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Abstract
The paper proposes and develops new globally convergent algorithms of the generalized
damped Newton type for solving important classes of nonsmooth optimization problems.
These algorithms are based on the theory and calculations of second-order subdifferentials
of nonsmooth functions with employing the machinery of second-order variational anal-
ysis and generalized differentiation. First we develop a globally superlinearly convergent
damped Newton-type algorithm for the class of continuously differentiable functions with
Lipschitzian gradients, which are nonsmooth of second order. Thenwe design such a globally
convergent algorithm to solve a structured class of nonsmooth quadratic composite problems
with extended-real-valued cost functions,which typically arise inmachine learning and statis-
tics. Finally, we present the results of numerical experiments and compare the performance
of our main algorithm applied to an important class of Lasso problems with those achieved
by other first-order and second-order optimization algorithms.
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1 Introduction

This paper is mainly devoted to the design, justification, and applications of globally conver-
gent Newton-type algorithms to solve nonsmooth (of the first or second order) optimization
problems in finite-dimensional spaces. Considering the unconstrained optimization problem

minimize ϕ(x) subject to x ∈ R
n (1.1)

with a continuously differentiable (C1-smooth) cost function ϕ : Rn → R, recall that one
of the most natural and efficient approaches to solve (1.1) globally is by using line search
methods; see, e.g., [20, 33, 52] and the references therein. Given a starting point x0 ∈ R

n ,
such methods construct an iterative procedure of the form

xk+1 := xk + τkd
k for all k ∈ IN := {1, 2, . . .}, (1.2)

where τk ≥ 0 is a step size at iteration k, and where dk �= 0 is a search direction. The precise
choice of dk and τk at each iteration in (1.2) distinguishes one algorithm from another.
The main goal of line search methods is to construct a sequence of iterates {xk} such that the
corresponding sequence {ϕ(xk)} is decreasing. Recall also that the condition 〈∇ϕ(xk), dk〉 <

0 on dk ensures that it is a descent direction at xk , i.e., there exists τ̄k ∈ (0, 1] such that
ϕ(xk + τdk) < ϕ(xk) for all τ ∈ [0, τ̄k]. There are many choices of the direction dk

that satisfies this condition. For instance, a classical choice for the search direction is dk :=
−∇ϕ(xk)when the resulting algorithm is known as the gradient algorithm or steepest descent
method; see [2, 7, 20, 33, 51, 56] for more details and impressive further developments of
gradient and subgradient methods.

If ϕ is twice continuously differentiable (C2-smooth) and the Hessian matrix ∇2ϕ(xk) is
positive-definite for each k ∈ IN, then another choice of search directions in (1.2) is provided
by solving the linear equation

− ∇ϕ(xk) = ∇2ϕ(xk)dk, (1.3)

where dk is known as a Newton direction. In this case, algorithm (1.2) with the backtracking
line search is called the damped/guarded Newton method [2, 7] to distinguish it from the
pure Newton method, which uses a fixed step size τ = 1; see, e.g., the books [15, 20, 33, 35]
with the comprehensive commentaries and references therein. It has been well recognized
that the latter method exhibits a local convergence with quadratic rate.

There exist various extensions of the pure Newton method to solve unconstrained opti-
mization problems (1.1), where the cost functions ϕ are not C2-smooth but belong merely to
the class C1,1 of continuously differentiable functions with Lipschitz continuous gradients,
i.e., being nonsmooth of second order.We refer the reader to [5, 15, 20, 33–35, 48, 58, 65] and
the vast bibliographies therein for a variety of results in this direction, where mostly a local
superlinear convergence rate was achieved, while in some publications certain globalization
procedures were also suggested and investigated.
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The first goal of this paper is to develop a globally convergent damped Newton method of
type (1.2), (1.3) to solve problems (1.1) with cost functions ϕ of class C1,1. Our approach is
based on replacing the classical Hessian matrix ∇2ϕ in equation (1.3) by the inclusion

− ∇ϕ(xk) ∈ ∂2ϕ(xk)(dk), k = 0, 1, . . . , (1.4)

where ∂2ϕ stands for second-order subdifferential/generalized Hessian of ϕ in the sense
of Mordukhovich [42]. This construction has been largely used in variational analysis and
its applications with deriving comprehensive calculus rules and complete computations of
∂2ϕ for broad classes of composite functions that often appeared in important problems of
optimization, optimal control, stability, applied sciences, etc.; see, e.g., [11, 13, 14, 16, 17,
30, 43–47, 53, 55, 60, 66] with further references therein. The second-order subdifferentials
have been recently employed in [48] and [34] for the design and justifications of generalized
algorithms of the pure Newton type to find stable local minimizers of (1.1) as well as solu-
tions of gradient equations and subgradient inclusions associated with C1,1 and prox-regular
functions, respectively.

In this paper we obtain efficient conditions ensuring that the iterative sequence generated
by the damped Newton-type algorithm in (1.2), (1.3) is well-defined (i.e., the algorithm
solvability), and that the iterative sequence global converges to a tilt-stable local minimizer
of (1.1) in the sense of Poliquin and Rockafellar [55]. It is shown that the rate of convergence
of our algorithm is at least linear, while the superlinear convergence of the algorithm is
achieved under the additional semismooth∗ assumption on ∇ϕ in the sense of Gfrerer and
Outrata [26].

The next major goal of the paper is to design, for the first time in the literature, a globally
convergent damped Newton algorithm of solving nonsmooth problems of convex composite
optimization given in the form:

minimize ϕ(x) := f (x) + g(x) subject to x ∈ R
n, (1.5)

where f is a convex quadratic function defined by f (x) := 1
2 〈Ax, x〉 + 〈b, x〉 + α

with b ∈ R
n , α ∈ R, and A ∈ R

n×n being a positive-semidefinite matrix, and where
g : Rn → R := (−∞,∞] is a lower semicontinuous (l.s.c.) extended-real-valued convex
function. Problems in this format frequently arise in many applied areas such as machine
learning, compressed sensing, and image processing. Since g is generally extended-real-
valued, the unconstrained format (1.5) encompasses problems of constrained optimization.
If, in particular, g is the indicator function of a closed and convex set, then (1.5) becomes a
constrained quadratic optimization problems studied, e.g., in the book [52] with numerous
applications. Problems of this type are important in their own sake, while they also appear as
subproblems in various numerical algorithms including sequential quadratic programming
(SQP) methods, augmented Lagrangian methods, proximal Newton methods, etc. One of the
most well-known algorithms to solve (1.5) is the forward-backward splitting (FBS) or prox-
imal splitting method [12, 38]. Since this method is of first order, its rate of convergence is at
most linear. Another approach to solve (1.5) is to use second-order methods such as proximal
Newton methods, proximal quasi-Newton methods, etc.; see, e.g., [4, 36, 49]. Although the
latter approach has several benefits over first-order methods (as rapid convergence and high
accuracy), a severe limitation of these methods is the cost of solving subproblems.

In this paper we offer a different approach to solve problems (1.5) globally by developing
a generalized damped Newton algorithm based on the second-order subdifferential scheme
(1.4), advancedmachinery of second-order variational analysis with the usage of the proximal
mapping for g. As revealed below, the latter mapping can be constructively computed for
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many particular classes of problems arising in machine learning, statistics, etc. Proceeding
in this way, we justify the well-posedness and global linear convergence of the proposed
algorithm for (1.5) with presenting efficient conditions for its superlinear convergence.

The last topic of this paper concerns applications of the our generalized damped Newton
method (GDNM) to solving an important class of Lasso problems, which appear in many
areas of applied sciences and are discussed in detail in what follows. Problems of this class
can be written in form (1.5) with a quadratic loss function f and a nonsmooth regularizer
function g given in special norm-type forms. For such problems, all the parameters of GDNM
and its justification (first- and second-order subdifferentials, proximal mappings, conditions
for convergence and convergence rates) can be computed and expressed entirely in terms
of the problem data, which thus leads us the constructive globally superlinearly convergent
realization of GDNM. Finally, we conduct MATLAB numerical experiments of solving the
basic versionof theLassoproblemdescribedbyTibshirani [63] and then compare the obtained
numerical results with those achieved by using well-recognized first-order and second-order
methods. They include: Alternating Direction Methods of Multipliers (ADMM) [22, 23],
Nesterov’s Accelerated Proximal Gradient with Backtracking (APG) [50, 51], Fast Iterative
Shrinkage-ThresholdingAlgorithmwith constant step size (FISTA) [3], and a highly efficient
Semismooth Newton Augmented Lagrangian Method (SSNAL) from [37].

The rest of the paper is organized as follows. Section 2 presents and discusses some basic
notions of variational analysis and generalized differentiation, which are broadly used in
the formulations and proofs of the main results. Section 3 is devoted to the development and
justification of the globally convergent GDNM to solve unconstrained optimization problems
(1.1) with C1,1 cost functions. In Sect. 4 we present results on the linear and superlinear
convergence of GDNM for problems of C1,1 optimization. Section 5 addresses developing
GDNM for nonsmooth problems of convex composite optimization with cost functions given
as sums of convex quadratic and convex extended-real-valued ones. In Sect. 6 we specify
the obtained results for the basic class of Lasso problems under consideration and present
the results of numerical experiments and their comparison with other first-order and second-
order methods for solving Lasso problems. The concluding Sect. 7 summarizes the major
contributions of the paper and discusses topics of future research.

2 Preliminaries from variational analysis

In this section we review the needed background from variational analysis and generalized
differentiation by following the books [43, 44, 61], where the reader can find more details
and references. Our notation is standard in variational analysis and optimization and can be
found in the aforementioned books.

