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Abstract. Motivated by the strong cosmic censorship conjecture, we study
the linear scalar wave equation in the interior of subextremal strictly
charged Reissner–Nordström black holes by analyzing a suitably defined
“scattering map” at 0 frequency. The method can already be demon-
strated in the case of spherically symmetric scalar waves on Reissner–
Nordström: we show that assuming suitable (L2-averaged) upper and
lower bounds on the event horizon, one can prove (L2-averaged) polyno-
mial lower bound for the solution
(1) on any radial null hypersurface transversally intersecting the Cauchy

horizon, and
(2) along the Cauchy horizon toward timelike infinity.

Taken together with known results regarding solutions to the wave equa-
tion in the exterior, (1) above in particular provides yet another proof of
the linear instability of the Reissner–Nordström Cauchy horizon. As an
application of (2) above, we prove a conditional mass inflation result for a
nonlinear system, namely the Einstein–Maxwell-(real)-scalar field system
in spherical symmetry. For this model, it is known that for a generic class
of Cauchy data G, the maximal globally hyperbolic future developments
are C2-future-inextendible. We prove that if a (conjectural) improved
decay result holds in the exterior region, then for the maximal globally
hyperbolic developments arising from initial data in G, the Hawking mass
blows up identically on the Cauchy horizon.

1. Introduction

In this paper, we consider the linear scalar wave equation (where �g denotes
the Laplace–Beltrami operator)

�gφ = 0. (1.1)
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Figure 1. Penrose diagram of Reissner-Nordström (space-
time (with 0 < |e| < M) or Kerr spacetime (with 0 < |a| <
M)

in the interior of Reissner–Nordström (with 0 < |e| < M) black holes. Hidden
in the interior of these black holes are the so-called Cauchy horizons, whose
stability and instability properties are of fundamental importance due to their
intimate connections with the strong cosmic censorship conjecture and the
problem of determinism; see further discussions in Sect. 1.1.

The equation (1.1) in the black hole interior region, for both the Reissner–
Nordström and the Kerr cases are rather well-understood. Let us just focus
on the following definitive C0-stability and non-degenerate energy-instability
results. (We refer the readers for instance to [2,4,9,12,13,18,25,26,30] and the
references therein for related results.)

• (Stability [10,11,14,24]) On both Reissner–Nordström (with 0 < |e| <
M) and Kerr (with 0 < |a| < M), solutions φ arising from smooth
and compactly supported Cauchy data on Σ0 (see Fig. 1) are uniformly
bounded up to the Cauchy horizon and are continuously extendible to
the Cauchy horizon. In fact, |φ| decays along the Cauchy horizon toward
timelike infinity.

• (Instability [4,21,24]) On both Reissner–Nordström (with 0 < |e| < M)
and Kerr (with 0 < |a| < M), if an L2-averaged lower bound for the
derivative for φ holds on the event horizon, then φ has infinite non-
degenerate energy on a null hypersurface intersecting the Cauchy horizon
transversely. In particular, the derivatives of φ blow up at the Cauchy
horizon.
Moreover, using the results of [1,15,21], this assumed L2-averaged lower
bound on the event horizon is proven to be satisfied by solutions arising
from generic smooth and compactly supported Cauchy data on Σ0.
Even though the stability results for (1.1) are necessarily quite weak1

because of the instability results, they are very robust. In particular, a slight
modification of the proof gives similar stability results for very general systems

1For instance, in terms of (isotropic) Hölder and Sobolev spaces, it can be deduced in the
Reissner–Nordström case using the result in [1,4,12] that a generic solution is neither in any
Hölder Cα space for α > 0 nor in any Sobolev W 1,p space for p > 1.
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of wave equations with first- or zeroth-order terms. The robustness of the lin-
ear stability, together with the remarkable nonlinear structure of the Einstein
vacuum equations in the double null foliation gauge, result in the proof of the
nonlinear C0 stability of the Kerr Cauchy horizon for the Einstein vacuum
equations without any symmetry assumptions [6].

On the other hand, the proofs of linear (non-degenerate) energy instabil-
ity for (1.1) are much less robust.2 The known proofs [21,24] of these insta-
bilities rely heavily on the conservation law associated with the Killing field
T (defined in (2.15)), which no longer holds if one adds lower-order terms
to (1.1). For this reason, linear instability for the full system of linear grav-
itational perturbations remains an open problem. At the moment, nonlinear
instability results have only been obtained for spherically symmetric models;
see [4,22,35,37] and Sect. 1.1.2. Nevertheless, one expects that if one can prove
an instability result for the full system of linear gravitational perturbations,
then the techniques in [6] could in principle be sufficient to control all the non-
linear error terms and to upgrade the linear instability result to a nonlinear
result.

The first goal of this paper is to revisit the linear non-degenerate energy
instability result with a proof which is potentially generalizable to studying
instabilities for linear gravitational perturbations. In fact, the ideas we present
in this paper have already been taken up by Sbierski, who proved a linear
instability result for the Teukolsky equation in a forthcoming work [32].

The perspective of this paper is to study (1.1) by introducing a scattering
problem, where the past and future “scattering states” are the restriction of
the solution to the wave equation on the event horizon and the Cauchy hori-
zon respectively. (Note that such a point of view for the black hole interior is
not new, and has been used in [9,18,25]. See also [17,19] in different settings.
The results in [18] are especially relevant to our paper.) In particular, we an-
alyze the corresponding “transmission coefficient” and “reflection coefficient”
at 0 t-frequency, and use that information to study the instability property of
the Cauchy horizon. Our approach is in part inspired by the work [13], which
already recognized the important role of the transmission and reflection coef-
ficients at zero frequency, at least for a class of data with exact polynomial
tail.

It turns out that a slight modification of our new linear instability proof
also gives a lower bound of the scalar field along the Cauchy horizon toward
timelike infinity. The second goal of this paper is to use this lower bound
and apply it to the mass inflation problem for the Einstein–Maxwell-(real)
scalar field system in spherical symmetry. Since the mass inflation problem
requires a longer discussion, we will explain this application later in Sect. 1.1;
see Theorem 1.12. The key point here is to demonstrate that our linear result,
which is established with a fundamentally linear proof, can be easily applied
to a nonlinear setting via a perturbative argument.

2In fact it may be possible that not only the proofs fail, but the instability result itself is
false when fine-tuned lower order terms are added to (1.1). This, however, remains an open
problem.
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It turns out that all the main ideas can be demonstrated already in the
case of solutions to (1.1) on Reissner–Nordström with spherically symmetric
data. We will therefore focus on that case from now on. See Remark 1.4 for
a discussion of possible generalizations. The following is an informal version
of the main theorem for (1.1) on Reissner–Nordström; a precise version will
be given in Theorem 4.1 and Corollary 4.2. (Again, see Theorem 1.12 for our
main theorem on mass inflation.)

Theorem 1.1. Let φ be a solution to (1.1) on a fixed Reissner–Nordström space-
time (with 0 < |e| < M) with smooth and spherically symmetric data. Assume
the following two conditions along the event horizon:
(1) Tφ obeys L2-averaged polynomial upper and lower bounds, and
(2) T 2φ obeys a better (compared to Tφ) L2-averaged polynomial upper bound

(see precise assumptions in Theorem 4.1).
Then, the following both hold:
(1) Along any outgoing radial null hypersurface transversally intersecting the

Cauchy horizon, the non-degenerate energy is infinite.
(2) Along the Cauchy horizon, Tφ obeys an L2-averaged polynomial lower

bound toward timelike infinity.

A few remarks are in order.

Remark 1.2. (Comparison with known results) The first result in Theorem 1.1,
which is an instability result, is not new, see [4,21]. Moreover, a similar in-
stability result is also known for Kerr spacetimes [24]. Our result is in fact
slightly weaker than the known results in [21,24], but our main concern is the
introduction of a new method that is based on the phase space analysis of the
scattering map near the zero t-frequency.

It should also be mentioned that scattering theory arguments has been
used to show variations of this instability results, see [2,9,18,25].

Remark 1.3. (Relation to mass inflation) The second result in Theorem 1.1
(in contrast to the first result) is not directly related to the instability of the
Cauchy horizon. It does, however, show that the decay result along the Cauchy
horizon of [14] cannot be improved much further. Perhaps surprisingly, it has
a nonlinear application to the problem of mass inflation for the Einstein–
Maxwell-(real) scalar field system with two-ended asymptotically flat initial
data in spherical symmetry; see Sect. 1.1.3.

Remark 1.4. (More general settings) At least the instability part of Theo-
rem 1.1 can in principle be generalized to many different settings, for instance,
for higher angular modes or for the wave equation with a potential in Reissner–
Nordström, or even for the wave equation on rotating Kerr backgrounds with
a fixed Carter mode. Indeed, to carry out the argument of Theorem 1.1, we
need two main ingredients: (1) a stability result for solutions to the linear
wave equation, and (2) an explicit computation showing that the transmission
coefficient at zero frequency does not vanish. In all of the more general set-
tings we mentioned above, the ingredient (1) is known (or at least follows from
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known techniques, see [14,24]), while the ingredient (2) follows easily from a
T -conservation law (see Remarks 1.5 and 5.5).

Remark 1.5. (Relevance to gravitational perturbations) We mentioned above
that the previous instability results of [21,24] both rely on the T -conservation
law in a fundamental way (despite the fact that the two proofs are very dif-
ferent). In our setting, the T -conservation law could also be used to bound
the zero-frequency transmission coefficient away from 0; see part (3) of Propo-
sition 5.4. On the other hand, our method in principle does not require the
T -conservation law as one can alternatively explicitly compute the transmission
coefficient at zero frequency, just as what we do for the reflection coefficient
at zero frequency. For this reason, our method is relevant in settings where
an analogue of the T -conservation law is not available, e.g., in the case of
gravitational perturbations of the Kerr interior;3 see [32].

In the remainder of the introduction, we will give a brief discussion of the
strong cosmic censorship conjecture, which in particular serves as a motivation
for the instability problem that we discuss in this paper. We will then turn
to a discussion of the Einstein–Maxwell-(real) scalar field system in spherical
symmetry and explain our application of Theorem 1.1 in that context.

1.1. Background: Strong Cosmic Censorship Conjecture

The study of the wave equation in the interior of black holes is motivated by
the strong cosmic censorship conjecture first proposed by Penrose [27]. In this
subsection, we briefly review some mathematical progress on this conjecture,
which motivates the results in the present paper. For a more detailed discussion
of the strong cosmic censorship conjecture, we refer the reader to [6].

A modern formulation of Penrose’s strong cosmic censorship conjecture
can be given as follows:

Conjecture 1.6. (Strong cosmic censorship) For generic asymptotically flat (or
compact) vacuum initial data, the maximal Cauchy development is inextendible
as a suitably regular Lorentzian manifold.

This conjecture should be thought of as a conjecture on global unique-
ness for the Einstein’s equation. However, it is well-known that in the explicit
Reissner–Nordström and Kerr black holes, there are Cauchy horizons beyond
which the solution extends smoothly. In particular, this conjecture implies that
the Cauchy horizons inside the Reissner–Nordström and Kerr black holes are
unstable in a suitable sense under small perturbations.

The original expectation of the instability of the Cauchy horizons was
modeled on the Schwarzschild solution, where instead of having a smooth
Cauchy horizon, the black hole interior is singular and inextendible as a C0

3In certain settings, the Teukolsky–Starobinsky identities may be used as a replacement for

the global application of a T-conservation law, e.g., as an identity linking fluxes of suitable
solutions to the Teukolsky equation along the Cauchy horizons and the event horizons.
However, these identities cannot be localized in physical space in a straightforward fashion,
and thus it does not allow for an immediate adaption of the arguments from [21,24].
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Lorentzian manifold [31]. However, as has been recently proven [6], it turns
out that this expected instability is more subtle: the Cauchy horizons are in
fact C0 stable, and one can only expect the higher derivatives to blow-up. This
already manifests itself in the behavior of solutions to the linear equation (1.1)
(recall discussions in the beginning of Sect. 1), but remarkably also holds in
nonlinear settings.

Below, we will further explain the stability and instability issues in non-
linear settings. First, in Sect. 1.1.1, we discuss further the recent work on
C0-stability of the Kerr Cauchy horizon [6]. Then, in Sect. 1.1.2, we discuss
a spherically symmetric model, which is simpler and such that Conjecture 1.6
is essentially settled. There remains, however, the problem of mass inflation
which is unresolved in the setting. Our Theorem 4.1 turns out to give a con-
ditional result in this regard. This will be explained in Sect. 1.1.3.

1.1.1. C0-Stability of the Kerr Cauchy Horizon. As already discussed above,
the Kerr Cauchy horizon has recently been proven to be C0 stable:

Theorem 1.7. (Dafermos–Luk [6]) Consider general vacuum initial data cor-
responding to the expected induced geometry of a dynamical black hole settling
down to Kerr (with parameters 0 < |a| < M) on a suitable spacelike hyper-
surface Σ0 in the black hole interior. Then, the maximal future development
spacetime corresponding to Σ0 is globally covered by a double null foliation
and has a non-trivial Cauchy horizon across which the metric is continuously
extendible.

Even with the above theorem, however, it is not known whether the
Cauchy horizon is singular in any sense. The following conjecture remains an
important open problem.

Conjecture 1.8. For a generic subset of initial data as in Theorem 1.7, the
maximal Cauchy development is inextendible as a Lorentzian manifold with
continuous metric and Christoffel symbols locally square integrable.

This conjecture motivates a better understanding of the linear instability.
In particular, since for linear gravitational perturbations of Kerr, there is no
obvious analogue of the T -conservation law, it is desirable to obtain a proof
which does not rely in principle on such a conservation law. This motivates
the considerations of the present paper.

1.1.2. Strong Cosmic Censorship for Spherically Symmetric Models. From
now on, we discuss Conjecture 1.6 in spherical symmetry, focusing on the
spherically symmetric Einstein–Maxwell-(real) scalar field system. We will in
particular explain the background for the mass inflation problem in this con-
text, and discuss an application of our Theorem 1.1 to this problem. In spher-
ical symmetry, the problem becomes simpler than that in Sect. 1.1.1, we have
a much more complete picture. More precisely, as we will describe below, not
only an analogue of Theorem 1.7 is known, but moreover, (1) a global C0-
stability result—one that the initial data are posed on an asymptotically flat
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Cauchy hypersurface—has been proven, and (2) the analogue of Conjecture 1.8
is also known.

