
Received 12 October 2022, accepted 5 November 2022, date of publication 10 November 2022, date of current version 16 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3221455

Multi-Agent Reinforcement Learning With
Measured Difference Reward for
Multi-Association in Ultra-Dense
mmWave Network
XUEBIN L I 1, TERRY N. GUO 2, (Senior Member, IEEE),
AND ALLEN B. MACKENZIE 1, (Senior Member, IEEE)
1Department of Electronics and Communication Engineering, Tennessee Tech University, Cookeville, TN 38505, USA
2Center for Manufacturing Research, Tennessee Technological University, Cookeville, TN 38501, USA

Corresponding author: Terry N. Guo (NGuo@tntech.edu)

This work was supported in part by the National Science Foundation under Grant 2135275.

ABSTRACT Millimeter Wave (mmWave) communication technology is anticipated to play a vital role in
meeting the growing demand for the scarce bandwidth in wireless communications. However, mmWave
networks are highly susceptible to blockage. Thus, some mitigation techniques, such as multi-connectivity,
need to be considered. Densely deploying mmWave base stations (mBSs) to form an ultra-dense network
(UDN) also helps. With a mix of different technologies, optimally allocating resources becomes challenging.
In this paper, we study mmWave user multi-association in a two-tier heterogeneous ultra-dense network
(HetUDN) with a relatively large number of user equipments (UEs). We propose a framework of multi-agent
reinforcement learning (MARL) to tackle the complicated optimization problem, leveraging its adaptivity to
the communication environment. The proposed scheme considers mmWave beam-division based multi-
connectivity and takes advantage of a macro base station (MBS) for indirect cooperation among agents
(UEs). In particular, we borrow a credit-assignment technique called difference reward (DR) to deal with a
relatively large MARL system with a large action space, which, to the best of our knowledge, is the rst time to
apply MARL with DR in user association. Furthermore, the proposed schemes are scalable mainly due to xed
observation dimensions and individual actions taken by UEs independently, ensuring that the operation is
independent of the numbers of mBSs and UEs. Numerical results suggest that the two MARL schemes with
measured DR could achieve a good balance between energy efciency and QoS outage, and the one using
extended DR (EDR) offers additional performance improvement.

INDEX TERMS Ultra-dense network (UDN), millimeter wave (mmWave), heterogeneous network, multi-
association, multi-agent reinforcement learning (MARL).

I. INTRODUCTION
As communication systems continue to evolve to meet
the growing demand for high bandwidth and low latency,
we have seen technology trends and enablers for upcoming
Beyond 5G (B5G) and 6G communication systems, such as
the use of higher frequency bands, multi-connectivity,
heterogeneity and network densication, etc. Synergistically
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utilizing different technologies is vital but challenging.
Densely deploying mmWave base stations (mBSs) is quite
reasonable since this favors mmWave communication that
has a short-range line-of-sight (LOS) propagation. In an ultra-
dense network (UDN) [1] with mBSs, a user equipment (UE)
capable of multi-connectivity can be associated with multi-
ple mBSscalled multi-association [2]. Multi-association is
considered a good strategy to increase channel capacity and
reduce link blockage [3]. An example of a promising solution
is a two-tier heterogeneous network (HetNet) with densely
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deployed low-power mBS within the coverage of an existing
cellular network, where UEs can connect to the macro base
station (MBS) and multiple mBS simultaneously [4].

In order to leverage the full potential of UDNs, the network
architecture is transformed from traditional cell-centric to
user-centric [5], and the UE can be associated with mul-
tiple mBSs in a multi-cell setup [2]. The user associa-
tion problem is NP-hard in general, thus it is difcult to
achieve strictly optimal association given some constraints.
Recently, researchers have proposed some solutions to multi-
association, such as user-centric clustering [6], [7], multi-
label classication methods [8], nonlinear programming
method [9], and heuristic algorithm [10], [11]. Chen, et al.
investigate optimal multi-connectivity and downlink power
allocation using a few mathematical techniques to deal
with the non-convex Mixed-Integer Nonlinear Programming
(MINL) with summation of fractions [9]. Crowd intelligence
has been applied to tackle multi-connectivity issues [12],
[13]. In [12], a non-dominated sorting genetic algorithm is
proposed to obtain the near-optimal solution of multiple asso-
ciations; the algorithm provides maximum energy efciency
while balancing user rate and base station load under QoS
constraints. In [13], the authors introduce a Multi-Objective
Harris Hawk Optimization algorithm designed to achieve
near-optimal performance. Note that most of the above works
rely on accurate models of the UDN environments. Environ-
ment online modeling requires intensive involvement of UEs
and information exchanges, which tends to be impractical for
normal mmWave UDNs.

