hoélder C space for a > 0 nor in any Sobolev WP space for p > 1.
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of wave equations with first- or zeroth-order terms. The robustness of the lin-
ear stability, together with the remarkable nonlinear structure of the Einstein
vacuum equations in the double null foliation gauge, result in the proof of the
nonlinear C° stability of the Kerr Cauchy horizon for the Einstein vacuum
equations without any symmetry assumptions [6].

On the other hand, the proofs of linear (non-degenerate) energy instabil-
ity for (1.1) are much less robust.? The known proofs [21,24] of these insta-
bilities rely heavily on the conservation law associated with the Killing field
T (defined in (2.15)), which no longer holds if one adds lower-order terms
to (1.1). For this reason, linear instability for the full system of linear grav-
itational perturbations remains an open problem. At the moment, nonlinear
instability results have only been obtained for spherically symmetric models;
see [4,22,35,37] and Sect. 1.1.2. Nevertheless, one expects that if one can prove
an instability result for the full system of linear gravitational perturbations,
then the techniques in [6] could in principle be sufficient to control all the non-
linear error terms and to upgrade the linear instability result to a nonlinear
result.

The first goal of this paper is to revisit the linear non-degenerate energy
instability result with a proof which is potentially generalizable to studying
instabilities for linear gravitational perturbations. In fact, the ideas we present
in this paper have already been taken up by Sbierski, who proved a linear
instability result for the Teukolsky equation in a forthcoming work [32].

The perspective of this paper is to study (1.1) by introducing a scattering
problem, where the past and future “scattering states” are the restriction of
the solution to the wave equation on the event horizon and the Cauchy hori-
zon respectively. (Note that such a point of view for the black hole interior is
not new, and has been used in [9,18,25]. See also [17,19] in different settings.
The results in [18] are especially relevant to our paper.) In particular, we an-
alyze the corresponding “transmission coefficient” and “reflection coefficient”
at 0 t-frequency, and use that information to study the instability property of
the Cauchy horizon. Our approach is in part inspired by the work [13], which
already recognized the important role of the transmission and reflection coef-
ficients at zero frequency, at least for a class of data with exact polynomial
tail.

It turns out that a slight modification of our new linear instability proof
also gives a lower bound of the scalar field along the Cauchy horizon toward
timelike infinity. The second goal of this paper is to use this lower bound
and apply it to the mass inflation problem for the Einstein—-Maxwell-(real)
scalar field system in spherical symmetry. Since the mass inflation problem
requires a longer discussion, we will explain this application later in Sect. 1.1;
see Theorem 1.12. The key point here is to demonstrate that our linear result,
which is established with a fundamentally linear proof, can be easily applied
to a nonlinear setting via a perturbative argument.

2In fact it may be possible that not only the proofs fail, but the instability result itself is
false when fine-tuned lower order terms are added to (1.1). This, however, remains an open
problem.
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It turns out that all the main ideas can be demonstrated already in the
case of solutions to (1.1) on Reissner—Nordstrém with spherically symmetric
data. We will therefore focus on that case from now on. See Remark 1.4 for
a discussion of possible generalizations. The following is an informal version
of the main theorem for (1.1) on Reissner-Nordstrom; a precise version will
be given in Theorem 4.1 and Corollary 4.2. (Again, see Theorem 1.12 for our
main theorem on mass inflation.)

Theorem 1.1. Let ¢ be a solution to (1.1) on a fized Reissner—Nordstrom space-
time (with 0 < |e| < M ) with smooth and spherically symmetric data. Assume
the following two conditions along the event horizon:

(1) T¢ obeys L?-averaged polynomial upper and lower bounds, and
(2) T?¢ obeys a better (compared to Té) L?-averaged polynomial upper bound
(see precise assumptions in Theorem 4.1).

Then, the following both hold:

(1) Along any outgoing radial null hypersurface transversally intersecting the
Cauchy horizon, the non-degenerate energy is infinite.

(2) Along the Cauchy horizon, T¢ obeys an L?-averaged polynomial lower
bound toward timelike infinity.

A few remarks are in order.

Remark 1.2. (Comparison with known results) The first result in Theorem 1.1,
which is an instability result, is not new, see [4,21]. Moreover, a similar in-
stability result is also known for Kerr spacetimes [24]. Our result is in fact
slightly weaker than the known results in [21,24], but our main concern is the
introduction of a new method that is based on the phase space analysis of the
scattering map near the zero t-frequency.

It should also be mentioned that scattering theory arguments has been
used to show variations of this instability results, see [2,9,18,25].

Remark 1.3. (Relation to mass inflation) The second result in Theorem 1.1
(in contrast to the first result) is not directly related to the instability of the
Cauchy horizon. It does, however, show that the decay result along the Cauchy
horizon of [14] cannot be improved much further. Perhaps surprisingly, it has
a nonlinear application to the problem of mass inflation for the Einstein—
Maxwell-(real) scalar field system with two-ended asymptotically flat initial
data in spherical symmetry; see Sect. 1.1.3.

Remark 1.4. (More general settings) At least the instability part of Theo-
rem 1.1 can in principle be generalized to many different settings, for instance,
for higher angular modes or for the wave equation with a potential in Reissner—
Nordstrém, or even for the wave equation on rotating Kerr backgrounds with
a fixed Carter mode. Indeed, to carry out the argument of Theorem 1.1, we
need two main ingredients: (1) a stability result for solutions to the linear
wave equation, and (2) an explicit computation showing that the transmission
coefficient at zero frequency does not vanish. In all of the more general set-
tings we mentioned above, the ingredient (1) is known (or at least follows from



Vol. 24 (2023) Cauchy Horizon Instability and Mass Inflation 367

known techniques, see [14,24]), while the ingredient (2) follows easily from a
T-conservation law (see Remarks 1.5 and 5.5).

Remark 1.5. (Relevance to gravitational perturbations) We mentioned above
that the previous instability results of [21,24] both rely on the T-conservation
law in a fundamental way (despite the fact that the two proofs are very dif-
ferent). In our setting, the T-conservation law could also be used to bound
the zero-frequency transmission coefficient away from 0; see part (3) of Propo-
sition 5.4. On the other hand, our method in principle does not require the
T-conservation law as one can alternatively explicitly compute the transmission
coefficient at zero frequency, just as what we do for the reflection coefficient
at zero frequency. For this reason, our method is relevant in settings where
an analogue of the T-conservation law is not available, e.g., in the case of
gravitational perturbations of the Kerr interior;® see [32].

In the remainder of the introduction, we will give a brief discussion of the
strong cosmic censorship conjecture, which in particular serves as a motivation
for the instability problem that we discuss in this paper. We will then turn
to a discussion of the Einstein-Maxwell-(real) scalar field system in spherical
symmetry and explain our application of Theorem 1.1 in that context.

1.1. Background: Strong Cosmic Censorship Conjecture

The study of the wave equation in the interior of black holes is motivated by
the strong cosmic censorship conjecture first proposed by Penrose [27]. In this
subsection, we briefly review some mathematical progress on this conjecture,
which motivates the results in the present paper. For a more detailed discussion
of the strong cosmic censorship conjecture, we refer the reader to [6].

A modern formulation of Penrose’s strong cosmic censorship conjecture
can be given as follows:

Conjecture 1.6. (Strong cosmic censorship) For generic asymptotically flat (or
compact) vacuum initial data, the maximal Cauchy development is inextendible
as a suitably regular Lorentzian manifold.

This conjecture should be thought of as a conjecture on global unique-
ness for the Einstein’s equation. However, it is well-known that in the explicit
Reissner—Nordstrom and Kerr black holes, there are Cauchy horizons beyond
which the solution extends smoothly. In particular, this conjecture implies that
the Cauchy horizons inside the Reissner-Nordstrom and Kerr black holes are
unstable in a suitable sense under small perturbations.

The original expectation of the instability of the Cauchy horizons was
modeled on the Schwarzschild solution, where instead of having a smooth
Cauchy horizon, the black hole interior is singular and inextendible as a C°

3In certain settings, the Teukolsky—Starobinsky identities may be used as a replacement for
the global application of a T-conservation law, e.g., as an identity linking fluxes of suitable
solutions to the Teukolsky equation along the Cauchy horizons and the event horizons.
However, these identities cannot be localized in physical space in a straightforward fashion,
and thus it does not allow for an immediate adaption of the arguments from [21,24].
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Lorentzian manifold [31]. However, as has been recently proven [6], it turns
out that this expected instability is more subtle: the Cauchy horizons are in
fact C? stable, and one can only expect the higher derivatives to blow-up. This
already manifests itself in the behavior of solutions to the linear equation (1.1)
(recall discussions in the beginning of Sect. 1), but remarkably also holds in
nonlinear settings.

Below, we will further explain the stability and instability issues in non-
linear settings. First, in Sect. 1.1.1, we discuss further the recent work on
CV-stability of the Kerr Cauchy horizon [6]. Then, in Sect. 1.1.2, we discuss
a spherically symmetric model, which is simpler and such that Conjecture 1.6
is essentially settled. There remains, however, the problem of mass inflation
which is unresolved in the setting. Our Theorem 4.1 turns out to give a con-
ditional result in this regard. This will be explained in Sect. 1.1.3.

1.1.1. CO°-Stability of the Kerr Cauchy Horizon. As already discussed above,
the Kerr Cauchy horizon has recently been proven to be C? stable:

Theorem 1.7. (Dafermos-Luk [6]) Consider general vacuum initial data cor-
responding to the expected induced geometry of a dynamical black hole settling
down to Kerr (with parameters 0 < |a| < M) on a suitable spacelike hyper-
surface Yo in the black hole interior. Then, the maximal future development
spacetime corresponding to g is globally covered by a double null foliation
and has a non-trivial Cauchy horizon across which the metric is continuously
extendible.

Even with the above theorem, however, it is not known whether the
Cauchy horizon is singular in any sense. The following conjecture remains an
important open problem.

Conjecture 1.8. For a generic subset of initial data as in Theorem 1.7, the
maximal Cauchy development is inextendible as a Lorentzian manifold with
continuous metric and Christoffel symbols locally square integrable.

This conjecture motivates a better understanding of the linear instability.
In particular, since for linear gravitational perturbations of Kerr, there is no
obvious analogue of the T-conservation law, it is desirable to obtain a proof
which does not rely in principle on such a conservation law. This motivates
the considerations of the present paper.

1.1.2. Strong Cosmic Censorship for Spherically Symmetric Models. From
now on, we discuss Conjecture 1.6 in spherical symmetry, focusing on the
spherically symmetric Einstein-Maxwell-(real) scalar field system. We will in
particular explain the background for the mass inflation problem in this con-
text, and discuss an application of our Theorem 1.1 to this problem. In spher-
ical symmetry, the problem becomes simpler than that in Sect. 1.1.1, we have
a much more complete picture. More precisely, as we will describe below, not
only an analogue of Theorem 1.7 is known, but moreover, (1) a global C°-
stability result—one that the initial data are posed on an asymptotically flat
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Cauchy hypersurface—has been proven, and (2) the analogue of Conjecture 1.8
is also known.

Before we proceed, let us briefly discuss the simplest spherically symmet-
ric model, the spherically symmetric Einstein-null dust system, whose study
predates that of the spherically symmetric Einstein—Maxwell-(real) scalar field
system. For this system, in the presence of incoming null dust, Hiscock [16]
showed that the metric remains continuous, while Christoffel symbols blow up
at the Cauchy horizon. In fact, in this setting, curvature components with re-
spect to a parallelly propagated frame blow-up. In a subsequent seminal work,
Poisson—Israel [28,29] showed that when another, outgoing, null dust is added
and is allowed to interact with the first null dust, generically the Hawking
mass is infinite at the Cauchy horizon. This was known as mass inflation.

The spherically symmetric Einstein-null dust system, though already
gives some insights into the stability and instability properties of Cauchy hori-
zons, is not fully satisfactory even as a spherically symmetric model problem
since it does not capture the wave nature of the Einstein equations. A more re-
alistic model is the spherically symmetric Einstein-Maxwell-(real) scalar field
system:

Ricy, — %gle = 2(T;515/f) + Tlgle/m))u

T = 0,00,6 — L9, (g7")*P 000056,

T = (97 FuaFrop — L0 (g7 (7)1 Far Fio,
Dggb =0, dF =0, (gfl)“l‘VaFW =0.

Here, [, and V, respectively, denote the Laplace-Beltrami operator and the
Levi-Civita connection associated with the metric g.