Before we proceed, let us briefly discuss the simplest spherically symmet-
ric model, the spherically symmetric Einstein-null dust system, whose study
predates that of the spherically symmetric Einstein–Maxwell-(real) scalar field
system. For this system, in the presence of incoming null dust, Hiscock [16]
showed that the metric remains continuous, while Christoffel symbols blow up
at the Cauchy horizon. In fact, in this setting, curvature components with re-
spect to a parallelly propagated frame blow-up. In a subsequent seminal work,
Poisson–Israel [28,29] showed that when another, outgoing, null dust is added
and is allowed to interact with the first null dust, generically the Hawking
mass is infinite at the Cauchy horizon. This was known as mass inflation.

The spherically symmetric Einstein-null dust system, though already
gives some insights into the stability and instability properties of Cauchy hori-
zons, is not fully satisfactory even as a spherically symmetric model problem
since it does not capture the wave nature of the Einstein equations. A more re-
alistic model is the spherically symmetric Einstein–Maxwell-(real) scalar field
system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ricμν − 1
2gμνR = 2(T (sf)

μν + T
(em)
μν ),

T
(sf)
μν = ∂μφ∂νφ − 1

2gμν(g−1)αβ∂αφ∂βφ,

T
(em)
μν = (g−1)αβFμαFνβ − 1

4gμν(g−1)αβ(g−1)γσFαγFβσ,

�gφ = 0, dF = 0, (g−1)αμ∇αFμν = 0.

(1.2)

Here, �g and ∇, respectively, denote the Laplace–Beltrami operator and the
Levi–Civita connection associated with the metric g.

The study of the stability and instability properties of Cauchy horizons in
the context of (1.2) in spherical symmetry was initiated in the seminal works
of Dafermos [3,4]. Taken together with [7], the work [4] implies the following
theorem:

Theorem 1.9 (Dafermos [4], Dafermos–Rodnianski [7]). Given any 2-ended
asymptotically flat future-admissible spherically symmetric initial data to (1.2),
as long as the Maxwell field does not identically vanish, the maximal globally
hyperbolic future development has a Cauchy horizon across which the metric
is continuously extendible.

Here, by asymptotically flat future-admissible, we mean that the initial
data obey adequate regularity and decay conditions, as well as a global condi-
tion (called future admissibility) that ensures, in particular, the existence of a
single black hole region in the maximal globally hyperbolic future development
like in the case of the Reissner–Nordström spacetime; see [22, Definition 3.1]
for the precise definition.

In [22,23], the first two authors proved the C2 formulation of the strong
cosmic censorship conjecture for the Einstein–Maxwell-(real)-scalar field sys-
tem. Namely, it was proven that generic future-admissible two-ended asymp-
totically flat initial data lead to a maximal globally hyperbolic development
which is C2-future inextendible.
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Theorem 1.10 (Luk–Oh [22,23]). There exists a generic (in the sense of open
and dense in, say, weighted C1 topology; see [22] for further refinements) class
G of 2-ended asymptotically flat future-admissible spherically symmetric initial
data such that the maximal globally hyperbolic future development to any initial
data in G is C2-future-inextendible.

In recent breakthrough of Sbierski [33], he showed that after further re-
stricting the generic class of data in Theorem 1.10 to those which are small
perturbations of Reissner–Nordström data, the corresponding solutions are
moreover C1-future-inextendible. This thus resolves a C1 formulation of the
strong cosmic censorship conjecture in a perturbative (in additional to spher-
ically symmetric) setting.

1.1.3. The Mass Inflation Problem. Even though inextendibility properties are
the cleanest way to “measure the strength” of singularities, it is also of interest
(see discussions of the works of Hiscock and Poisson–Israel in the beginning of
Sect. 1.1.2) to ask whether the Hawking mass blows up at the Cauchy horizon,
i.e., whether mass inflation occurs, for solutions arising from generic data. In
particular, this was left open in the works [22,23,33] discussed above.

At the moment, the best result concerning mass inflation is the following
conditional result in the seminal work [4] of Dafermos. It states that mass
inflation does occur if a pointwise polynomial lower bound holds along the
event horizon:

Theorem 1.11 (Dafermos [4]). Given an asymptotically flat future admissible
initial data set with nonzero charge, if the scalar field satisfies following point-
wise lower bound (with respect to an Eddington–Finkelstein-like v coordinate4)

|∂vφ �H+
1 ∩{v≥1} |(v) ≥ cv−p (1.3)

for some c > 0 and p < 9, then the Hawking mass is identically infinite on the
component of the Cauchy horizon CH+

1 in Fig. 2.

If the condition (1.3) holds for generic solutions, then Theorem 1.11 would
give a generic mass inflation result. In fact, if (1.3) is verified generically, then
the blow-up of the Hawking mass can be used to give an alternative proof
of the C2 formulation of the strong cosmic censorship conjecture, since the
Hawking mass bounds the Kretschmann scalar from below. The works [22,23]
however did not follow this path, but instead established a weaker analogue of
(1.3), which gives just an L2-averaged lower bound. This weaker lower bound
was slightly easier to prove, and was sufficient for C2-inextendibility, but by
itself fell short of establishing generic mass inflation.

To further elaborate the issue, it was proven in [22,23] that for a generic
class of initial data, in the corresponding maximal globally hyperbolic future
development, the (transversal to Cauchy horizon) derivatives of the scalar field
blow up at the Cauchy horizon. However, in principle, the scalar field could
vanish identically on a portion of the Cauchy horizon near timelike infinity,

4For instance, one can choose the v coordinate used in Theorem 7.4.
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giving rise to a static Cauchy horizon. In this special scenario, while the Cauchy
horizon is still a weak null singularity, the Hawking mass could remain finite
(cf. Proposition 7.12). Notice that this scenario for which the first derivatives
of the scalar field blow-up but the mass remains finite is exactly an analogue
of the Hiscock picture for the Einstein-null dust system.

Using Theorem 1.1, we prove the following conditional theorem for mass
inflation:

Theorem 1.12. Consider a 2-ended asymptotically flat future-admissible spher-
ically symmetric initial data in the generic class G in Theorem 1.10 so that
the scalar field and its derivatives are initially compactly supported. Assume
that higher derivatives of the scalar field exhibit “improved decay” along each
connected component of the event horizon (see precise assumptions in Theo-
rem 7.8).

Then, the Hawking mass is identically infinite at each connected compo-
nent of the Cauchy horizon.

Theorem 1.12 is proven using part (2) of Theorem 1.1. They are related
because Theorem 1.1 rules out the possibility—for the linear scalar wave equa-
tion (1.1)—that the scalar field vanishes identically on a portion of the Cauchy
horizon near timelike infinity. We show using a perturbative argument that this
also holds for the nonlinear solution. Therefore by our previous discussion,
mass inflation must occur.

The improved decay assumption that we need in Theorem 1.12 corre-
sponds to the upper bound assumptions of Theorem 1.1 on the event horizon.
It should be noted that while the lower bound proven in [22] is expected to be
sharp (for instance by comparing with the linear result in [1]; see Remark 1.13),
the upper bounds proven in [7] are worse than those expected. The assump-
tions of Theorem 1.12 require some improvements over the upper bounds in
[7] (although it still does not require the sharp upper bounds). Notice that one
only needs an improved upper bound, and in principle that is easier to obtain
as compared to the improved lower bound required in Theorem 1.11.

It should be stressed, however, that main point of Theorem 1.12 is not
mass inflation per se, since the assumed conditions in Theorems 1.11 and
1.12 are both expected to hold; see Remark 1.13 below. Instead, we want to
demonstrate with this theorem how linear result of the type in Theorem 1.1
can be applied in a nonlinear setting quite easily.

We end this subsection with a few remarks on Theorem 1.12.

Remark 1.13. Both the assumed pointwise lower bound in Theorem 1.11 and
the assumed improved decay in Theorem 1.12 remain open problems. Never-
theless, the results in [1] for the linear wave equation on Reissner–Nordström
suggest that the following may be true:

• Solutions arising from generic data obey the pointwise lower bound in
Theorem 1.11.

• Improved decay estimates assumed in Theorem 1.12 hold for all initial
data (not just generic data).
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Remark 1.14. Note that Theorems 1.11 and 1.12 have no analogue for the
Einstein-null dust system: indeed while a null dust is a good approximation
to a scalar field in the high frequency limit, Theorems 1.11 and 1.12 precisely
capture a phenomenon regarding the behavior of the scalar field at zero fre-
quency.

Remark 1.15. Note that the global structure of the interior of dynamical black
hole in question may be very different from the global structure of Reissner–
Nordström. (In particular, unlike Reissner–Nordström, its boundary can in
principle have a spacelike portion!) Although our Theorem 1.1 is proved using
global considerations in the Reissner–Nordström interior, it is still applicable
to the problem at hand because in the course of the proof of Theorem 1.10,
it is also established that in a region sufficiently close to timelike infinity, the
spacetime metric is indeed a small perturbation—in some rough norms—of
that of Reissner–Nordström. Due to the monotonicity of the Hawking mass, in
order to establish mass inflation, it suffices to consider the region near timelike
infinity, in which we can use a perturbative argument.

Remark 1.16. While we have only studied here the system (1.2), it is also of
interest to go beyond it and study the Einstein–Maxwell-charged scalar field
system in spherical symmetry, including in the case when the scalar field is
massive. The more general system allows one to study simultaneously grav-
itational collapse and strong cosmic censorship. The issues regarding strong
cosmic censorship conjecture for this system has recently been studied in a se-
ries of papers of van de Moortel [34–37], and the paper of Kehle–van de Moortel
[19], which in particular show both C0 stability and C2 inextendibility condi-
tional on appropriate decay assumptions on the event horizon. Spectacularly,
it was shown in [36] that for asymptotically Reissner–Nordström black holes
arising from one-ended gravitational collapse, the weak null singularities along
the Cauchy horizon must break down. We remark that despite all this impor-
tant progress, for the Einstein–Maxwell-charged scalar field system in spherical
symmetry, it remains an open problem whether the Hawking mass generically
blows up identically at the Cauchy horizon.

1.2. Outline of the Paper

The remainder of the paper is organized as follows. First, in Sect. 2, we will
introduce the geometry of the interior of Reissner–Nordström. In Sect. 3, we
establish some simple bounds with energy estimates and use them to define
the scattering maps in the interior of Reissner–Nordström for spherically sym-
metric data. In Sect. 4, we will state a precise version of Theorem 1.1 (Theo-
rem 4.1). In Sect. 5, we discuss the scattering map for spherically symmetric
data in phase space. Using this, we prove Theorem 4.1 in Sect. 6. Finally, we
apply our Theorem 4.1 to the spherically symmetric Einstein–Maxwell-(real)
scalar field system to obtain a conditional mass inflation result in Sect. 7.
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2. The Geometry of the Interior of Reissner–Nordström

Let M and e be real numbers satisfying 0 < |e| < M . We define the interior of
Reissner–Nordström with parameter M and e to be the Lorentzian manifold
(MRN , gRN ), where

• MRN
.= R × (r−, r+) × S

2, where r±
.= M ±

√
M2 − e2;

• the metric gRN of the Reissner–Nordström spacetime given by:

gRN
.= −

(

1 − 2M

r
+

e2

r2

)

dt ⊗ dt +
(

1 − 2M

r
+

e2

r2

)−1

dr ⊗ dr + r2gS2 ,

(2.1)

where t ∈ R, r ∈ (r−, r+) and gS2 is the metric on the standard round
sphere of radius 1.

Together with an appropriate Maxwell field, Reissner–Nordström is a solution
to the Einstein–Maxwell system.

2.1. Spherical Symmetry and the Quotient Manifold

The Reissner–Nordström spacetime (MRN , gRN ) is easily seen to be spher-
ically symmetric5 in the sense that for MRN = QRN × S

2 and QRN =
R × (r−, r+), we can write

gRN = gQRN
+ r2gS2 ,

where
• (QRN , gQRN

) is a (1 + 1)-dimensional Lorentzian manifold with gQRN

given by

gQRN
= −

(

1 − 2M

r
+

e2

r2

)

dt ⊗ dt +
(

1 − 2M

r
+

e2

r2

)−1

dr ⊗ dr;

• given a point p ∈ MRN , r(p) depends only on π(p), where π : MRN →
QRN is the natural projection map.

We will denote by ϑ a point on S
2. Frequently, we will also use the standard

spherical coordinates (θ, ϕ), in which case we have

gS2 = dθ2 + sin2 θ dϕ2.

2.2. The (u, v) Coordinate System

We define the r∗ coordinate in the interior of the Reissner–Nordström black
hole:

r∗ .= r +
(

M +
2M2 − e2

2
√

M2 − e2

)

log(r+ − r) +
(

M − 2M2 − e2

2
√

M2 − e2

)

log(r − r−).

(2.2)

Notice that this implies

dr

dr∗ =
r2 − 2Mr + e2

r2
.

5See Sect. 7.1 for a general discussion.
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Define then the null coordinates

v
.=

1
2
(r∗ + t), u

.=
1
2
(r∗ − t), (2.3)

which implies

∂

∂v
=

∂

∂r∗ +
∂

∂t
,

∂

∂u
=

∂

∂r∗ − ∂

∂t
. (2.4)

According to (2.1), in this coordinate system, the Riessner–Nordström metric
takes the form

gRN = −Ω2
RN

2
(du ⊗ dv + dv ⊗ du) + r2

RNgS2 ,

where rRN = r is now thought of as a function of (u, v), and Ω2
RN

.= −4(1 −
2M
rRN

+ e2

r2
RN

). Moreover, by (2.2) and (2.4), we have

∂vrRN = ∂urRN = 1 − 2M

rRN
+

e2

r2
RN

. (2.5)

In the (u, v) coordinates, the spherically symmetric wave equation
�gRN

φ = 0 takes the form

∂u∂vφ +
∂vrRN

r
∂uφ +

∂urRN

r
∂vφ = 0. (2.6)

2.3. Event Horizon and Cauchy Horizon

We attach boundaries to QRN , known as event horizon H+
total and Cauchy hori-

zon CH+
total, to obtain a manifold-with-corner QRN . Define MRN

.= QRN ×S
2.

Abusing conventions slightly, we will also refer to H+
total × S

2 ⊂ MRN as the
event horizon, and CH+

total × S
2 ⊂ MRN as the Cauchy horizon. Notice that

the metric gRN extends smoothly up to the boundary.
Define the functions UH+(u), UCH+(u), VH+(v) and VCH+(v) which are

smooth and strictly increasing functions of their arguments and satisfy the
following ODEs:

dUH+

du
= e2κ+u and UH+(u) → 0 as u → −∞; (2.7)

dUCH+

du
= e−2κ−u and UCH+(u) → 1 as u → +∞; (2.8)

dVH+

dv
= e2κ+v and VH+(v) → 0 as v → −∞; (2.9)

dVCH+

dv
= e−2κ−v and VCH+(v) → 1 as v → +∞, (2.10)

where κ+ > 0 and κ− > 0 are defined to be to be6

κ+
.=

r+ − r−
2r2

+

, κ−
.=

r+ − r−
2r2−

. (2.11)

6Note that this coincides with the definition in [22], but differs from that in [21], where κ−
is taken to be negative.
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In the (UH+ , VH+) coordinate system, we attach the boundaries H+
1

.=
{UH+ = 0} and H+

2
.= {VH+ = 0}. Denote also the event horizon as H+

total =
H+

1 ∪ H+
2 . In the (UCH+ , VCH+) coordinate system, we attach the boundaries

CH+
1

.= {VCH+ = 1} and CH+
2

.= {UCH+ = 1}. Denote also the Cauchy horizon
as CH+

total = CH+
1 ∪ CH+

2 .
We define the bifurcation sphere of H+

total by

BH+
.= H+

1 ∩ H+
2 = {(UH+ , VH+) : UH+ = VH+ = 0}.