Mainly because of its support for autonomous behavior,
reinforcement learning (RL) has been successfully applied
to many different elds [14]. In particular, multi-agent Rein-
forcement Learning (MARL) is gaining increasing attention
in different elds, such as communications and network-ing
[15], [16], caching and computation ofoading [17], [18], [19],
[20], [21], resource management and allocation [22], [23],
[24], etc. Recently, a number of works have applied MARL
to solve the user association problem, and many of them
consider mmWave UDN [25], [26], [27], [28], [29],
[30].In [25], the authors design a historical information-based
MARL method to solve the vehicle association problem to
achieve load balancing in vehicular networks, considering
the periodicity of urban trafc and the constraints of vehicle
travel paths. In [28], the authors study the symbiotic relation-
ship between cellular and IoT networks and infer real-time
channel information by using historical channel informa-
tion. Sana et al. [29] designed an adaptive user association
algorithm to maximize the sum-rate. Dinh et al. [30] inves-
tigated user-to-multiple sub-6GHz/mmWave access points
(APs) association and solved the problem in a distributed
fashion with the goal of maximizing the long-term through-
put of the whole system. MARL has shown effectiveness in
addressing decision making under uncertainty [31]. There-
fore, it is promising to apply MARL to mmWave UDN to
achieve optimal multi-association.
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MARL can have different forms, such as distributed learn-
ing and centralized learning, and each type has its advantages
and disadvantages. In particular, MARL algorithms with cen-
tralized training decentralized execution (CTDE) [32] have
gained attention in recent years. In CTDE, global information
is required for centralized training but not for executing tasks,
and all agents make individual decisions based on mutual
understanding gained during previous training. Among many
CDTE algorithms, VDN [33], QMIX [34], COMA [32], etc.,
have shown impressive performances. However, the cellular
network is an open network architecture that requires scala-
bility for BSs and UE, and centralized training methods often
cannot meet the very essential scalability requirements since
CTDE requires the number of agents is xed.

One important issue investigated in this paper is related to
reward denition. Reward functions employed in some
work become ineffective as the number of UEs increases [29],
[30]. Indeed, in a relatively large system with a large action
space, the use of a global reward as an agent’s individual
reward often leads to the ‘‘lazy agent’’ problem1 [33], [35].
On the other hand, when using a selsh local reward without
cooperation among agents, it is not guaranteed that pursuing
maximum individual return will lead to a maximum global
return. Regarding fair assignment of credit to an agent in
proportion to its contribution, existing work includes local
reward design [22], [25], [28]. The concept of difference
reward (DR) is introduced by Wolpert et al. [36] as a solu-
tion to the MARL credit assignment. DR is a decoupled
individual reward reecting an individual contribution of the
current agent’s action to the global reward [32], [37]. In this
paper, we investigate a user multi-association problem to
maximize the energy efciency of mmWave UND while
minimizing QoS outage in a relatively large MARL system
with a large action space. The joint optimization problem is t
into a MARL framework, and MBS is used to accommodate
information exchange and indirect cooperation among agents
(UEs). In particular, we consider DR to assign credit to an
agent as a response to its action.

To the best of our knowledge, it is the rst time that MARL
with DR is considered in user association. Different from
model-based algorithms such as crowd intelligence [12], [13],
nonlinear programming method [9] and heuristic algorithm
[10], [11]. Our proposed schemes belong to the model-free
online learning category which does not require infeasible
online modeling based on real world systems. On the other
hand, compared to some centralized-training approaches,
such as VDN [33], QMIX [34], and COMA [32], etc., our
schemes are more scalable for cellular systems with a varying
number of UEs.

The main contributions of this paper are summarized as
followsV

1A lazy agent is one who gets spurious rewards because of other agents’
efforts in MARL, i.e., it takes advantage of the successful actions of other
agents. This phenomenon is due to partial observability.
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 MBS-aided MARL Framework for User
Multi-association in Heterogeneous mmWave UDN With
Relatively Large Number of UEs: The framework is pro-
posed to address a few pressing demands and challenges,
including multi-connectivity for mitigating mmWave
blockage, scalability and effectiveness of MARL as the
number of UEs increases. The proposed framework is
systematically studied and validated.

 Effective MARL Leveraged by DR: As the number of
UEs (agents) increases, many existing MARL schemes
become ineffective, especially if multi-connectivity is
considered. We borrow the concept of DR for propor-
tionally assigning a credit to an action, and use it as an
agent’s individual reward. A DR measurement technique
is proposed as an attempt to apply DR to real-world
systems.

 Extended DR (EDR): The traditional DR is extended for
further performance improvement. A concept of com-
pound actions, along with a conict resolution mecha-
nism, is introduced. EDR is a combination of DR and
compound-action-based DR (CDR). The conict reso-
lution mechanism is to deal with beam contention in the
concurrent follow-up actions in the second part of the
compound action.

Table 1 summarizes the symbols used in this paper. The
rest of this paper is organized as follows. The system is
described and modeled in the next section. In section III,
the multi-association problem is formulated as an optimiza-
tion problem and then ts into the MBS-aided MARL

Framework. The application of DR, including traditional
DR and its extended version, is presented in Section IV.
Section V reports simulation results and provides some
remarks, followed by conclusions in Section V.