The study of the stability and instability properties of Cauchy horizons in
the context of (1.2) in spherical symmetry was initiated in the seminal works
of Dafermos [3,4]. Taken together with [7], the work [4] implies the following
theorem:

Theorem 1.9 (Dafermos [4], Dafermos-Rodnianski [7]). Given any 2-ended
asymptotically flat future-admissible spherically symmetric initial data to (1.2),
as long as the Mazwell field does not identically vanish, the mazximal globally
hyperbolic future development has a Cauchy horizon across which the metric
s continuously extendible.

(1.2)

Here, by asymptotically flat future-admissible, we mean that the initial
data obey adequate regularity and decay conditions, as well as a global condi-
tion (called future admissibility) that ensures, in particular, the existence of a
single black hole region in the maximal globally hyperbolic future development
like in the case of the Reissner—Nordstrom spacetime; see [22, Definition 3.1]
for the precise definition.

In [22,23], the first two authors proved the C? formulation of the strong
cosmic censorship conjecture for the Einstein-Maxwell-(real)-scalar field sys-
tem. Namely, it was proven that generic future-admissible two-ended asymp-
totically flat initial data lead to a maximal globally hyperbolic development
which is C2-future inextendible.
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Theorem 1.10 (Luk-Oh [22,23]). There exists a generic (in the sense of open
and dense in, say, weighted C topology; see [22] for further refinements) class
G of 2-ended asymptotically flat future-admissible spherically symmetric initial
data such that the mazimal globally hyperbolic future development to any initial
data in G is C?-future-inextendible.

In recent breakthrough of Sbierski [33], he showed that after further re-
stricting the generic class of data in Theorem 1.10 to those which are small
perturbations of Reissner—Nordstrom data, the corresponding solutions are
moreover C''-future-inextendible. This thus resolves a C'! formulation of the
strong cosmic censorship conjecture in a perturbative (in additional to spher-
ically symmetric) setting.

1.1.3. The Mass Inflation Problem. Even though inextendibility properties are
the cleanest way to “measure the strength” of singularities, it is also of interest
(see discussions of the works of Hiscock and Poisson—Israel in the beginning of
Sect. 1.1.2) to ask whether the Hawking mass blows up at the Cauchy horizon,
i.e., whether mass inflation occurs, for solutions arising from generic data. In
particular, this was left open in the works [22,23,33] discussed above.

At the moment, the best result concerning mass inflation is the following
conditional result in the seminal work [4] of Dafermos. It states that mass
inflation does occur if a pointwise polynomial lower bound holds along the
event horizon:

Theorem 1.11 (Dafermos [4]). Given an asymptotically flat future admissible
initial data set with nonzero charge, if the scalar field satisfies following point-
wise lower bound (with respect to an Eddington—Finkelstein-like v coordinate*)

1000 T3t agoz1y (V) = 0™ (1.3)

for some ¢ > 0 and p < 9, then the Hawking mass is identically infinite on the
component of the Cauchy horizon CH{ in Fig. 2.

If the condition (1.3) holds for generic solutions, then Theorem 1.11 would
give a generic mass inflation result. In fact, if (1.3) is verified generically, then
the blow-up of the Hawking mass can be used to give an alternative proof
of the C? formulation of the strong cosmic censorship conjecture, since the
Hawking mass bounds the Kretschmann scalar from below. The works [22,23]
however did not follow this path, but instead established a weaker analogue of
(1.3), which gives just an L?-averaged lower bound. This weaker lower bound
was slightly easier to prove, and was sufficient for C?-inextendibility, but by
itself fell short of establishing generic mass inflation.

To further elaborate the issue, it was proven in [22,23] that for a generic
class of initial data, in the corresponding maximal globally hyperbolic future
development, the (transversal to Cauchy horizon) derivatives of the scalar field
blow up at the Cauchy horizon. However, in principle, the scalar field could
vanish identically on a portion of the Cauchy horizon near timelike infinity,

4For instance, one can choose the v coordinate used in Theorem 7.4.
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giving rise to a static Cauchy horizon. In this special scenario, while the Cauchy
horizon is still a weak null singularity, the Hawking mass could remain finite
(cf. Proposition 7.12). Notice that this scenario for which the first derivatives
of the scalar field blow-up but the mass remains finite is exactly an analogue
of the Hiscock picture for the Einstein-null dust system.

Using Theorem 1.1, we prove the following conditional theorem for mass
inflation:

Theorem 1.12. Consider a 2-ended asymptotically flat future-admissible spher-
ically symmetric initial data in the generic class G in Theorem 1.10 so that
the scalar field and its derivatives are initially compactly supported. Assume
that higher derivatives of the scalar field exhibit “improved decay” along each
connected component of the event horizon (see precise assumptions in Theo-
rem 7.8).

Then, the Hawking mass is identically infinite at each connected compo-
nent of the Cauchy horizon.

Theorem 1.12 is proven using part (2) of Theorem 1.1. They are related
because Theorem 1.1 rules out the possibility—for the linear scalar wave equa-
tion (1.1)—that the scalar field vanishes identically on a portion of the Cauchy
horizon near timelike infinity. We show using a perturbative argument that this
also holds for the nonlinear solution. Therefore by our previous discussion,
mass inflation must occur.

The improved decay assumption that we need in Theorem 1.12 corre-
sponds to the upper bound assumptions of Theorem 1.1 on the event horizon.
It should be noted that while the lower bound proven in [22] is expected to be
sharp (for instance by comparing with the linear result in [1]; see Remark 1.13),
the upper bounds proven in [7] are worse than those expected. The assump-
tions of Theorem 1.12 require some improvements over the upper bounds in
[7] (although it still does not require the sharp upper bounds). Notice that one
only needs an improved upper bound, and in principle that is easier to obtain
as compared to the improved lower bound required in Theorem 1.11.

It should be stressed, however, that main point of Theorem 1.12 is not
mass inflation per se, since the assumed conditions in Theorems 1.11 and
1.12 are both expected to hold; see Remark 1.13 below. Instead, we want to
demonstrate with this theorem how linear result of the type in Theorem 1.1
can be applied in a nonlinear setting quite easily.

We end this subsection with a few remarks on Theorem 1.12.

Remark 1.13. Both the assumed pointwise lower bound in Theorem 1.11 and
the assumed improved decay in Theorem 1.12 remain open problems. Never-
theless, the results in [1] for the linear wave equation on Reissner—Nordstrom
suggest that the following may be true:
e Solutions arising from generic data obey the pointwise lower bound in
Theorem 1.11.
e Improved decay estimates assumed in Theorem 1.12 hold for all initial
data (not just generic data).



372 J. Luk et al. Ann. Henri Poincaré

Remark 1.14. Note that Theorems 1.11 and 1.12 have no analogue for the
Einstein-null dust system: indeed while a null dust is a good approximation
to a scalar field in the high frequency limit, Theorems 1.11 and 1.12 precisely
capture a phenomenon regarding the behavior of the scalar field at zero fre-
quency.

Remark 1.15. Note that the global structure of the interior of dynamical black
hole in question may be very different from the global structure of Reissner—
Nordstrom. (In particular, unlike Reissner-Nordstrom, its boundary can in
principle have a spacelike portion!) Although our Theorem 1.1 is proved using
global considerations in the Reissner-Nordstrom interior, it is still applicable
to the problem at hand because in the course of the proof of Theorem 1.10,
it is also established that in a region sufficiently close to timelike infinity, the
spacetime metric is indeed a small perturbation—in some rough norms—of
that of Reissner-Nordstrom. Due to the monotonicity of the Hawking mass, in
order to establish mass inflation, it suffices to consider the region near timelike
infinity, in which we can use a perturbative argument.

Remark 1.16. While we have only studied here the system (1.2), it is also of
interest to go beyond it and study the Einstein—Maxwell-charged scalar field
system in spherical symmetry, including in the case when the scalar field is
massive. The more general system allows one to study simultaneously grav-
itational collapse and strong cosmic censorship. The issues regarding strong
cosmic censorship conjecture for this system has recently been studied in a se-
ries of papers of van de Moortel [34-37], and the paper of Kehle—van de Moortel
[19], which in particular show both C? stability and C? inextendibility condi-
tional on appropriate decay assumptions on the event horizon. Spectacularly,
it was shown in [36] that for asymptotically Reissner—-Nordstrém black holes
arising from one-ended gravitational collapse, the weak null singularities along
the Cauchy horizon must break down. We remark that despite all this impor-
tant progress, for the Einstein—-Maxwell-charged scalar field system in spherical
symmetry, it remains an open problem whether the Hawking mass generically
blows up identically at the Cauchy horizon.

1.2. Outline of the Paper

The remainder of the paper is organized as follows. First, in Sect. 2, we will
introduce the geometry of the interior of Reissner—Nordstrém. In Sect. 3, we
establish some simple bounds with energy estimates and use them to define
the scattering maps in the interior of Reissner—Nordstrém for spherically sym-
metric data. In Sect. 4, we will state a precise version of Theorem 1.1 (Theo-
rem 4.1). In Sect. 5, we discuss the scattering map for spherically symmetric
data in phase space. Using this, we prove Theorem 4.1 in Sect. 6. Finally, we
apply our Theorem 4.1 to the spherically symmetric Einstein—-Maxwell-(real)
scalar field system to obtain a conditional mass inflation result in Sect. 7.
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2. The Geometry of the Interior of Reissner—Nordstrom

Let M and e be real numbers satisfying 0 < |e| < M. We define the interior of
Reissner—Nordstrom with parameter M and e to be the Lorentzian manifold
(MRN, grN), where

e Mpy =R x (r_,ry) x S?, where ro = M ++/M? — e2;
e the metric gy of the Reissner—Nordstréom spacetime given by:

, oM 2 oM e\ !
gRN:_(l_r+r2)dt®dt+<1_r +r2> dr @ dr + r’gse,
(2.1)

where t € R, r € (r_,r;) and gs2 is the metric on the standard round
sphere of radius 1.

Together with an appropriate Maxwell field, Reissner—Nordstrom is a solution
to the Einstein—-Maxwell system.
2.1. Spherical Symmetry and the Quotient Manifold
The Reissner—Nordstrom spacetime (M gy, grn) is easily seen to be spher-
ically symmetric® in the sense that for Mry = Qgry x S? and Qry =
R x (r—,ry), we can write

9RN = gony + 17952,
where

e (QRrN,90sy) is a (1 + 1)-dimensional Lorentzian manifold with go,,
given by

2M  e? oM e\ "
gQRN:_<1_T+T‘2> dt®dt+(1_7’+7”2) dT@dT;

e given a point p € Mgy, r(p) depends only on w(p), where 7w : Mry —
Qpgn is the natural projection map.

We will denote by ¥ a point on S2. Frequently, we will also use the standard
spherical coordinates (6, ), in which case we have

gs2 = d6? + sin” 6 dp?.
2.2. The (u,v) Coordinate System

We define the r* coordinate in the interior of the Reissner—Nordstrom black
hole:

2M? — 2 2M? — 2
r*=r+ | M+ —m——— | log(ry — 7))+ ( M — ————= | log(r —r_).
( 2/ M2 —e2> Bre = 1) < 2V M? —92> “l :

(2.2)
Notice that this implies
dr r?2 —2Mr + e?

dr* 72

5See Sect. 7.1 for a general discussion.
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Define then the null coordinates
vi%(r*—kt), uié(r*—t), (2.3)
which implies
0 0 0 0 0 0
do o o ou o o
According to (2.1), in this coordinate system, the Riessner—Nordstrom metric
takes the form

(2.4)

QQ
JRN = — I;N (du ® dv + dv @ du) + 7% N gs?,

where rgy = r is now thought of as a function of (u,v), and Q% = —4(1 —
fgv + r?jN) Moreover, by (2.2) and (2.4), we have
2M  e?
OyrrN = OurRN =1 — — + —5—. (2.5)
TRN RN

In the (u,v) coordinates, the spherically symmetric wave equation
Ogrn® = 0 takes the form

0u0s + a”iRN Butd + a“TTRN By = 0. (2.6)

2.3. Event Horizon and Cauchy Horizon

We attach boundaries to Qg n, known as event horizon H;;t o and Cauchy hori-
zon CH., ., to obtain a manifold-with-corner Qgy. Define Mpn = Qprn X S?.
Abusing conventions slightly, we will also refer to H;ml x S§? € Mgy as the
event horizon, and C'H;t u X S? C Mpn as the Cauchy horizon. Notice that
the metric gry extends smoothly up to the boundary.