Note that BH+ is a subset of both H+
1 and H+

2 . Similarly, define bifurcation
sphere of CH+

total by

BCH+
.= CH+

1 ∩ CH+
2 = {(UCH+ , VCH+) : UCH+ = VCH+ = 1}.

2.4. Behavior of ΩRN Near the Horizons

Using (2.2) and recalling (2.11), it is easy to check that r∗ can then be alter-
natively written as

r∗ = rRN +
1

2κ+
log(r+ − rRN ) − 1

2κ−
log(rRN − r−). (2.12)

We compute that as rRN → r+, we have

r+ − rRN = e−2κ+r+(r+ − r−)
κ+
κ− e2κ+r∗

(1 + O(r+ − rRN )).

In other words, for any A ∈ R, in the r∗ ≤ A region (i.e., in a neighborhood
of the event horizon),

1
4
Ω2

RN = −∂urRN = −∂vrRN

=
e−2κ+r+(r+ − r−)1+

κ+
κ−

r2
+

e2κ+r∗
(1 + OA(r+ − rRN ))

= OA(e2κ+r∗
). (2.13)

On the other hand, as rRN → r−, we have

rRN − r− = e2κ−r−(r+ − r−)
κ−
κ+ e−2κ−r∗

(1 + O(rRN − r−)).

As a consequence, for any A ∈ R, in the r∗ ≥ A region (i.e., in a neighborhood
of the Cauchy horizon),

1
4
Ω2

RN = −∂urRN = −∂vrRN

=
e−2κ−r−(r+ − r−)1+

κ−
κ+

r2−
e−2κ−r∗

(1 + OA(rRN − r−))

= OA(e−2κ−r∗
). (2.14)
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2.5. Killing Vector Fields on (MRN , gRN )

The Reissner–Nordström interior (MRN , gRN ) admits the following Killing
vector fields:

T
.= ∂t, O1

.= sin ϕ∂θ +
cos ϕ cos θ

sin θ
∂ϕ, O2

.= cos ϕ∂θ − sin ϕ cos θ

sin θ
∂ϕ,

O3
.= ∂ϕ. (2.15)

Note that all of these vector fields extend smoothly up to the event hori-
zon and the Cauchy horizon. In particular,7

T =
1
2
∂v on H+

1 and CH+
2 , while T = −1

2
∂u on H+

2 and CH+
1 . (2.16)

2.6. Volume Forms

Before we end this section on the Reissner–Nordström geometry, we briefly
comment on volume forms on (MRN , gRN ).

The metric gRN induces a natural (positive) volume form vol. In the
(u, v, θ, ϕ) coordinates, we have

vol .=
√

−det gRN du dv dθ dϕ = −2
(

1 − 2M

rRN
+

e2

r2
RN

)

r2
RN sin θ du dv dθ dϕ

=
1
2
r2
RNΩ2

RN sin θ du dv dθ dϕ. (2.17)

On constant-u and constant-v null hypersurfaces, we define positive volume
forms volu and volv, respectively, by vol = du ∧ volu and vol = dv ∧ volv. It
can then be checked that

volu
.= −2

(

1 − 2M

rRN
+

e2

r2
RN

)

r2
RN sin θ dv dθ dϕ =

1
2
r2
RNΩ2

RN sin θ dv dθ dϕ,

volv
.= −2

(

1 − 2M

rRN
+

e2

r2
RN

)

r2
RN sin θ du dθ dϕ =

1
2
r2
RNΩ2

RN sin θ du dθ dϕ.

(2.18)

We will also use dσϑ to denote the standard volume form of the induced metric
on the sphere of symmetry. Note that

dσϑ
.= r2

RN sin θ dθ dϕ.

3. Energy Estimates for Spherically Symmetric Solutions in the
Interior of Reissner–Nordström

In this section, we discuss a scattering theorem for the (1.1) on (MRN , gRN )
for spherically symmetric solutions. We first review the vector field multiplier
method (specialized to the spherically symmetric case) in Sect. 3.1. In Sect. 3.2,
we derive energy estimates for solutions to the wave equation with spheically

7Here, this is to be understood as the extension of the coordinate vector field ∂v in the (u, v)

coordinate system to MRN . Similar convention is used for ∂u on H+
2 and CH+

1 .
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symmetric data. Finally, in Sect. 3.3, we define the transmission and reflection
maps.

3.1. The Vector Field Multiplier Method

In this subsection, we review some general notions regarding the vector field
multiplier method. These will be useful not only for Theorem 3.7, but also for
the rest of the paper.

We begin with the definition of stress–energy–momentum tensor on a
general Lorentzian manifold:

Definition 3.1 (Stress–energy–momentum tensor). Define the stress–energy–
momentum tensor by

Tμν [φ] .= ∂μφ∂νφ − 1
2
gμν(g−1)αβ∂βφ∂αφ.

The following easy standard positivity property will be useful:

Lemma 3.2 Let X, Y be future-directed and causal at a point p, then
(T[φ](X,Y ))(p) ≥ 0.

Denoting by ∇ the Levi-Civita connection associated with g, we have

∇μ
Tμν [φ] = �gφ∂νφ,

which implies the following energy identity :

Lemma 3.3 (Energy estimates). For a compact region D ⊆ M with piecewise
smooth boundary ∂D, which is oriented with respect to the outward pointing
normal, Stokes’ theorem now yields
∫

∂D

ιT[φ](X,·)� vol =
∫

D
d
(
ιT[φ](X,·)� vol

)
=

∫

D

(
T[φ]μν∇μXν + �gφ(Xφ)

)
vol ,

(3.1)

where vol is the volume form induced by the metric g.

In order to apply the energy estimates (3.1), it is convenient to make the
following definition:

Definition 3.4. Given a C1 vector field X, define the deformation tensor (X)π
(X)πμν

.= ∇μXν + ∇νXμ.

On (MRN , gRN ), (X)πμν can be explicitly computed as follows (see [10]):

Lemma 3.5. For every spherically symmetric C1 vector field X on
(MRN , gRN ), the following identity holds on (MRN , gRN ):

Tμν [φ](X)πμν = − 4
Ω2

RN

(
(∂uXv)(∂vφ)2 + (∂vXu)(∂uφ)2

)

− 4
rRN

(Xv + Xu)(∂uφ∂vφ) − 2
(

1
2
(∂vXv + ∂uXu)

+Xv∂v log ΩRN + Xu∂u log ΩRN ) | /∇φ|2,
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where | /∇φ|2 is the square of the norm of the angular derivatives with respect
to the induced metric on the 2-spheres of symmetry, and is given in the (θ, ϕ)
coordinates by

| /∇φ|2 .=
1

r2
RN

(∂θφ)2 +
1

r2
RN sin2 θ

(∂ϕφ)2.

3.2. Energy Estimates

In this section, we use the formalism defined in Sect. 3.1 above to prove energy
estimates for spherically symmetric solutions to the wave equation �gRN

φ = 0.
We remark that the energy estimates presented in Theorem 3.7 are by

now standard; see for instance [10,18]. One particular feature of the energy
estimates we use is that we apply a multiplier vector field which is non-smooth
(C0 but not C1) at the horizons (see the definitions (3.5) and (3.6)). This type
of non-smooth multiplier, which appeared already in [22, Proposition 9.2] (see
also [8]), generates some better spacetime terms, which will be useful later in
Sect. 7.5.

Before we proceed, let us define some useful weight functions:

Definition 3.6 (Polynomial weights). Given p ∈ [0,∞), let wp : R → R be a
smooth and non-decreasing function such that

wp(x) =

{
1 if x ≤ 1

2

2xp if x ≥ 1.

We are now ready to give the main energy estimates.

Theorem 3.7 (Energy estimates in spherical symmetry). Fix p1, p2 ∈ (1,+∞).
Let φ be a solution to

�gRN
φ = 0

in MRN which is smooth up to H+
total = H+

1 ∪ H+
2 with spherically symmetric

characteristic initial data on H+
total such that the following holds:

(1)

φ �BH+ = 0, lim
v→+∞ φ �H+

1
(v) = 0 = lim

u→+∞ φ �H+
2

(u),

(2)
∫

R

wp1(v)wp2(−v)(Tφ �H+
1
)2(v) dv

+
∫

R

wp1(−u)wp2(u)(Tφ �H+
2
)2(u) du

.= A < +∞. (3.2)

Then, the following holds for some C > 0 depending only on p1, p2, M
and e:
(1) The following uniform upper bound holds:

sup
u∈R

∫

R

wp1(v)wp2(−v)(∂vφ)2(u, v) dv
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+ sup
v∈R

∫

R

wp1(−u)wp2(u)(∂uφ)2(u, v) du ≤ CA. (3.3)

(2) The solution φ extends to a continuous function (which we abuse notation
slightly and write) φ : MRN ∪ H+

total ∪ CH+
total → R.

(3) The derivative ∂vφ extends continuously to CH+
2 \CH+

1 and the derivative
∂uφ extends continuously to CH+

1 \ CH+
2 .

(4) The extension of φ satisfies φ �CH+
1
, φ �CH+

2
∈ W 1,2

loc and obeys the esti-
mate

∫

R

wp1(v)wp2(−v)(Tφ �CH+
2
)2(v) dv

+
∫

R

wp1(−u)wp2(u)(Tφ �CH+
1
)2(u) du ≤ CA. (3.4)

Proof. In this proof, constants C and implicit constants in � depend only on
p1, p2, M and e.
Step 1: Energy estimates and proof of (3.3) Fix σ > 1 and define the function
y(r∗) by

y(r∗) .= 2 − σ − 1
2

∫ r∗

−∞
(1 + |(r∗)′|)−σ d(r∗)′. (3.5)

Here, r∗ is a function of u, v given by (2.3). Notice that (3.5) is well-defined
since σ > 1. Moreover,
(1) y is decreasing in r∗,
(2) 1 ≤ y ≤ 2, and
(3) y �H+= 2 and y �CH+= 1.

Define the vector field Y by

Y
.= yN (r∗) (wp1(v)wp2(−v)∂v + wp1(−u)wp2(u)∂u) . (3.6)

First note that Y v = yN (r∗)wp1(v)wp2(−v) ≥ 0 and Y u = yN (r∗)
wp1(−u)wp2(u) ≥ 0, i.e., Y is future-directed and causal. Hence, by Lemma 3.2,
we get a non-negative energy. Indeed, by Lemma 3.3 with X = Y , and using
(2.17), (2.18), we obtain that there is some c0 > 0 such that for any u∗, v∗ ∈ R,

∫

{u=u∗}
yNwp1(v)wp2(−v)r2

RN (∂vφ)2(u, v) dv

+
∫

{v=v∗}
yNwp1(−u)wp2(u)r2

RN (∂uφ)2(u, v) du

=
∫

H+
1

2Nwp1(v)wp2(−v)r2
+(∂vφ)2(u, v) dv

+
∫

H+
2

2Nwp1(−u)wp2(u)r2
+(∂uφ)2(u, v) du

− 1
2

∫

{(u,v):u∈(−∞,u∗), v∈(−∞,v∗)}
Tμν

(Y )πμν r2
RNΩ2

RN du dv

= 2N+2r2
+A − 1

2

∫

{(u,v):u∈(−∞,u∗), v∈(−∞,v∗)}
Tμν

(Y )πμν r2
RNΩ2

RN du dv,

(3.7)
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where in the penultimate identity we used properties of y above, and in the
last line we used (2.16) and (3.2).

We claim that there exists N sufficiently large and c > 0 (both depending
on σ, M and e) such that

Tμν
(Y )πμνr2

RNΩ2
RN ≥ c

(1 + |r∗|)σ
(wp1(v)wp2(−v)(∂vφ)2

+wp1(−u)wp2(u)(∂uφ)2) ≥ 0. (3.8)

The verification of (3.8) will be postponed to Step 1(a).
Accepting (3.8) for the moment and fixing N such that (3.8) holds, the

desired estimate (3.3) is an immediate consequence of (3.7), y ≥ 1 and r ≥ r−.
Step 1(a): Controlling the bulk term in the energy estimates Our goal now is
to prove (3.8). Since φ is spherically symmetric, by Lemma 3.5, we have

Tμν
(Y )πμν = − 4

Ω2
RN

(
(∂uY v)(∂vφ)2+(∂vY u)(∂uφ)2

)
−4

r
(Y v+Y u)(∂uφ∂vφ)

=
2N(σ − 1)

Ω2
RN

y−1(1 + |r∗|)−σ
(
Y v(∂vφ)2 + Y u(∂uφ)2

)

︸ ︷︷ ︸
Main term

− 2
r
(Y v + Y u)(∂uφ∂vφ)

︸ ︷︷ ︸
Error term

.

(3.9)

Note that r2
RNΩ2

RN (Main term in (3.9)) � (RHS of (3.8)) since rRN and y are
both bounded above and away from 0. Therefore, in order to prove (3.8), it
suffices to show that for N sufficiently large, the “Error term” in (3.9) can
be dominated by the 1

2×“Main term.” We consider the following cases, which
exhaust all possibilities (although not mutually exclusive):

Case 1: v ≥ 0, v ≥ 2|u|. In this region, r is bounded away from r+. There-
fore, Ω2

RN � e−2κ−(v+u) by (2.14) (where here, and below, the implicit constant
depends on M and e, but is independent of u and v). Using v ≥ 2|u|, this im-
plies Ω2

RN � min{e−κ−v, e−2κ−|u|}. Since r∗ = v + u, there exists c > 0 such
that 1

Ω2y(1+|r∗|)σ � max{ecv, ec|u|}. This implies

min
{

Y v

Ω2
RNy(1 + |r∗|)σ

,
Y u

Ω2
RNy(1 + |r∗|)σ

} � max{Y v, Y u

}

. (3.10)

Therefore, by choosing N > 0 sufficiently large and using the Cauchy–Schwarz
inequality for the “Error term,” one sees that (3.9) is positive in this region.