Given a set � ⊂ R
s with z̄ ∈ �, the (Fréchet) regular normal cone to � at z̄ ∈ � is

̂N�(z̄) :=
{

v ∈ R
s

∣

∣

∣ lim sup
z

�→z̄

〈v, z − z̄〉
‖z − z̄‖ ≤ 0

}

,

where the symbol z
�→ z̄ stands for z → z̄ with z ∈ �. The (Mordukhovich) limiting normal

cone to � at z̄ ∈ � is defined by

N�(z̄) := {

v ∈ R
s

∣

∣ ∃ zk �→ z̄, vk → v as k → ∞ with vk ∈ ̂N�(zk)
}

. (2.6)
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Given further a set-valued mapping F : Rn ⇒ R
m with the graph

gph F := {

(x, y) ∈ R
n × R

m
∣

∣ y ∈ F(x)
}

,

the (basic/limiting) coderivative of F at (x̄, ȳ) ∈ gph F is defined via the limiting normal
cone (2.6) to the graph of F at the reference point (x̄, ȳ) as

D∗F(x̄, ȳ)(v) := {

u ∈ R
n

∣

∣ (u,−v) ∈ Ngph F (x̄, ȳ)
}

, v ∈ R
m, (2.7)

where ȳ is omitted in the coderivative notation if F(x̄) = {ȳ}. Note that if F : Rn → R
m is

a (single-valued) C1-smooth mapping around x̄ , then we have

D∗F(x̄)(v) = {∇F(x̄)∗v
}

for all v ∈ R
m

in terms of the transpose matrix (adjoint operator) ∇F(x̄)∗ of the Jacobian ∇F(x̄). Recall
further that a set-valued mapping F : Rn ⇒ R

m ismetrically regular around (x̄, ȳ) ∈ gphF
with modulus μ > 0 if there exist neighborhoods U of x̄ and V of ȳ such that

dist
(

x; F−1(y)
) ≤ μ dist

(

y; F(x)
)

for all (x, y) ∈ U × V ,

where F−1(y) := {x ∈ R
n | y ∈ F(x)} is the inverse mapping of F . If in addition F−1 has

a single-valued localization around (ȳ, x̄), i.e., there exist some neighborhoods U of x̄ and
V of ȳ together with a single-valued mapping ϑ : V → U such that gphF−1 ∩ (V ×U ) =
gphϑ , then F is strongly metrically regular around (x̄, ȳ) with modulus μ > 0. A set-
valued mapping T : Rn ⇒ R

n is locally strongly monotone with modulus τ > 0 around
(x̄, ȳ) ∈ gphT if there exist neighborhoods U of x̄ and V of ȳ such that

〈x − u, v − w〉 ≥ τ‖x − u‖2 for all (x, v), (u, w) ∈ gphT ∩ (U × V ).

If in addition gphT ∩ (U ×V ) = gphS∩ (U ×V ) for any monotone operator S : Rn ⇒ R
n

satisfying the inclusion gphT ∩ (U × V ) ⊂ gphS, T is called locally strongly maximally
monotone with modulus τ > 0 around (x̄, ȳ).

Let ϕ : Rn → R be an extended-real-valued function with the domain and epigraph

dom ϕ := {

x ∈ R
n

∣

∣ ϕ(x) < ∞}

and epi ϕ := {

(x, α) ∈ R
n+1

∣

∣ α ≥ ϕ(x)
}

.

The (basic/limiting) subdifferential of ϕ at x̄ ∈ dom ϕ is defined geometrically

∂ϕ(x̄) := {

v ∈ R
n

∣

∣ (v,−1) ∈ Nepi ϕ
(

x̄, ϕ(x̄)
)}

(2.8)

via the limiting normal cone (2.6), while admitting various analytic representations. This
subdifferential is an extension of the classical gradient for smooth functions and of the clas-
sical subdifferential of convex ones. If F : Rn → R

m is locally Lipschitzian around x̄ , then
we have the useful relationships between the coderivative (2.7) of F and the subdifferential
(2.8) of the scalarized function 〈v, F〉(x) := 〈v, F(x)〉 formulated as

D∗F(x̄)(v) = ∂〈v, F〉(x̄) for all v ∈ R
m . (2.9)

Following [42], we now define the second-order subdifferential ∂2ϕ(x̄, v̄) : Rn ⇒ R
n of

ϕ : Rn → R at x̄ ∈ dom ϕ for v̄ ∈ ∂ϕ(x̄) as the coderivative (2.7) of the subgradient mapping
(2.8), i.e., by

∂2ϕ(x̄, v̄)(u) := (

D∗∂ϕ
)

(x̄, ȳ)(u) for all u ∈ R
n . (2.10)

Ifϕ isC2-smooth around x̄ , thenwehave the representation of the second-order subdifferential
via the classical (symmetric) Hessian matrix

∂2ϕ(x̄)(u) = {∇2ϕ(x̄)u
}

for all u ∈ R
n, (2.11)
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which allows us to also label (2.10) as the generalized Hessian. In the case of C1,1 functions
ϕ, the second-order subdifferential (2.10) is computed by the scalarization formula (2.9) via
the coderivative of the gradient mapping ∇ϕ. In Sect. 1, the reader can find the references
to many publications where the second-order subdifferential is computed entirely via the
given data for major classes of systems appeared in variational analysis and optimization. It
is important to mention that our basic constructions (2.6)–(2.8) and (2.10), enjoy compre-
hensive calculus rules in general settings, despite being intrinsically nonconvex. This is due
to variational/extremal principles of variational analysis; see the books [43, 44, 61] for the
first-order constructions and [43, 44] for the second-order subdifferential (2.10).

In what follows we are going to broadly employ the fundamental notion of tilt stability
of local minimizers for extended-real-valued functions, which was introduced by Poliquin
and Rockafellar [55] and characterized therein in terms of the second-order subdifferential
(2.10).

Definition 2.1 (tilt-stable local minimizers) Given ϕ : R
n → R, a point x̄ ∈ dom ϕ is a

tilt-stable local minimizer of ϕ if there exists a number γ > 0 such that the mapping

Mγ : v �→ argmin
{

ϕ(x) − 〈v, x〉 ∣

∣ x ∈ Bγ (x̄)
}

is single-valued and Lipschitz continuous on a neighborhood of 0 ∈ R
n with Mγ (0) = {x̄}.

By a modulus of tilt stability of ϕ at x̄ we understand a Lipschitz constant of Mγ around
the origin.

Besides the seminal paper [55], the notion of tilt stability has been largely investigated,
characterized, and widely applied in many publications to various classes of unconstrained
and constrained optimization problems; see, e.g., [10, 16, 17, 25, 44, 45, 47] and the references
therein.

3 Globally convergent GDNM in C1,1 optimization

In this section we concentrate on the unconstrained optimization problem (1.1), where the
cost function ϕ : Rn → R is of class C1,1 around the reference points. The corresponding
gradient equation associated with (1.1), which gives us, in particular, a necessary condition
for local minimizers, is written in the form

∇ϕ(x) = 0. (3.12)

The following generalization of the pure Newton algorithm to solve (1.1) locally was
first suggested and investigated in [48] under the major assumption that a given point x̄
is a tilt-stable local minimizer of (1.1). Then it was extended in [34] to solve directly the
gradient equation (3.12) under certain assumptions on a given solution x̄ to (3.12) ensuring
the well-posedness and local superlinear convergence of the algorithm.

Algorithm 3.1 (generalized pure Newton-type algorithm for C1,1 functions)

Step 0 Choose a starting point x0 ∈ R
n and set k = 0.

Step 1 If ∇ϕ(xk) = 0, stop the algorithm. Otherwise move to Step 2.
Step 2 Choose dk ∈ R

n satisfying

−∇ϕ(xk) ∈ ∂2ϕ(xk)(dk).
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Step 3 Set xk+1 given by

xk+1 := xk + dk for all k = 0, 1, . . . .

Step 4 Increase k by 1 and go to Step 1.

One of the serious disadvantages of the pure Newtonmethod and its generalizations is that
the corresponding sequence of iteratesmay not converges if the stating point is not sufficiently
close to the solution. This motivates us to design and justify the globally convergent damped
Newton counterpart of Algorithm 3.1 with backtracking line search to solve the gradient
equation (3.12) that is formalized as follows.

Algorithm 3.2 (generalized damped Newton algorithm for C1,1 functions) Let σ ∈ (

0, 1
2

)

and β ∈ (0, 1) be given real numbers. Then do the following:
Step 0 Choose an arbitrary staring point x0 ∈ R

n and set k = 0.
Step 1 If ∇ϕ(xk) = 0, stop the algorithm. Otherwise move to Step 2.
Step 2 Choose dk ∈ R

n such that

− ∇ϕ(xk) ∈ ∂2ϕ(xk)(dk). (3.13)

Step 3 Set τk = 1. Until Armijo’s inequality

ϕ(xk + τkd
k) ≤ ϕ(xk) + στk〈∇ϕ(xk), dk〉.

is satisfied, set τk := βτk .
Step 4 Set xk given by

xk+1 := xk + τkd
k for all k = 0, 1, . . . .

Step 5 Increase k by 1 and go to Step 1.

Due to (2.11), Algorithm 3.2 reduces to the standard damped Newton method (as, e.g., in
[2, 7]) if ϕ is C2-smooth. Note also that by (2.7) the direction dk in (3.13) can be explicitly
found from

( − ∇ϕ(xk),−dk
) ∈ N

(

(xk,∇ϕ(xk)); gph∇ϕ
)

.

To proceed with the study of Algorithm 3.2, first we clarify the existence of descent Newton
directions. It is done in the next proposition under the positive-definiteness of the second-order
subdifferential mapping ∂2ϕ(x).

Proposition 3.3 (existence of descent Newton directions) Let ϕ : Rn → R be of class C1,1
around x ∈ R

n. Suppose that ∇ϕ(x) �= 0 and that ∂2ϕ(x) is positive-definite, i.e.,

〈z, u〉 > 0 for all z ∈ ∂2ϕ(x)(u) and u �= 0. (3.14)

Then there exists a nonzero direction d ∈ R
n such that

− ∇ϕ(x) ∈ ∂2ϕ(x)(d). (3.15)

Moreover, every such direction satisfies the inequality 〈∇ϕ(x), d〉 < 0. Consequently, for
each σ ∈ (0, 1) and d ∈ R

n satisfying (3.15) we have δ > 0 such that

ϕ(x + τd) ≤ ϕ(x) + στ 〈∇ϕ(x), d〉 whenever τ ∈ (0, δ). (3.16)
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Proof It follows from [44, Theorem 5.16] that ∇ϕ is strongly locally maximal monotone
around (x,∇ϕ(x)). Thus ∇ϕ is strongly metrically regular around (x,∇ϕ(x)) by [44, The-
orem 5.13]. Using [34, Theorem 4.1] yields the existence of d ∈ R

n with −∇ϕ(x) ∈
∂2ϕ(x)(d). To verify that d �= 0, suppose on the contrary that d = 0. Since ∇ϕ is locally
Lipschitz around x , it follows from [43, Theorem 1.44] that

∂2ϕ(x)(d) = (

D∗∇ϕ
)

(x)(d) = (

D∗∇ϕ
)

(x)(0) = {0}.
Therefore, we have that ∇ϕ(x) = 0 due to the inclusion −∇ϕ(x) ∈ ∂2ϕ(x)(d), which
contradicts the assumption that ∇ϕ(x) �= 0. Employing the imposed positive-definiteness of
the mapping ∂2ϕ(x) tells us that 〈∇ϕ(x), d〉 < 0. Using finally [33, Lemmas 2.18 and 2.19],
we arrive at (3.16) and thus complete the proof of the proposition. ��

Now we formulate and discuss our major assumption to establish the desired global
behavior of Algorithm 3.2 for C1,1 functions ϕ. Fix an arbitrary point x0 ∈ R

n and consider
the level set

� := {

x ∈ R
n

∣

∣ ϕ(x) ≤ ϕ(x0)
}

. (3.17)

Assumption 1 The mapping ∂2ϕ(x) : Rn ⇒ R
n is positive-definite (3.14) for all x ∈ �.