Define the functions Uy +(u), Upp+ (1), Vig+ (v) and Vegy+ (v) which are
smooth and strictly increasing functions of their arguments and satisfy the
following ODEs:

% = ¥ +% and Up (u) — 0 as u — —oo; (2.7)
d[ifi;ﬁ =e 2" and Uppr(u) — 1 as u — +oc; (2.8)
% = e+ and Vi+ (v) — 0 as v — —o0; (2.9)
d‘gi;ﬁ =e 2~ and Vpy+ (v) — 1 as v — 400, (2.10)
where k£, > 0 and x_ > 0 are defined to be to be®
/@i%, ﬁ,i%. (2.11)

6Note that this coincides with the definition in [22], but differs from that in [21], where x_
is taken to be negative.
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In the (Up+, Vy+) coordinate system, we attach the boundaries H =
{Uyp+ = 0} and Hy = {Va+ = 0}. Denote also the event horizon as H;,,, =
HT UHS. In the (Ugp+, Vorr ) coordinate system, we attach the boundaries
CH = {Vopr =1} and CHF = {Ugy+ = 1}. Denote also the Cauchy horizon
as CH},., = CHf UCHS.

We define the bifurcation sphere of H;ml by
By =HI NHE = {(Ups, Vigs) : Uy = Vs =0}

Note that By+ is a subset of both H{ and Hj . Similarly, define bifurcation
sphere of CH;.,., by

By = CHY NCHY = {(Ucp+, Ver+) : Uepr = Vepr = 1}

2.4. Behavior of 2z N Near the Horizons

Using (2.2) and recalling (2.11), it is easy to check that 7* can then be alter-
natively written as

1 1
* :TRN‘f‘mlOg(“r —TRN) — %—_log(rm\r—r,). (2.12)

We compute that as rry — 74, we have

K

sy .
Ty —rRy = e 2T (e —r )5 2T (14 O(ry — rRN)).

In other words, for any A € R, in the r* < A region (i.e., in a neighborhood
of the event horizon),

1
ZQ%:N = —O0uTRN = —OuTRN

e 24T+ (ry — r,)H_% .
= 2 T (14 Oalry = ran))
Jr

= Oa(e?+m). (2.13)

On the other hand, as rgry — 7_, we have

K

RN —T— = e2r-T- (T’+ — T’_)’%reizn’“ (1 + O(’I’RN — T‘_)).

As a consequence, for any A € R, in the * > A region (i.e., in a neighborhood
of the Cauchy horizon),

1
ZQ?%N = —0uTRN = —0yTRN

K

e 2m =T (rp —r_) "+ .
_ ( + ) 672/@_7" (1 + OA(T'RN _ ,r,_))

= O4(e7 25", (2.14)
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2.5. Killing Vector Fields on (Mpgn,grN)
The Reissner—Nordstrom interior (Mgn,grn) admits the following Killing
vector fields:

9
T =8, O=sinpdy+ DL ,
sin 0 sin @

O3 = 0. (2.15)

Note that all of these vector fields extend smoothly up to the event hori-
zon and the Cauchy horizon. In particular,”

i 0
Do, Oy = cos iy — S0LC0SE

®)

1 1
T = §8v on H{ and CHy, while 7' = —§8u on Hy and CH{. (2.16)

2.6. Volume Forms

Before we end this section on the Reissner—Nordstrom geometry, we briefly
comment on volume forms on (Mpgy, grn)-

The metric ggry induces a natural (positive) volume form vol. In the
(u,v,6,p) coordinates, we have

2M 2
vol = \/—detgry dudvdfdy = —2 (1 -—+ 2) %\ sin @ du dv df dy
RN  ThN
1
= ir%NQ%N sin @ dudv df de. (2.17)

On constant-u and constant-v null hypersurfaces, we define positive volume
forms vol,, and vol,,, respectively, by vol = du A vol,, and vol = dv A vol,,. It
can then be checked that

2

, 2M e\ 5 1y, o .
vol, = 21— — + 5— | reysinfdvdfdy = —rpyQiy sinfdvdf de,
TRN RN 2

) 2M e\ , . 1o, 5 .
vol, =—2(1— + —— | rrysinfdudfde = -rpNQk Ny sinf dudd de.
TRN RN 2

(2.18)

We will also use doy to denote the standard volume form of the induced metric
on the sphere of symmetry. Note that

doy = r%y sin0dé de.

3. Energy Estimates for Spherically Symmetric Solutions in the
Interior of Reissner—-Nordstrom

In this section, we discuss a scattering theorem for the (1.1) on (Mgn,grN)
for spherically symmetric solutions. We first review the vector field multiplier
method (specialized to the spherically symmetric case) in Sect. 3.1. In Sect. 3.2,
we derive energy estimates for solutions to the wave equation with spheically

"Here, this is to be understood as the extension of the coordinate vector field 9 in the (u,v)
coordinate system to M. Similar convention is used for 9,, on H; and CH{F.
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symmetric data. Finally, in Sect. 3.3, we define the transmission and reflection
maps.

3.1. The Vector Field Multiplier Method

In this subsection, we review some general notions regarding the vector field
multiplier method. These will be useful not only for Theorem 3.7, but also for
the rest of the paper.

We begin with the definition of stress—energy—momentum tensor on a
general Lorentzian manifold:

Definition 3.1 (Stress—energy-momentum tensor). Define the stress—energy—
momentum tensor by

. 1 HETON
Ty [6] = 0,00,6 = 500 (9™")** 30000,
The following easy standard positivity property will be useful:

Lemma 3.2 Let X, Y be future-directed and causal at a point p, then
(T[g](X,Y))(p) = 0.

Denoting by V the Levi-Civita connection associated with g, we have
VHT @] = Og0p0, 0,
which implies the following energy identity:

Lemma 3.3 (Energy estimates). For a compact region D C M with piecewise
smooth boundary 0D, which is oriented with respect to the outward pointing
normal, Stokes’ theorem now yields

/ Urg)(x,yt VOl = / d(vzg)(x. vOl) = / (6] V" X* + 0,6(X0) ) vol,

oD D D
(3.1)

where vol is the volume form induced by the metric g.

In order to apply the energy estimates (3.1), it is convenient to make the
following definition:

Definition 3.4. Given a C vector field X, define the deformation tensor (X)x
O, =V, X, +V, X,

On (MgnN,9rN), (X)w,w can be explicitly computed as follows (see [10]):

Lemma 3.5. For every spherically symmetric C' wvector field X on
(MERN,9grN), the following identity holds on (MgnN,grN):
4

T, [0] 7 = ——— (8, X")(0p0)* + (9, X)(0u0)?)
QRN
C X X (0,00,6) — 2 (mew L 0.X")
RN 2

+X"9,log Qpn + X "0, log Urn) V%,



378 J. Luk et al. Ann. Henri Poincaré

where |V $|? is the square of the norm of the angular derivatives with respect
to the induced metric on the 2-spheres of symmetry, and is given in the (6, p)
coordinates by

Vo = —— (050)* + ——

TRN ’I“RNSiIl29

(90)*.

3.2. Energy Estimates

In this section, we use the formalism defined in Sect. 3.1 above to prove energy
estimates for spherically symmetric solutions to the wave equation g, ¢ = 0.

We remark that the energy estimates presented in Theorem 3.7 are by
now standard; see for instance [10,18]. One particular feature of the energy
estimates we use is that we apply a multiplier vector field which is non-smooth
(C° but not C1) at the horizons (see the definitions (3.5) and (3.6)). This type
of non-smooth multiplier, which appeared already in [22, Proposition 9.2] (see
also [8]), generates some better spacetime terms, which will be useful later in
Sect. 7.5.

Before we proceed, let us define some useful weight functions:

Definition 3.6 (Polynomial weights). Given p € [0,00), let w, : R — R be a
smooth and non-decreasing function such that

1 ifr<i
_ — 2
wp(w) = {293? o> 1.

We are now ready to give the main energy estimates.

Theorem 3.7 (Energy estimates in spherical symmetry). Fiz p1, ps € (1, +00).
Let ¢ be a solution to

DQRN¢ =0

in Mgy which is smooth up to M., ., = H{ UHS with spherically symmetric
characteristic initial data on H," , such that the following holds:

tota
(1)
0] fBH+= 0, lim ¢ FHT (’U) =0= lim ¢ rH;r (u)v

v—+00 U——+00

(2)

+/ Wy, (—w)wp, (w)(T'¢ FH;)Z(u) du = A < +00. (3.2)
R

Then, the following holds for some C' > 0 depending only on p1, ps, M
and e:

(1) The following uniform upper bound holds:
sp [ 13, (0 (~0) @00,
R

u€eR
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tsup [ (<0 (00,02 (0,0) du < O (3.3)

veER
(2) The solution ¢ extends to a continuous function (which we abuse notation
slightly and write) ¢ : My UH,  UCHE | — R.
(8) The derivative 0,¢ extends continuously to CHF \CH{ and the derivative
Ou¢ extends continuously to CHy \ CHy .
(4) The extension of ¢ satisfies ¢ lercrs @ lepg € WZLCQ and obeys the esti-
mate

/R Wy (0)10 (—0) (TS Iy )2 (0) o

—|—/ Wy, (—u)wp, (u)(T' [CHT)Q(u) du < CA. (3.4)
R

Proof. In this proof, constants C' and implicit constants in < depend only on
p1, P2, M and e.
Step 1: Energy estimates and proof of (3.3) Fix o > 1 and define the function

y(r*) by

sty =2- T8 [ as ey aeey. (35)

Here, r* is a function of u, v given by (2.3). Notice that (3.5) is well-defined
since o > 1. Moreover,

(1) y is decreasing in r*,
(2) 1<y <2, and
(3) ylnr=2and y [ep+=1.
Define the vector field Y by
Y = yN(T*) (Wp, (V)wp, (1) 0y + wp, (—u)wp, (1)0y) - (3.6)

First note that Y = y™(r*)wp, (v)wp,(—v) > 0 and Y* = yN(r*)
Wy, (—u)wp, (u) > 0, i.e., Y is future-directed and causal. Hence, by Lemma 3.2,
we get a non-negative energy. Indeed, by Lemma 3.3 with X =Y, and using
(2.17), (2.18), we obtain that there is some ¢g > 0 such that for any u., v. € R,

S 0 (0 B0, 0) o
[ (), ()7 (0,6 v) du
{v

. / 2V, (0, (<077 (909) 2 (u, v) do
Hi

(3.7)

+/ 2pr1(—u)wpz(u)ri(auqﬁ)?(u,v) du

HE

1
— f/ 'I[',w(y)ﬂ"‘” 2N %y dudo

2 J{(usw)iue(—o0,u.), vE(—00,0,)}

1 14
= 2N*+22 4 5/ T, Y 1720 Q% dudo,
{(u,v):ue(—o00,u), vE(—o0,v.)}
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where in the penultimate identity we used properties of y above, and in the
last line we used (2.16) and (3.2).

We claim that there exists NV sufficiently large and ¢ > 0 (both depending
on o, M and e) such that

(Y) > ¢ . 2
T'u,y a T QRN - (1+ ‘T*|)U (wpl(v)wPQ( U)(av¢)

Fuwp, (—u)wp, (u)(9u9)*) = 0. (3.8)
The verification of (3.8) will be postponed to Step 1(a).

Accepting (3.8) for the moment and fixing N such that (3.8) holds, the
desired estimate (3.3) is an immediate consequence of (3.7), y > 1 and r > r_.
Step 1(a): Controlling the bulk term in the energy estimates Our goal now is
to prove (3.8). Since ¢ is spherically symmetric, by Lemma 3.5, we have

T, )i — *Qf ((0.Y")(0,9)*+(8,Y ") (0u9)?) *é(yuyu)(&‘w@d))
RN
- M A )T (YO(000) + Y (0u0)?)
QRN

(3.9)

Main term

20 Y (060,6)

Error term

Note that r% Q% (Main term in (3.9)) > (RHS of (3.8)) since rpx and y are
both bounded above and away from 0. Therefore, in order to prove (3.8), it
suffices to show that for N sufficiently large, the “Error term” in (3.9) can
be dominated by the %x “Main term.” We consider the following cases, which
exhaust all possibilities (although not mutually exclusive):

Case 1: v > 0,v > 2|ul. In this region, r is bounded away from r. There-
fore, 0%y < e~ 26 (v+u) by (2.14) (where here, and below, the implicit constant
depends on M and e, but is independent of v and v). Using v > 2|ul, this im-
plies 0%y < min{e *-v e~2%-1ul} Since 7* = v + u, there exists ¢ > 0 such

that W}rlr\)” > max{e, eI}, This implies

. Yv Yy
o { Gy + )7 Gy + e
Therefore, by choosing N > 0 sufficiently large and using the Cauchy—Schwarz
inequality for the “Error term,” one sees that (3.9) is positive in this region.
Case 2: v <0, |v| > 2|u|. In this region, r is bounded away from r_ and
hence Q2 < 2%+ This then implies Q2 < min{e "+l e=25+1ul} As a
consequence, (3.10) holds and the rest of the proof proceeds as in Case 1.
Case 3: u > 0,u > 2|v|. This can be treated similarly as Case 1.
Case 4: u < 0, |u| > 2|v|. This can be treated similarly as Case 2.
Case 5: uv <0, |u| < 2|v| < 4|ul. In this region, we have YV ~ Y* and
m > 1. As a consequence, (3.10) holds and the rest of the proof
proceeds as in Case 1.