II. SYSTEM DESCRIPTION AND MODELING
We consider a two-tier HetNet with mmWave UDN as the
second tier illustrated in Fig. 1. In the rst-tier, an MBS is
able to communicate with all UEs over two-way channels in
the lower frequency band to exchange control information.
The second tier is a mmWave UDN with each UE being
equipped with a mmWave frontend able to connect to mul-
tiple mBSs simultaneously in a beam-division manner [38],
[39]. mmWave beamforming and beam alignment are beyond
the scope of this paper. We assume that sharp beamforming
and even some nulling techniques have been employed to
enable mmWave beam-division-based multiple connectivi-
ties. We also assume the system is capable of beam alignment
and that perfect beam alignment has been achieved.

TABLE 1. Major symbols used in this paper.

FIGURE 1. Two-tier HetNet with mmWave UDN as the second tier.

Consider a system with I UEs and J mBSs; let I  D
f1; 2; : : : ; I g and J  D  f1; 2; : : : ; J g be the index sets of UEs
and mBSs, respectively. In practice, each UE can only access
its neighboring mBSs. The received signal strength indicator
(RSSI) can be used to determine the neighbors (candidate
mBSs that can be heard by a UE). For a given UE i, these
candidate mBSs can be represented by a candidate mBS index
set dened asV

L i  D  fjjRSSIi;j >  RSSIlimit ; j 2  J  g; i 2  I (1)

where RSSIi;j is the RSSI for a pair of receiver UE i and
transmitter mBS j, and RSSIlimit is a threshold correspond-
ing to the minimum required signal strength and maximum
transmission range.

The mmWave propagation, antenna radiation pattern, inter-
ference, etc., are modeled as follows for performance evalu-
ation. The log-normal path loss model [40] is used to express
mmWave propagationV

PL di;j D  10log10  
0 C  10 ni;jlog10

i;j C  Xi;j

(2)
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where d0 is the close-in-free-space reference distance, ni;j is
the path loss exponent,  is the wavelength, Xi;j is the zero-
mean Gaussian random variable expressed in dB with
standard deviation , to reect shadowing or blockage effect.
Measurement results reported in [41] have suggested that path
loss equation (2) can be applied to both LOS and non-line-of-
sight (NLOS) conditions with ni;j, Xi;j being set differently.
According to [42], the channel condition can switch randomly
between LOS and NLOS following a Bernoulli distribution.
In urban areas with regular street layouts, the probability of
LOS at a distance d m is given by

PLOS (d) D  min(
A

; 1)(1      e     d 
) C  e     d

A D  18 m; B D  63 m: (3)

In suburban areas [42] suggests

PLOS (d) D  e d=C ; C D  200 m (4)

In our case, the two probabilities in Bernoulli distribution
are denoted by PLOS (di;j; ni;j; Xi;j) and PNLOS (di;j; ni;j; Xi;j) D
1      PLOS (di;j; ni;j; Xi;j).

To model mmWave antennas, we adopt the simplied and
commonly used sectored antenna model [43], [44] with
antenna pattern dened asV

G(; t ) D  
<  2      (2      )

;     if jt j  
2 (5) 

;

otherwise

where , 0 <    1, is the gain of side-lobe, t is the beam offset
angle with respect to the broadside in radian, and  is the main-
lobe beamwidth in radian.

As mentioned earlier, we assume each UE is able to
connect multiple mBSs simultaneously, which implies that
the mmWave frontend has multiple channels that transmit
or receive signals in different directions. For any downlink
pair of UE and mBS, there are four types of possible beam
combinations and the joint transmit-receive antenna gain in a
given direction is expressed in (6), as shown at the bottom of
the page, and superscripts t and r have been used to represent
‘‘transmitter’’ at a mBS and ‘‘receiver’’ at a UE, respectively.
In (6), t and r are the main-lobe beamwidths, t and r are the
beam offset angles, and Gt (t )Gr (r ) is the joint downlink
transmit-receive antenna gain, corresponding to a pair of UE i
and mBS j. If the beams between UE i and mBS

j are aligned (corresponding to the rst line on the right-hand
side of equation (6)), then, according to (5), Gt (t ), and
Gi;j(

r ) are given byV

Gi;j(
t ) D  

2      (2      t )
(7)

j

Gi;j(
r ) D  

2      (2      i ) (8)
i

To enable a multi-association process, downlink testing
signals are generated by mBSs and measured by UEs. Nor-
mally each mBS beam transmits a constant-power Pbeam.
Denoted by Pt     the transmit power of mBS j toward UE i,
and considering path loss dened in (2), the received power
corresponding to the two aligned beams is given byV

Pi;j D  Pi;jGi;j(0)Gi;j(0)PL(di;j) (9)

where t D  0 and r D  0 have been used.
In this paper, we consider mmWave beam pattern model

with both mainlobe and sidelobe, and it has been consid-
ered by many researchers, because this model is more gen-
eral and accurate, and can be benecial for future work in this
line. Indeed, some existing work suggests that when the
UE is associated with multiple mmWave base stations
simultaneously, the interference cannot be ignored [45]. Note
that there can possibly be three types of downlink interfer-
ence, corresponding to the second, third, and fourth lines in
the right-hand side of (6): Type 1mainlobe to sidelobe;
Type 2sidelobe to the mainlobe, and Type 3sidelobe to
sidelobe. Obviously, Type-3 interference is negligible and
will not be considered in our performance evaluation. Type 1
and Type 2 interference powers at UE i can be expressed asV