Observe that Assumption 1 cannot be removed or even replaced by the positive-
semidefiniteness of ∂2ϕ(x) to ensure the existence of descent Newton direction for
Algorithm 3.2 as in Proposition 3.3. Indeed, consider the simplest linear function ϕ(x) := x
on R. Then we obviously have that ∇2ϕ(x) ≥ 0 for all x ∈ R, while there is no Newtonian
direction d ∈ R satisfying the backtracking line search condition (3.16).

The next theorem shows that Assumption 1 not only ensures the well-posedness of Algo-
rithm 3.2, but also allows us to conclude that all the limiting points of the iterative sequence
{xk} are tilt-stable minimizers of the cost function ϕ.

Theorem 3.4 (well-posedness and limiting points of the generalized damped Newton algo-
rithm) Let ϕ : Rn → R be of class C1,1, and let x0 ∈ R

n be an arbitrary point such that
Assumption 1 is satisfied. Then we have the following assertions:

(i) Any sequence {xk} generated by Algorithm 3.2 is well-defined with xk ∈ � for all
k ∈ IN.

(ii) All the limiting points of {xk} are tilt-stable local minimizers of ϕ.

Proof First we check that a sequence {xk} generated by Algorithm 3.2 with any starting point
x0 is well-defined. Indeed, there is nothing to prove if ∇ϕ(x0) = 0. Otherwise, it follows
from Proposition 3.3 due to the positive-definiteness of ∂2ϕ(x0) that there exist d0 and τ0
satisfying −∇ϕ(x0) ∈ ∂2ϕ(x0)(d0) and the inequalities

ϕ(x1) ≤ ϕ(x0) + στ0〈∇ϕ(x0), d0〉 < ϕ(x0),

which clearly ensure that x1 ∈ �. Thenweget by induction that either xk ∈ �, or∇ϕ(xk) = 0
whenever k ∈ IN. Thus assertion (i) is verified.

Next we prove assertion (ii). To proceed, suppose that {xk} has a limiting point x̄ ∈ R
n ,

i.e., there exists a subsequence {xk j } j∈IN of {xk} such that xk j → x̄ as j → ∞. Since �

is closed and since xk j ∈ � for all j ∈ IN, we get x̄ ∈ �. By Assumption 1, the mapping
∂2ϕ(x̄) is positive-definite. Then [9, Proposition 4.6] gives us positive numbers κ and δ such
that

〈z, w〉 ≥ κ‖w‖2 for all z ∈ ∂2ϕ(x)(w), x ∈ Bδ(x̄), and w ∈ R
n . (3.18)
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Since ϕ is of class C1,1 around x̄ , we get without loss of generality that ∇ϕ is Lipschitz
continuous on Bδ(x̄) with some constant 
 > 0. The rest of the proof is split into the
following two claims.

Claim 1: The sequence {τk j } j∈IN in Algorithm 3.2 is bounded from below by a positive
number γ > 0. Indeed, suppose on the contrary that the statement does not hold. Combining
this with τk ≥ 0 gives us a subsequence of {τk j } that converges to 0. Suppose without loss
of generality that τk j → 0 as j → ∞. Since −∇ϕ(xk j ) ∈ ∂2ϕ(xk j )(dk j ) for all j ∈ IN, we
deduce from (3.18) and the Cauchy-Schwarz inequality that

‖∇ϕ(xk j )‖ ≥ κ‖dk j ‖ whenever j ∈ IN,

which verifies the boundedness of {dk j }. Thus xk j +β−1τk j d
k j → x̄ as j → ∞, and hence

xk j + β−1τk j d
k j ∈ Bδ(x̄)

for all j ∈ IN sufficiently large. Since ϕ is of class C1,1 around x̄ , we suppose without loss of
generality that ∇ϕ is Lipschitz continuous on Bδ(x̄). It follows then from [33, Lemma A.11]
that

ϕ(xk j + β−1τk j d
k j ) ≤ ϕ(xk j ) + β−1τk j 〈∇ϕ(xk j ), dk j 〉 +


β−2τ 2k j

2
‖dk j ‖2 (3.19)

whenever indices j ∈ IN are sufficiently large. Due to the exit condition of the backtracking
line search in Step 3 of Algorithm 3.2, we have the strict inequality

ϕ(xk j + β−1τk j d
k j ) > ϕ(xk j ) + σβ−1τk j 〈∇ϕ(xk j ), dk j 〉 (3.20)

for large j ∈ IN. Now combining (3.18), (3.19), and (3.20) for such j yields the estimates

σβ−1τk j 〈∇ϕ(xk j ), dk j 〉 < β−1τk j 〈∇ϕ(xk j ), dk j 〉 +

β−2τ 2k j

2
‖dk j ‖2

≤ β−1τk j 〈∇ϕ(xk j ), dk j 〉 +

β−2τ 2k j

2κ
〈∇ϕ(xk j ),−dk j 〉,

which imply in turn that σβ > β − 

2κ τk j for all large j ∈ IN. Letting j → ∞ gives us

σβ ≥ β, a contradiction due to σ < 1 and β > 0. This justifies the claimed boundedness of
{τk j } j∈IN.

Claim 2:Any limiting point x̄ of {xk} is a tilt-stable local minimizer of ϕ. Indeed, it follows
from the continuity of the gradient∇ϕ and the convergence xk j → x̄ that∇ϕ(xk j ) → ∇ϕ(x̄)
as j → ∞. Since the sequence {ϕ(xk)} is nonincreasing, we get that ϕ(x̄) is a lower bound
for {ϕ(xk)}. Thus the sequence {ϕ(xk)} must converge to ϕ(x̄) as k → ∞. It follows from
[43, Theorem 1.44] due to −∇ϕ(xk j ) ∈ ∂2ϕ(xk j )(dk j ) and the Lipschitz continuity of ∇ϕ

on Bδ(x̄) with constant 
 that

‖∇ϕ(xk j )‖ ≤ 
‖dk j ‖ for sufficiently large j ∈ IN. (3.21)

Combining Claim 1 with the estimates in (3.18) and (3.21), we find j0 ∈ IN such that

ϕ(xk j )−ϕ(xk j+1) ≥ στk j 〈−∇ϕ(xk j ), dk j 〉 ≥ σγ κ‖dk j ‖2 ≥ σγ κ
−2‖∇ϕ(xk j )‖2, j ≥ j0.
(3.22)

Since {ϕ(xk)} is convergent, it follows that the sequence {ϕ(xk j )−ϕ(xk j+1)} j∈IN converges
to 0 as j → ∞. Furthermore, we deduce from (3.22) that {‖∇ϕ(xk j )‖} also converges to 0,
and therefore ∇ϕ(x̄) = 0. Combining the latter with the positive-definiteness of ∂2ϕ(x̄) tells
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us by [55, Theorem 1.3] that x̄ is a tilt-stable local minimizer of ϕ. This completes the proof.
��
Remark 3.5 (iterative sequencesmay diverge) Note that Theorem 3.4 does not claim anything
about the convergence of the iterative sequence {xk}. In fact, the divergence of such a sequence
canbeobserve in simple situations under the fulfillment of all the assumptions ofTheorem3.4.
To illustrate it, consider the function ϕ(x) := ex on R with the positive second derivative
ϕ′′(x) = ex > 0 for all x ∈ R. Running Algorithm 3.2 with the starting point x0 = 1, it is
not hard to check that τk = 1 and dk = −1 for all k ∈ IN. Thus the sequence of xk = 1 − k
as k ∈ IN generated by Algorithm 3.2 is obviously divergent.

We conclude this section by giving a simple additional condition to Assumption 1 that
ensures the global convergence of any sequence of iterates in Algorithm 3.2.

Assumption 2 The level set � from (3.17) is bounded.

To establish the global convergence of Algorithm 3.2, we first present the following useful
lemma of its own interest.

Lemma 3.6 (uniformly positive-definiteness of second-order subdifferentials) Let ϕ : Rn →
R be a function of class C1,1, and let x0 be arbitrary vector for which Assumptions 1 and 2
are satisfied. Then there exists κ > 0 such that for each x ∈ � we have

〈z, w〉 ≥ κ‖w‖2 whenever z ∈ ∂2ϕ(x)(w) and w ∈ R
n . (3.23)

Proof Since the mapping ∂2ϕ(x) is positive-definite for each x ∈ � by Assumption 1, we
deduce from [9, Proposition 4.6] that there exist κx > 0 and a neighborhood Ux of x such
that

〈z, w〉 ≥ κx‖w‖2 for all z ∈ ∂2ϕ(y)(w), y ∈ Ux , and w ∈ R
n . (3.24)

Note that the neighborhood system {Ux | x ∈ �} provides an open cover of �. Using the
compactness of the set � due its closedness and Assumption 2, we find finitely many points
x1, . . . , xp ∈ � such that � ⊂ ⋃p

j=1Ux j . Denoting

κ := min
{

κx1 , . . . , κxp
}

> 0,

we arrive at the fulfillment of the claimed condition (3.23) for each x ∈ �. ��
Now we are ready to justify the global convergence of Algorithm 3.2.

Theorem 3.7 (global convergence of the damped Newton algorithm for C1,1 functions) In the
setting of Theorem 3.4, suppose in addition that Assumption 2 is satisfied. Then the sequence
{xk} is convergent, and its limit is a tilt-stable local minimizer of ϕ.

Proof The well-definiteness of the sequence {xk} and the inclusion {xk} ⊂ � follow from
Theorem 3.4. Furthermore, employing Assumptions 1 and 2, the inclusion −∇ϕ(xk) ∈
∂2ϕ(xk)(dk) for all k ∈ IN, and Proposition 3.6 ensures the existence of κ > 0 such that

〈−∇ϕ(xk), dk〉 ≥ κ‖dk‖2 for all k ∈ IN. (3.25)

Assumption 2 tells us that the sequence {xk} is bounded, and so it has a limiting point x̄ ∈ �.
Hence the value ϕ(x̄) is a limiting point of the numerical sequence {ϕ(xk)}. Combining this

123



Journal of Global Optimization (2023) 86:93–122 103

with the nonincreasing property of {ϕ(xk)} yields the convergence of {ϕ(xk)} to ϕ(x̄) as
k → ∞. It follows from (3.25) that

ϕ(xk) − ϕ(xk+1) ≥ στk〈−∇ϕ(xk), dk〉 ≥ στkκ‖dk‖2 for all k ∈ IN. (3.26)

The above convergence of {ϕ(xk)} implies that the sequence {ϕ(xk)−ϕ(xk+1)}k∈IN converges
to 0 as k → ∞. It follows from (3.26) that

lim
k→∞ τk‖dk‖2 = 0. (3.27)

Now let us show that the sequence {xk} converges to x̄ as k → ∞ by using Ostrowski’s
condition from [20, Proposition 8.3.10]. To accomplish this, we verify that there is a neigh-
borhood of x̄ within which no other limiting point of {xk} exists, and the following condition
holds:

lim
k→∞ ‖xk+1 − xk‖ = 0. (3.28)

Indeed, tilt stability of the local minimizer x̄ of ϕ ensures the existence of δ > 0 for which
ϕ is strongly convex on Bδ(x̄) due to [9, Theorem 4.7]. Arguing by contraposition, suppose
that there is x̃ ∈ Bδ(x̄) such that x̃ �= x̄ and x̃ is a limiting point of {xk}. Theorem 3.4 tells
us that x̃ is also a tilt-stable local minimizer of ϕ, a contradiction with the strong convexity
of ϕ on Bδ(x̄). Moreover, the construction of {xk} and the condition τk ∈ (0, 1] imply the
estimate

‖xk+1 − xk‖2 = τ 2k ‖dk‖2 ≤ τk‖dk‖2 for all k ∈ IN.