} 2 max{Y", Y“} . (3.10)
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Case 6: uv > 0. Since u and v have the same sign, one checks that there
exists ¢ > 0 such that m > eI+l n particular, (3.10) holds and
the rest of the proof proceeds as in Case 1.

We have thus verified the claim (3.8).
Step 2: Proof of continuous extendibility of ¢ Continuous extendibility is a
direct consequence of (3.3). Indeed, (3.3) and the Cauchy—Schwarz inequality
imply that for u, u', v, v’ € [1,+00),

[6(u,0) = B, )| S o=
It therefore follows that for u, v € R, we can define ¢ FCHT (u) and
0] TCH; (U) by

¢ [CHT (w) = lim ¢(u,v), ¢ [CH;' (v) = lim ¢(u,v),

v——+00 u——+o0

r1 —1 p1—1

— (@) 4 T - ()T L3

where the limits exist because of (3.11). Using (3.11) again, we see that

lim ¢ {CHT (u) = lim ¢ TCH; (v),

u——+o0 v——+o00

and thus we can define

¢ chnJr: ull,rfw¢ rC”H;r (u> = Uggloo(b rcH; ('U>

We have thus defined an extension of ¢ to Mgy UH:‘OmlUCH;Ztal. Finally,
using again (3.3), it is easy to check that the extension is continuous.
Step 3: Proof of continuous extendibility of 0,¢ and 0y,¢ We show that 0,¢
extends continuously to CHy \ CH{; the corresponding statement for 9,¢ can
be proven in a very similar manner.

Using (3.3), we have

sup </0 (14 u?) % (8,0) (u, v) du + /()+OO(1 +u?) 7 (0,0)%(u, v) du>

vER —00
< +oo. (3.12)

Since ¢ is spherically symmetric, the wave equation [y¢ = 0 takes the
following form (cf. (2.6)):

Oulrandud) = —(Ourn) (u0) = 1 Vn0ut, (313)

where we have used (2.5) in the second inequality.

Notice that by (2.13) and (2.14), we have the Naive bound Qzry < 1.
Thus, (3.12) and the Cauchy—Schwarz inequality imply that the RHS of (3.13)
is L' in u (uniformly in v). It therefore follows from (3.13) that 9,¢ extends
continuously to the Cauchy horizon CHy \ CH{ .

Step 4: Proof of (3.4) By (3.3), the Banach—Alaoglu theorem, and the point-
wise convergence of ¢ as v — +o0o (established in Step 2 above), there exists a
sequence v; — 400 such that (8,¢) [{y=v,} has a weak L?(wp, (—u)wp, (u) du)
limit, and it is straightforward to see that this limit must coincide with the
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weak (and hence actual) d,-derivative of ¢ along CH; . Hence, 9,¢ rCHf sat-
isfies

||6u¢) rCHIr ||2L2(w,,1 (—u)wp, (u) du) < I;T_:g”(augb) r{U:Ui} ||2LQ(w,,1(—u)wp2(u) du)

< CA, (3.14)

by (3.3). An entirely analogous argument gives
||8U¢ ch; ||2L2(wp1(—u)wp2 (u) du) < CA. (315)
Combining (3.14) and (3.15), and then using (2.16), yield (3.4). O

3.3. Definition of the Transmission and Reflection Maps

Given Theorem 3.7, we now define the transmission map and the reflection
map.

We prescribe rT'¢ rHT: W and rT'¢ [H;: 0, solve the wave equation,
and define 7V = rT¢ [CH; and RVU = rT'¢ [CHT. More precisely,

Definition 3.8. Let p1, p2 € (1,+00). Suppose ¥ is a smooth function on H; U
By with W[5, , =0, fHT U(v)dv =0 and

/ Wy, (V)wp, (—v) ¥ (v) dv < +oc.
M

Let ¢ : Mgy UHT — R be the unique smooth solution to Oy, ¢ = 0
arising from the (smooth) characteristic initial data

¢ T+ (V) = 3/ (') dv', ¢ lyy (u) =0.

! T+ J-x
Define the transmission map 7T and the reflection map R by
TV =r_T¢ [CH;, RY =r_T¢ [CHT . (3.16)
Note that both maps are well-defined by Theorem 3.7.

4. Statement of the Main Theorem for the Linear Wave
Equation

In this section, we give a precise statement of Theorem 1.1. (As already men-
tioned in introduction, the discussion of the main theorem on mass inflation
in the nonlinear setting (i.e., Theorem 1.12) will be postponed to Sect. 7.)

We give two versions of the theorem in Theorem 4.1 and Corollary 4.2.
The statement in Corollary 4.2 should be thought of as the main, more impor-
tant result, though it is convenient to first prove a slightly weaker statement
as in Theorem 4.1. (The difference between the two theorems is that in The-
orem 4.1, we make some global assumptions of the data, including requiring
the data to vanish on B+ and on a large portion of H; . In Corollary 4.2, we
apply an easy cut-off argument to show that we only need assumptions of ¢
on H as v — +00.)
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The conclusion of the proofs of Theorem 4.1 and Corollary 4.2 can be
found, respectively, in Sections 6.2 and 6.3.

Theorem 4.1. Let ¢ be a smooth spherically symmetric solution to (1.1) on
Mpy U H;’;ml. Suppose the following holds:

(1) There exists v. € R such that ¢ et (v) =0 for every v < v,.
(2) There exists u, € R such that ¢ [t (u) =0 for every u > us.
(3) limv_,+oo¢ [er (0) =0.

(4) f v} (T [H+) dv < +00.
(5) There exists an even integer p > 4 which is the smallest even integer for
which
“+o0
/ (1+0*)2(T Iyyp)? dv = +oc. (4.1)
1

(6) For p as above,

+oo
/ (1+0%)3(T?¢ I54)* dv < +o0. (4.2)
1

Then, the following holds (with p as above):
(1) For any u € R,

+oo
/ (14 v?)%(0y0)? (u,v) dv = +o0. (4.3)
1
(2) The following weighted energy along the Cauchy horizon is infinite:
-1
/ (1+u?)%( 1ir+n (T9)?(u,v)) du = 4o0. (4.4)
— 00 V—+00

Corollary 4.2. Let u, € (—o0, —1). Suppose ¢ is a spherically symmetric so-
lution to (1.1) on (Mpx UHT) N {(u,v) : u € (—00,us], v € [1,+00)} which
is smooth up to Hi. Suppose that only assumptions (3), (4), (5) and (6) of
Theorem 4.1 hold, then the following slight modifications of conclusions (1)
and (2) of Theorem 4.1 still hold:

(1') For any u € (—o0o, us),

“+oo
/ (1+ v2) 8 (8y6)2(u, v) dv = +o0. (4.5)
1
(2') The following weighted energy along the Cauchy horizon is infinite:
/ (1+u?)3( hr+n (T¢)?(u,v)) du = 4oo0. (4.6)

Remark 4.3. (Alternative assumption for the improved decay of higher deriv-
ative) In both Theorem 4.1 and Corollary 4.2, the assumption (4.2) can be
replaced by 3k > 2 such that

+o00
/ (140%)5(T"¢ [H;r)2 dv < +o0.
1
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The proof of this more general statement is essentially the same; we omit the
details.

5. The Kehle-Shlapentokh—Rothman Scattering Theory

In this section, we collect some facts about the transmission and reflection
maps (recall Definition 3.8) proven in [18]. (Some of the results in [18] were
stated in slightly different function spaces from those we consider, but their
proofs can be easily adapted to our setting.) In particular, we will recall that
the transmission and reflection maps admit simple phase space representations
as operators defined by Fourier multipliers; see Proposition 5.7.

5.1. The Radial ODE
Definition 5.1. Define V' by

2
(1- 7~2M + 2= )[ren(ry + 1) = 2ryr_ ]
V(r*) = RN AN ’ (5.1)
RN

where we think of rpy as a function of r* using (2.2).
For w € R, define u; and uy as the unique solutions to the Volterra
integral equations

s

uy(w,r*) = ™7 4 /_r Sin(w(;;y))v(y)ul(%y) dy, (5.2)

T'* sin(w(r* — y))

waloyrt) = e 4 [

— 00

V(y)ua(w,y) dy; (5.3)

and define v; and vs as the unique solutions to the Volterra integral equations

2 sin(w(r* — y))

o1 (w,r") = e’ +/ » V(y)o1(w,y)dy, (5.4)

iy [ S )
T

UQ(UJ,T*> = V(y)UQ(w’y) dy7 (55)

* w

Here, when w = 0, we define “m(“(ww lom0=1* — 1.

Remark 5.2. The Volterra integral equations relate to the wave equation as
follows.
The functions uy, us, v and vy are defined to satisfy the ODE

W+ (W= V)u=0. (5.6)

For sufficiently regular spherically symmetric function ¢, define

~ 1 .
O(w,r) = E/Re_“”t(b(t,r) dt.
If ¢ solve Ug¢ = 0, then u = ré satisfies (5.6).
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Definition 5.3. Define the transmission coefficient T : R\ {0} — C and reflec-
tion coefficient R : R\ {0} — C to be the unique coefficients such that
u; = Toy + Ros.
Note that they are well-defined since when w # 0, v; and vs are linearly
independent. In fact, T and R take the form
QU(ul,Ug) . Qﬂ(uhnl)
T W=
where 20 is the Wronskian defined by 20(f,g) = f¢’' — f'g.
We will use some properties of T and R proven in [18].
Proposition 5.4. (1) (Proposition 2.5 in [18]) ¥ and R extend to analytic
functions on C\ P, where P = {imry : m € N} U {iks_ : k € Z\ {0}}
(k+ asin (2.11)), are the locations of possible poles.

In particular, T and R are well-defined and analytic on R.
(2) (Theorem 2in [18]) ¥ and R are uniformly bounded on the real line, i.e.,

sup(|3w)] + R(w)) S 1.

T(w) =

)

(8) (Proposition 2.4 in [18]) For every w € R,

(@) — [R(w)* =
(4) (Proposition 2.5 in [18])

-3 (50 2). o (%)

Remark 5.5. Regarding points (3) and (4) in Proposition 5.4, the only thing
we need below is that T(0) # 0 and 9%(0) # 0. Part (3) in Proposition 5.4
can be thought of as a (microlocalized) version of the T-conservation law. In
particular, this means that T(0) # 0 follows from the T-conservation law as
an easy consequence. On the other hand, one does not need to appeal to the
conservation law, and can compute ¥(0) directly, as in done is part (4) of the
proposition.

5.2. The Scattering Map and the Radial ODE

Definition 5.6. Let ¥ : H] — R be a spherically symmetric function (of v).
Define the Fourier transform ¥ (whenever well-defined) by

U(w) = % /_00 X (v) do.

Similarly, for 7¥ : CHy — R and R¥ : CH — R, we define the Fourier
transform (whenever well-defined) by

TV (w f / T U () dv, RU(w \F / e 2R (u) do

Proposition 5.7. (Theorem 3 in [18]) The transmission and reflection maps de-
fined in Definition 3.8 are given by the following Fourier multiplier operators:

TU(w) = T(w)V(w), RI(w)=R(w)P(w).
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6. Proof of the Main Theorem

In this section, we prove our main results on the linear wave equation, i.e., The-
orem 4.1 and Corollary 4.2.

The statements (1) and (2) of Theorem 4.1 have very similar proofs. We
will give a detailed proof of the statement (1) in Sect. 6.1 and then briefly
discuss the necessary modifications for the statement (2) in Sect. 6.2.

The proof of Corollary 4.2 then follows as a consequence and will be
carried out in Sect. 6.3.

6.1. The Transmission Map and Instability Results in the Black Hole Interior

In this subsection, we prove statement (1) of Theorem 4.1.
Before we proceed, let us give a brief summary of the argument.

(1) First, we show that without loss of generality, we may assume that ¢ [H;
(u) = 0.

(2) Next, we note that the transmission coefficient is bounded below at w = 0
(see Proposition 6.2).