I Type1 D  
X

xi;j0Pt
0Gi;j0(t)Gi;j(

r)PL(di;j0)
j0 2J ;j0 Dj

t r

jt j <  
2 

; jr j >  
2

(10)

I Type2 D xi0;jPi0;jGi0;j(
t)Gr 

j(
r )PL(di;j)

i0 2I ;i0 Di
t r

jt j >  
2 

; jr j <  
2

(11)

where Gt 
0(t )Gi;j(

r ) is the joint transmit-receive antenna
gain for Type 1 downlink interference, Gi0;j( )Gi;j( ) is

8  
2      (2      j )     2      (2      i ) 

t r

<  
2      (2      t ) 

 ;Gt (t )Gr (r ) D j

  
2      (2      i ); 

i

>   ;

if t   
2 if t

2
t

if t  >  j

t

if t  >  
2

and r  
 

2 
;

and r  >  
2 

;

r

and r  i ;

and r  >  
2 

;

i 2  I ; j  2  J (6)
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the joint transmit-receive antenna gain for Type 2 downlink
interference, xi;j 2  f0; 1g indicates the UE-mBS association,
i.e., xi;j D  1 if UE i is associated with mBS j, otherwise xi;j
D  0.

The Signal-to-Interference-and-Noise-Ratio (SINR) at UE
i for the link (mBS j, UE i) is given byV

r

SINRi;j D  
I Type1 C  IType2 C  WN0

(12)

where W denotes the channel bandwidth, and N0 denotes the
noise power spectral density. The downlink achievable rate of
each associated link is dened asV

where constraint (17) indicates that each UE cannot be con-
nected to more than k mBSs, constraint (18) means that one
BS can simultaneously serve up to f UEs. The binary indi-
cator xi;j 2  f0; 1g reects UE actions. Then, the optimization
problem can be formulated asV

P1 V max:fEE; Cpg
i;j

s.t. (17)      (19) (20)

The optimization problem dened above is a multi-
objective optimization problem that is difcult to solve
directly. As a matter of fact, this problem can be converted to
single objective optimization. By dening a utility functionV

ci;j D  W log2(1 C  SINRi;j) (13) 0  D  EE  e Cp (21)
The downlink achievable rates of UE i can be expressed asV

Ri D  
X

x i ; j c i ; j (14)
j 2 J

The overall energy efciency (EE) of the system can be
formulated asV

P  P
i;j i;j

EE D  
j 2 I  i 2

P (15)
i;j

j 2 J  i 2 I

In addition, we introduce QoS coverage probability as a
metric of network service performanceV

Cp D  Pr[Ri  RQoS ]  
P

i  1(Ri  RQoS )
(16)

UE

where NUE is the number of UEs in the system, 1() is an
indicator function, and RQoS is the minimum data rate
requirement for each user.

III. PROPOSED MARL FRAMEWORK
In this section, we formulate the optimization problem rst
and then introduce the MARL model as well as the architec-
ture of the proposed scheme.

A. PROBLEM FORMULATION
In general, user association is an optimization problem that
may have multiple objectives (such as sum-rate, QoS, load
balancing, etc.). In this paper, our goal is to achieve high
EE without sacricing QoS. Different from the traditional
associative optimization objective, QoS is not regarded as a
constraint, but as an optimization objective. Communication
systems usually have some limitations due to hardware limi-
tations. Denote by k the maximum number of mBSs a UE can
link to, and f the maximum number of UEs an mBS can serve.
The following constraints are applied to user associationV

X  
xi;j  k ; i 2  I (17)

j2L i

xi;j  f ; j 2  L i (18)
i 2 I

xi;j 2  f0; 1g; 8i 2  I ;  j 2  L i (19)
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with  being a tuning constant for balancing between EE and
QoS, Finally, the problem can be rewritten asV

P2 V max: 0
i;j

s.t. (17)      (19) (22)

In the following, we will need to convert the optimization
P2 to a MARL problem.

B. MARL MODEL
(1) Agent: Each agent is played by a UE.

(2) Observation: It is the union of two subsets o0 and o00,
where the former is a set of selected RSSI values observed
by UE i, and the latter is a composition of global network
parameters observed by the MBS. Specically, we have

oi D  fo0;o00g
oi D  fRSSIi;j; j 2  Li g; i 2  I
o00 D fSR; NUE ; NQoS ; Rj; Nj; NQoS ;j; j 2  Li g; i 2  I (23)

where SR is the whole network’s sum-rate, NUE is the number
of UEs in the area covered by the MBS, NQoS is the number of
UEs that do not satisfy QoS requirement, Rj is the sum-rate of
mBS j, Nj is the number of UEs served by mBS j, and NQoS ;j is
the number of UEs in the area of mBS j that do not meet QoS
requirement. For the convenience of description later, the
state is dened as followsV

s D  [o1; o2; : : : ; oI ] (24)