Passing there to the limit as k → ∞ and using (3.27), we verify (3.28). Finally, it follows
from [20, Proposition 8.3.10] that {xk} converges to x̄ , which thus completes the proof. ��

4 Rates of convergence of GDNM for C1,1 optimization

This section is devoted to the study of convergence rates of the globally convergent Algo-
rithm 3.2 for minimizing C1,1 functions. First we recall the standard notions of convergence
rates used in what follows; see [20, Definition 7.2.1].

Definition 4.1 (rates of convergence) Let {xk} ⊂ R
n be a sequence of vectors converging to

x̄ as k → ∞ with x̄ �= xk for all k ∈ IN. The convergence rate is said to be (at least):

(i) R- linear if

0 < lim sup
k→∞

(

‖xk − x̄‖
)1/k

< 1,

i.e., there exist μ ∈ (0, 1), c > 0, and k0 ∈ IN such that

‖xk − x̄‖ ≤ cμk for all k ≥ k0.

(ii) Q- linear if

lim sup
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖ < 1,

i.e., there exist μ ∈ (0, 1) and k0 ∈ IN such that

‖xk+1 − x̄‖ ≤ μ‖xk − x̄‖ for all k ≥ k0.
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(iii) Q- superlinear if

lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖ = 0.

Our first result here establishes the linear convergence of Algorithm 3.2 under the general
assumptions formulated in the preceding section.

Theorem 4.2 (linear convergence of generalized damped Newton algorithm for C1,1 func-
tions) In the setting of Theorem 3.4, suppose in addition that the sequence {xk} converges to
some vector x̄ being such that xk �= x̄ for all k ∈ IN. Then we have the following assertions:

(i) The sequence {ϕ(xk)} converges to ϕ(x̄) at least Q-linearly.
(ii) The sequences {xk} and {‖∇ϕ(xk)‖} converge to x̄ and 0, respectively at least R-

linearly.

Proof Suppose that {xk} converges to x̄ . It follows from Theorem 3.4 that x̄ is a tilt-stable
local minimizer of ϕ. Using now the characterizations of tilt-stable local minimizers taken
from [9, Theorem 4.7], we deduce that there exist κ > 0 and δ > 0 such that ϕ is strongly
convex on Bδ(x̄) with modulus κ while satisfying

〈z, w〉 ≥ κ‖w‖2 for all z ∈ ∂2ϕ(x)(w), x ∈ Bδ(x̄), and w ∈ R
n . (4.29)

Furthermore, due to the locally Lipschitz continuity around x̄ of ∇ϕ, we suppose without
loss of generality that ∇ϕ is Lipschitz continuous on Bδ(x̄) with some constant 
 > 0. The
strong convexity of ϕ on Bδ(x̄) tells us that

ϕ(x) ≥ ϕ(u) + 〈∇ϕ(u), x − u〉 + κ

2
‖x − u‖2 and (4.30)

〈∇ϕ(x) − ∇ϕ(u), x − u〉 ≥ κ‖x − u‖2 for all x, u ∈ Bδ(x̄). (4.31)

Since xk → x̄ as k → ∞, we have that xk ∈ U for all k ∈ IN sufficiently large. Substituting
x := xk and u := x̄ into (4.30) and (4.31), and then using the Cauchy-Schwarz inequality
together with ∇ϕ(x̄) = 0 yield the estimates

ϕ(xk) ≥ ϕ(x̄) + κ

2
‖xk − x̄‖2 and (4.32)

‖∇ϕ(xk)‖ ≥ κ‖xk − x̄‖ (4.33)

for all large k ∈ IN. The local Lipschitz continuity of ∇ϕ around x̄ and the result of [33,
Lemma A.11] ensure the existence of 
 > 0 such that

ϕ(xk) − ϕ(x̄) = |ϕ(xk) − ϕ(x̄) − 〈∇ϕ(x̄), xk − x̄〉| ≤ 


2
‖xk − x̄‖2 for large k ∈ IN.

(4.34)

Furthermore, the Lipschitz continuity of∇ϕ onBδ(x̄) togetherwith the inclusion−∇ϕ(xk) ∈
∂2ϕ(xk)(dk) implies by [43, Theorem 1.44] that

‖∇ϕ(xk)‖ ≤ 
‖dk‖ for large k ∈ IN. (4.35)

Proceeding similarly to the proof of Theorem 3.4 tells us that the sequence {τk} is bounded
from below by some constant γ > 0. Combining the latter with (4.29) and (4.35) yields

ϕ(xk) − ϕ(xk+1) ≥ στk〈−∇ϕ(xk), dk〉 ≥ σγ κ‖dk‖2 ≥ σγ κ
−2‖∇ϕ(xk)‖2 (4.36)
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for all large k ∈ IN. Therefore, for such k we deduce from (4.33), (4.34), and (4.36) that

ϕ(xk+1) − ϕ(xk)

≤ −σγ κ
−2‖∇ϕ(xk)‖2 ≤ −σγ κ3
−2‖xk − x̄‖2 ≤ −2σγ κ3
−3(ϕ(xk) − ϕ(x̄)
)

.

This allows us to find k0 ∈ IN such that

ϕ(xk+1) − ϕ(x̄) ≤ μ
(

ϕ(xk) − ϕ(x̄)
)

whenever k ≥ k0,

which verifies (i) with μ := 1 − 2σγ κ3
−3 ∈ (0, 1). It readily follows from (4.32) that

√

2

κ

(

ϕ(xk) − ϕ(x̄)
) ≤

√

2μ

κ

(

ϕ(xk−1) − ϕ(x̄)
) ≤ . . . ≤

√

2μk−k0

κ

(

ϕ(xk0) − ϕ(x̄)
)

whenever k ≥ k0. Thus we get ‖xk − x̄‖ ≤ Mλk for such k, where

M :=
√

2

κ
μ−k0

(

ϕ(xk0) − ϕ(x̄)
)

and λ := √
μ.

Since λ ∈ (0, 1), it follows that lim
k→∞ λk = 0, which implies that the sequence {xk} converges

at least R-linearly to x̄ as k → ∞. Employing again the Lipschitz continuity of ∇ϕ around
x̄ with constant 
 > 0, we arrive at

‖∇ϕ(xk)‖ = ‖∇ϕ(xk) − ∇ϕ(x̄)‖ ≤ 
‖xk − x̄‖ ≤ 
Mλk for all k ≥ k0,

which verifies assertion (ii) and thus completes the proof of the theorem. ��
To proceed further with deriving verifiable conditions ensuring the Q-superlinear conver-

gence of Algorithm 3.2, we need to recall some important notions from variational analysis.
A crucial role in the theory and applications of nonsmooth Newton-type methods is played
by a remarkable subclass of single-valued locally Lipschitzian mappings defined as fol-
lows; see the books [20, 33, 35] with the commentaries and references therein. A mapping
f : Rn → R

m is semismooth at x̄ if it is locally Lipschitzian around this point and the limit

lim
A∈ co∇ f (x̄+tu′)

u′→u,t↓0
Au′ (4.37)

exists for all u ∈ R
n , where ‘co’ stands for the convex hull of a set, and where ∇ f is given

by

∇ f (x) := {

A ∈ R
m×n

∣

∣ ∃ xk
� f→ x such that ∇ f (xk) → A

}

, x ∈ R
n,

with � f := {x ∈ R
n | f is differentiable at x}. Quite recently [26], the concept of

semismoothness has been improved and extended to set-valued mappings. To formulate the
latter notion, recall first the construction of the directional limiting normal cone to a set
� ⊂ R

s at z̄ ∈ � in the direction d ∈ R
s introduced in [27] by

N�(z̄; d) := {

v ∈ R
s

∣

∣ ∃ tk ↓ 0, dk → d, vk → v with vk ∈ ̂N�(z̄ + tkdk)
}

. (4.38)

It is obvious that (4.38) agrees with the limiting normal cone (2.6) for d = 0. The directional
limiting coderivative of F : Rn ⇒ R

m at (x̄, ȳ) ∈ gph F in the direction (u, v) ∈ R
n × R

m

is defined in [24] via (4.38) by the scheme

D∗F
(

(x̄, ȳ); (u, v)
)

(v∗) := {

u∗ ∈ R
n

∣

∣ (u∗,−v∗) ∈ Ngph F
(

(x̄, ȳ); (u, v)
)}

, v∗ ∈ R
m .

(4.39)
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Using (4.39), we come to the aforementioned property of set-valued mappings introduced in
[26].

Definition 4.3 (semismooth∗ property of set-valued mappings) A mapping F : Rn ⇒ R
m is

semismooth∗ at (x̄, ȳ) ∈ gph F if whenever (u, v) ∈ R
n × R

m we have

〈u∗, u〉 = 〈v∗, v〉 for all (v∗, u∗) ∈ gph D∗F
(

(x̄, ȳ); (u, v)
)

.

Recall [26] that the semismoothness∗ holds if the graph of F : Rn ⇒ R
m is represented as a

union of finitely many closed and convex sets as well as for normal cone mappings generated
by convex polyhedral sets. Note also that the semismooth∗ property of single-valued locally
Lipschitzian mappings f : Rn → R

m around x̄ agrees with the semismooth property (4.37)
at this point provided that f directionally differentiable at x̄ .

Prior to deriving a major theorem on the Q-superlinear convergence of Algorithm 3.2, we
present an important property of C1,1 functions with semismooth∗ derivatives.

Proposition 4.4 (directional estimate for functions with semismooth∗ derivatives) Let ϕ :
R
n → R be continuously differentiable around x̄ ∈ R

n with ∇ϕ(x̄) = 0. Suppose that ∇ϕ

is locally Lipschitzian around this point with modulus 
 > 0, and that ∇ϕ is semismooth∗
at this point. Assume further that a sequence {xk} converges to x̄ with xk �= x̄ as k ∈ IN,
and that a sequence {dk} satisfies the condition ‖xk + dk − x̄‖ = o(‖xk − x̄‖). Consider the
following statements:

(i) ∇ϕ is directionally differentiable at x̄ , and there exists κ > 0 such that 〈∇ϕ(xk), dk〉 ≤
− 1

κ
‖dk‖2 for all sufficiently large k ∈ IN.