(3) Then, using Plancherel’s theorem, we show that the assumptions of The-
orem 4.1 and the previous step to imply the blow-up of a global weighted
energy at the Cauchy horizon for the transmission map (see Proposi-
tion 6.3).

(4) Next, we argue using a physical space argument (more precisely, Theo-
rem 3.7) that the global weighted energy blows up due to the behavior
as v — +o0 on CHy (instead of v — —oc0) (see Proposition 6.4).

(5) Finally, using a local energy estimate, we show that the blow-up on CHy
translates to the blow-up statement for finite u stated in Theorem 4.1
(see Proposition 6.5).

We begin with the first step, which is to show that in the proof of state-
ment (1) of Theorem 4.1, without loss of generality, we may take ¢ [0t (u) =0.

Proposition 6.1. To prove Theorem 4.1, it suffices to prove statement (1) of
the theorem under the additional assumption that ¢ [H;r (v) =0.

Proof. Let ¢ satisfy the assumptions of Theorem 4.1. We now define two aux-
iliary smooth solutions ¢ics; and ¢,ign¢ to the wave equation on Mgy U?‘(,I)ta1
as follows:

(1) For ¢yes¢ we solve a characteristic initial value problem with
¢left TH; (U) =¢ FH; (u) and leeft ij (U) = 0.
(2) For ¢,ignt, we solve a characteristic initial value problem with
(bright rH;r (u) =0 and ¢right rH;r (’U) = ¢ F’){l* (’U)
We have, of course, that

(ZS = ¢left + ¢7‘ight~ (61)

Observe that in view of the smoothness and support assumptions of ¢,
we have that (3.2) holds for ¢;s; with any non-negative values of p; and ps.
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Moreover, the other hypotheses for Theorem 3.7 clearly hold for ¢y, and it

is thus an immediate consequence that
(6.2)

/ 1+ |v|)p|5q,¢left|2(u,v) dv < 400, Yu € R.
1

Now, it suffices to observe that for any u € R, (6.2) and (6.1) imply that

/ (1 £ 1o)?19v 62 (u, v) dv = 400

1

A /Oo(l + |U|)plav¢right|2(uvv) dv = +o0. (63)
1

O

We now turn to the next step, which is to show that the transmission
coefficient is nonzero at w = 0.

Proposition 6.2.
T(0) £ 0.
Proof. This is immediate using either part (3) or part (4) of Theorem 5.4. [
Next, we use Plancherel’s theorem to prove a global blow-up result.

Proposition 6.3. Let ¢ be as in the assumptions of Theorem 4.1 and satisfy

(6.4)

10) [H;: 0. Define
V() = 1 (T6) s (v).

Then,
/OO [v[P|T¥|?(v) dv = 4-o00.

Proof. Step 1: Writing the assumptions in phase space Conditions (1), (4) and
(5) in Theorem 4.1, together with (6.4), imply that

/OO [o[P|¥|2 (v) dv = +o0; (6.5)

— 00

and the condition (6), together with (6.4), imply that
(oo}
/ P |TW[2(v) dv < +oo. (6.6)

— 00

By Plancherel’s theorem (and recalling that p is even), (6.5) and (6.6)

imply
00 b 12 0o » 2
/ 038" (@) dw = 4o, / 02 (@0)] (@) dw <+ (67)

Since p is the smallest even integer such that (4.1) holds, we can bound
ez |2
0?2 \Il‘ (w)dw < +00. (6.8)

| ][aé,wwf(w)dw—f/j;

— 00
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Combining (6.8) with the second estimate in (6.7), we obtain

/OO ‘w(aéiz)f (@) dw < 400, (6.9)

— 00

Combining (6.9) with the first estimate in (6.7), we obtain

1, , 2
/Jag\p] (w) dw = +o0. (6.10)

Step 2: Finishing the proof By Plancherel’s theorem and Proposition 5.7, it
suffices to prove
a
/.

for some a € Rso. We will prove (6.11) for a = 1.
To achieve (6.11), first notice since

P
2

02 (TV)

2
\ (w) dw = 400 (6.11)

e p is the smallest even integer such that (4.1) holds, and
e T and its derivatives are uniformly bounded for w € [—1, 1] by analyticity
(Proposition 5.4),

we have (for some constant C' > 0 depending only on p),
a
/.

It therefore suffices to establish

P2 1 ~ 2
08 98] <o ¥ / |(@55) (0 8)| (@) dw < +oo.
ki+ka=5% -1
ka< 252

1 2
/ ]s(afxp)] (w) dw = +o0. (6.12)
—1

For the sake of contradiction, we assume (6.12) fails. Since T(0) # 0 (by
Proposition 6.2) and ¥ is continuous (in fact even analytic by Proposition 5.4),
there exist e € (0,1] and n > 0 such that |¥(w)| > n whenever |w| < e
Therefore, using this fact with (6.9) and the assumed failure of (6.12), we
obtain

Ty p 2 € P~ |2
/ 055 (w)dwgn’Q/ T(050)| () de

+ e

[_171]\[_676]
This contradicts (6.10). Therefore, (6.12) holds. O

At this point, the blow-up result that we obtained in Proposition 6.3 is
global, i.e., we do not yet know whether the blow-up is due to the behavior of
TV as v — 400 or as v — —oo. Nevertheless, in the following proposition, we
are able to use the energy estimates in Sect. 3.3 to deduce that the blow-up is
due to a lower bound of the decay as v — +o0.
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Proposition 6.4. Let W be as in the assumptions of Proposition 6.3. Then, TV
satisfies

1
/ (1+ o) TO2(v) dv < +oo.
—00
Therefore, when combined with Proposition 6.3, we obtain
/ (1+ [o)PI TP (0) dv = +oo.
1

Proof. This is an immediate corollary of Theorem 3.7 with p; = 2 and ps = p.
Notice that the assumptions (1)—(4) of Theorem 4.1, as well as the additional
assumption ¢ FH; = 0 as in Proposition 6.3, imply that the assumptions (1)—(2)
of Theorem 3.7 are satisfied. O

Proposition 6.5. Let ¢ satisfy the assumptions of Theorem 4.1 and satisfy
10) rH,j: 0. Then, the following holds for every u € R:

/100(1 + [0])P[0y d|* (u, v) dv = +oo. (6.13)

Proof. To show that (6.13) also holds for all finite u, we will argue by con-
tradiction. Assuming that (6.13) fails for some u; € R, we use a standard
propagation of regularity argument with finite time energy estimates to arrive
at a contradiction with the conclusion of Proposition 6.4.

Assume for the sake of contradiction that Ju; € R such that

/100(1 + [0))P(By ) * (ui, v) dv < +o00. (6.14)

Step 0: Some preliminary estimates for ¢ Before we proceed, first note that
due to the conditions (1)—(4) of Theorem 4.1, we can apply Theorem 3.7 with
p1 = 2 and py = p. In particular, (3.3) implies that

—1 +oo )
21€1£ (/00(1 + %) (04 0)* (u, v) du +/1 (14 u?)2(8,0)%(u,v) du) < 400.
(6.15)

Step 1: Propagation of reqularity by finite time energy estimates Multiplying
(3.13) by (1 + |v|)PrrNnOy¢, integrating a region (u,v) € [u;, us] % [0,vs] and
integrating by parts, we obtain

1 [
5 0D Ty (0.0 s 0 do
= 5 [ R 0,02 () (6.16)

1 [Yvr [ur
+ 1/1 /ul (1 + |U|)pQ§%NTRN(au¢)(8U¢)(u7v) du dv.

The last term on the RHS of (6.16) can be controlled as follows using Hélder’s
inequality:
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/1 / 1+ |v)’QrnraN (0ud)(0vd) (u, v) dudv

l=

<o ([ @ ol 9nio0f o) dudo
1 U

g (/f /ujf“ + o))" QU [0udl (u, v) du du)

1 1

vy 2 uyp 2

< s [T ppoetwode) ([T sp Oy ode
uE[ui,Uf) 1 u; 'uE[l,'Uf)

=T

1
uf 2 vy
X sup / |8u¢\2(u,v) du / sup (1+ |v|)pQ%N(u, v)dv
vE[lvp) Ju, 1 u€lujuy)

=II =III

N

Note that in this region (which is a subset of {(u,v) : u > u;, v > 0}), we have
SUPye[0,400) Q%{N(U,U) S min{eimi_uv 1} and SUPye[u;,+00) Q?%N 5 ey by
(2.14). Thus, I and III are bounded uniformly for all (uyf,vs) € [u;,00) X
[0, 0).

Moreover, IT is uniformly bounded for all (uf,vy) € [u;,00) x [1,00)
thanks to (6.15).

Therefore, using (6.14), (6.16) and Young’s inequality, we conclude that
2 [0 (14 v])Pr2(8,6)? (uy, v) dv is uniformly bounded for all (ug, vy) € [u;, 00)x
[0,00). Recall now from part (3) of Theorem 3.7 that the pointwise limit
limy— o0 |9pd|?(u, v) exists. By Fatou’s lemma, we can therefore take uf, vy —
+00 so as to show that

1 [e )
3 Ol tim 10,0 ) dv < +oc. (6.17)
On the other hand, by the definition of 7 in (3.16), the estimate in

Proposition 6.4, and (2.16),

[ o dim 10,00 0,0) dv = +oc. (6.15)
1 U— 100

Obviously, (6.17) and (6.18) contradict each other. It follows that (6.14) does
not hold. O

6.2. The Reflection Map and Power-Law Tails Along the Cauchy Horizon

We now turn to the proof of the second statement of Theorem 4.1. Inspecting
the argument for statement (1) of Theorem 4.1 in Sect. 6.1, one sees that as
long as we can show 9(0) # 0, the remainder of the argument proceeds in an
identical manner.

The fact that 23(0) # 0 is an immediate consequence of part (4) of Propo-
sition 5.4. (Notice that unlike the corresponding statement for ¥(0), the con-
servation law in part (3) of Proposition 5.4 does not provide any lower bound
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for R.) Once we know that 23(0) # 0, the remaining steps of the proof proceed
in exactly the same manner as Propositions 6.3 and 6.4; we omit the details.
(Note that in this case, the analogue of Proposition 6.4 already gives the de-
sired result, and we do not need to consider an analogue of Proposition 6.5.)
With this, we also conclude the proof of Theorem 4.1.

6.3. Proof of Corollary 4.2

Proof of Corollary 4.2. We prove Corollary 4.2 by reducing it to Theorem 4.1.
The main difference between Corollary 4.2 and Theorem 4.1 is that in Corol-
lary 4.2, the solution is only defined on a subset of M gy . In particular, Corol-
lary 4.2 does not impose the support properties assumptions (1)—(2) in The-
orem 4.1. We will therefore extend ¢ to all of Mgry and then use the finite
speed of propagation to reduce to Theorem 4.1

More precisely, given ¢ satisfying only the assumptions of Corollary 4.2,
we want to construct a solution 5 to ngv% = 0 which is smooth on Mgy U

H: .., and satisfies
(E(u,v) = ¢(u,v) when u < us and v > 1, (6.19)
& Iyr () =0 when v <0, (6.20)
6 Iygs (u) =0 when u > 0. (6.21)

We complete the proof of the corollary assuming for the moment that
such a ¢ exists. By (6.19), assumptions (3)—(6) of Theorem 4.1 are satisfied by
¢ (since the asymptotics are not changed at all). By (6.20), assumption (1) of
Theorem 4.1 is satisfied by ¢, while by (6.21), assumption (2) of Theorem 4.1
is satisfied by qNS It therefore follows that Theorem 4.1 can be applied to (E SO
that (4.3) and (4.4) both hold, but for ¢ instead of ¢. Using (6.19) again, this
then implies (4.3) and (4.4) both hold for ¢.

It remains to construct a smooth solution q~5 to DgRNqZ = 0 satisfying

(6.19)—(6.21). This is achieved in the following two steps.
Step 1: Construction of ¢in {(u,v) : u < u,, v € R} We first define, on the
event horizon H{, 5 er to be a smooth function so that 5 [HT (v) =¢ rHT
(v) for v > 1 and (6.20) holds. Define also ¢ on the line {(u,v) : u < us,v = 1}
so that ¢ r{(u,v):ugus,vzl}: o f{(u,v):uéus,v:1}~

We now solve the characteristic initial problem for O, N% = 0 with data
imposed above. First, by solving the characteristic initial value problem, we
define a solution in {(u,v) : u < us, v > 1}, which obeys (6.19) by a domain
of dependence argument. Then, we solve again the characteristic initial value
problem,® but now with data on {(u,v) : u < us, v = 1} and {(u,v) : u =

8We used spherical symmetry here to show that this characteristic initial value problem is
well-posed. However, notice that Corollary 4.2 can also be proven with an argument that
generalizes outside spherical symmetry. For instance, after introducing appropriate cut-offs,
we can show using energy estimates that the cutoff error only gives finite contributions to
(4.5) and (4.6).
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—00,v < 1} so that we obtain a solution in the region {(u,v): u < us, v < 1}
which contains By +.