Case 2: v ≤ 0, |v| ≥ 2|u|. In this region, r is bounded away from r− and
hence Ω2 � e2κ+(v+u). This then implies Ω2 � min{e−κ+|v|, e−2κ+|u|}. As a
consequence, (3.10) holds and the rest of the proof proceeds as in Case 1.

Case 3: u ≥ 0, u ≥ 2|v|. This can be treated similarly as Case 1.
Case 4: u ≤ 0, |u| ≥ 2|v|. This can be treated similarly as Case 2.
Case 5: uv ≤ 0, |u| ≤ 2|v| ≤ 4|u|. In this region, we have Y v ∼ Y u and
1

Ω2y(1+|r∗|)σ � 1. As a consequence, (3.10) holds and the rest of the proof
proceeds as in Case 1.
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Case 6: uv ≥ 0. Since u and v have the same sign, one checks that there
exists c > 0 such that 1

Ω2y(1+|r∗|)σ � ec(|v|+|u|). In particular, (3.10) holds and
the rest of the proof proceeds as in Case 1.

We have thus verified the claim (3.8).
Step 2: Proof of continuous extendibility of φ Continuous extendibility is a
direct consequence of (3.3). Indeed, (3.3) and the Cauchy–Schwarz inequality
imply that for u, u′, v, v′ ∈ [1,+∞),

|φ(u, v) − φ(u′, v′)| � |v− p1−1
2 − (v′)− p1−1

2 | + |u− p1−1
2 − (u′)− p1−1

2 |. (3.11)

It therefore follows that for u, v ∈ R, we can define φ �CH+
1

(u) and
φ �CH+

2
(v) by

φ �CH+
1

(u) = lim
v→+∞ φ(u, v), φ �CH+

2
(v) = lim

u→+∞ φ(u, v),

where the limits exist because of (3.11). Using (3.11) again, we see that

lim
u→+∞ φ �CH+

1
(u) = lim

v→+∞ φ �CH+
2

(v),

and thus we can define

φ �BCH+ = lim
u→+∞ φ �CH+

1
(u) = lim

v→+∞ φ �CH+
2

(v).

We have thus defined an extension of φ to MRN ∪H+
total∪CH+

total. Finally,
using again (3.3), it is easy to check that the extension is continuous.
Step 3: Proof of continuous extendibility of ∂vφ and ∂uφ We show that ∂vφ
extends continuously to CH+

2 \ CH+
1 ; the corresponding statement for ∂uφ can

be proven in a very similar manner.
Using (3.3), we have

sup
v∈R

(∫ 0

−∞
(1 + u2)

p1
2 (∂uφ)2(u, v) du +

∫ +∞

0

(1 + u2)
p2
2 (∂uφ)2(u, v) du

)

< +∞. (3.12)

Since φ is spherically symmetric, the wave equation �gφ = 0 takes the
following form (cf. (2.6)):

∂u(rRN∂vφ) = −(∂vrRN )(∂uφ) =
1
4
Ω2

RN∂uφ, (3.13)

where we have used (2.5) in the second inequality.
Notice that by (2.13) and (2.14), we have the Näıve bound ΩRN � 1.

Thus, (3.12) and the Cauchy–Schwarz inequality imply that the RHS of (3.13)
is L1 in u (uniformly in v). It therefore follows from (3.13) that ∂vφ extends
continuously to the Cauchy horizon CH+

2 \ CH+
1 .

Step 4: Proof of (3.4) By (3.3), the Banach–Alaoglu theorem, and the point-
wise convergence of φ as v → +∞ (established in Step 2 above), there exists a
sequence vi → +∞ such that (∂uφ) �{v=vi} has a weak L2(wp1(−u)wp2(u) du)
limit, and it is straightforward to see that this limit must coincide with the



382 J. Luk et al. Ann. Henri Poincaré

weak (and hence actual) ∂u-derivative of φ along CH+
1 . Hence, ∂uφ �CH+

1
sat-

isfies

‖∂uφ �CH+
1

‖2
L2(wp1 (−u)wp2 (u) du) ≤ lim inf

i→+∞
‖(∂uφ) �{v=vi} ‖2

L2(wp1 (−u)wp2 (u) du)

≤ CA, (3.14)

by (3.3). An entirely analogous argument gives

‖∂vφ �CH+
2

‖2
L2(wp1 (−u)wp2 (u) du) ≤ CA. (3.15)

Combining (3.14) and (3.15), and then using (2.16), yield (3.4). �

3.3. Definition of the Transmission and Reflection Maps

Given Theorem 3.7, we now define the transmission map and the reflection
map.

We prescribe rTφ �H+
1
= Ψ and rTφ �H+

2
= 0, solve the wave equation,

and define T Ψ = rTφ �CH+
2

and RΨ = rTφ �CH+
1
. More precisely,

Definition 3.8. Let p1, p2 ∈ (1,+∞). Suppose Ψ is a smooth function on H+
1 ∪

BH+ with Ψ �BH+ = 0,
∫

H+
1

Ψ(v) dv = 0 and
∫

H+
1

wp1(v)wp2(−v)Ψ2(v) dv < +∞.

Let φ : MRN ∪ H+ → R be the unique smooth solution to �gRN
φ = 0

arising from the (smooth) characteristic initial data

φ �H+
1

(v) =
2
r+

∫ v

−∞
Ψ(v′) dv′, φ �H+

2
(u) ≡ 0.

Define the transmission map T and the reflection map R by

T Ψ .= r−Tφ �CH+
2
, RΨ .= r−Tφ �CH+

1
. (3.16)

Note that both maps are well-defined by Theorem 3.7.

4. Statement of the Main Theorem for the Linear Wave
Equation

In this section, we give a precise statement of Theorem 1.1. (As already men-
tioned in introduction, the discussion of the main theorem on mass inflation
in the nonlinear setting (i.e., Theorem 1.12) will be postponed to Sect. 7.)

We give two versions of the theorem in Theorem 4.1 and Corollary 4.2.
The statement in Corollary 4.2 should be thought of as the main, more impor-
tant result, though it is convenient to first prove a slightly weaker statement
as in Theorem 4.1. (The difference between the two theorems is that in The-
orem 4.1, we make some global assumptions of the data, including requiring
the data to vanish on BH+ and on a large portion of H+

2 . In Corollary 4.2, we
apply an easy cut-off argument to show that we only need assumptions of φ
on H+

1 as v → +∞.)
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The conclusion of the proofs of Theorem 4.1 and Corollary 4.2 can be
found, respectively, in Sections 6.2 and 6.3.

Theorem 4.1. Let φ be a smooth spherically symmetric solution to (1.1) on
MRN ∪ H+

total. Suppose the following holds:
(1) There exists v∗ ∈ R such that φ �H+

1
(v) = 0 for every v ≤ v∗.

(2) There exists u∗ ∈ R such that φ �H+
2

(u) = 0 for every u ≥ u∗.
(3) limv→+∞ φ �H+

1
(v) = 0.

(4)
∫ +∞
1

(1 + v2)(Tφ �H+
1
)2 dv < +∞.

(5) There exists an even integer p ≥ 4 which is the smallest even integer for
which

∫ +∞

1

(1 + v2)
p
2 (Tφ �H+

1
)2 dv = +∞. (4.1)

(6) For p as above,
∫ +∞

1

(1 + v2)
p
2 (T 2φ �H+

1
)2 dv < +∞. (4.2)

Then, the following holds (with p as above):
(1) For any u ∈ R,

∫ +∞

1

(1 + v2)
p
2 (∂vφ)2(u, v) dv = +∞. (4.3)

(2) The following weighted energy along the Cauchy horizon is infinite:
∫ −1

−∞
(1 + u2)

p
2 ( lim

v→+∞(Tφ)2(u, v)) du = +∞. (4.4)

Corollary 4.2. Let us ∈ (−∞,−1). Suppose φ is a spherically symmetric so-
lution to (1.1) on (MRN ∪ H+

1 ) ∩ {(u, v) : u ∈ (−∞, us], v ∈ [1,+∞)} which
is smooth up to H+

1 . Suppose that only assumptions (3), (4), (5) and (6) of
Theorem 4.1 hold, then the following slight modifications of conclusions (1)
and (2) of Theorem 4.1 still hold:
(1′) For any u ∈ (−∞, us),

∫ +∞

1

(1 + v2)
p
2 (∂vφ)2(u, v) dv = +∞. (4.5)

(2′) The following weighted energy along the Cauchy horizon is infinite:
∫ us

−∞
(1 + u2)

p
2 ( lim

v→+∞(Tφ)2(u, v)) du = +∞. (4.6)

Remark 4.3. (Alternative assumption for the improved decay of higher deriv-
ative) In both Theorem 4.1 and Corollary 4.2, the assumption (4.2) can be
replaced by ∃k ≥ 2 such that

∫ +∞

1

(1 + v2)
p
2 (T kφ �H+

1
)2 dv < +∞.
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The proof of this more general statement is essentially the same; we omit the
details.

5. The Kehle–Shlapentokh–Rothman Scattering Theory

In this section, we collect some facts about the transmission and reflection
maps (recall Definition 3.8) proven in [18]. (Some of the results in [18] were
stated in slightly different function spaces from those we consider, but their
proofs can be easily adapted to our setting.) In particular, we will recall that
the transmission and reflection maps admit simple phase space representations
as operators defined by Fourier multipliers; see Proposition 5.7.

5.1. The Radial ODE

Definition 5.1. Define V by

V (r∗) =
(1 − 2M

rRN
+ e2

r2
RN

)[rRN (r+ + r−) − 2r+r−]

r3
RN

, (5.1)

where we think of rRN as a function of r∗ using (2.2).
For ω ∈ R, define u1 and u2 as the unique solutions to the Volterra

integral equations

u1(ω, r∗) = eiωr∗
+

∫ r∗

−∞

sin(ω(r∗ − y))
ω

V (y)u1(ω, y) dy, (5.2)

u2(ω, r∗) = e−iωr∗
+

∫ r∗

−∞

sin(ω(r∗ − y))
ω

V (y)u2(ω, y) dy; (5.3)

and define v1 and v2 as the unique solutions to the Volterra integral equations

v1(ω, r∗) = eiωr∗
+

∫ +∞

r∗

sin(ω(r∗ − y))
ω

V (y)v1(ω, y) dy, (5.4)

v2(ω, r∗) = e−iωr∗
+

∫ +∞

r∗

sin(ω(r∗ − y))
ω

V (y)v2(ω, y) dy, (5.5)

Here, when ω = 0, we define sin(ω(r∗−y))
ω �ω=0

.= r∗ − y.

Remark 5.2. The Volterra integral equations relate to the wave equation as
follows.

The functions u1, u2, v1 and v2 are defined to satisfy the ODE

u′′ + (ω2 − V )u = 0. (5.6)

For sufficiently regular spherically symmetric function φ, define

φ̂(ω, r) =
1√
2π

∫

R

e−iωtφ(t, r) dt.

If φ solve �gφ = 0, then u = rφ̂ satisfies (5.6).
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Definition 5.3. Define the transmission coefficient T : R \ {0} → C and reflec-
tion coefficient R : R \ {0} → C to be the unique coefficients such that

u1 = Tv1 + Rv2.

Note that they are well-defined since when ω �= 0, v1 and v2 are linearly
independent. In fact, T and R take the form

T(ω) =
W(u1, v2)

−2iω
, R(ω) =

W(u1, v1)
2iω

,

where W is the Wronskian defined by W(f, g) .= fg′ − f ′g.

We will use some properties of T and R proven in [18].

Proposition 5.4. (1) (Proposition 2.5 in [18]) T and R extend to analytic
functions on C \ P, where P = {imκ+ : m ∈ N} ∪ {ikκ− : k ∈ Z \ {0}}
(κ± as in (2.11)), are the locations of possible poles.
In particular, T and R are well-defined and analytic on R.

(2) (Theorem 2 in [18]) T and R are uniformly bounded on the real line, i.e.,

sup
ω∈R

(|T(ω)| + |R(ω)|) � 1.

(3) (Proposition 2.4 in [18]) For every ω ∈ R,

|T(ω)|2 − |R(ω)|2 = 1.

(4) (Proposition 2.5 in [18])

T(0) =
1
2

(
r−
r+

+
r+

r−

)

, R(0) =
1
2

(
r−
r+

− r+

r−

)

.

Remark 5.5. Regarding points (3) and (4) in Proposition 5.4, the only thing
we need below is that T(0) �= 0 and R(0) �= 0. Part (3) in Proposition 5.4
can be thought of as a (microlocalized) version of the T -conservation law. In
particular, this means that T(0) �= 0 follows from the T -conservation law as
an easy consequence. On the other hand, one does not need to appeal to the
conservation law, and can compute T(0) directly, as in done is part (4) of the
proposition.

5.2. The Scattering Map and the Radial ODE

Definition 5.6. Let Ψ : H+
1 → R be a spherically symmetric function (of v).

Define the Fourier transform Ψ̂ (whenever well-defined) by

Ψ̂(ω) .=
1√
π

∫ ∞

−∞
e2iωvΨ(v) dv.

Similarly, for T Ψ : CH+
2 → R and RΨ : CH+

1 → R, we define the Fourier
transform (whenever well-defined) by

T̂ Ψ(ω) .=
1√
π

∫ ∞

−∞
e2iωvT̂ Ψ(v) dv, R̂Ψ(ω) .=

1√
π

∫ ∞

−∞
e−2iωuR̂Ψ(u) dv.

Proposition 5.7. (Theorem 3 in [18]) The transmission and reflection maps de-
fined in Definition 3.8 are given by the following Fourier multiplier operators:

T̂ Ψ(ω) = T(ω)Ψ̂(ω), R̂Ψ(ω) = R(ω)Ψ̂(ω).
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6. Proof of the Main Theorem

In this section, we prove our main results on the linear wave equation, i.e., The-
orem 4.1 and Corollary 4.2.

The statements (1) and (2) of Theorem 4.1 have very similar proofs. We
will give a detailed proof of the statement (1) in Sect. 6.1 and then briefly
discuss the necessary modifications for the statement (2) in Sect. 6.2.

The proof of Corollary 4.2 then follows as a consequence and will be
carried out in Sect. 6.3.

6.1. The Transmission Map and Instability Results in the Black Hole Interior

In this subsection, we prove statement (1) of Theorem 4.1.
Before we proceed, let us give a brief summary of the argument.

(1) First, we show that without loss of generality, we may assume that φ �H+
2

(u) = 0.
(2) Next, we note that the transmission coefficient is bounded below at ω = 0

(see Proposition 6.2).
(3) Then, using Plancherel’s theorem, we show that the assumptions of The-

orem 4.1 and the previous step to imply the blow-up of a global weighted
energy at the Cauchy horizon for the transmission map (see Proposi-
tion 6.3).