(ii) There exists κ > 0 such that

ϕ(xk + dk) − ϕ(xk) ≤ 〈∇ϕ(xk + dk), dk〉 − 1

2κ
‖dk‖2 (4.40)

for all sufficiently large k ∈ IN.

Then we have the estimate

ϕ(xk + dk) ≤ ϕ(xk) + σ 〈∇ϕ(xk), dk〉 for all large k ∈ IN (4.41)

provided that either (i) holds and σ ∈ (0, 1/2), or (ii) holds and σ ∈ (0, 1/(2
κ))

Proof Suppose that (i) holds. The directional differentiability and semismoothness∗ of ∇ϕ

at x̄ ensures by [26, Corollary 3.8] that ∇ϕ is semismooth at x̄ . By proceeding similarly to
the proof of [19, Theorem 3.3], we get (4.41). Suppose next that (ii) is satisfied and σ ∈
(0, 1/(2
κ)). Since we have ‖xk +dk − x̄‖ = o(‖xk − x̄‖), by employing [20, Lemma 7.5.7]
we have

lim
k→∞ ‖xk − x̄‖/‖dk‖ = 1, (4.42)

which ensures in turn that

‖xk + dk − x̄‖ = o(‖dk‖) as k → ∞. (4.43)

Then the statement in (ii) leads us to the inequalities

ϕ(xk + dk) − ϕ(xk) − σ 〈∇ϕ(xk), dk〉
≤ 〈∇ϕ(xk + dk), dk〉 − 1

2κ
‖dk‖2 − σ 〈∇ϕ(xk), dk〉

123



Journal of Global Optimization (2023) 86:93–122 107

≤ ‖∇ϕ(xk + dk)‖ · ‖dk‖ − 1

2κ
‖dk‖2 + σ‖∇ϕ(xk)‖ · ‖dk‖

≤ 
‖xk + dk − x̄‖ · ‖dk‖ − 1

2κ
‖dk‖2 + σ
‖xk − x̄‖ · ‖dk‖

≤ ‖dk‖2
(



‖xk + dk − x̄‖

‖dk‖ − 1

2κ
+ σ


‖xk − x̄‖
‖dk‖

)

for all large k ∈ IN. Finally, it follows from the inequality σ < 1/(2
κ), (4.42), and (4.43)
that

ϕ(xk + dk) − ϕ(xk) − σ 〈∇ϕ(xk), dk〉 ≤ 0 whenever k ∈ IN is sufficiently large,

which readily justifies (4.41) and completes the proof of the proposition. ��
Nowwe are ready to derive themain result of this section that establishes theQ-superlinear

convergence of Algorithm 3.2 under the imposed assumptions.

Theorem 4.5 (superlinear convergence of the generalized damped Newton algorithm for
C1,1 functions) In the setting of Theorem 3.4, suppose that {xk} converges x̄ as k → ∞ with
xk �= x̄ for all k ∈ IN, and that ∇ϕ is locally Lipschitzian around x̄ with some constant

 > 0 being also semismooth∗ at this point. Then the convergence rate of {xk} is at least
Q-superlinear if either one of the following two conditions holds:

(i) ∇ϕ is directionally differentiable at x̄ .
(ii) σ ∈ (0, 1/(2
κ)), where κ > 0 is a modulus of tilt stability of ϕ at x̄ .

Furthermore, in both cases (i) and (ii) the sequence {ϕ(xk)} converges Q-superlinearly to
ϕ(x̄), and the sequence {∇ϕ(xk)} converges Q-superlinearly to 0 as k → ∞.

Proof Suppose that the sequence {xk} converges as k → ∞ to a point x̄ ∈ R
n . We split the

proof of the theorem into the following three claims.
Claim 1: The sequence {dk} satisfies the condition ‖xk +dk − x̄‖ = o(‖xk − x̄‖). Indeed,

it follows from Theorem 3.4 that x̄ is tilt-stable local minimizer of ϕ with some modulus
κ > 0. By using the characterization of tilt-stable minimizers via the combined second-order
subdifferential taken from [45, Theorem 3.5] and [9, Proposition 4.6], we find a positive
number δ such that

〈z, w〉 ≥ 1

κ
‖w‖2 for all z ∈ ∂2ϕ(x)(w), x ∈ Bδ(x̄), and w ∈ R

n . (4.44)

Using the subadditivity property of coderivatives obtained in [34, Lemma 5.3], we have

∂2ϕ(xk)(dk) ⊂ ∂2ϕ(xk)(xk + dk − x̄) + ∂2ϕ(xk)(−xk + x̄).

Since −∇ϕ(xk) ∈ ∂2ϕ(xk)(dk), for all k ∈ IN there exists vk ∈ ∂2ϕ(xk)(−xk + x̄) such
that

−∇ϕ(xk) − vk ∈ ∂2ϕ(xk)(xk + dk − x̄).

Employing (4.44) and the Cauchy-Schwarz inequality, we have

‖xk + dk − x̄‖ ≤ κ‖∇ϕ(xk) + vk‖ for sufficiently large k ∈ IN. (4.45)

By the semismoothness∗ of ∇ϕ at x̄ together with ∇ϕ(x̄) = 0 and [34, Lemma 5.2], we have

‖∇ϕ(xk) + vk‖ = ‖∇ϕ(xk) − ∇ϕ(x̄) + vk‖ = o(‖xk − x̄‖). (4.46)
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Combining (4.45) and (4.46) tells us that ‖xk + dk − x̄‖ = o(‖xk − x̄‖) as k → ∞, which
thus completes the proof of this claim.

Claim 2:We have τk = 1 for all k ∈ IN sufficiently large provided that either condition (i)
or (ii) of this theorem holds. To proceed, we need to show that for all k ∈ IN sufficiently large,
we get the inequality (4.41). Assume first that (i) holds. Due to the inclusion −∇ϕ(xk) ∈
∂2ϕ(xk)(dk) for all k ∈ IN and the estimate (4.44), we have 〈∇ϕ(xk), dk〉 ≤ − 1

κ
‖dk‖2

whenever k ∈ IN is sufficiently large. Then by Proposition 4.4 we get (4.41), which readily
verifies the claimed assertion in case (i). Assuming now the conditions in (ii) and using Claim
1, we easily get that the sequence {dk} converges to 0 as k → ∞, and that xk + dk → x̄ as
k → ∞. Employing the uniform second-order growth condition for tilt-stable minimizers
from [45, Theorem 3.2] gives us a neighborhood U of x̄ such that

ϕ(x) ≥ ϕ(u) + 〈∇ϕ(u), x − u〉 + 1

2κ
‖x − u‖2 for all x, u ∈ U ,

which implies the inequality (4.40). Then by Proposition 4.4 we get (4.41), and hence com-
plete verifying the the claimed assertion in this case.

Claim 3: The conclusions of the theorem about the Q-superlinear convergence of the
sequences {xk}, {ϕ(xk)}, and {∇ϕ(xk)} hold provided that either condition (i) or (ii) of this
theorem holds. To justify this assertion, we get from Claim 2 that τk = 1 for all sufficiently
large k ∈ IN, and thus Algorithm 3.2 eventually becomes Algorithm 3.1. Hence the claimed
convergence results follow from [34, Theorems 5.1 and 5.2]. This verifies the assertions of
Claim 3 and completes the proof of the theorem. ��

5 GDNM for problems of quadratic composite optimization

In this section we study a special class of constrained optimization problem given in the
form

minimize ϕ(x) := f (x) + g(x), x ∈ R
n, (5.47)

where f : Rn → R is a convex and smooth function, while g : Rn → R is a convex and
extended-real-valued one. This class is known as problems of convex composite optimization.
Observe that, although (5.47) is written in the unconstrained format, it includes constrained
optimization problems with the effective constraints x ∈ dom g.

In what follows we pay the main attention to a subclass of (5.47) described by

minimize ϕ(x) := 1

2
〈Ax, x〉 + 〈b, x〉 + α + g(x), x ∈ R

n, (5.48)

where A ∈ R
n×n is a positive-semidefinite matrix, b ∈ R

n , and α ∈ R. That is, (5.48) is
a subclass of (5.47) with f being a quadratic function. This allows us to label (5.48) as
problems of quadratic composite optimization.

Note that problems of type (5.48) frequently appear, e.g., in practical models of machine
learning and statistics. In particular, various Lasso problems considered in Sect. 6 can be
written in form (5.48). Here are some other important classes of problems arising in practical
modeling, which are reduced to (5.48).

Example 5.1 (support vector machine problems) Given the training data (xi , yi ), i =
1, . . . ,m, where xi ∈ R

n are the observations and yi ∈ {−1, 1} are the labels, the sup-
port vector classification is a problem of finding a hyperplane y = 〈w, x〉 + b such that
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the data with different labels can be separated by the hyperplane. One of the most popular
support vector machine models [32] is the regularized penalty model

minimize ϕ(w, b) := 1

2
‖w‖2 + C

m
∑

i=1

ξ(w, xi , yi , b) with w ∈ R
n and b ∈ R,

(5.49)

where C > 0 is a penalty parameter, and where ξ : Rn × R
n × R × R → R is called a loss

function. Typical loss functions are given as follows:

(i) L1-loss, or 
1 hinge loss: ξ(w, xi , yi , b) = max{1 − yi (〈w, xi 〉 + b), 0}.
(ii) L2-loss, or squared hinge loss: ξ(w, xi , yi , b) = max{1 − yi (〈w, xi 〉 + b), 0}2.
(iii) Logistic loss: ξ(w, xi , yi , b) = log(1 + e−yi (〈w,xi 〉+b)).

Example 5.2 (convex clustering problems) Let A := [a1, . . . , an] ∈ R
d×n be a given matrix

with n observations and d features. The convex clusteringmodel [54] is described in the form
of quadratic composite optimization (5.48) by:

minimize
1

2

n
∑

i=1

‖xi − ai‖2 + γ
∑

i< j

‖xi − x j‖p, X ∈ R
d×n, (5.50)

where γ > 0 is a tuning parameter, and where ‖ · ‖p denotes the p-norm. Typically the norm
parameter p is chosen as 1, 2,∞.

Example 5.3 (constrained quadratic optimization) Consider problem (5.48), where g is the
indicator function of a nonempty, closed, and convex set �. Then (5.48) is known as a
constrained quadratic optimization problem. Some of the typical constraints are given by:

(i) Box constrained set: � = Box[l, u] := {

x ∈ R
n

∣

∣ l ≤ xi ≤ u, i = 1, . . . , n
}

.
(ii) Half-space: � = {

x ∈ R
n

∣

∣ 〈a, x〉 ≤ α
}

, where a ∈ R
n \ {0} and α ∈ R.