We have thus constructed 5 in {(u,v) : u < ug, v € R}. Importantly,

(6.20) is satisfied by definition of the initial data, and ¢ is smooth in {(u,v) :
u < ug, v € R} up to the event horizon.
Step 2: Construction of %m {(u,v) : u > us, v € R} To define QNS in the
remaining region, we again solve a characteristic initial value problem. First,
we take ¢ [{(u,0):u=u,} tO be as given by the construction in Step 1. Define
also d) [H+m{(u Deusu.} SO that qS [H+ is smooth and gi) [H+ (u) =0 for u > 0.

Next, we solve the characterlstlc initial value problem with the data given
above to obtain a solution in the region {(u,v) : u > ug, v € R}. The resulting
gzb is therefore a solution to the wave equation and is smooth in Mzy U Htoml
By definition of the data, (6.21) is satisfied. Combining this with Step 1, in
which we proved (6.19)—(6.20), we have thus concluded the construction. [

7. Application to Mass Inflation for the
Einstein—-Maxwell-Scalar Field System in Spherical
Symmetry

In this section, we apply our Theorem 4.1 to the problem of mass inflation
for the Einstein-Maxwell-scalar field system (1.2) in spherical symmetry. This
proves Theorem 1.12. See Theorem 7.8 in Sect. 7.3 for the precise statement
that we prove.

We will first recall the definition and various facts about the Einstein—
Maxwell-(real) scalar field system in spherical symmetry in Sect. 7.1. In Sect. 7.2,
we then recall the results established in [22,23]. In Sect. 7.3, we state our main
result on mass inflation (Theorem 7.8). In Sect. 7.4, we begin the proof of
Theorem 7.8 by proving a mass inflation criterion which reduces the proof of
Theorem 7.8 to showing that the scalar field is not identically 0 at the Cauchy
horizon. In Sect. 7.5, we establish general energy estimates for inhomogeneous
wave equations on Reissner-Nordstrom. This in particular allows us to use
our main linear result (part (2) of Corollary 4.2) in a perturbative argument.
Finally, in Sect. 7.6, we conclude the proof of Theorem 7.8.

7.1. Einstein-Maxwell-(Real) Scalar Field System in Spherical Symmetry

We first discuss spherically symmetric solutions to the Einstein-Maxwell-(real)
scalar field system (1.2). The following definition is directly from [22].

Definition 7.1. (Spherically symmetric solutions) Let (M, g, ¢, F) be a suit-
ably regular? solution to the Einstein-Maxwell-(real)-scalar-field system (1.2).
We say that (M, g, ¢, F) is spherically symmetric if the following properties
hold:

9The precise regularity is irrelevant here. For relevant well-posedness statements, see [22,
Propositionss 2.4, 2.5].
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(1) The symmetry group SO(3) acts on (M, g) by isometry with spacelike
orbits.
(2) The metric g on M is given by

g:gg—|—7"2gsz7 (7.1)

where
Q2
go = —7(du®dv—|—dv®du) (7.2)

is a Lorentzian metric on the 2-dimensional manifold @ = M/SO(3) and
r is defined to be the area radius function of the group orbit, i.e.,

Area(n—1(p))
47 ’

for every p € Q, where 7 is natural projection 7 : M — Q taking a point
to the group orbit it belongs to. Here, as in the introduction, gsz denotes
the standard round metric on S? with radius 1.

(3) The function ¢ at a point = depends only on w(z), i.e., for p € Q and
z,y € w 1(p), it holds that ¢(z) = ¢(y).

(4) The Maxwell field F' is invariant under pullback by the action (by isom-
etry) of SO(3) on M. Moreover, there exists e : @ — R such that

e

= a2

It is well-known that for a solution to (1.2), e is in fact a constant.
In spherical symmetry, the Einstein-Maxwell-(real)-scalar-field system re-
duces to the following system of coupled wave equations for (r, ¢, )

m*(Q? du A dv).

0,07 = L — Burdur | e’
0y Opp = 8”8“4’ 8’”8”¢ (7.3)
0,0, log Q = —0, ¢y — Q;f + 9 4 Qurder
The solution moreover satisfy the following Raychaudhuri equations:
{a,,(%;):—W, (7
0u(g5) =~ |

In the context of the characteristic initial value problem, it can be easily shown
that if (7.4) are initially satisfied, then they are propagated by (7.3).
We will often use the following short hand for d,r and 0,r:
A=0,r, V=0,
Define the Hawking mass m : Q@ — R by
m = (1= go(Vr, Vr)),

where gg is as defined in (7.2). Alternatively, we can write

T 40,r0,r
m=50-—g )
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Finally, define the renormalized Hawking mass w : @ — R by

e

Combining (7.3) and (7.4) (see also [22, equation (2.8)]), it is easy to deduce
that

2 2
By = _2r20,1(0u9) Oy =

2120, (0, ¢)*
02 T2

o (7.6)

7.2. Results in [22,23]

In this subsection, we recall some results in the earlier works [22,23]. These
works show that generic solutions are C2-future inextendible. However, these
works by themselves do not guarantee that mass inflation holds.

For expositional purposes, let us only focus on the case where the initial
data have compactly supported scalar fields. In the works [22,23], one can
also allow polynomially decaying but non-compactly supported initial scalar
fields. It is straightforward to obtain modifications of our Theorem 7.8 in that
setting; we omit the details.

In [22], we introduced a notion of generic two-ended asymptotically flat
future-admissible spherically symmetric Cauchy data for (1.2). Since the pre-
cise definition is largely irrelevant to the remainder of the paper, we will not
repeat the definitions and refer the reader to [22, Sections 3.1-3.3] instead. For
the purpose of this discussion, let us just denote by G. the set of generic data
introduced in [22] which moreover are smooth and have compactly supported
initial scalar field. The theorems that we cite below apply in particular to
solutions arising from initial data in G..

7.2.1. A priori Boundary Characterization. We first state a preliminary re-
sult regarding the a priori boundary characterization of solutions. This allows
us to talk about various regions and boundary components of the solutions.
In the statement of the following theorem, we will only refer to the a priori
boundary characterization in terms of the corresponding Penrose diagram. To
make precise all the relevant notions needed for the Penrose diagram will take
us too far afield. Instead, we refer the reader to [22, Theorem 4.1].

Theorem 7.2. (Persistence of the Cauchy horizon (Dafermos [4], Dafermos—
Rodnianski [7]) and the boundary characterization of the solution (Dafermos
[5], Kommemi [20])) Consider a two-ended asymptotically flat future-admissible
spherically symmetric initial data set in G. and let (M, g, o, F) be the corre-
sponding mazimal globally hyperbolic future development.

Then (M, g) has one of the following two Penrose diagrammatic repre-
sentations:

We note already in terms of the boundary components defined above,
mass inflation will mean that m = +oc identically on both CHY and CHj .
Since the situation is completely symmetric for CH; and CHJ, from now on,
we focus our discussion on CHf. Completely analogous statements also hold
for CHy (Fig. 2).
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B nonpert N

FIGURE 2. Penrose diagram of the maximal globally hyper-
bolic future development of future admissible initial data

7.2.2. Stability of the Cauchy Horizon. Already implicit in Theorem 7.2 is a
statement (proven in [4]) that solutions arising from generic initial data set in
G. must have “a piece” of (null) Cauchy horizon. In fact, in the “rectangular
strip” %i{’ near the event horizon Hf (in either diagram) in Fig. 2, the so-

lution approaches Reissner-Nordstrom toward zf with a quantitative inverse
polynomial rate.

To summarize this stability result, let us first introduce the following
change of coordinates.

Definition 7.3. Given a system of null coordinates (U, v) in {(U,v) : 0 < U <
Us, 1 < v < +oo}, construct a new system of coordinates (u,v) by defining
a new coordinate function u = w(U) so that the inverse function U = U (u)
satisfies the following (compare (2.7))

dU
i e*+% and U(u) — 0 as u — —o0, (7.7)
U
where k4 = Z= and r+ = M £+ M? — €2 as in (2.11), and M and e shall
be specified when the definition is applied. Moreover, define ug by
us = u(Us). (7.8)

The following theorem can be obtained by combining Theorems 4.4 and 5.1
in [22].

Theorem 7.4. (Stability of the Cauchy horizon) Consider a two-ended asymp-
totically flat future-admissible spherically symmetric initial data set in G. and
let (M, g,¢,F) be the corresponding mazimal globally hyperbolic future devel-
opment.

Then there exist

e constants M and e with 0 < |e| < M,

e a double null coordinate system (U,v) on Q@ = M/SO(3), and

e a spacetime region {(U,v) : 0 < U < U, 1 <v < 400} (in a double null
coordinate system above) in the black hole interior

such that the solution settles down to the Reissner—Nordstréom interior with
parameters M and e.
More precisely, after
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o introducing a system of double null coordinate (u,v) as in Definition 7.3
with the above values of M and e, (and assuming that us < —1), and

o letting rrn and Qry denote the functions of (u,v) corresponding to the
metric components of the Reissner—Nordstrom interior of parameters M
and e in the coordinate system in Sect. 2.2,

the following estimates hold for every p < 3 in the (u,v) coordinate system in
{(u,v) : —00 < u < ug, 1 < v < 400}, for some constant C > 0 (depending
on p):

161(t, ) + | — 7| (,0) + log Q — log Qe (u,v) < Cu™ + [u]~7*),
|0u | (u, v) + |0y (r — rrN)|(u,v) + [0, (log Q — log Qrn)|(u,v) < Co~?.
Furthermore, for every A € R, there exists C > 0 depending on A and p such

that the following estimates hold {(u,v) : —0o < u < ug, 1 < v < +00}:

|0ud|(u,v) 4+ |0u(r — rrn)|(u, v) + [0y (log Q — log QrN)|(u, v)
- C’Q%NU”’ foru+v < A
| Clu|™? foru +v > A.

7.2.3. Lower Bound of the Scalar Field Along the Event Horizon. Next, we
state a lower bound for the scalar field along the event horizon, which holds
for solutions arising from a generic initial set in G.; see Theorem 7.5. This
result requires a genuine genericity condition, in addition to just requiring the
charge e # 0.

The lower bound in Theorem 7.5 is intimately connected to the blow-up
in the black hole interior and the generic C2-inextendibility proven in [22,23].

Theorem 7.5. (Lower bound along the event horizon) Consider a two-ended
asymptotically flat future-admissible spherically symmetric initial data set in
G. and let (M, g, 0, F) be the corresponding mazimal globally hyperbolic future
development. Then for an advanced null coordinate v such that

C~ ' <inf 3v72“ < supé2 C
HE L= T e 158
for some C > 0, we have'°
/ ¥(906)? dv = +oc. (7.9)
HY

7.2.4. Blow-up at C’Hi". In order to describe the result concerning blow-up
in the black hole interior, we introduce yet another double null coordinate
system.

Definition 7.6. We introduce the coordinate as follows:

10Note that in [22], we have the stronger result that for any o > 7,

/ N v (y¢)? dv = +o0.
H

1

We will not need this stronger statement.
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(1) We start with the coordinate system (U, v) as in Theorem 7.4, except that
U is defined for the whole CHT, beyond the perturbative region U < Us.

(2) Given the coordinate system (U,v), define (u,v) as in Definition 7.3.

(3) Define V = V(v) by the following relation

av

= e 2" and V(v) — 1 as v — +oo0. (7.10)
v
where k_ = "5 = and 7+ = M + vV M? — e? as in (2.11), and M and e

are as in Theorem 7.4
Moreover,
(1) define V3 =V (1), and
(2) define upy+ € (—00,00] to be such that pey+ = (ugy+,1) € Q corre-
sponds to the future end-point of CH; in the (u, V) coordinates.

In this subsection €2 is taken to be the metric component in (u, V') coor-
dinates, i.e., go = —%Z(du ®dV +dV @ du).

The following theorem can be found in [22, Theorem 5.5], specialized to
G.. This is a global theorem concerning CHT, even beyond the perturbative
region considered in Theorem 7.4.

Theorem 7.7. Consider a two-ended asymptotically flat future admissible spher-
ically symmetric initial data set in G, and let (M, g, d, F) be the corresponding
maximal globally hyperbolic future development.