(3) Action: It is the action taken by a UE (agent) to asso-
ciate with mBSs. An action ai expressed in (25) is equivalent
to an association option and can be represented by a vector
consisting of association indicator xi;j 2  f0; 1g.

ai D  
 
xi;1; xi;2;  ; xi;J

T (25)

When multiple vectors are combined into a matrix form,
a joint action u is formed asV

u D  [a1; a2;  ; aJ ] (26)

(4) Reward: Dening an effective reward function for
MARL is essential and tricky. Typically the reward function

118751
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r D  R(st ; at ; stC1) is determined by the current state st , the
actions at taken at state st , and the next state st C1 after taking
action at .The goal of multi-association in this paper is to max-
imize the utility function 0  dened in (21). In other words, 0
can simply serve as a global reward, i.e., rG D  0 . However,
achieving this global goal in a multi-agent system requires all
agents to act smartly and harmoniously, and each agent needs a
‘‘local‘‘ reward to guide its action toward the global goal. It
is desired to align individual goals with the global goal.
Achieving this alignment is very challenging and related to
the credit assignment [46]. Credit assignment in MARL is to
determine the individual contribution of the current agent’s
action to the global reward. Two credit assignment methods
are described in the next section.

C. OVERALL ARCHITECTURE OF PROPOSED
SCHEMES WITH DR
The optimization problem in (21) and (22) is very difcult to
solve. In this paper, we try to solve the problem using
MARL which is essentially a ‘‘static game of incomplete
information’’ according to [47]. Multiple agents (played by
UEs) participating in the game try to improve their rewards
via iterative exploration and exploitation. Specically for our
application, the reward is formulated based on the utility
function dened in (21), and the action taken by an agent is to
get associated with some mBSs. Depicted in Fig. 2 is a
conceptual illustration of the MBS-aided MARL framework
applied to a two-tier HetNet, where a common deep neural
network2 at MSB is shared by all UEs. It is worth noting
that although the network under our consideration is a single-
MBS system, it can be extended to a multi-MBS system with
some modication.

FIGURE 2. Conceptual illustration of MBS-aided MARL framework.

MBS has four main tasks: 1) scheduling all UEs to ensure
only one UE is in the exploration state in a time step; 2) broad-
casting network parameters obtained from mBS, assist UE in
observing the network environment; 3) conducting collision
avoidance according to some predened conict resolution
rule, and 4) Train and update the neural network weights. Two
MARL-based schemes incorporating DR concept are briey
described in the following:

DR-MARL: a UE performs exploration by taking an action
in the learning period, which is simply to connect to or

2This is because all UEs are homogeneous and use a common utility
function.
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disconnect from one or more BSs; we name such an action
as simple action.

CDR-MARL: similar to DR-MARL, UEs perform explo-
ration by taking simple actions in the learning period; in
addition, followed by each simple action of a UE, all other
UEs simultaneously adjust their connections accordingly; we
name such a two-step action as compound action (to be
discussed further in the next section).

IV. APPLICATION OF DIFFERENCE REWARD
With the preparation of some basics given in the previous
section, we are able to discuss how to apply and implement
the proposed ideas in detail.

A. MEASURED DR
The standard DR for agent i is dened as followsV

DRi(aijst ; u i) D  rG(st ; (u i; ai))      rG(st ; (u i; ci)) (27)

where ai is an action made by agent i, ci is a baseline
action (an action as a reference) of agent i, u i is the
joint action of all agents except agent i, and rG(st ; (u i; ai))
and rt (st ; (u i; ci)) are the global rewards for joint actions (u
i; ai) and (u i; ci), respectively. Then, the optimization
problem dened in (22) can be interpreted in terms of rewards

asV
( DRi;     if constraints (17)-(18) are met

i
0; if constraints (17)-(18) are not met

(28)

where ri is the individual reward of agent i.
Unfortunately, this DR denition is not perfect for all

practical applications since in some scenarios the reference
total reward rt (st ; (u i; ci)) cannot be accurately obtained
without change of state (to be discussed later). In previous
studies [48], [49], the estimation method is often used to
calculate rG. In our work, standard DR is applied to the rst
scheme (DR-MARL): rt (st ; (u i; ci)) and rt (st ; (u i; ai))
are measured in two consecutive steps, respectively, and then
DR Dt (aijst ; u i) is calculated based on (27) and used as
reward ri. Here the baseline action ci refers to ‘‘no connection
to any mBS.’’Rigorously speaking, the reference total reward
rt (st ; (u i; ci)) can only be obtained approximately since the
state cannot be kept the same as st .The pseudo code for
two-step DR measurement is shown in Algorithm 1. The
agents execute association actions sequentially, and the global
reward can be calculated by MBS in online via communicat-
ing with UEs for each action. For each agent in a Round-robin
cycle, rstly, the reference global reward is measured with the
given agent performing the default action ci; then, the regular
global reward is measured with the given agent performing
the action ai according to the -greedy rule, and the DR esti-
mate is obtained by subtracting the former measurement from
the latter measurement. Although the regular DR estimation
takes two steps, for a new UE to join the system, only the
second step is required.
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Algorithm 1 Two-Step Measurement of DR
1: for t=1:T do
2: for i 2  I  do
3: The ith agent take action ci.
4: MBS accumulative rt (st ; (u i; ci)).
5:  With probability  select a random action ai other-

wise select a D  maxQ(o ; a V w).
6: MBS accumulative rt (st ; (u i; ai)).
7: MBS calculate DRi based on (27).
8:        end for
9: end for

by allowing to use any executed action as a reference, which
simplies the CDR calculation. CDR can be expressed asV