(iii) Affine set: � = {

x ∈ R
n

∣

∣ Ax = b
}

, where A is an m × n matrix and b ∈ R
m .

Remark 5.4 (subproblems for other methods) Quadratic composite optimization problems
of type (5.48) not only cover optimization models in machine learning, statistics, and other
applied areas, but also arise as subproblems for some efficient algorithms including sequential
quadratic programming methods (SQP) [5, 33], augmented Lagrangian methods [28, 31, 37,
57, 59, 60], proximal Newton methods [36, 49], etc.

To develop now a globally convergent damped Newton method for solving quadratic
composite optimizationproblemsof type (5.48),we employ thebasicmachineryof variational
analysis, which allows us to reduce (5.48) to unconstrained problems with C1,1 objectives.
Following [61], recall the corresponding notions used in our subsequent developments.

Definition 5.5 (Moreau envelopes and proximal mappings) Given an extended-real-valued,
proper, l.s.c. function ϕ : R

n → R and given a parameter value γ > 0, the Moreau
envelope eγ ϕ and the proximal mapping Proxγ ϕ are defined by

eγ ϕ(x) := inf

{

ϕ(y) + 1

2γ
‖y − x‖2

∣

∣

∣ y ∈ R
n
}

, (5.51)

Proxγ ϕ(x) := argmin

{

ϕ(y) + 1

2γ
‖y − x‖2

∣

∣

∣ y ∈ R
n
}

. (5.52)

If γ = 1, we use the notation eϕ(x) and Proxϕ(x) in (5.51) and (5.52), respectively.
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Both Moreau envelopes and proximal mappings have been well recognized in variational
analysis and optimization as efficient tools of regularization and approximation of nonsmooth
functions. Prior to establishing themain convergence results of this section,we present several
lemmas of their own interest. The first one, taken from [1, Proposition 12.30], lists those
properties of Moreau envelopes and proximal mappings for convex extended-real-valued
functions that are needed to derive the main results obtained below.

Lemma 5.6 (Moreau envelopes and proximal mappings for convex functions) Let ϕ : Rn →
R be a proper, l.s.c., convex function. Then the following assertions hold for all γ > 0:

(i) The Moreau envelope eγ ϕ is of class of continuously differentiable functions, and its
gradient is Lipschitz continuous with modulus 1/γ on Rn.

(ii) The proximal mapping Proxγ ϕ is single-valued, monotone, and nonexpansive, i.e., it
is Lipschitz continuous with modulus 1 on R

n.
(iii) The gradient of eγ ϕ is calculated by

∇eγ ϕ(x) = 1

γ

(

x − Proxγ ϕ(x)
)

= (

γ I + (∂ϕ)−1)−1
(x) for all x ∈ R

n . (5.53)

The results of Lemma 5.6 allow us to pass from nonsmooth convex optimization problems
of type (5.48)with extended-valued objectives (i.e., including constraints) to an unconstrained
C1,1 problem given in form (1.1). Note that such an approach has been used in [34, 48] to
design locally convergent pureNewton algorithms for optimization problems and subgradient
inclusions associated with prox-regular functions [61]. However, now we go further from the
numerical viewpoint. Exploiting the quadratic composite structure of problems (5.48) and
their specifications leads us to the design and justification of a new globally convergent
algorithm with constructive calculations of its parameters via the problem data.

To proceed, let γ > 0 be such that the matrix I − γ A is positive-definite. Denoting
Q := (I − γ A)−1, c := γ Qb, and P := Q − I , define the unconstrained optimization
problem by

minimize ψ(u) := 1

2
〈Pu, u〉 + 〈c, u〉 + γ eγ g(u) subject to u ∈ R

n . (5.54)

The following lemma reveals some important properties of the optimization problem
(5.54).

Lemma 5.7 (quadratic composite problems via proximal mappings) Letψ be given in (5.54).
Then ψ is a continuously differentiable function represented by

ψ(u) := 1

2
〈Pu, u〉 + 〈c, u〉 + γ g

(

Proxγ g(u)
) + 1

2
‖u − Proxγ g(u)‖2. (5.55)

Moreover, the mapping ∇ψ is Lipschitz continuous on Rn with modulus 
 := 1+ ‖Q‖, and
∇ψ(u) = Qu − Proxγ g(u) + c. (5.56)

If in addition A is positive-definite, then ψ is strongly convex with modulus λ min(P) > 0.

Proof Due to the convexity of g and Lemma 5.6, the Moreau envelope eγ g is continuously
differentiable and the proximal mapping Proxγ g is nonexpansive on R

n . Thus the function
ψ is continuously differentiable as well. The representations in (5.55) and (5.56) follow from
the definition of ψ and formula (5.53). Furthermore, for any u1, u2 ∈ R

n we have

‖∇ψ(u1) − ∇ψ(u2)‖ = ‖Qu1 − Qu2 − Proxγ g(u1) + Proxγ g(u2)‖
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≤ (1 + ‖Q‖)‖u1 − u2‖ = 
‖u1 − u2‖,
which justifies the global Lipschitz continuity of ψ on R

n with the uniform constant 


defined above. Suppose further that A is positive-definite. Combining this with the positive-
definiteness of I − γ A readily yields the positive-definiteness of P . Thus ψ in (5.54) is
strongly convex on Rn with modulus λ min(P) > 0. ��

Next we establishes the relationship between the optimization problems (5.48) and (5.54).

Lemma 5.8 (reduction of quadratic composite problems to C1,1 optimization) Consider the
optimization problems (5.48) and (5.54). The following are equivalent:

(i) The vector x̄ is an optimal solution to (5.48).
(ii) The vector x̄ = Qū + c, where ū is an optimal solution to (5.54).

Proof Using [1, Theorem 26.2] and the expression ∇ f (x) := Ax + b for all x ∈ R
n tells us

that the optimal solution to (5.48) is fully characterized by the equation

x − Proxγ g
(

x − γ (Ax + b)
) = 0. (5.57)

For each x ∈ R
n denote u := x − γ (Ax + b) = (I − γ A)x − γ b and observe by the

positive-definiteness of the matrix I − γ A that (5.57) is equivalent to
{

Qu − Proxγ g(u) + c = 0,

x = Qu + c,
(5.58)

where Q := (I − γ A)−1 and c := γ Qb. The positive-definiteness of I − γ A and the
positive-semidefiniteness of A imply that P = Q − I is positive-semidefinite. Furthermore,
the convexity of g and Lemma 5.7 ensure that eγ g is continuously differentiable on Rn , and
that ū is a solution to (5.54) if and only if we have

0 = ∇ψ(ū) = Pū + c + γ∇eγ g(ū) = Qū − Proxγ g(ū) + c.

This verifies the equivalence between (i) and (ii) as stated in the lemma. ��
The last lemma of this section provides the representation of the second-order subdifferen-

tial of the cost function ψ in the reduced problem (5.54) via the second-order subdifferential
of the given regularizer g in the original one (5.48).

Lemma 5.9 (second-order subdifferentials of reduced cost functions) Let ψ : Rn → R be
taken from (5.54). Then for each u ∈ R

n and w ∈ R
n we have the relationship

z ∈ ∂2ψ(u)(w) ⇐⇒ 1

γ
(z − Pw) ∈ ∂2g

(

Proxγ g(u),
1

γ

(

u − Proxγ g(u)
)

)

(

Qw − z
)

.

Proof Using the second-order subdifferential sum rule from [43, Proposition 1.121] gives us

∂2ψ(u)(w) = Pw + γ ∂2eγ g
(

u,
1

γ

(∇ψ(u) − Pu − c
)

)

(w).

This we have that z ∈ ∂2ψ(u)(w) if and only if

1

γ
(z − Pw) ∈ ∂2eγ g

(

u,
1

γ

(∇ψ(u) − Pu − c
)

)

(w).
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Due to [34, Lemma 6.2], the latter is equivalent to

1

γ
(z − Pw) ∈ ∂2g

(

u − ∇ψ(u) + Pu + c,
1

γ

(∇ψ(u) − Pu − c
)

)

(w − z + Pw). (5.59)

Furthermore, we have the equalities

u − ∇ψ(u) + Pu + c = u − γ∇eγ g(u) = Proxγ g(u), (5.60)

1

γ
(∇ψ(u) − Pu − c) = 1

γ

(

u − Proxγ g(u)
)

. (5.61)

Combining (5.59) with (5.60) and (5.61) completes the proof of the lemma. ��
Now we are in a position to design the aforementioned generalized damped Newton-type

algorithm to solve problems (5.48) of quadratic composite optimization.

Algorithm 5.10 (generalized damped Newton algorithm for problems of quadratic compos-
ite optimization)

Input: A ∈ R
n×n , b ∈ R

n , g, σ ∈ (

0, 1
2

)

, and β ∈ (0, 1). Do the following:
Step 0 Choose γ > 0 such that I − γ A is positive-definite, calculate Q := (I − γ A)−1,

c := γ Qb, P := Q − I , define the function ψ as in (5.55), choose a starting point u0 ∈ R
n ,

and set k := 0.
Step 1 If ∇ψ(uk) = 0, then stop. Otherwise, set vk := Proxγ g(uk).
Step 2 Find dk ∈ R

n such that

1

γ

( − ∇ψ(uk) − Pdk
) ∈ ∂2g

(

vk,
1

γ
(uk − vk)

)

(

Qdk + ∇ψ(uk)
)

. (5.62)

Step 3 Set τk = 1. Until Armijo’s inequality

ψ(uk + τkd
k) ≤ ψ(uk) + στk〈∇ψ(uk), dk〉

is satisfied, set τk := βτk .
Step 4 Compute uk+1 by

uk+1 := uk + τkd
k, k = 0, 1, . . . .

Step 5 Increase k by 1 and go to Step 1.
Output: xk := Quk + c.

Note that the definitions of the second-order subdifferential (2.10) and the limiting
coderivative (2.7) allow us to rewrite the implicit inclusion (5.62) for dk in the explicit
form

( 1

γ

( − ∇ψ(uk) − Pdk
)

,−Qdk − ∇ψ(xk)
)

∈ Ngph ∂g

(

vk,
1

γ
(uk − vk)

)

. (5.63)

Explicit expressions for the sequences {vk} and {dk} in Algorithm 5.10 depend on given
structures of the regularizers g, which are efficiently specified in applied models of machine
learning and statistics; see, e.g., the above discussions and those presented in Sect. 6.