In a neighborhood oin" in the interior of the black hole, consider the null
coordinates (u, V') defined as in Definition 7.6. Then, the metric components
O?(u, V) and r(u,V), as well as the scalar field ¢(u, V), extend continuously
to CH \ {perr} ={(w, V) : —00 <w <wupys+,V =1}. The extended metric

components Q*(u, V) and r(u, V) are nonvanishing on CH; \ {pCHf}'

Moreover, if the lower bound (7.9) holds on Hy, then for every u €
(foo,uCH;r), the following blow-up of Oy ¢ and Oy r holds:

1
/ (ag‘f)Q (u, V)dV = o0, (7.11)

0
lim %(u, V) = —. (7.12)

In particular, the scalar field is not in VVlth and the metric is not in C in the
above C¥ extension obtained by adjoining {(u,V) : —00 < u < Upyr,V = 1}.

In the following, only (7.12) will be used in the proof of our generic mass
inflation result.

7.3. Main Result on Mass Inflation

The following is our main theorem on mass inflation for the Einstein—-Maxwell-
(real)-scalar-field system in spherical symmetry. We emphasize again that this
is a conditional result, though the condition is to be expected; see Remark 7.10.
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Theorem 7.8. (Main theorem on mass inflation) Suppose the assumptions of
Theorems 7.5 hold. Assume in addition that

/ (000)2(v) dv < +00 (7.13)
HIN{v>1}
and

/ v8(02¢) (v) dv < +o0. (7.14)
HIN{v>1}

Then, the Hawking mass m = 400 on the Cauchy horizon CH] .

Remark 7.9. (Alternative additional assumptions) The additional assumptions
(7.13) and (7.14) are needed so that we can apply Theorem 4.1 to the corre-
sponding linear equations.

For this purpose, technically, we can alternatively assume

/ v%(0,6)(v) dv = +o0
Hin{v>1}
and
/ v8(02¢)? (v) dv < 400.
HIn{v>1}

This would still in principle be consistent with [22,23]. However, this is not
expected to hold; see Remark 7.10.

Remark 7.10. (Expected behavior along H; ) According to the linear analysis
in [1,15], for solutions ¢ to the linear wave equation on a fixed Reissner—
Nordstrém spacetime, [0,¢| < v~ and [02¢| < v=° along H; . If these (or
even slightly weaker versions) were also to hold for the nonlinear solution,
then we would have verified the assumptions (7.13) and (7.14).

7.4. Criterion for Mass Inflation

We begin the proof of Theorem 7.8 by establishing a criterion for mass inflation
in this subsection.

In order to make sense of our mass inflation criterion, we prove a simple
lemma which follows from Theorem 7.4.

Lemma 7.11. For every u < ug, the limit lim,_, ;o0 (0y¢)(u,v) exists. More-
over, lim,_, 4 (9, ®)(u,v) is a continuous function for u € (—o0, ug).

Proof. This follows easily from using the wave equation the wave equation
Oy (1r0y @) = —0y10y ¢, and controlling the terms on the right-hand side with
the estimates in Theorem 7.4. O

We are now ready to state a criterion for mass inflation. For this pur-
pose, it is more convenient to switch to the (u, V') coordinate system as given in
Sect. 7.2.4. In the (u,V) coordinate system, Lemma 7.11 means that
limy 1 (9,¢)(u, V) is well-defined and continuous on u € (—o0,us). In par-
ticular, the criteria in Proposition 7.12 make sense.
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Proposition 7.12. (Criterion for mass inflation) Suppose the assumptions of
Theorem 7.7 hold. Then, the following holds.

(1) If supy, |m|(u«, V) < +00, then there exists . < min{u.,us} such that
limy 1 (0u@)(u, V) = 0 for every u < .

(2) If there exists a sequence {u;}; 5 C (—o0,us) such that u; — —oo and
limy —1(0,0)(u;, V) # 0, then the Hawking mass blows up identically on
CHT, i.e., limy_q1m(u,V) =400 for all u € (—o0, uCH{’)'

Proof. Step 1: Reduction to the renormalized Hawking mass As a preliminary
observation, note that the blow-up of the Hawking mass m on CHi|r is equiva-
lent to the blow-up of the renormalized Hawking mass w. This follows simply
from the definition (7.5) and that e is a constant and r has a non-zero limit
on CH (see [22, part (2)(e) of Theorem 4.1]). We will in fact prove blow-up
of @, which is slightly more convenient because of the monotonicity properties
that it enjoys.

Step 2: Signs of Oyrand Oyr Fix any —oo < 4 < uy < Ucyet with @ < us.
We claim that after choosing V. € (Vi,1) sufficiently close to 1, we have
Our(u, V), Ovr(u,V) <0 for (u,V) €[4, u.] X [Vi,1).

For Oy r, we use the following estimate from [22, equation (10.13)]

sup 3u(7‘8w")‘(u, V) <cC. (7.15)

(u,V)elt,us] x[Vi,1)
By (7.12) in Theorem 7.7 (and the continuous extendibility of log ), dyr —
—oo for any fixed u € (—oo0, “cH{r)- Therefore, when combined with (7.15), we
see that there exists V. € (V4,1) such that

Ovr(u, V) <0 whenever (u,V) € [@,u.] X [Vi, 1). (7.16)

Turning to 9,7, notice that 9,r < 0 near i{ by asymptotic flatness.
Combining this with the Raychaudhuri equation (the second equation in (7.4)),
we see that after choosing V, closer to 1,

Our(u,V) <0 whenever (u,V) € (=00, upp+) X [Vi,1). (7.17)

From now on, fix V.

Step 3: Monotonicity of the renormalized Hawking mass Suppose
supy |@|(ux, V) < oo for some u, € (=00, upp+)-

Using (7.16) and the 9, equation in (7.6), we obtain that d,w(u, V) >
0 whenever (u,V) € [4,us] X [Vi,1). This monotonicity together with the
assumption supy |w|(us, V) < oo imply that supy w(u, V) < 400 for every
U< Uy,

On the other hand, by (7.17) and the dyw equation in (7.6), @ is mono-
tonically increasing in V for V' € [Vi,1). In particular, w(u, V) is bounded
below for (u, V) € (=00, ucy ) % [Vi, 1).

In particular, combining the upper and lower bounds, we deduce that
supy |@|(u, V) < oo for all u < u,.
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Step 4: Proof of part (1) Suppose supy |@|(us, V) < +oo for some u, €
(=00, tgye+ ). Taking .. < min{u., us }, we know by Step 3 that

sup | @ |(tss, V') < +00. (7.18)
%

In order to prove part (1), our goal is to show that limy_.1(0,¢)(u, V) = 0 for
every U < Uss.

Assume for the sake of contradiction that there exists ug € (—00, Uss)
such that limy_,1 (0, ¢)(ug, V) # 0. Since limy_,1(9,¢)(u, V) is a continuous
function in u (by Lemma 7.11), there exist uy, us € (—00,us) with u; < up <
ug such that lim, . (9,¢)%(u) > a > 0 for some a > 0 whenever u € [ug, us].

At the same time, we also have by (7.12) that limy_; 9% (u, V) —
—oo for every u € (—oo,u(m;r). Therefore, by Fatou’s lemma (notice that

—0yT(9,4)% > 0), we have

liminf/u <T?2‘;r(6u¢)2> (', v) du’

2/ lim inf <_7”£82‘;7"(8u¢)2> (u',v)du’
:/ a-ocodu’ = . (7.19)

Now, we take an increasing sequence {V,,}.7°9 C [Vi, 1) with lim,, o, V,, =
1. Since w is increasing in V for V' € [V,,1) (see Step 3), w(u,V,,) is an in-
creasing sequence for every w. Integrating the 9, equation in (7.6) and using
(7.16), we therefore obtain

lim @ (s, V) = lim <w(u1, Vo) + /“**(_Tavr(au¢)2)(u,’ Vi) du’)

n— oo n—oo Q2
1
. . vz 7"3\/7" 2 / /
> w(u1, V1) + lim inf (———(0u®)*) (v, V,,) du’ = +o0,
n—oo uq Q2

where in the last step we have used (7.19). However, this contradicts (7.18)
above. This concludes the proof of part (1).

Step 5: Proof of part (2) By part (1), if the assumption of part (2) holds, then
supy |m|(u, V) = +oo for all u € (_OO7UCH1+)' Using the fact that m(u, V) is
increasing in V' for sufficiently large V' (recall Step 3 above), it following that
limy .,y m(u, V) = 400 for all u € (—oo,uCH;r), as desired. O

7.5. Estimates for the Inhomogeneous Wave Equation on Fixed Reissner—
Nordstrom

Before we proceed to the proof of Theorem 7.8 (see Sect. 7.6), we study in this
subsection the inhomogeneous wave equation on (Mpgn, grN):

Ogpn® = F.

This will be useful for the perturbative argument in Sect. 7.6.
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Theorem 7.13. Let p € (1,00), 0 € (1,+00) and us € (—oo, —1).
Let F : MpnN{(u,v) : u € (—o0,us), v € [1,+00)} — R be a spherically
symmetric smooth function such that the following holds:

|

2

Einnope = (/100 /_“ [ulP|F|*(u, v) (Qkx (14 [7*)7) (u,v) du dv) < 0.
N (7.20)

Suppose ¢ : Mpn N {(u,v) : u € (—oo,us), v € [1,4+00)} — R is a smooth
spherically symmetric solution to
DQRN¢ =F

in Mrn N {(u,v) 1 u € (—00,us),v € (1,400)} such that (0,¢)(u,v) extends
smoothly to H{ for all u € [1,+00) and! lim,_ o (0,®)(u,v) exists for all
u € (—00,us).

Then, there exists a constant C' > 0 depending only on p, o, us and the
Reissner—Nordstrém parameters e and M (but independent of ¢) such that

1

Ug +oo
/ lulP lim (0,¢)*(u,v) du < C (/ P lim (0y0)? (u,v) dv
v—+400 1

u——0o0
— 00

(7.21)

U
[ @ = ai s IFIR,,,,.,)-
— 00
Proof. In the proof, unless explicitly stated otherwise, C' > 0, as well as implicit
constants in < and ~, depend only on p, o, us, € and M.
Step 1: Preliminary reductions By Fatou’s Lemma, it suffices to show that
Us
lim inf [ul? (D4 ¢)? (u, v) du (7.22)
v—+oo min{—Jv,u,}
is bounded by the RHS of (7.21).
This will be convenient in that we can apply the energy estimates in
Lemma 3.3 only to region of finite v.
Step 2: The curve yand partition of the spacetime We will apply different esti-
mates in two different regions of Mpn N{(u,v) : u € (—o0,us), v € [1,+00)}.
For this purpose, we divide the region into two. (Note a similar argument in
[4,6,24].)
Let f(u,v) =u+v — /v for u € R and v > 1. Introduce a hypersurface
v C{(u,v) : u € (—o0,uy), v € [1,+00)} by

y=F71).
Notice that g~1(df,df) = 29~ (du, (1 — ﬁ)dv) < 0 when v > 1. Therefore,

v is a spacelike hypersurface.
We first propagate the estimates to v (Step 3) and then propagate the
estimates from ~ to its future (Step 4) to obtain the final desired bounds.

M Note that it is not necessary to assume that 9, ¢ has a limit on CHT for u € (—o0,us).
In fact, it is not difficult to prove using a approximation argument that such a limit exists.
However, since in the applications we already know that such a limit exists, we will simply
put this as an assumption of the theorem.
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Step 3: Past of v We now apply (3.1) in the region

DStepS = {(U, U) HEURS (—OO,US), v e (la +OO)7 f(U,U) € (_007 1)}
0Dgieps naturally decomposes into four components. On 0Dgyeps N {u = us},
O0Dgteps N H{ and O0Dsteps N {v = 1}, we have the volume forms defined in
Sect. 2.6. On 0Dgteps3 Ny, we define a positive volume form vol, such that
vol = df A vol,.

We now take Y to be

Y = 2y (r*) (wp (0) 0y + wy(—u)dy) - (7.23)

where w,, is as in Definition 3.6 and y is as in (3.5). (Note that this is exactly
(3.6) with p; = p and p; =0.)