(4) Next, we argue using a physical space argument (more precisely, Theo-
rem 3.7) that the global weighted energy blows up due to the behavior
as v → +∞ on CH+

2 (instead of v → −∞) (see Proposition 6.4).
(5) Finally, using a local energy estimate, we show that the blow-up on CH+

2

translates to the blow-up statement for finite u stated in Theorem 4.1
(see Proposition 6.5).
We begin with the first step, which is to show that in the proof of state-

ment (1) of Theorem 4.1, without loss of generality, we may take φ �H+
2

(u) = 0.

Proposition 6.1. To prove Theorem 4.1, it suffices to prove statement (1) of
the theorem under the additional assumption that φ �H+

2
(v) = 0.

Proof. Let φ satisfy the assumptions of Theorem 4.1. We now define two aux-
iliary smooth solutions φleft and φright to the wave equation on MRN ∪H+

total

as follows:
(1) For φleft we solve a characteristic initial value problem with

φleft �H+
2

(u) = φ �H+
2

(u) and φleft �H+
1

(v) = 0.

(2) For φright, we solve a characteristic initial value problem with

φright �H+
2

(u) = 0 and φright �H+
1

(v) = φ �H+
1

(v).

We have, of course, that

φ = φleft + φright. (6.1)

Observe that in view of the smoothness and support assumptions of φ,
we have that (3.2) holds for φleft with any non-negative values of p1 and p2.
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Moreover, the other hypotheses for Theorem 3.7 clearly hold for φleft, and it
is thus an immediate consequence that

∫ ∞

1

(1 + |v|)p|∂vφleft|2(u, v) dv < +∞, ∀u ∈ R. (6.2)

Now, it suffices to observe that for any u ∈ R, (6.2) and (6.1) imply that
∫ ∞

1

(1 + |v|)p|∂vφ|2(u, v) dv = +∞

⇔
∫ ∞

1

(1 + |v|)p|∂vφright|2(u, v) dv = +∞. (6.3)

�

We now turn to the next step, which is to show that the transmission
coefficient is nonzero at ω = 0.

Proposition 6.2.

T(0) �= 0.

Proof. This is immediate using either part (3) or part (4) of Theorem 5.4. �

Next, we use Plancherel’s theorem to prove a global blow-up result.

Proposition 6.3. Let φ be as in the assumptions of Theorem 4.1 and satisfy
φ �H+

2
= 0. Define

Ψ(v) = r+(Tφ) �H+
1

(v). (6.4)

Then,
∫ ∞

−∞
|v|p|T Ψ|2(v) dv = +∞.

Proof. Step 1: Writing the assumptions in phase space Conditions (1), (4) and
(5) in Theorem 4.1, together with (6.4), imply that

∫ ∞

−∞
|v|p|Ψ|2(v) dv = +∞; (6.5)

and the condition (6), together with (6.4), imply that
∫ ∞

−∞
|v|p|TΨ|2(v) dv < +∞. (6.6)

By Plancherel’s theorem (and recalling that p is even), (6.5) and (6.6)
imply

∫ ∞

−∞

∣
∣
∣∂

p
2
ω Ψ̂

∣
∣
∣
2

(ω) dω = +∞,

∫ ∞

−∞

∣
∣
∣∂

p
2
ω (ωΨ̂)

∣
∣
∣
2

(ω) dω < +∞. (6.7)

Since p is the smallest even integer such that (4.1) holds, we can bound
∫ ∞

−∞

∣
∣
∣[∂

p
2
ω , ω]Ψ̂

∣
∣
∣
2

(ω) dω =
p2

4

∫ ∞

−∞

∣
∣
∣∂

p−2
2

ω Ψ̂
∣
∣
∣
2

(ω) dω < +∞. (6.8)
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Combining (6.8) with the second estimate in (6.7), we obtain
∫ ∞

−∞

∣
∣
∣ω(∂

p
2
ω Ψ̂)

∣
∣
∣
2

(ω) dω < +∞. (6.9)

Combining (6.9) with the first estimate in (6.7), we obtain
∫ 1

−1

∣
∣
∣∂

p
2
ω Ψ̂

∣
∣
∣
2

(ω) dω = +∞. (6.10)

Step 2: Finishing the proof By Plancherel’s theorem and Proposition 5.7, it
suffices to prove

∫ a

−a

∣
∣
∣∂

p
2
ω (TΨ̂)

∣
∣
∣
2

(ω) dω = +∞ (6.11)

for some a ∈ R>0. We will prove (6.11) for a = 1.
To achieve (6.11), first notice since

• p is the smallest even integer such that (4.1) holds, and
• T and its derivatives are uniformly bounded for ω ∈ [−1, 1] by analyticity

(Proposition 5.4),

we have (for some constant C > 0 depending only on p),
∫ a

−a

∣
∣
∣[∂

p
2
ω ,T]Ψ̂

∣
∣
∣
2

(ω) dω ≤ C
∑

k1+k2=
p
2

k2≤ p−2
2

∫ 1

−1

∣
∣
∣(∂k1

ω T)(∂k2
ω Ψ̂)

∣
∣
∣
2

(ω) dω < +∞.

It therefore suffices to establish
∫ 1

−1

∣
∣
∣T(∂

p
2
ω Ψ̂)

∣
∣
∣
2

(ω) dω = +∞. (6.12)

For the sake of contradiction, we assume (6.12) fails. Since T(0) �= 0 (by
Proposition 6.2) and T is continuous (in fact even analytic by Proposition 5.4),
there exist ε ∈ (0, 1] and η > 0 such that |T(ω)| ≥ η whenever |ω| ≤ ε.
Therefore, using this fact with (6.9) and the assumed failure of (6.12), we
obtain

∫ 1

−1

∣
∣
∣∂

p
2
ω Ψ̂

∣
∣
∣
2

(ω) dω ≤ η−2

∫ ε

−ε

∣
∣
∣T(∂

p
2
ω Ψ̂)

∣
∣
∣
2

(ω) dω

+ ε−2

∫

[−1,1]\[−ε,ε]

∣
∣
∣ω(∂

p
2
ω Ψ̂)

∣
∣
∣
2

(ω) dω < +∞.

This contradicts (6.10). Therefore, (6.12) holds. �

At this point, the blow-up result that we obtained in Proposition 6.3 is
global, i.e., we do not yet know whether the blow-up is due to the behavior of
T Ψ as v → +∞ or as v → −∞. Nevertheless, in the following proposition, we
are able to use the energy estimates in Sect. 3.3 to deduce that the blow-up is
due to a lower bound of the decay as v → +∞.
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Proposition 6.4. Let Ψ be as in the assumptions of Proposition 6.3. Then, T Ψ
satisfies

∫ 1

−∞
(1 + |v|)p|T Ψ|2(v) dv < +∞.

Therefore, when combined with Proposition 6.3, we obtain
∫ ∞

1

(1 + |v|)p|T Ψ|2(v) dv = +∞.

Proof. This is an immediate corollary of Theorem 3.7 with p1 = 2 and p2 = p.
Notice that the assumptions (1)–(4) of Theorem 4.1, as well as the additional
assumption φ �H+

2
= 0 as in Proposition 6.3, imply that the assumptions (1)–(2)

of Theorem 3.7 are satisfied. �

Proposition 6.5. Let φ satisfy the assumptions of Theorem 4.1 and satisfy
φ �H+

2
= 0. Then, the following holds for every u ∈ R:

∫ ∞

1

(1 + |v|)p|∂vφ|2(u, v) dv = +∞. (6.13)

Proof. To show that (6.13) also holds for all finite u, we will argue by con-
tradiction. Assuming that (6.13) fails for some ui ∈ R, we use a standard
propagation of regularity argument with finite time energy estimates to arrive
at a contradiction with the conclusion of Proposition 6.4.

Assume for the sake of contradiction that ∃ui ∈ R such that
∫ ∞

1

(1 + |v|)p(∂vφ)2(ui, v) dv < +∞. (6.14)

Step 0: Some preliminary estimates for φ Before we proceed, first note that
due to the conditions (1)–(4) of Theorem 4.1, we can apply Theorem 3.7 with
p1 = 2 and p2 = p. In particular, (3.3) implies that

sup
v∈R

(∫ −1

−∞
(1 + u2)(∂uφ)2(u, v) du +

∫ +∞

1

(1 + u2)
p
2 (∂uφ)2(u, v) du

)

< +∞.

(6.15)

Step 1: Propagation of regularity by finite time energy estimates Multiplying
(3.13) by (1 + |v|)prRN∂vφ, integrating a region (u, v) ∈ [ui, uf ] × [0, vf ] and
integrating by parts, we obtain

1
2

∫ vf

1

(1 + |v|)pr2
RN (∂vφ)2(uf , v) dv

=
1
2

∫ vf

1

(1 + |v|)pr2
RN (∂vφ)2(ui, v) dv

+
1
4

∫ vf

1

∫ uf

ui

(1 + |v|)pΩ2
RNrRN (∂uφ)(∂vφ)(u, v) du dv.

(6.16)

The last term on the RHS of (6.16) can be controlled as follows using Hölder’s
inequality:
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∣
∣
∣
∣

∫ vf

1

∫ uf

ui

(1 + |v|)pΩ2
RNrRN (∂uφ)(∂vφ)(u, v) du dv

∣
∣
∣
∣

≤ r+

(∫ vf

1

∫ uf

ui

(1 + |v|)pΩ2
RN |∂vφ|2(u, v) du dv

) 1
2

×
(∫ vf

1

∫ uf

ui

(1 + |v|)pΩ2
RN |∂uφ|2(u, v) du dv

) 1
2

�
(

sup
u∈[ui,uf )

∫ vf

1

(1 + |v|)p|∂vφ|2(u, v) dv

) 1
2

(∫ uf

ui

sup
v∈[1,vf )

Ω2
RN (u, v) du

) 1
2

︸ ︷︷ ︸
.
=I

×
(

sup
v∈[1,vf )

∫ uf

ui

|∂uφ|2(u, v) du

) 1
2

︸ ︷︷ ︸
.
=II

(∫ vf

1

sup
u∈[ui,uf )

(1 + |v|)pΩ2
RN (u, v) dv

) 1
2

︸ ︷︷ ︸
.
=III

.

Note that in this region (which is a subset of {(u, v) : u ≥ ui, v ≥ 0}), we have
supv∈[0,+∞) Ω2

RN (u, v) � min{e−2κ−u, 1} and supu∈[ui,+∞) Ω2
RN � e−2κ−v by

(2.14). Thus, I and III are bounded uniformly for all (uf , vf ) ∈ [ui,∞) ×
[0,∞).

Moreover, II is uniformly bounded for all (uf , vf ) ∈ [ui,∞) × [1,∞)
thanks to (6.15).

Therefore, using (6.14), (6.16) and Young’s inequality, we conclude that
1
2

∫ vf

1
(1+|v|)pr2(∂vφ)2(uf , v) dv is uniformly bounded for all (uf , vf ) ∈ [ui,∞)×

[0,∞). Recall now from part (3) of Theorem 3.7 that the pointwise limit
limu→∞ |∂vφ|2(u, v) exists. By Fatou’s lemma, we can therefore take uf , vf →
+∞ so as to show that

1
2

∫ ∞

1

(1 + |v|)pr2
RN ( lim

u→∞ |∂vφ|2(u, v)) dv < +∞. (6.17)

On the other hand, by the definition of T in (3.16), the estimate in
Proposition 6.4, and (2.16),

∫ ∞

1

(1 + |v|)pr2
RN ( lim

u→+∞ |∂vφ|2(u, v)) dv = +∞. (6.18)

Obviously, (6.17) and (6.18) contradict each other. It follows that (6.14) does
not hold. �

6.2. The Reflection Map and Power-Law Tails Along the Cauchy Horizon

We now turn to the proof of the second statement of Theorem 4.1. Inspecting
the argument for statement (1) of Theorem 4.1 in Sect. 6.1, one sees that as
long as we can show R(0) �= 0, the remainder of the argument proceeds in an
identical manner.

The fact that R(0) �= 0 is an immediate consequence of part (4) of Propo-
sition 5.4. (Notice that unlike the corresponding statement for T(0), the con-
servation law in part (3) of Proposition 5.4 does not provide any lower bound
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for R.) Once we know that R(0) �= 0, the remaining steps of the proof proceed
in exactly the same manner as Propositions 6.3 and 6.4; we omit the details.
(Note that in this case, the analogue of Proposition 6.4 already gives the de-
sired result, and we do not need to consider an analogue of Proposition 6.5.)
With this, we also conclude the proof of Theorem 4.1.

6.3. Proof of Corollary 4.2

Proof of Corollary 4.2. We prove Corollary 4.2 by reducing it to Theorem 4.1.
The main difference between Corollary 4.2 and Theorem 4.1 is that in Corol-
lary 4.2, the solution is only defined on a subset of MRN . In particular, Corol-
lary 4.2 does not impose the support properties assumptions (1)–(2) in The-
orem 4.1. We will therefore extend φ to all of MRN and then use the finite
speed of propagation to reduce to Theorem 4.1

More precisely, given φ satisfying only the assumptions of Corollary 4.2,
we want to construct a solution φ̃ to �gRN

φ̃ = 0 which is smooth on MRN ∪
H+

total and satisfies

φ̃(u, v) = φ(u, v) when u ≤ us and v ≥ 1, (6.19)

φ̃ �H+
1

(v) = 0 when v ≤ 0, (6.20)

φ̃ �H+
2

(u) = 0 when u ≥ 0. (6.21)

We complete the proof of the corollary assuming for the moment that
such a φ̃ exists. By (6.19), assumptions (3)–(6) of Theorem 4.1 are satisfied by
φ̃ (since the asymptotics are not changed at all). By (6.20), assumption (1) of
Theorem 4.1 is satisfied by φ̃, while by (6.21), assumption (2) of Theorem 4.1
is satisfied by φ̃. It therefore follows that Theorem 4.1 can be applied to φ̃ so
that (4.3) and (4.4) both hold, but for φ̃ instead of φ. Using (6.19) again, this
then implies (4.3) and (4.4) both hold for φ.

It remains to construct a smooth solution φ̃ to �gRN
φ̃ = 0 satisfying

(6.19)–(6.21). This is achieved in the following two steps.
Step 1: Construction of φ̃in {(u, v) : u ≤ us, v ∈ R} We first define, on the
event horizon H+

1 , φ̃ �H+
1

to be a smooth function so that φ̃ �H+
1

(v) = φ �H+
1

(v) for v ≥ 1 and (6.20) holds. Define also φ̃ on the line {(u, v) : u ≤ us, v = 1}
so that φ̃ �{(u,v):u≤us,v=1}= φ �{(u,v):u≤us, v=1}.