Remark 5.11 (stopping criterion) Note that x̄ is a solution to (5.48) if and only if this point
satisfies the stationary equation (5.57). In order to approximate the solution x̄ , we choose the
termination/stopping criterion

∥

∥x − Proxγ g
(

x − γ (Ax + b)
)∥

∥ ≤ ε (5.64)
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with a given tolerance parameter ε > 0. The stopping criterion (5.64) is clearly equivalent
to the condition ‖∇ψ(u)‖ ≤ ε, where u := x − γ (Ax + b) = Q−1(x − c), and where ψ

is defined in (5.55). Therefore, in practice the stopping criterion of Step 2 of Algorithm 5.10
can be replaced by the simpler one ‖∇ψ(uk)‖ ≤ ε.

To proceed with establishing conditions for global convergence of Algorithm 5.10, we
need to employ yet another notion of generalized second-order differentiability taken from
[61, Chapter 13]. First recall that a mapping h : Rn → R

m is semidifferentiable at x̄ if there
exists a continuous and positively homogeneous operator H : Rn → R

m such that

h(x) = h(x̄) + H
(

x − x̄
) + o(‖x − x̄‖) for all x near x̄ .

Given ϕ : Rn → R with x̄ ∈ dom ϕ, consider the family of second-order finite differences

�2
τ ϕ(x̄, v)(u) := ϕ(x̄ + τu) − ϕ(x̄) − τ 〈v, u〉

1
2 τ

2

and define the second subderivative of ϕ at x̄ for v ∈ R
n and w ∈ R

n by

d2ϕ(x̄, v)(w) := lim inf
τ↓0
u→w

�2
τ ϕ(x̄, v)(u).

Then ϕ is said to be twice epi-differentiable at x̄ for v if for every w ∈ R
n and every choice

of τk ↓ 0 there exists a sequence wk → w such that

ϕ(x̄ + τkw
k) − ϕ(x̄) − τk〈v,wk〉

1
2τ

2
k

→ d2ϕ(x̄, v)(w) as k → ∞.

Twice epi-differentiability has been recognized as an important property in second-order
variational analysis with numerous applications to optimization; see the aforementioned
monograph by Rockafellar and Wets and the recent papers [39–41] developing a systematic
approach to verify epi-differentiability via parabolic regularity, which is a major second-
order property of sets and extended-real-valued functions.

The next theorem provides verifiable conditions on the matrix A and the function g to run
the GDNM Algorithm 5.10 for solving quadratic composite optimization problems (5.48).

Theorem 5.12 (convergence rate of GDNM for problems of quadratic composite optimiza-
tion) Considering the optimization problem (5.48), suppose that A is positive-definite. Then
the following assertions hold:

(i) Algorithm 5.10 is well-defined, and the sequence of its iterates {uk} globally R-linearly
converges to some ū as k → ∞.

(ii) The vector x̄ := Qū + c is a tilt-stable local minimizer of the cost function ϕ in (5.48),
and x̄ is the unique solution to (5.48).

Furthermore, the rate of convergence of {uk} is at least Q-superlinear if the mapping ∂g is
semismooth∗ at (x̄, v̄) with v̄ := −Ax̄ − b, and if one of two following conditions fulfills:

(a) σ ∈ (0, 1/(2
κ)), where 
 := 1 + ‖Q‖ and κ := 1/λ min(P).
(b) g is twice epi-differentiable at x̄ for v̄.

Proof Lemma 5.7 and Lemma 5.9 tell us that applying Algorithm 5.10 to solve the quadratic
composite optimization problem (5.48) is equivalent to applying Algorithm 3.2 to solving
the C1,1 optimization problem (5.54). We split the proof of the theorem into the following
claims:
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Claim 1: The function ψ from (5.54) satisfies Assumptions 1 and 2. Indeed, Lemma 5.7
ensures that ψ is strongly convex with modulus λ min(P) > 0, and thus Assumption 1 holds
due to [8, Theorem 5.1]. Moreover, the strong convexity of ψ clearly implies that for an
arbitrary vector u0 ∈ R

n the level set

� := {

u ∈ R
n

∣

∣ ψ(u) ≤ ψ(u0)
}

is bounded, and so Assumption 2 holds for the function ψ .
Claim 2: Both statements (i) and (ii) of the theorem are satisfied. To proceed, we employ

Claim 1 together with Theorems 3.7 and 4.2 to conclude that Algorithm 5.10 is well-defined,
and that the sequence of its iterates {uk} globally R-linearly converges to some ū as k → ∞.
Then Lemma 5.8 tells us that the vector x̄ = Qū + c is a solution to (5.48). The uniqueness
and tilt stability of x̄ follow immediately from the strong convexity of ϕ.

Claim 3: The convergence rate of the sequence {uk} is at least Q-superlinear provided
that ∂g is semismooth∗ at all the points on its graph and that either one of the two conditions
(a) and (b) is satisfied. Indeed, suppose that ∂g is semismooth∗ at (x̄, v̄). Then we deduce
from [21, Proposition 6] that Proxγ g is semismooth∗ at x̄ − γ (Ax̄ + b). Thus we obtain
that the mapping ∇ψ(u) = Qu − Proxγ g(u) + c is semismooth∗ at ū by employing [26,
Proposition 3.6].

Assume now that condition (a) is satisfied. Then Lemma 5.7 tells us that 
 is a Lipschitz
constant of ∇ψ around ū, and that ū is a tilt-stable local minimizer of ψ with modulus κ .
Thus the claimed assertion follows in case (a) directly from Theorem 4.5.

Assuming by (b) that g is twice epi-differentiable at x̄ for v̄, we deduce from [61, Theo-
rem 13.40] that the subgradient mapping ∂g is proto-differentiable of at (x̄, v̄). Using [21,
Corollary 8], we conclude that Proxγ g is directionally differentiable at x̄−γ (Ax̄+b), which
yields in turn the directional differentiability of ∇ψ at ū. Finally, Theorem 4.5 allows us to
conclude that the sequence {uk} Q-superlinearly converges to ū as k → ∞. ��

It is highly desired to obtain a counterpart of Theorem 5.12 on global convergence of
Algorithm 5.10 under merely positive-semidefiniteness of the matrix A. However, we cannot
do it at this stage of developments since the function ψ from (5.54) may not satisfy Assump-
tion 1. A natural idea to overcome such a challenge is to regularize the original problem
via approximating it by a sequence of well-behaved problems. Perhaps the simplest way to
realize this idea is to employ the classical Tikhonov regularization. To this end, consider in
the setting of Lemma 5.8 the following family of optimization problem depending on the
parameter ε > 0:

minimize ψε(u) := 1

2
〈Pεu, u〉 + 〈c, u〉 + γ eγ g(u) subject to u ∈ R

n, (5.65)

where Pε := P + ε I . The next proposition discusses the relationship between (5.65) and
(5.48).

Proposition 5.13 (Tikhonov regularization) Assume that (5.48) has a solution, and for each
ε > 0 consider the optimization problem (5.65). If ū(ε) is a solution to (5.65), then we have
the following assertions:

(i) The limit ū := lim
ε→0

ū(ε) exists being a solution to (5.54).

(ii) The vector x̄ := Qū + c is a solution to (5.48).

Proof Observe that the optimization problem (5.54) is equivalent to the variational inequality
problem VI(Rn, F) written as: find a vector u ∈ R

n such that

〈F(u), z − u〉 ≥ 0 for all z ∈ R
n,
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where F := ∇ψ . Since ū(ε) is a solution to (5.65), we get that the family of approximate
solutions {ū(ε) | ε > 0} is the Tikhonov trajectory of VI(Rn, F); see, e.g., [20, Equation
(12.2.2)]. It follows from the convexity of ψ that ∇ψ : Rn → R

n is a monotone operator.
Since the optimization problem (5.48) has a solution, the set of solutions for VI(Rn, F) is
nonempty by Lemma 5.8. Using [20, Theorem 12.2.3], we have that the limit ū = lim

ε→0
u(ε)

exists and solves (5.54). Finally, assertion (ii) follows immediately from Lemma 5.8. ��
Remark 5.14 (generalized Newton algorithm based on Tikhonov regularization) Proposi-
tion 5.13 provides a precise relationship between solutions to (5.48) and solutions to (5.65).
This plays a crucial role in solving (5.48) without assuming the positive-definiteness of A.
Moreover, Proposition 5.13 motivates us to develop a generalized Newton-type algorithm
based on the Tikhonov regularization to solve the class of optimization problems (5.48),
where A is merely positive-semidefinite. We will pursue this issue in our future research.

6 Solving lasso problems and numerical experiments

This section is devoted to specifying our generalized damped Newton method (GDNM)
developed in Sect. 5 for the basic class of Lasso problems, where Lasso stands for the Least
Absolute Shrinkage and Selection Operator. Using on the obtained specification of GDNM
to solve Lasso problems, we conduct numerical experiments by using our algorithm and the
compare the computations with the performances of somemajor first-order and second-order
algorithms applied to solving this class of problems of composite quadratic optimization.

The basic Lasso problem, known also as the 
1-regularized least square optimization
problem, was introduced byTibshirani [63] and then has been largely investigated and applied
to various issues in statistics, machine learning, image processing, etc. This problem is
formulated as:

minimize ϕ(x) := 1

2
‖Ax − b‖22 + μ‖x‖1 subject to x ∈ R

n, (6.66)

where A is an m × n matrix, μ > 0, b ∈ R
m , and where

‖x‖1 :=
n

∑

i=1

|xi |, ‖x‖2 :=
(

n
∑

i=1

|xi |2
)1/2

for all x = (x1, . . . , xn).

There are other classes of Lasso problems modeled in the quadratic composite form

minimize ϕ(x) := 1

2
‖Ax − b‖22 + g(x), x ∈ R

n, (6.67)

where A is anm×nmatrix, b ∈ R
m and g : Rn → R is a given regularizer.More specifically,

let us list several well-recognized versions of (6.67) in addition to (6.66):

(i) The elastic net regularized problem, or the Lasso elastic net problem [29] with

g(x) := μ1‖x‖1 + μ2‖x‖22,
where μ1 and μ2 are given positive parameters.

(ii) The clustered Lasso problem [62] with

g(x) := μ1‖x‖1 + μ2

∑

1≤i≤ j≤n

|xi − x j |,

where μ1 and μ2 are given positive parameters.
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(iii) The fused regularized problem, or the fused Lasso problem [64] with

g(x) := μ1‖x‖1 + μ2‖Bx‖1,
where μ1 and μ2 are given positive numbers, and where B is the (n − 1) × n matrix

Bx := [x1 − x2, x2 − x3, . . . , xn−1 − xn] for all x ∈ R
n .