Using (3.1), we obtain'? that for some C' > 0

/ T[@)(—df*,Y) vol, + T[¢](—duf, Y) vol,
ODStep3Ny ODstep3N{u=us}

=7 =7
- / T[] )7 vol < / T[¢)(—du?, Y) vol,
Dsips ODstep s M} (7.24)
Main good term =JII
+/ T[¢](—dv*, Y) vol,, +C Y ¢||F|vol.
ODstep3N{v=1} Dsteps
=V Errorterm

Note that Y, —df?, —du? and —dv? are all future directed causal and therefore
by Proposition 3.2, I, I1, II1I and IV are all non-negative.
Moreover, a direct computation (using in particular Sect. 2.6) shows that

/ Tl (—dut, V) vol, + [ TIol(~t, ) vl,
DstepsNHT Dgtep3n{v=1}

U——00

+oo Us
~ / P lim (8,0)?(u,v) dv + / |u|P (D b)? (u, v = 1) du.
1

— 00
(7.25)
To control the “Error term” above, we argue as follows:
Error term
< / (0P1000] + [u|?|0ud )| F|(u, v) Uy (u, v) du dv
Dsteps
(7.26)

2

S (/ (0P10u 8] + [ul?[0ud]?) (u, v) (1 + |r* (u,v)|) =7 dudv)
Dsteps

12Note that since (3.1) strictly speaking should be applied to compact domains, we need to
carry out an approximation argument by considering an exhaustion of Dgycp, 3; We omit the
details.
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=

X (/ (07 + [ul?) [ (u, v) (Qp (1 + |T*|)”)(u,v)dudv> (7.27)
Dsteps

< / T(d] ™ vol | |F
DStepS

where in (7.26), we used (2.17); in (7.27), we applied the Cauchy-Schwarz
inequality; in (7.28), we used!® (3.8), (7.20) and the fact that v < |u| in
DStep3~
Now,
e plugging (7.25) and (7.28) into (7.24),
e applying the Young’s inequality to (7.28) and absorbing the term
stmps T[#],., Y )7 vol to the LHS by the “Main bulk term,” and
e dropping the good term I7 on the LHS,

N

Einnop.o (7.28)

we obtain
/ T[#](df*,Y) vol, < (RHS of (7.21)). (7.29)
ODsStep 3Ny

Step 4: Future of v Let v, € [1,400). We now consider the region to the future
of 7, but to the past of some {v = v, }. Precisely, we consider the (precompact)
region

DStep4 = {(U,'U) RS (—007’[1,5), (NS (17U*)a f(u,v) € (17 +OO)}
Define the vector field Z by
Z = yN (0, + |ulPd,),

where y is again as in (3.5) and N is a sufficiently large constant to be chosen
below.
We now apply (3.1) to obtain

/ T[¢)(—dv*, Z) vol,, + / T[¢)(—du?, Z) vol,,
ODstep aN{v=04}

ODStep 4ﬁ{u=us}

+ / T[] P 7 vol < / T[4](—df*, Z) vol,,
Dstepa ODsrep 4Ny (7 30)

Main bulk term Dataterm

+c/ | Z6||F|vol.
Dstepa

Errorterm

An explicit computation shows that

Us

/ T[¢](—dv?, Z) vol, ~ / [ulP (0 )? (u, vy) du.
ODstepaN{v=0,}

max {14,/ —vs,us}

13Technically, (3.8) is not directly applicable because there p is assumed to be > 1 (whereas
we have p2 = 0 here). Nevertheless, one checks that pa > 1 is only used for the later parts
of the proof but not for (3.8).
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(7.31)

To handle the “Data term,” note that there exists a constant ¢ > 0 such
that Y —cZ is future-directed and timelike (where Y as in Step 2). Therefore, by
Lemma 3.2, T[¢](df*,Y) — cT[¢](df*, Z) > 0 pointwise. As a result, the “Data
term” in (7.30) is bounded (up to a constant factor) by (7.29). In particular,
we have

Data term < C'(RHS of (7.21)). (7.32)

For the “Main bulk term” in (7.30), we compute

(20 1 29(0.0000)

r

R Q;;N ((0u2")(0,0)? + (8,27 (8u)?)

= VO D vt (g ) (000 4 [l (920)?)
QRN

(7.33)
=T

— SN+ (0u00,6)

=II

In Dgyep 4, we have Dy (L]r*])7 < €725 040 (1 (vu))” < (o)7e 27 £

(+/|u|)?e=2"~ l“l In particular, for N sufficiently large (depending on o, p,

M and e), we can use the AM-GM inequality to show that the term I domi-

nates the term I7 (7.33). Therefore, there exists a constant ¢ > 0 (depending

on o, p, M and e) such that

T, @r > € ((0,6)% + |ulP(8,6)%) > 0. 7.34

; iy (000 + P @0 (7.34)

We next control the “Error term” in (7.30) using the “Main bulk term”

(which is just shown above in (7.34) to have a good sign). More precisely, by
the Cauchy—Schwarz inequality and (7.20), we have

Error term < / (100 @] (1, v) + [u|P 00| (u, ) | F|(u, v) Q% n (u, v) du dv

DStep4
1000 (u,v) |au¢|2<u,v>> :
< + |ulP dudv
</Ds,m<<1+|r*|>o e T e

x (/D [ul?|F | (u,v) (Qrn (1 + 7)) (u, 0) dudv)

AR C) |au¢|2<u,v>> E
= e T, ) dude Flleinopo-
(/Dsmp4 < (14 |r*))e [ul (14 |r*])e 12|

2

(7.35)
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Combining (7.30), (7.31), (7.32), (7.34) and (7.35), and dropping the
(non-negative) second term on LHS of (7.30), we obtain

/ P (0,62 (1, 0.) du
max{l4+,/vs —vs,us}

Ov|* (u, v) |0ud|? (u, v)
+/DSW ( R e ) dudv < (RHS of (7.21))

|0y @]* (u,v) p|5u¢|2(u,v) udv :
+<Amw(ﬂﬂm>+"uﬂww)dd>lwg

After using Young’s inequality and the positive bulk term on the LHS to
control the last term on the RHS, we obtain

inho,p,o "

(7.36)

/us [P (Bud)2 (1w, v.) du < (RHS of (7.21)).  (7.37)

max{1+ JUs}

Finally, note that for v, sufficiently large, 1+ /v, —v. < —%-. It follows from
(7.37) that for all v, sufficiently large

/ b [P (B)? (u, v.) du < (RHS of (7.21)). (7.38)

min{—$v.,us}

In particular, this gives the desired estimate for (7.22) in Step 1. We thus
conclude the proof. O

7.6. Proof of Theorem 7.8

In order to prove Theorem 7.8, it suffices to show that the condition in Propo-
sition 7.12 holds. This will be carried out in two steps: First, we associate with
¢ a corresponding solution ¢;;,, to the linear wave equation on a fixed Reissner—
Nordstréom spacetime. Applying Theorem 4.1, we will show that there is an
L2-average polynomial lower bound of 0,¢;;, along the Cauchy horizon as
u — —o0. Second, we show—using perturbative estimates—that in fact such
an L2?-average polynomial lower bound also holds for d,¢. In particular, this
implies that 0, ¢ rCH{“ (up) # 0 along some sequence u,, — —oo so that the
desired mass inflation result follows from Proposition 7.12.

We begin with the first step. Suppose we are given (M, g, ¢, F) as in
Theorem 7.8. By Theorem 7.4, we know that in the interior region near H;,
the solution converges to a Reissner—Nordstrom solution with parameters M
and e. Fix these M and e. From now on, take (M gy, grn) to be the Reissner—
Nordstrom interior corresponding to these parameter.

Let ¢y;, be the solution to the linear wave equation

Ogpn Prin =0 (7.39)
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in the region {(u,v) : u < ug, v > 1} C Mgy (where us < —1is as in Theorem
7.4) with initial data

Pin FHfﬂ{vzl}i ‘f).fon{vzu (7.40)
Grin [{v=1}n{u<u.}= @ [fv=1}n{u<u.} -
We now apply Corollary 4.2 to obtain the following result:

Proposition 7.14. ¢y, defined as above satisfies

/“s u® ( lim (5u¢lm)2(u,v)> du = +00. (7.41)

vV— 00
— 00

Proof. It suffices to apply Corollary 4.2 to ¢y, with p = 8. Note that the last
four assumptions of Theorem 4.1 are indeed verified:
(3) By Theorem 7.4, limy—.4oc ¢ [5,+ (v) = 0. Hence, by (7.40), we also have
limvﬂ+oo ¢lin FHT (’U) =0.
(4) By (7.13), the bound [, (1 +v?)(T i [,4+) dv < +00 holds.
(5) By (7.9) and (7.13), p = 8 is the smallest even integer for which (4.1)
holds.
(6) Using (7.14), and taking p = 8 as above, we obtain that (4.2) holds.

Now that we have checked all the assumptions of Corollary 4.2, it follows
that (4.6) holds for p = 8. Since uy < —1, this implies (7.41). O

Next, we turn to the second step of the argument. For this, we prove a
perturbative statement showing that the nonlinear ¢ is well-approximated by
drin ON CHT as u — —oo in the following sense:

Proposition 7.15. Let ¢ be as in the assumptions of Theorem 7.8, and ¢in
be the solution to the linear wave equation on Mpyn as defined in (7.39) and
(7.40) (where we have identified the region {(u,v) : u € (—o0,us), v € [1,+00)}
in the spacetime we are studying with the corresponding subset of Mprn ). The
following estimate holds:

/ ) u® ( lim (9,0 — 8uq5lm)2(u,v)) du < —+o00.

Proof. A direct computation shows that the difference ¢ — ¢y;, satisfies the
following inhomogeneous wave equation:

0,0,(6 = 1n) = ~20,(6 — i) ~ (f%r ) awm) o

T TRN
OuTRN Our OuTRN
PN 5 ) = = 2T g,
RN T RN
This implies that for F' = O, (¢ — ¢1in), we have
_ Oyr Oy Our  Oyr
P15 0 (|20 - 2 i g | 2 D15, 4).
T TRN r TRN

In particular, according to the estimates proven in Theorem 7.4, the following
estimates hold for any p < 3:
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(1) For u+v <0, we have
] <, Qe (@) = v 2. (7.42)

(2) For u+ v >0, we have
|F| <p QpnlulPo™”. (7.43)

From now on, we fix some p € (1, 3).

We are ready to apply Theorem 7.13. It follows from Theorem 7.13 that
in order to prove the desired conclusion of the proposition, it suffices to bound
F in the norm &;ppop,o with p = 8 and some o > 1. We will choose o > 1
sufficiently close to 1 such that 10 + o —4p < 0 and 2p — o > 1 (which is

possible since we have chosen p > 4 ).
To bound F, we use (7.42) and (7.43) to obtain

— (/ / [l P2, 0) (2% <1+|r*|>“><u,v>dudv)

, (/_to /1_u o4 (4 (1 + [r*])7) (1, v) dv du) i

=1

Ug +o0 %
+ (/ / [u|®u|~2Pv 2P (1 + |r* (u,v)])° dv du) .

=II

(N

1F

(7.44)

We now bound the terms I and I7 in (7.44).
To handle I, recall that r* = v + u, and that in the integration domain
of I, Qpn < e+ (W) Therefore, since 8 + 0 — 4p < —2, we have

Us —u 2
<, </ / JulSv=4P et + (v (1 4y + |u)? do du>
—oo J1

1
Us 2
Sp (/ |u|BTo—4° du) < 400.
—00

In the derivation of (7.45), we have used that v < |u| in the region u 4+ v < 0,
and thus an integration by parts argument gives

(7.45)

—u —u
/ v 4Pt P (1 4oy [uf)7 do < Jul” / v et () dy < fu| et
1 1

For I, since 94+ 0 —4p < =1, —2p+ o0 < =1, r* = v+ u, and |u| < v in
the region u 4+ v > 0, we have
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W=

Usg —+00
II s, (/ / | u|~2Pv 2P (1 + v + |u])? dvdu)
1

+oo % u

s 8 2

Se </ (|u|8—2p/ p2te dv)du> <, (/ |u|?To—p du) < 4o0.
— 00 —Uu —00

(7.46)
Plugging (7.45) and (7.46) into (7.44), we obtain
1E 50,5, < 00
The estimate (7.21) in Theorem 7.13 thus implies that
/us u® (vllrgzo(au¢ — 8u¢>lm)2(u,v)) du < +o0,
which is what we wanted to prove. O

We now finally conclude the proof of Theorem 7.8:

Proof of Theorem 7.8. Combing Propositions 7.14 and 7.15 and using the tri-
angle inequality, we immediately obtain

/us u ( lim (8u¢)2(u,v)) du — 400,

S V—00
In particular, there exists a sequence u,, — —oo such that for every n € N,

lim (9,8)(un,v) # 0.

V—00
The desired blow-up of the Hawking mass then follows from
Theorem 7.12. 0
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