We now solve the characteristic initial problem for �gRN
φ̃ = 0 with data

imposed above. First, by solving the characteristic initial value problem, we
define a solution in {(u, v) : u ≤ us, v ≥ 1}, which obeys (6.19) by a domain
of dependence argument. Then, we solve again the characteristic initial value
problem,8 but now with data on {(u, v) : u ≤ us, v = 1} and {(u, v) : u =

8We used spherical symmetry here to show that this characteristic initial value problem is

well-posed. However, notice that Corollary 4.2 can also be proven with an argument that
generalizes outside spherical symmetry. For instance, after introducing appropriate cut-offs,
we can show using energy estimates that the cutoff error only gives finite contributions to
(4.5) and (4.6).
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−∞, v ≤ 1} so that we obtain a solution in the region {(u, v) : u ≤ us, v ≤ 1}
which contains BH+ .

We have thus constructed φ̃ in {(u, v) : u ≤ us, v ∈ R}. Importantly,
(6.20) is satisfied by definition of the initial data, and φ̃ is smooth in {(u, v) :
u ≤ us, v ∈ R} up to the event horizon.
Step 2: Construction of φ̃in {(u, v) : u ≥ us, v ∈ R} To define φ̃ in the
remaining region, we again solve a characteristic initial value problem. First,
we take φ̃ �{(u,v):u=us} to be as given by the construction in Step 1. Define
also φ̃ �H+

2 ∩{(u,v):u≥us} so that φ̃ �H+
2

is smooth and φ̃ �H+
2

(u) = 0 for u ≥ 0.
Next, we solve the characteristic initial value problem with the data given

above to obtain a solution in the region {(u, v) : u ≥ us, v ∈ R}. The resulting
φ̃ is therefore a solution to the wave equation and is smooth in MRN ∪H+

total.
By definition of the data, (6.21) is satisfied. Combining this with Step 1, in
which we proved (6.19)–(6.20), we have thus concluded the construction. �

7. Application to Mass Inflation for the
Einstein–Maxwell-Scalar Field System in Spherical
Symmetry

In this section, we apply our Theorem 4.1 to the problem of mass inflation
for the Einstein–Maxwell-scalar field system (1.2) in spherical symmetry. This
proves Theorem 1.12. See Theorem 7.8 in Sect. 7.3 for the precise statement
that we prove.

We will first recall the definition and various facts about the Einstein–
Maxwell-(real) scalar field system in spherical symmetry in Sect. 7.1. In Sect. 7.2,
we then recall the results established in [22,23]. In Sect. 7.3, we state our main
result on mass inflation (Theorem 7.8). In Sect. 7.4, we begin the proof of
Theorem 7.8 by proving a mass inflation criterion which reduces the proof of
Theorem 7.8 to showing that the scalar field is not identically 0 at the Cauchy
horizon. In Sect. 7.5, we establish general energy estimates for inhomogeneous
wave equations on Reissner–Nordström. This in particular allows us to use
our main linear result (part (2) of Corollary 4.2) in a perturbative argument.
Finally, in Sect. 7.6, we conclude the proof of Theorem 7.8.

7.1. Einstein–Maxwell-(Real) Scalar Field System in Spherical Symmetry

We first discuss spherically symmetric solutions to the Einstein–Maxwell-(real)
scalar field system (1.2). The following definition is directly from [22].

Definition 7.1. (Spherically symmetric solutions) Let (M, g, φ, F ) be a suit-
ably regular9 solution to the Einstein–Maxwell-(real)-scalar-field system (1.2).
We say that (M, g, φ, F ) is spherically symmetric if the following properties
hold:

9The precise regularity is irrelevant here. For relevant well-posedness statements, see [22,
Propositionss 2.4, 2.5].
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(1) The symmetry group SO(3) acts on (M, g) by isometry with spacelike
orbits.

(2) The metric g on M is given by

g = gQ + r2gS2 , (7.1)

where

gQ = −Ω2

2
(du ⊗ dv + dv ⊗ du) (7.2)

is a Lorentzian metric on the 2-dimensional manifold Q = M/SO(3) and
r is defined to be the area radius function of the group orbit, i.e.,

r =

√
Area(π−1(p))

4π
,

for every p ∈ Q, where π is natural projection π : M → Q taking a point
to the group orbit it belongs to. Here, as in the introduction, gS2 denotes
the standard round metric on S

2 with radius 1.
(3) The function φ at a point x depends only on π(x), i.e., for p ∈ Q and

x, y ∈ π−1(p), it holds that φ(x) = φ(y).
(4) The Maxwell field F is invariant under pullback by the action (by isom-

etry) of SO(3) on M. Moreover, there exists e : Q → R such that

F =
e

2(π∗r)2
π∗(Ω2 du ∧ dv).

It is well-known that for a solution to (1.2), e is in fact a constant.
In spherical symmetry, the Einstein-Maxwell-(real)-scalar-field system re-

duces to the following system of coupled wave equations for (r, φ,Ω)
⎧
⎪⎨

⎪⎩

∂u∂vr = −Ω2

4r − ∂ur∂vr
r + Ω2e2

4r3 ,

∂u∂vφ = −∂vr∂uφ
r − ∂ur∂vφ

r ,

∂u∂v log Ω = −∂uφ∂vφ − Ω2e2

2r4 + Ω2

4r2 + ∂ur∂vr
r2 .

(7.3)

The solution moreover satisfy the following Raychaudhuri equations:
{

∂v(∂vr
Ω2 ) = − r(∂vφ)2

Ω2 ,

∂u(∂ur
Ω2 ) = − r(∂uφ)2

Ω2 .
(7.4)

In the context of the characteristic initial value problem, it can be easily shown
that if (7.4) are initially satisfied, then they are propagated by (7.3).

We will often use the following short hand for ∂vr and ∂ur:

λ
.= ∂vr, ν

.= ∂ur.

Define the Hawking mass m : Q → R by

m
.=

r

2
(1 − gQ(∇r,∇r)),

where gQ is as defined in (7.2). Alternatively, we can write

m =
r

2
(1 − 4∂ur∂vr

Ω2
).
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Finally, define the renormalized Hawking mass � : Q → R by

� = m +
e
r2

. (7.5)

Combining (7.3) and (7.4) (see also [22, equation (2.8)]), it is easy to deduce
that

∂u� = −2r2∂vr(∂uφ)2

Ω2
, ∂v� = −2r2∂ur(∂vφ)2

Ω2
. (7.6)

7.2. Results in [22,23]

In this subsection, we recall some results in the earlier works [22,23]. These
works show that generic solutions are C2-future inextendible. However, these
works by themselves do not guarantee that mass inflation holds.

For expositional purposes, let us only focus on the case where the initial
data have compactly supported scalar fields. In the works [22,23], one can
also allow polynomially decaying but non-compactly supported initial scalar
fields. It is straightforward to obtain modifications of our Theorem 7.8 in that
setting; we omit the details.

In [22], we introduced a notion of generic two-ended asymptotically flat
future-admissible spherically symmetric Cauchy data for (1.2). Since the pre-
cise definition is largely irrelevant to the remainder of the paper, we will not
repeat the definitions and refer the reader to [22, Sections 3.1–3.3] instead. For
the purpose of this discussion, let us just denote by Gc the set of generic data
introduced in [22] which moreover are smooth and have compactly supported
initial scalar field. The theorems that we cite below apply in particular to
solutions arising from initial data in Gc.

7.2.1. A priori Boundary Characterization. We first state a preliminary re-
sult regarding the a priori boundary characterization of solutions. This allows
us to talk about various regions and boundary components of the solutions.
In the statement of the following theorem, we will only refer to the a priori
boundary characterization in terms of the corresponding Penrose diagram. To
make precise all the relevant notions needed for the Penrose diagram will take
us too far afield. Instead, we refer the reader to [22, Theorem 4.1].

Theorem 7.2. (Persistence of the Cauchy horizon (Dafermos [4], Dafermos–
Rodnianski [7]) and the boundary characterization of the solution (Dafermos
[5], Kommemi [20])) Consider a two-ended asymptotically flat future-admissible
spherically symmetric initial data set in Gc and let (M, g, φ, F ) be the corre-
sponding maximal globally hyperbolic future development.

Then (M, g) has one of the following two Penrose diagrammatic repre-
sentations:

We note already in terms of the boundary components defined above,
mass inflation will mean that m = +∞ identically on both CH+

1 and CH+
2 .

Since the situation is completely symmetric for CH+
1 and CH+

2 , from now on,
we focus our discussion on CH+

1 . Completely analogous statements also hold
for CH+

2 (Fig. 2).
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Figure 2. Penrose diagram of the maximal globally hyper-
bolic future development of future admissible initial data

7.2.2. Stability of the Cauchy Horizon. Already implicit in Theorem 7.2 is a
statement (proven in [4]) that solutions arising from generic initial data set in
Gc must have “a piece” of (null) Cauchy horizon. In fact, in the “rectangular
strip” Bi+1

near the event horizon H+
1 (in either diagram) in Fig. 2, the so-

lution approaches Reissner–Nordström toward i+1 with a quantitative inverse
polynomial rate.

To summarize this stability result, let us first introduce the following
change of coordinates.

Definition 7.3. Given a system of null coordinates (U, v) in {(U, v) : 0 ≤ U ≤
Us, 1 ≤ v ≤ +∞}, construct a new system of coordinates (u, v) by defining
a new coordinate function u = u(U) so that the inverse function U = U(u)
satisfies the following (compare (2.7))

dU

du
= e2κ+u and U(u) → 0 as u → −∞, (7.7)

where κ+ = r+−r−
2r2

+
and r± = M ±

√
M2 − e2 as in (2.11), and M and e shall

be specified when the definition is applied. Moreover, define us by

us
.= u(Us). (7.8)

The following theorem can be obtained by combining Theorems 4.4 and 5.1
in [22].

Theorem 7.4. (Stability of the Cauchy horizon) Consider a two-ended asymp-
totically flat future-admissible spherically symmetric initial data set in Gc and
let (M, g, φ, F ) be the corresponding maximal globally hyperbolic future devel-
opment.

Then there exist

• constants M and e with 0 < |e| < M ,
• a double null coordinate system (U, v) on Q = M/SO(3), and
• a spacetime region {(U, v) : 0 ≤ U ≤ Us, 1 ≤ v < +∞} (in a double null

coordinate system above) in the black hole interior

such that the solution settles down to the Reissner–Nordström interior with
parameters M and e.

More precisely, after
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• introducing a system of double null coordinate (u, v) as in Definition 7.3
with the above values of M and e, (and assuming that us ≤ −1), and

• letting rRN and ΩRN denote the functions of (u, v) corresponding to the
metric components of the Reissner–Nordström interior of parameters M
and e in the coordinate system in Sect. 2.2,

the following estimates hold for every ρ < 3 in the (u, v) coordinate system in
{(u, v) : −∞ < u < us, 1 ≤ v < +∞}, for some constant C > 0 (depending
on ρ):

|φ|(u, v) + |r − rRN |(u, v) + | log Ω − log ΩRN |(u, v) ≤ C(v−ρ + |u|−ρ+1),
|∂vφ|(u, v) + |∂v(r − rRN )|(u, v) + |∂v(log Ω − log ΩRN )|(u, v) ≤ Cv−ρ.

Furthermore, for every A ∈ R, there exists C > 0 depending on A and ρ such
that the following estimates hold {(u, v) : −∞ < u < us, 1 ≤ v < +∞}:

|∂uφ|(u, v) + |∂u(r − rRN )|(u, v) + |∂u(log Ω − log ΩRN )|(u, v)

≤
{

CΩ2
RNv−ρ foru + v ≤ A

C|u|−ρ foru + v ≥ A.

7.2.3. Lower Bound of the Scalar Field Along the Event Horizon. Next, we
state a lower bound for the scalar field along the event horizon, which holds
for solutions arising from a generic initial set in Gc; see Theorem 7.5. This
result requires a genuine genericity condition, in addition to just requiring the
charge e �= 0.

The lower bound in Theorem 7.5 is intimately connected to the blow-up
in the black hole interior and the generic C2-inextendibility proven in [22,23].

Theorem 7.5. (Lower bound along the event horizon) Consider a two-ended
asymptotically flat future-admissible spherically symmetric initial data set in
Gc and let (M, g, φ, F ) be the corresponding maximal globally hyperbolic future
development. Then for an advanced null coordinate v such that

C−1 < inf
H+

1

∂vr

1 − 2m
r

≤ sup
H+

1

∂vr

1 − 2m
r

< C

for some C > 0, we have10

∫

H+
1

v8(∂vφ)2 dv = +∞. (7.9)

7.2.4. Blow-up at CH+
1 . In order to describe the result concerning blow-up

in the black hole interior, we introduce yet another double null coordinate
system.

Definition 7.6. We introduce the coordinate as follows:

10Note that in [22], we have the stronger result that for any α > 7,
∫

H+
1

vα(∂vφ)2 dv = +∞.

We will not need this stronger statement.
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(1) We start with the coordinate system (U, v) as in Theorem 7.4, except that
U is defined for the whole CH+

1 , beyond the perturbative region U ≤ Us.
(2) Given the coordinate system (U, v), define (u, v) as in Definition 7.3.
(3) Define V = V (v) by the following relation

dV

dv
= e−2κ−v and V (v) → 1 as v → +∞. (7.10)

where κ− = r+−r−
2r2

−
and r± = M ±

√
M2 − e2 as in (2.11), and M and e

are as in Theorem 7.4
Moreover,
(1) define V1

.= V (1), and
(2) define uCH+

1
∈ (−∞,∞] to be such that pCH+

1
= (uCH+

1
, 1) ∈ Q corre-

sponds to the future end-point of CH+
1 in the (u, V ) coordinates.

In this subsection Ω is taken to be the metric component in (u, V ) coor-
dinates, i.e., gQ = −Ω2

2 (du ⊗ dV + dV ⊗ du).
The following theorem can be found in [22, Theorem 5.5], specialized to

Gc. This is a global theorem concerning CH+
1 , even beyond the perturbative

region considered in Theorem 7.4.

Theorem 7.7. Consider a two-ended asymptotically flat future admissible spher-
ically symmetric initial data set in Gc and let (M, g, φ, F ) be the corresponding
maximal globally hyperbolic future development.

In a neighborhood of H+
1 in the interior of the black hole, consider the null

coordinates (u, V ) defined as in Definition 7.6. Then, the metric components
Ω2(u, V ) and r(u, V ), as well as the scalar field φ(u, V ), extend continuously
to CH+

1 \ {pCH+
1
} = {(u, V ) : −∞ < u < uCH+

1
, V = 1}. The extended metric

components Ω2(u, V ) and r(u, V ) are nonvanishing on CH+
1 \ {pCH+

1
}.