CDRi(w(s0)) Dr tC1(stC1; (w(s0) i; a0))      rt (st ; (u i; ai)) (29)

Similar to DR measurement, CDR can be measured at MBS
via communicating with all UEs.

3) EXTENDED DR (EDR)
It is expected that CDR can be more effective than the tra-
ditional DR. However, CDR is a function of w(s0) i which

uctuates signicantly at the beginning of the learning phase.
Based on the discussion above, we propose an EDR that
combines DR and CDRV

EDRi(; w(s0)) D  DRi C    CDRi(w(s0)) (30)

FIGURE 3. State transitions triggered by actions of a single agent.

The approximated and estimated (standard) DR has been
proved effective. As an attempt to improve performance fur-
ther, we extend the DR-based reward by incorporating con-
cepts of compound action and compound-action-based DR.

1) COMPOUND ACTION
It is described in section IV-A and further explained in the
following. As illustrated in Fig. 3, at current state st (u i; ai),
agent i takes an action a according to the -greedy rule,
and then the system reaches an intermediate state si(u i; a0).
This process is called the 1st transition. Immediately after this
transition, all the other agents take a joint action u0     which is a
composite of individual actions executed concurrently based
on the deterministic policy (w). This follow-up process is

called the 2nd transition. Because of the follow-up joint
action, the outcome of a compound action provides additional
information which benets the learning process. Two notes to
the follow-up individual actions are: 1) in practice, likely only
a few affected UEs need to take actions (change connections);
2) these follow-up actions need to be approved by an arbitra-
tor at MBS, and when contention happens, i.e., multiple UEs
content for a beam, a conict resolution mechanism (to be
explained in subsection B) will be performed.

2) COMPOUND-ACTION-BASED DR (CDR)
The fundamental DR concept is to decouple the dependency
of UEs’ actions, though in practice perfect decoupling is
hard to achieve. CDR is an extension of traditional DR
and is dened as a compound action, anticipating some
improvement over DR. Furthermore, we lose the requirement
of common default action (ci in the standard DR denition)
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where  (>0) is a variable weight that needs to increase gradu-
ally in the neural network training phase, and w(s0) is a com-
pound action based on a deterministic decision w(s). EDR is
applied to EDR-MARL scheme. It used as the individual
reward: ri D  EDRi(; w(s0)) if constraints (17)-(18) are met; ri
D  0 if constraints (17)-(18) are not met. The acquisition of
EDR is described in pseudo code in Algorithm 2.

Algorithm 2 EDR Acquisition Process
1: for i 2  I  do
2: Take the ith agent as the learner and the rest of agents

as the actor.
3: for tD1:T do
4: MBS accumulative rt (st ; u).
5:  With probability  select a random action ai other-

wise select ai D  maxQ(oi; a V w).
6:  Calculate the DR for the action ai base on Algorithm

1.
7: Actors take actions according to deterministic pol-

icy (w).
8: MBS accumulative r tC1(stC1; u0).
9: MBS calculate the EDRi, based on (30), variable

weight  D  1      .
10: end for
11: end for

B. EDR-MARL SCHEME
EDR-MARL is relatively more complicated than DR-MARL
and described in detail in this subsection. The roles and
relationships in the proposed EDR-based scheme are shown
in Fig. 4, where learner and actor are used for better expla-
nation [50], rG is the total reward mentioned earlier, and s is
the joint state dened in (24). In the learning phase of this
scheme, in each epoch,3 all agents are divided into two parts,
i.e., the learner played by one of the agents and actors

3An epoch is a section of learning period in which a learner along with all
actors take many cycles of actions until not much improvement can be
achieved.
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TABLE 2. Simulation parameters.

FIGURE 4. Different roles and relationships among them in the proposed
CRD-MARL scheme (training phase).

played by the rest of agentsall actors are treated as a whole.
Recalling Fig. 3, in the 1st transition, the learner performs
exploration, interacts with actors to generate trajectories and
uploads the exploration experience to MBS. In the 2nd transi-
tion, the actors execute (follow-up) actions reexively based on
their policy learned so far. Obviously, an actor needs to
retrieve the latest policy parameters from MBS before each
follow-up action. The agents take turns playing the learner
role from one epoch to another epoch. In other words, this
MARL scheme is performed sequentially. MBS conducts a
number of functions, including providing each agent with
network information and informing the learner of the reward
for each joint action, all via broadcasting.