Moreover, if the lower bound (7.9) holds on H+
1 , then for every u ∈

(−∞, uCH+
1
), the following blow-up of ∂V φ and ∂V r holds:

∫ 1

0

(∂V φ)2

Ω2
(u, V )dV = ∞, (7.11)

lim
V →1

∂V r

Ω2
(u, V ) = −∞. (7.12)

In particular, the scalar field is not in W 1,2
loc and the metric is not in C1 in the

above C0 extension obtained by adjoining {(u, V ) : −∞ < u < uCH+
1
, V = 1}.

In the following, only (7.12) will be used in the proof of our generic mass
inflation result.

7.3. Main Result on Mass Inflation

The following is our main theorem on mass inflation for the Einstein–Maxwell-
(real)-scalar-field system in spherical symmetry. We emphasize again that this
is a conditional result, though the condition is to be expected; see Remark 7.10.
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Theorem 7.8. (Main theorem on mass inflation) Suppose the assumptions of
Theorems 7.5 hold. Assume in addition that

∫

H+
1 ∩{v≥1}

v6(∂vφ)2(v) dv < +∞ (7.13)

and
∫

H+
1 ∩{v≥1}

v8(∂2
vφ)2(v) dv < +∞. (7.14)

Then, the Hawking mass m = +∞ on the Cauchy horizon CH+
1 .

Remark 7.9. (Alternative additional assumptions) The additional assumptions
(7.13) and (7.14) are needed so that we can apply Theorem 4.1 to the corre-
sponding linear equations.

For this purpose, technically, we can alternatively assume
∫

H+
1 ∩{v≥1}

v6(∂vφ)2(v) dv = +∞

and
∫

H+
1 ∩{v≥1}

v6(∂2
vφ)2(v) dv < +∞.

This would still in principle be consistent with [22,23]. However, this is not
expected to hold; see Remark 7.10.

Remark 7.10. (Expected behavior along H+
1 ) According to the linear analysis

in [1,15], for solutions φ to the linear wave equation on a fixed Reissner–
Nordström spacetime, |∂vφ| � v−4 and |∂2

vφ| � v−5 along H+
1 . If these (or

even slightly weaker versions) were also to hold for the nonlinear solution,
then we would have verified the assumptions (7.13) and (7.14).

7.4. Criterion for Mass Inflation

We begin the proof of Theorem 7.8 by establishing a criterion for mass inflation
in this subsection.

In order to make sense of our mass inflation criterion, we prove a simple
lemma which follows from Theorem 7.4.

Lemma 7.11. For every u < us, the limit limv→+∞(∂uφ)(u, v) exists. More-
over, limv→+∞(∂uφ)(u, v) is a continuous function for u ∈ (−∞, us).

Proof. This follows easily from using the wave equation the wave equation
∂v(r∂uφ) = −∂vr∂uφ, and controlling the terms on the right-hand side with
the estimates in Theorem 7.4. �

We are now ready to state a criterion for mass inflation. For this pur-
pose, it is more convenient to switch to the (u, V ) coordinate system as given in
Sect. 7.2.4. In the (u, V ) coordinate system, Lemma 7.11 means that
limV →1(∂uφ)(u, V ) is well-defined and continuous on u ∈ (−∞, us). In par-
ticular, the criteria in Proposition 7.12 make sense.
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Proposition 7.12. (Criterion for mass inflation) Suppose the assumptions of
Theorem 7.7 hold. Then, the following holds.

(1) If supV |m|(u∗, V ) < +∞, then there exists u∗∗ < min{u∗, us} such that
limV →1(∂uφ)(u, V ) = 0 for every u < u∗∗.

(2) If there exists a sequence {ui}+∞
i=1 ⊂ (−∞, us) such that ui → −∞ and

limV →1(∂uφ)(ui, V ) �= 0, then the Hawking mass blows up identically on
CH+, i.e., limV →1 m(u, V ) = +∞ for all u ∈ (−∞, uCH+

1
).

Proof. Step 1: Reduction to the renormalized Hawking mass As a preliminary
observation, note that the blow-up of the Hawking mass m on CH+

1 is equiva-
lent to the blow-up of the renormalized Hawking mass �. This follows simply
from the definition (7.5) and that e is a constant and r has a non-zero limit
on CH+

1 (see [22, part (2)(e) of Theorem 4.1]). We will in fact prove blow-up
of �, which is slightly more convenient because of the monotonicity properties
that it enjoys.
Step 2: Signs of ∂urand ∂V r Fix any −∞ < ū < u∗ < uCH+

1
with ū < us.

We claim that after choosing V∗ ∈ (V1, 1) sufficiently close to 1, we have
∂ur(u, V ), ∂V r(u, V ) < 0 for (u, V ) ∈ [ū, u∗] × [V∗, 1).

For ∂V r, we use the following estimate from [22, equation (10.13)]

sup
(u,V )∈[ū,u∗]×[V∗,1)

∣
∣
∣∂u(r∂V r)

∣
∣
∣(u, V ) ≤ C. (7.15)

By (7.12) in Theorem 7.7 (and the continuous extendibility of log Ω), ∂V r →
−∞ for any fixed u ∈ (−∞, uCH+

1
). Therefore, when combined with (7.15), we

see that there exists V∗ ∈ (V1, 1) such that

∂V r(u, V ) < 0 whenever (u, V ) ∈ [ū, u∗] × [V∗, 1). (7.16)

Turning to ∂ur, notice that ∂ur < 0 near i01 by asymptotic flatness.
Combining this with the Raychaudhuri equation (the second equation in (7.4)),
we see that after choosing V∗ closer to 1,

∂ur(u, V ) < 0 whenever (u, V ) ∈ (−∞, uCH+
1
) × [V∗, 1). (7.17)

From now on, fix V∗.
Step 3: Monotonicity of the renormalized Hawking mass Suppose
supV |�|(u∗, V ) < ∞ for some u∗ ∈ (−∞, uCH+

1
).

Using (7.16) and the ∂u� equation in (7.6), we obtain that ∂u�(u, V ) ≥
0 whenever (u, V ) ∈ [ū, u∗] × [V∗, 1). This monotonicity together with the
assumption supV |�|(u∗, V ) < ∞ imply that supV �(u, V ) < +∞ for every
u ≤ u∗.

On the other hand, by (7.17) and the ∂V � equation in (7.6), � is mono-
tonically increasing in V for V ∈ [V∗, 1). In particular, �(u, V ) is bounded
below for (u, V ) ∈ (−∞, uCH+

1
) × [V∗, 1).

In particular, combining the upper and lower bounds, we deduce that
supV |�|(u, V ) < ∞ for all u ≤ u∗.
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Step 4: Proof of part (1) Suppose supV |�|(u∗, V ) < +∞ for some u∗ ∈
(−∞, uCH+

1
). Taking u∗∗ < min{u∗, us}, we know by Step 3 that

sup
V

|�|(u∗∗, V ) < +∞. (7.18)

In order to prove part (1), our goal is to show that limV →1(∂uφ)(u, V ) = 0 for
every u < u∗∗.

Assume for the sake of contradiction that there exists u0 ∈ (−∞, u∗∗)
such that limV →1(∂uφ)(u0, V ) �= 0. Since limV →1(∂uφ)(u, V ) is a continuous
function in u (by Lemma 7.11), there exist u1, u2 ∈ (−∞, u∗) with u1 < u0 <
u2 such that limv→∞(∂uφ)2(u) ≥ a > 0 for some a > 0 whenever u ∈ [u1, u2].

At the same time, we also have by (7.12) that limV →1
∂V r
Ω2 (u, V ) →

−∞ for every u ∈ (−∞, uCH+
1
). Therefore, by Fatou’s lemma (notice that

− r∂V r
Ω2 (∂uφ)2 ≥ 0), we have

lim inf
v→∞

∫ u2

u1

(

−r∂V r

Ω2
(∂uφ)2

)

(u′, v) du′

≥
∫ u2

u1

lim inf
v→∞

(

−r∂V r

Ω2
(∂uφ)2

)

(u′, v) du′

=
∫ u2

u1

a · ∞du′ = ∞. (7.19)

Now, we take an increasing sequence {Vn}+∞
n=1 ⊂ [V∗, 1) with limn→+∞ Vn =

1. Since � is increasing in V for V ∈ [V∗, 1) (see Step 3), �(u, Vn) is an in-
creasing sequence for every u. Integrating the ∂u� equation in (7.6) and using
(7.16), we therefore obtain

lim
n→∞ �(u∗∗, Vn) = lim

n→∞

(

�(u1, Vn) +
∫ u∗∗

u1

(−r∂V r

Ω2
(∂uφ)2)(u′, Vn) du′

)

≥ �(u1, V1) + lim inf
n→∞

∫ u2

u1

(−r∂V r

Ω2
(∂uφ)2)(u′, Vn) du′ = +∞,

where in the last step we have used (7.19). However, this contradicts (7.18)
above. This concludes the proof of part (1).
Step 5: Proof of part (2) By part (1), if the assumption of part (2) holds, then
supV |m|(u, V ) = +∞ for all u ∈ (−∞, uCH+

1
). Using the fact that m(u, V ) is

increasing in V for sufficiently large V (recall Step 3 above), it following that
limV →1 m(u, V ) = +∞ for all u ∈ (−∞, uCH+

1
), as desired. �

7.5. Estimates for the Inhomogeneous Wave Equation on Fixed Reissner–
Nordström

Before we proceed to the proof of Theorem 7.8 (see Sect. 7.6), we study in this
subsection the inhomogeneous wave equation on (MRN , gRN ):

�gRN
φ = F.

This will be useful for the perturbative argument in Sect. 7.6.
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Theorem 7.13. Let p ∈ (1,∞), σ ∈ (1,+∞) and us ∈ (−∞,−1).
Let F : MRN ∩{(u, v) : u ∈ (−∞, us), v ∈ [1,+∞)} → R be a spherically

symmetric smooth function such that the following holds:

‖F‖Einho,p,σ

.=
(∫ ∞

1

∫ us

−∞
|u|p|F |2(u, v) (Ω4

RN (1 + |r∗|)σ)(u, v) du dv

) 1
2

< ∞.

(7.20)

Suppose φ : MRN ∩ {(u, v) : u ∈ (−∞, us), v ∈ [1,+∞)} → R is a smooth
spherically symmetric solution to

�gRN
φ = F

in MRN ∩ {(u, v) : u ∈ (−∞, us), v ∈ (1,+∞)} such that (∂vφ)(u, v) extends
smoothly to H+

1 for all u ∈ [1,+∞) and11 limv→+∞(∂uφ)(u, v) exists for all
u ∈ (−∞, us).

Then, there exists a constant C > 0 depending only on p, σ, us and the
Reissner–Nordström parameters e and M (but independent of φ) such that

∫ us

−∞
|u|p lim

v→+∞(∂uφ)2(u, v) du ≤ C

(∫ +∞

1

vp lim
u→−∞(∂vφ)2(u, v) dv

+
∫ us

−∞
|u|p(∂uφ)2(u, v = 1) du + ‖F‖2

Einho,p,σ

)

.

(7.21)

Proof. In the proof, unless explicitly stated otherwise, C > 0, as well as implicit
constants in � and ∼, depend only on p, σ, us, e and M .
Step 1: Preliminary reductions By Fatou’s Lemma, it suffices to show that

lim inf
v→+∞

∫ us

min{− 1
2v,us}

|u|p(∂uφ)2(u, v) du (7.22)

is bounded by the RHS of (7.21).
This will be convenient in that we can apply the energy estimates in

Lemma 3.3 only to region of finite v.
Step 2: The curve γand partition of the spacetime We will apply different esti-
mates in two different regions of MRN ∩ {(u, v) : u ∈ (−∞, us), v ∈ [1,+∞)}.
For this purpose, we divide the region into two. (Note a similar argument in
[4,6,24].)

Let f(u, v) = u + v − √
v for u ∈ R and v ≥ 1. Introduce a hypersurface

γ ⊂ {(u, v) : u ∈ (−∞, us), v ∈ [1,+∞)} by

γ = f−1(1).

Notice that g−1(df, df) = 2g−1(du, (1 − 1
2
√

v
)dv) < 0 when v ≥ 1. Therefore,

γ is a spacelike hypersurface.
We first propagate the estimates to γ (Step 3) and then propagate the

estimates from γ to its future (Step 4) to obtain the final desired bounds.

11Note that it is not necessary to assume that ∂uφ has a limit on CH+
1 for u ∈ (−∞, us).

In fact, it is not difficult to prove using a approximation argument that such a limit exists.
However, since in the applications we already know that such a limit exists, we will simply
put this as an assumption of the theorem.
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Step 3: Past of γ We now apply (3.1) in the region

DStep 3
.= {(u, v) : u ∈ (−∞, us), v ∈ (1,+∞), f(u, v) ∈ (−∞, 1)}.

∂DStep 3 naturally decomposes into four components. On ∂DStep 3 ∩ {u = us},
∂DStep 3 ∩ H+

1 and ∂DStep 3 ∩ {v = 1}, we have the volume forms defined in
Sect. 2.6. On ∂DStep 3 ∩ γ, we define a positive volume form volγ such that
vol = df ∧ volγ .

We now take Y to be

Y
.= 2yN (r∗) (wp(v)∂v + wp(−u)∂u) . (7.23)

where wp is as in Definition 3.6 and y is as in (3.5). (Note that this is exactly
(3.6) with p1 = p and p2 = 0.)

Using (3.1), we obtain12 that for some C > 0
∫

∂DStep 3∩γ

T[φ](−df �, Y ) volγ
︸ ︷︷ ︸

.
=I

+
∫

∂DStep 3∩{u=us}
T[φ](−du�, Y ) volu

︸ ︷︷ ︸
.
=II

+
∫

DStep 3

T[φ]μν
(Y )πμν vol

︸ ︷︷ ︸
Main good term

≤
∫

∂DStep 3∩H+
1

T[φ](−du�, Y ) volu
︸ ︷︷ ︸

.
=III

+
∫

∂DStep 3∩{v=1}
T[φ](−dv�, Y ) volv

︸ ︷︷ ︸
.
=IV

+C

∫

DStep 3

|Y φ||F |vol

︸ ︷︷ ︸
Error term

.

(7.24)

Note that Y , −df �, −du� and −dv� are all future directed causal and therefore
by Proposition 3.2, I, II, III and IV are all non-negative.

Moreover, a direct computation (using in particular Sect. 2.6) shows that
∫

∂DStep 3∩H+
1

T[φ](−du�, Y ) volu +
∫

∂DStep 3∩{v=1}
T[φ](−dv�, Y ) volv

∼
∫ +∞

1

vp lim
u→−∞(∂vφ)2(u, v) dv +

∫ us

−∞
|u|p(∂uφ)2(u, v = 1) du.

(7.25)

To control the “Error term” above, we argue as follows:

Error term

�
∫

DStep 3

(vp|∂vφ| + |u|p|∂uφ|)|F |(u, v)Ω2
RN (u, v) du dv

(7.26)

�
(∫

DStep 3

(vp|∂vφ|2 + |u|p|∂uφ|2)(u, v) (1 + |r∗(u, v)|)−σ du dv

) 1
2

12Note that since (3.1) strictly speaking should be applied to compact domains, we need to
carry out an approximation argument by considering an exhaustion of DStep 3; we omit the

details.
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×
(∫

DStep 3

(vp + |u|p)|F |2(u, v) (Ω4
RN (1 + |r∗|)σ)(u, v) du dv

) 1
2

(7.27)

�
(∫

DStep 3

T[φ]μν
(Y )πμν vol

) 1
2

‖F‖Einho,p,σ
, (7.28)

where in (7.26), we used (2.17); in (7.27), we applied the Cauchy–Schwarz
inequality; in (7.28), we used13 (3.8), (7.20) and the fact that v � |u| in
DStep 3.

Now,
• plugging (7.25) and (7.28) into (7.24),
• applying the Young’s inequality to (7.28) and absorbing the term∫

DStep 3
T[φ]μν

(Y )πμν vol to the LHS by the “Main bulk term,” and
• dropping the good term II on the LHS,

we obtain
∫

∂DStep 3∩γ

T[φ](df �, Y ) volγ ≤ (RHS of (7.21)). (7.29)

Step 4: Future of γ Let v∗ ∈ [1,+∞). We now consider the region to the future
of γ, but to the past of some {v = v∗}. Precisely, we consider the (precompact)
region

DStep 4
.= {(u, v) : u ∈ (−∞, us), v ∈ (1, v∗), f(u, v) ∈ (1,+∞)}.

Define the vector field Z by

Z
.= yN (∂v + |u|p∂u),

where y is again as in (3.5) and N is a sufficiently large constant to be chosen
below.

We now apply (3.1) to obtain
∫

∂DStep 4∩{v=v∗}
T[φ](−dv�, Z) volv +

∫

∂DStep 4∩{u=us}
T[φ](−du�, Z) volu

+
∫

DStep 4

T[φ]μν
(Z)πμν vol

︸ ︷︷ ︸
Main bulk term

≤
∫

∂DStep 4∩γ

T[φ](−df �, Z) volγ
︸ ︷︷ ︸

Data term

+ C

∫

DStep 4

|Zφ||F | vol

︸ ︷︷ ︸
Error term

.

(7.30)

An explicit computation shows that
∫

∂DStep 4∩{v=v∗}
T[φ](−dv�, Z) volv ∼

∫ us

max{1+
√

v∗−v∗,us}
|u|p(∂uφ)2(u, v∗) du.

13Technically, (3.8) is not directly applicable because there p2 is assumed to be > 1 (whereas
we have p2 = 0 here). Nevertheless, one checks that p2 > 1 is only used for the later parts
of the proof but not for (3.8).
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(7.31)

To handle the “Data term,” note that there exists a constant c > 0 such
that Y −cZ is future-directed and timelike (where Y as in Step 2). Therefore, by
Lemma 3.2, T[φ](df �, Y ) − cT[φ](df �, Z) ≥ 0 pointwise. As a result, the “Data
term” in (7.30) is bounded (up to a constant factor) by (7.29). In particular,
we have

Data term ≤ C(RHS of (7.21)). (7.32)

For the “Main bulk term” in (7.30), we compute

Tμν
(Z)πμν = − 4

Ω2
RN

(
(∂uZv)(∂vφ)2 + (∂vZu)(∂uφ)2

)
− 4

r
(Zv + Zu)(∂uφ∂vφ)

=
2N(σ − 1)

Ω2
RN

yN−1(1 + |r∗|)−σ
(
(∂vφ)2 + |u|p(∂uφ)2

)

︸ ︷︷ ︸
.
=I

− 4
r
yN (1 + |u|p)(∂uφ∂vφ)

︸ ︷︷ ︸
.
=II

.

(7.33)

In DStep 4, we have Ω2
RN (1+|r∗|)σ � e−2κ−(v+u)(1+(v+u))σ � (

√
v)σe−2κ−

√
v �

(
√

|u|)σe−2κ−
√

|u|. In particular, for N sufficiently large (depending on σ, p,
M and e), we can use the AM-GM inequality to show that the term I domi-
nates the term II (7.33). Therefore, there exists a constant c > 0 (depending
on σ, p, M and e) such that

Tμν
(Z)πμν ≥ c

Ω2
RN (1 + |r∗|)σ

(
(∂vφ)2 + |u|p(∂uφ)2

)
≥ 0. (7.34)

We next control the “Error term” in (7.30) using the “Main bulk term”
(which is just shown above in (7.34) to have a good sign). More precisely, by
the Cauchy–Schwarz inequality and (7.20), we have

Error term �
∫

DStep 4

(|∂vφ|(u, v) + |u|p|∂uφ|(u, v)) |F |(u, v)Ω2
RN (u, v) du dv

�
(∫

DStep 4

(
|∂vφ|2(u, v)
(1 + |r∗|)σ

+ |u|p |∂uφ|2(u, v)
(1 + |r∗|)σ

)

du dv

) 1
2

×
(∫

DStep 4

|u|p|F |2(u, v) (Ω4
RN (1 + |r∗|)σ)(u, v) du dv

) 1
2

≤
(∫

DStep 4

(
|∂vφ|2(u, v)
(1 + |r∗|)σ

+ |u|p |∂uφ|2(u, v)
(1 + |r∗|)σ

)

du dv

) 1
2

‖F‖Einho,p,σ
.

(7.35)
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Combining (7.30), (7.31), (7.32), (7.34) and (7.35), and dropping the
(non-negative) second term on LHS of (7.30), we obtain

∫ us

max{1+
√

v∗−v∗,us}
|u|p(∂uφ)2(u, v∗) du

+
∫

DStep 4

(
|∂vφ|2(u, v)
(1 + |r∗|)σ

+ |u|p |∂uφ|2(u, v)
(1 + |r∗|)σ

)

du dv � (RHS of (7.21))

+

(∫

DStep 4

(
|∂vφ|2(u, v)
(1 + |r∗|)σ

+ |u|p |∂uφ|2(u, v)
(1 + |r∗|)σ

)

du dv

) 1
2

‖F‖Einho,p,σ
.

(7.36)

After using Young’s inequality and the positive bulk term on the LHS to
control the last term on the RHS, we obtain

∫ us

max{1+
√

v∗−v∗,us}
|u|p(∂uφ)2(u, v∗) du � (RHS of (7.21)). (7.37)

Finally, note that for v∗ sufficiently large, 1+
√

v∗ − v∗ ≤ −v∗
2 . It follows from

(7.37) that for all v∗ sufficiently large
∫ us

min{− 1
2v∗,us}

|u|p(∂uφ)2(u, v∗) du � (RHS of (7.21)). (7.38)

In particular, this gives the desired estimate for (7.22) in Step 1. We thus
conclude the proof. �

7.6. Proof of Theorem 7.8

In order to prove Theorem 7.8, it suffices to show that the condition in Propo-
sition 7.12 holds. This will be carried out in two steps: First, we associate with
φ a corresponding solution φlin to the linear wave equation on a fixed Reissner–
Nordström spacetime. Applying Theorem 4.1, we will show that there is an
L2-average polynomial lower bound of ∂uφlin along the Cauchy horizon as
u → −∞. Second, we show—using perturbative estimates—that in fact such
an L2-average polynomial lower bound also holds for ∂uφ. In particular, this
implies that ∂uφ �CH+

1
(un) �= 0 along some sequence un → −∞ so that the

desired mass inflation result follows from Proposition 7.12.
We begin with the first step. Suppose we are given (M, g, φ, F ) as in

Theorem 7.8. By Theorem 7.4, we know that in the interior region near H+
1 ,

the solution converges to a Reissner–Nordström solution with parameters M
and e. Fix these M and e. From now on, take (MRN , gRN ) to be the Reissner–
Nordström interior corresponding to these parameter.

Let φlin be the solution to the linear wave equation

�gRN
φlin = 0 (7.39)
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in the region {(u, v) : u ≤ us, v ≥ 1} ⊂ MRN (where us ≤ −1 is as in Theorem
7.4) with initial data

{
φlin �H+

1 ∩{v≥1}
.= φ �H+

1 ∩{v≥1}
φlin �{v=1}∩{u≤us}

.= φ �{v=1}∩{u≤us} .
(7.40)

We now apply Corollary 4.2 to obtain the following result:

Proposition 7.14. φlin defined as above satisfies
∫ us

−∞
u8

(
lim

v→∞(∂uφlin)2(u, v)
)

du = +∞. (7.41)

Proof. It suffices to apply Corollary 4.2 to φlin with p = 8. Note that the last
four assumptions of Theorem 4.1 are indeed verified:
(3) By Theorem 7.4, limv→+∞ φ �H+

1
(v) = 0. Hence, by (7.40), we also have

limv→+∞ φlin �H+
1

(v) = 0.

(4) By (7.13), the bound
∫ +∞
1

(1 + v2)(Tφlin �H+
1
) dv < +∞ holds.

(5) By (7.9) and (7.13), p = 8 is the smallest even integer for which (4.1)
holds.

(6) Using (7.14), and taking p = 8 as above, we obtain that (4.2) holds.
Now that we have checked all the assumptions of Corollary 4.2, it follows

that (4.6) holds for p = 8. Since us ≤ −1, this implies (7.41). �

Next, we turn to the second step of the argument. For this, we prove a
perturbative statement showing that the nonlinear φ is well-approximated by
φlin on CH+

1 as u → −∞ in the following sense:

Proposition 7.15. Let φ be as in the assumptions of Theorem 7.8, and φlin

be the solution to the linear wave equation on MRN as defined in (7.39) and
(7.40) (where we have identified the region {(u, v) : u ∈ (−∞, us), v ∈ [1,+∞)}
in the spacetime we are studying with the corresponding subset of MRN ). The
following estimate holds:

∫ us

−∞
u8

(
lim

v→∞(∂uφ − ∂uφlin)2(u, v)
)

du < +∞.

Proof. A direct computation shows that the difference φ − φlin satisfies the
following inhomogeneous wave equation:

∂u∂v(φ − φlin) = −∂vrRN

rRN
∂u(φ − φlin) −

(
∂vr

r
− ∂vrRN

rRN

)

∂uφ

−∂urRN

rRN
∂v(φ − φlin) −

(
∂ur

r
− ∂urRN

rRN

)

∂vφ.

This implies that for F
.= �gRN

(φ − φlin), we have

|F | � Ω−2
RN

(∣
∣
∣
∣
∂vr

r
− ∂vrRN

rRN

∣
∣
∣
∣ |∂uφ| +

∣
∣
∣
∣
∂ur

r
− ∂urRN

rRN

∣
∣
∣
∣ |∂vφ|

)

.

In particular, according to the estimates proven in Theorem 7.4, the following
estimates hold for any ρ < 3:
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(1) For u + v ≤ 0, we have

|F | �ρ Ω−2
RN (Ω2

RNv−2ρ) = v−2ρ. (7.42)

(2) For u + v ≥ 0, we have

|F | �ρ Ω−2
RN |u|−ρv−ρ. (7.43)

From now on, we fix some ρ ∈ ( 11
4 , 3).

We are ready to apply Theorem 7.13. It follows from Theorem 7.13 that
in order to prove the desired conclusion of the proposition, it suffices to bound
F in the norm Einho,p,σ with p = 8 and some σ > 1. We will choose σ > 1
sufficiently close to 1 such that 10 + σ − 4ρ < 0 and 2ρ − σ > 1 (which is
possible since we have chosen ρ > 11

4 ).
To bound F , we use (7.42) and (7.43) to obtain

‖F‖Einho,8,σ
=

(∫ ∞

−∞

∫ ∞

−∞
|u|8|F |2(u, v) (Ω4

RN (1 + |r∗|)σ)(u, v) du dv

) 1
2

�ρ

(∫ us

−∞

∫ −u

1

|u|8v−4ρ(Ω4
RN (1 + |r∗|)σ)(u, v) dv du

) 1
2

︸ ︷︷ ︸
.
=I

+
(∫ us

−∞

∫ +∞

−u

|u|8|u|−2ρv−2ρ (1 + |r∗(u, v)|)σ dv du

) 1
2

︸ ︷︷ ︸
.
=II

.

(7.44)

We now bound the terms I and II in (7.44).
To handle I, recall that r∗ = v + u, and that in the integration domain

of I, ΩRN � eκ+(v+u). Therefore, since 8 + σ − 4ρ < −2, we have

I �ρ

(∫ us

−∞

∫ −u

1

|u|8v−4ρe4κ+(v+u)(1 + v + |u|)σ dv du

) 1
2

�ρ

(∫ us

−∞
|u|8+σ−4ρ du

) 1
2

< +∞.

(7.45)

In the derivation of (7.45), we have used that v ≤ |u| in the region u + v ≤ 0,
and thus an integration by parts argument gives
∫ −u

1

v−4ρe4κ+(v+u)(1 + v + |u|)σ dv � |u|σ
∫ −u

1

v−4ρe4κ+(v+u) dv �ρ |u|−4ρ+σ.

For II, since 9 + σ − 4ρ < −1, −2ρ + σ < −1, r∗ = v + u, and |u| ≤ v in
the region u + v ≥ 0, we have
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II �ρ

(∫ us

−∞

∫ +∞

−u

|u|8|u|−2ρv−2ρ (1 + v + |u|)σ dv du

) 1
2

�ρ

(∫ us

−∞
(|u|8−2ρ

∫ +∞

−u

v−2ρ+σ dv) du

) 1
2

�ρ

(∫ us

−∞
|u|9+σ−4ρ du

) 1
2

< +∞.

(7.46)

Plugging (7.45) and (7.46) into (7.44), we obtain

‖F‖Einho,8,σ
< +∞.

The estimate (7.21) in Theorem 7.13 thus implies that
∫ us

−∞
u8

(
lim

v→∞(∂uφ − ∂uφlin)2(u, v)
)

du < +∞,

which is what we wanted to prove. �

We now finally conclude the proof of Theorem 7.8:

Proof of Theorem 7.8. Combing Propositions 7.14 and 7.15 and using the tri-
angle inequality, we immediately obtain

∫ us

−∞
u8

(
lim

v→∞(∂uφ)2(u, v)
)

du = +∞.

In particular, there exists a sequence un → −∞ such that for every n ∈ N,

lim
v→∞(∂uφ)2(un, v) �= 0.

The desired blow-up of the Hawking mass then follows from
Theorem 7.12. �
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