Fig. 5 shows the proposed EDR-MARL scheme with
detailed interaction ow. In the initial stage of the system, all
UEs download the learned neural network parameters (w)
from the MBS, and MBS selects a UE as the learner. The
learner observes the environment and performs the explo-
ration action ai; with the execution of ai, the environment
changes, and then the actors (the rest of agents) observe
this change independently; each corresponding follow-up
action plan and its Q-value are uploaded to MBS, and then
these individual actions of all agents form a joint action u.
As mentioned earlier, an arbitration process is needed to
ensure collision-free follow-up actions. When a conict is
detected by MBS, the involved agent with a lower Q-value

receives a rejection message and is required to resubmit a new
action plan. If not a single collision is detected, the actors
are allowed to take the approved follow-up actions. MBS
obtains the global reward 0 , calculates the learner’s EDR
using (30), and informs the learner of it. Then, the learner
uploads the action trace (s; a; r ; s0) to MBS, and MBS updates
the neural network parameters with this data and sends the
new parameters to all UEs.

The detailed process of EDR-MARL can be seen in the
pseudo code of EDR-MARL shown in Algorithm 3 on the
next page, where double deep Q-learning (DDQN) [51] is
employed. DDQN is a widely-used type of RL and the goal
of RL is to nd the optimal policy (s) for each state s to
maximize the expected return. The update rule of DDQL
algorithm is as followsV
Q(ot ; at ) D  (1      )Q(ot ; at ) C  ri(ot ; at )

C  max Q0(otC1; a0) (31)
ai

where  is the learning rate,  is the discount factor. The
training process is to adjust the neural network to minimize
the loss function L(),

Li() D  E[(ri(t ) C   max Q(otC1; at C1 I  )

 Q(ot ; at I ))2] (32)

where   is the weight of the target network,  is the weight of
the behavior network, and Q is the target Q-function.

FIGURE 5. Detailed interaction flow in EDR-MARL (training phase).
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V. EXPERIMENTAL VALIDATION
This section demonstrates the effectiveness of the proposed
EDR-MARL scheme via evaluating the performance with
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Algorithm 3 EDR-MARL for User Multi-Association
1: Initialize the mmWave UDN environment
2: Initialize repay memory D  to capacity N.
3: Randomly initialise the Q-network Q(o; aI w)
4: Randomly initialise the target Q-network Q(o; aI wO )
5: while Not convergence do
6: Download Q-network weight  for each UE from

MBS.
7: for i 2  I  do
8: Take the ith agent as the learner and the rest of

agents as the actor.
9: for tD1:T do

10:  Agent i observe oi(t) from the environment and
MBS

11: With probability  take a random action ai other-
wise take ai D  argmaxQk (oi; a V w).

12:                  while Not conict do
13:                       for k 2  I ,k D  i do
14: Agent k select action ak D  argmaxQ(ok ; a V

w).
15: Upload action ak and max(Qk ) to MBS.
16: if ACKD0 then {/*Conict*/}
17: Remove max(Qk ) from Qk .
18: Upload action a D  argmaxQ (o ; a V w)

and max(Q0 ) to MBS.
19: end if
20:                       end for
21:                  end while
22: Take compound action u i.
23: Calculate the EDR based on (30).
24: Store tuple (oi(t); ai(t); ri(t); oi(t C  1)) in D
25: Sample random batch from D .
26: Perform a gradient descent step on (31) with

respect to the network parameters w.
27: Minimize the loss (32) using stochastic gradient.

28: The agent updates the target Q-network weights
wO once per Tu steps with wO D  w.

29: Upload Q-network weight w to MBS.
30:             end for
31: end for
32: Update new location for each UE
33: end while

numerical results. We consider a simplied heterogeneous
mmWave UDN with one MBS, 15 mBSs, and 40-180 UEs
randomly placed in a 100  100 m2 area. All simulation
parameters are listed in Table 2. For UE deployment, two
different distributions are considered. In the rst one, UEs are
uniformly scattered over the entire area whereas, in the
second one, UEs is distributed by following a 2-dimensional
symmetric Gaussian distribution with a random center and
standard deviation around 47 m. In the following, all simula-
tion results are generated by averaging over at least 50 inde-
pendent realizations.
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FIGURE 6. Convergence of DR-MARL and EDR-MARL.

In addition to the proposed two MARL schemes,
DR-MARL and EDR-MARL, the following three schemes
(user association strategies) are considered for comparison
purposesV

 Max-SNR single connectivity: Each UE connects to a
single mBS that leads to the strongest SNR;

 Max-SNR double connectivity: Each UE connects to
two mBSs that correspond to the rst two strongest
SNR;

 Max-SNR triple connectivity: Each UE connects to
three mBSs that correspond to the rst three strongest
SNR;

For the three schemes using xed numbers of connections,
when a UE cannot be provided the required number of beams
(due to poor link quality or no available beams), the system
will simply stop accepting the UE and accordingly its QoS
requirement is not satised.

Firstly, Fig. 6 shows the convergence behaviors of the
proposed DR-MARL and EDR-MARL algorithms at typical
learning rates 0.01. We observe that both learning curves
converge, but the curve of DR-MARL is relatively smoother,
while the other one has spikes and converges a little slowly.
Recalling (29) and (30), the less smoothness is mainly due to
that EDR-MARL involves policy (w) which is more random in
the early learning phase. Note that although EDR-MARL
behaves less smoothly, it leads to better outcomes thanks to
the compound actions.

Fig. 7 shows the QoS dissatisfaction rate (dened as OoS
outage probability) for QoSreq D  1.2 and 1.8 Gbit/s, and dif-
ferent numbers of UEs. Among the three schemes with xed-
number connectivity, the single-link one is a safer option,
but, because of mmWave blockage, it cannot meet QoS well
even when there are a very small number of UEs; while
both the double-link and triple-link schemes demonstrate
dramatically increased QoS dissatisfaction as the numbers
of UEs increase and excess certain values, because equally
assigning beams to all UEs will quickly use up the lim-
ited number of available beams. In contrast, the proposed
DR and EDR methods perform unanimously well for either

118755



X. Li et al.: MARL With Measured Difference Reward for Multi-Association in Ultra-Dense mmWave Network

FIGURE 7. QoS outage probability versus number of UEs (uniform
distribution).

QoSreq D  1.2 and 1.8 Gbit/s over a wide range UE density,
implying their excellent adaptability to the environment. Fur-
thermore, the EDR outperforms the DR, especially when the
number of UEs reaches the high end of the considered range:
the QoS outage ratio of the EDR to the DR is only 23% when
there are 180 UEs in the considered example.

The superiority and robustness of proposed schemes can be
observed as well in Fig. 8 that compares the utility values of
various algorithms, where the utility function considers both
energy efciency and QoS outage. Again, the results suggest
that a connection strategy with a xed number of connec-
tions is unsuitable in the mmWave UDN environment. The
energy efciency of a single-connection scheme is usually the
highest, but it suffers higher blockage; in consequence, its
utility is low though it is not quite sensitive to the change of
UE density. Both the double-link and triple-link schemes are
sensitive to the change of UE density and drop quickly as the
number of UEs increases, but the latter exhibits worse utility
mainly due to higher unavailability of mmWave beams.

In the case of a small number of UEs, the performances of
DR and EDR algorithms are close, indicating that their
adaptive RL decision methods can achieve the same level of
exible association when resources are sufcient. As the
number of UEs is further increased, CDR becomes more
effective, which might be due to that the compound action
provides more information, of course, at the cost of slightly
increased complexity.

118756

FIGURE 8. Comparison of utility values under different numbers of UEs
(uniform distribution).

FIGURE 9. Impact of mBS density and UE density (QoSreqD1.2 Gbit/s,
uniform UE distribution).

The number of UEs and the number of BSs jointly affect
the performance, which can be seen in Fig. 9. As expected, the
EDR outperforms the DR, and adding more BSs is benecial,
but increasing the number of UEs degrades the performance.
Interestingly, with fewer BSs, the EDR becomes signicantly
better than the DR as the number of UEs increases (see the
utility value gas for 8 BSs and 160 UEs).

Finally, Fig. 10 shows the behaviors of the proposed
schemes in the two UE distributions, i.e., uniform and
nonuniform. Interestingly, for either DR or EDR schemes,
there is a performance switch phenomenon: the performance
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FIGURE 10. Performance comparison of uniform and nonuniform
distributions of UEs (QoSreqD1.2 Gbit/s).

of the nonuniform case is better than that of the uniform
case at a small number of UEs (low UE density), but as the
number of UEs is over a turning point (about 92 for the DR
and 110 for the EDR), the performance of the nonuniform
case becomes worse than the other one. This phenomenon can
be explained as follows. With nonuniform UE distribution,
there is a better chance that many UEs can connect to BSs at
short distances if there are sufcient resources (mmWave
beams); as the UE density increases, UE concentration in an
area causes more resource contention which has a negative
impact on the performance.

VI. CONCLUSION
We have systematically studied two mmWave multi-
association schemes, DR-MARL and EDR-MARL. An
important and essential feature, scalability, is enabled mainly
by two mechanisms: a) the observation vector is designed
such that the dimension is xed, and b) individual actions are
taken by UEs independently. To effectively deal with a
relatively large MARL system with a large action space, the
traditional DR technique is implemented via a proposed mea-
surement procedure. With the introduced compound action
and compound-action-based DR, an extended version of
DR is proposed to improve performance further. Simulation
results have validated the superiority of the two proposed
schemes over other schemes and demonstrate their robustness
over a large range of UE density.

Our future work in this line of research includes: 1) Assess-
ment of overall complexity, including computational com-
plexity, communication overhead and run time in the training
phase. 2) The use of a digital twin in the training phase to
accelerate the process, if the environment can be modeled.
3) The use of transfer learning is to accelerate the learning
process and mitigate the impact of UE mobility.
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