Although the developed Algorithm 5.10 allows us to efficiently solve all these Lasso
problems, we concentrate here on numerical results for the basic one (6.66). It is easy to see
that the Lasso problem (6.66) belongs to the quadratic composite class (5.48). Indeed, we
represent (6.66) as minimizing the nonsmooth convex function ϕ(x) := f (x)+ g(x), where

f (x) := 1

2
〈 Āx, x〉 + 〈b̄, x〉 + ᾱ and g(x) := μ‖x‖1 (6.68)

with Ā := A∗A, b̄ := −A∗b, and ᾱ := 1
2‖b‖2, and where the matrix Ā = A∗A is

positive-semidefinite. Observe further that the Lasso problem (6.66) always admits an opti-
mal solution; see [63]. In order to apply Algorithm 5.10 to solving problem (6.66), we begin
with providing explicit calculations of the first-order and second-order subdifferentials of the
regularizer g(x) = μ‖x‖1 together with the proximal mapping associated with this function.

Using definition (5.52), it is not hard to compute the proximal mapping of g(x) = μ‖x‖1
by

(

Proxγ g(x)
)

i =

⎧

⎪

⎨

⎪

⎩

xi − μγ if xi > μγ,

0 if − μγ ≤ xi ≤ μγ,

xi + μγ if xi < −μγ.

(6.69)

Now we compute the first-order and second-order subdifferentials of this function.

Proposition 6.1 (subdifferential calculations) For the regularizer g(·) = μ‖ · ‖1 in (6.66) we
have the subgradient mapping

∂g(x) =
{

v ∈ R
n

∣

∣

∣

∣

v j = sgn(x j ), x j �= 0,
v j ∈ [−μ,μ], x j = 0

}

whenever x ∈ R
n . (6.70)

Further, for each (x, y) ∈ gph ∂g and v = (v1, . . . , vn) ∈ R
n, the second-order subdiffer-

ential of g is computed by the formula

∂2g(x, y)(v) =
{

w ∈ R
n

∣

∣

∣

( 1

μ
wi ,−vi

)

∈ G
(

xi ,
1

μ
yi

)

, i = 1, . . . , n
}

, (6.71)

where the mapping G : R2 ⇒ R
2 is defined by

G(t, p) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{0} × R if t �= 0, p ∈ {−1, 1},
R × {0} if t = 0, p ∈ (−1, 1),

(R+ × R−) ∪ ({0} × R) ∪ (R × {0}) if t = 0, p = −1,

(R− × R+) ∪ ({0} × R) ∪ (R × {0}) if t = 0, p = 1,

∅ otherwise.

(6.72)

Proof These computations follow from [34, Proposition 8.1]. ��
The next theorem provides an efficient condition on (6.66) expressed entirely in terms

of its given data to ensure a global superlinear convergence of Algorithm 5.10 for solving
(6.66).
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Theorem 6.2 (solving Lasso) Considering the Lasso problem (6.66), suppose that the matrix
A∗A is positive-definite. Then we have:

(i) Algorithm 5.10 is well-defined, and the sequence of its iterates {yk} globally converges
at least Q-superlinearly to ȳ as k → ∞.

(ii) The vector x̄ := Qȳ+c is a unique solution to (6.66) being a tilt-stable local minimizer
of the cost function ϕ.

Proof It follows from (6.70) that the graph of ∂g is the union of finitely many closed convex
sets, and hence ∂g is semismooth∗ on its graph. Furthermore, g is proper, convex, and
piecewise linear-quadratic on R

n . Then [61, Proposition 13.9] ensures that g is twice epi-
differentiable onRn . Applying Theorem5.12, we arrive at all the conclusions of Theorem6.2.

��
To run Algorithm 5.10, we need to explicitly determine the sequences {vk} and {dk} gen-

erated by this algorithm. Using (6.69), (6.70), and (6.71) gives us the following expressions
for all the components i = 1, . . . , n of these vectors:

(

vk
)

i
=

⎧

⎪

⎨

⎪

⎩

yi − μγ if yi > μγ,

0 if − μγ ≤ yi ≤ μγ,

yi + μγ if yi < −μγ,
{

(

Pdk + ∇ψ(yk)
)

i = 0 if
(

vk
)

i �= 0,
(

Qdk + ∇ψ(yk)
)

i = 0 if
(

vk
)

i = 0.

Remark 6.3 (Newton descent directions for Lasso) Let us emphasize that the algorithm direc-
tions dk can be computed through solving a systemof linear equations for each k ∈ IN. Indeed,
for the sequence {dk} generated by Algorithm 5.10, denote by Pi and Qi are the i-th rows
of the matrices P and Q, respectively. Define

(Xk)i :=
{

Pi if vi �= 0,

Qi if vi = 0.

Then dk is a solution to the system of linear equations Xkd = −∇ψ(yk).

Nowwe are in a position to conduct numerical experiments for solving the Lasso problem
(6.66) by using our generalized damped Newton method (GDNM) via Algorithm 5.10. The
obtained calculations are comparedwith those obtained by implementing the following highly
recognized first-order and second-order algorithms:

(i) The Alternating Direction Methods of Multipliers1 (ADMM); see [6, 22, 23].
(ii) The Accelerated Proximal Gradient Method2 (APG); see [50, 51].
(iii) The Fast Iterative Shrinkage-Thresholing Algorithm3 (FISTA); see [3].
(iv) The Semismooth Newton Augmented LagrangianMethod4 (SSNAL) developed in [37].

Following the suggestion of one of the referees, we elaborate more on the difference
between the tested APG and FISTA algorithms. While these two algorithms theoretically

1 https://web.stanford.edu/~boyd/papers/admm/lasso/lasso.html.
2 https://github.com/bodono/apg.
3 https://github.com/he9180/FISTA-lasso.
4 https://www.polyu.edu.hk/ama/profile/dfsun/.
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achieve the same global rate of convergence, they are remarkably different both conceptually
and computationally. In [3], the authors present themain differences betweenAPGandFISTA
as follows:

• In the building blocks of the algorithms, APG uses an accumulated history of the
past iterates to construct recursively a sequence of estimate functions ψk that approximates
ϕ(·), while FISTA uses just the usual projection-like step, evaluated at an auxiliary point
that specially constructed in terms of the two previous iterates and an explicit dynamically
updated stepsize.

• APG requires two projection-like operations per iteration in contrast to just one
projection-like operation needed in FISTA.

All the numerical experiments are conducted on a desktop with 10th Gen Intel(R)
Core(TM) i5-10400 processor (6-Core, 12M Cache, 2.9GHz to 4.3GHz) and 16GBmemory.
All the codes are written in MATLAB 2016a. Our numerical experiments are conducted with
the test instances (A, b) in (6.66) generated randomly following the Matlab commands

A = randn(m, n); b = randn(n, 1).

In order to run Algorithm 5.10 for solving Lasso problems, the matrix A∗A needs to be
positive-definite due to Theorem 6.2. Since rank(A∗A) = rankA, thematrix A∗A is singular
if m < n. Therefore, a necessary condition for the positive-definite of A∗A is that m ≥ n,
and thus we only test datasets in which the matrix A has more rows than columns, or its rows
and columns are equal. Note that the modes withm ≥ n appear in practical applications; see,
e.g., [18] with applications to diabetes studies and [3] with applications to image processing.
The GDNM code is publicly available on the website5.

The initial points in all the experiments are set to be the zero vector. The following relative
KKT residual ηk suggested in [37] is used to measure the accuracy of an approximate optimal
solution xk for (6.66):

ηk := ‖xk − Proxμ‖·‖1(xk − A∗(Axk − b))‖
1 + ‖xk‖ + ‖Axk − b‖ . (6.73)

Note that we update the KKT residuals (6.73) obtained by the tested algorithms in the tables.
The algorithms are stopped in our experiments when either the condition ηk < 10−6 is
satisfied, or they reach the maximum computation time of 6000 seconds. For testing purpose,
the regularization parameter μ in the Lasso problem (6.66) is chosen as 10−3 or as in [37],
i.e.

μ = 10−3‖A∗b‖∞, where ‖x‖∞ := max
{|x1|, . . . , |xn |

}

, x = (x1, . . . , xn). (6.74)

The achieved numerical results are presented in Table 1 and Table 2. In these tables, “CPU
time" stands for the time needed to achieve the prescribed accuracy of approximate solutions
(the smaller the better). As we can see from the results presented in Tables 1 and 2, GDNM
is more efficient in the cases where m >> n and n is not large, which confirms the need of
positive definiteness of the matrix A∗A for the superlinear convergence. On the other hand,
ADMM performs well in all tests while SSNAL is more efficient for large-scale datasets.

5 https://github.com/he9180/GDNM/.
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Table 1 μ = 10−3

Test # Problem size Number of iterations CPU time

m n SSNAL GDNM ADMM APG FISTA SSNAL GDNM ADMM APG FISTA

1 1024 256 4 4 9 42 133 0.13 0.09 0.02 0.04 0.25

2 1024 1024 30 22 12192 172326 190461 10.68 1.23 35.71 485.51 2046.34

3 4096 256 4 4 9 24 44 0.14 0.11 0.03 0.05 0.34

4 4096 4096 1306 281 12571 114879 38912 4163.54 6000.00 775.59 6000.00 6000.00

Table 2 μ = 10−3
∥

∥A∗b
∥

∥∞
Test # Problem size Number of iterations CPU time

m n SSNAL GDNM ADMM APG FISTA SSNAL GDNM ADMM APG FISTA

5 1024 256 4 5 123 45 133 0.62 0.11 0.03 0.03 0.24

6 1024 1024 17 172 174 2638 26431 2.38 10.72 0.56 7.41 273.84

7 4096 256 4 4 248 26 44 0.22 0.12 0.15 0.05 0.32

8 4096 4096 18 355 343 1797 32412 149.57 668.32 23.68 95.60 5121.51

Table 3 The residual obtained by
tested algorithms

Test # SSNAL GDNM ADMM APG FISTA

1 6.50e-9 6.65e-14 8.83e-7 7.81e-7 9.23e-7

2 4.95e-7 8.70e-12 1.00e-6 1.00e-6 9.98e-7

3 6.96e-11 4.51e-14 2.45e-7 6.75e-7 6.63e-7

4 9.94e-7 1.08e-6 9.97e-7 3.36e-4 8.65e-5

5 3.07e-9 9.09e-7 5.40e-7 8.92e-7 7.42e-7

6 4.73e-7 4.79e-12 9.68e-7 9.94e-7 9.97e-7

7 7.09e-9 7.20e-7 6.97e-7 5.30e-7 6.06e-7

8 8.50e-7 2.23e-11 9.94e-7 9.98e-7 9.96e-7

7 Concluding remarks and further research

This paper proposes and develops new globally convergent algorithms of the dampedNewton
type to solve some classes of nonsmooth optimization problems addressing minimization of
C1,1 objectives and problems of quadratic composite optimization with extended-real-valued
regularizers,which include nonsmooth problems of constrained optimization.Weverifywell-
posedness of the proposed algorithms and their linear and superlinear convergence under
rather nonrestrictive assumptions. Our approach is based on advanced machinery of second-
order variational analysis and generalized differentiation. The obtained results are applied to
some classes of optimization problems that arise in machine learning, statistics, and related
areas with the efficient implementation to solving the well-recognized Lasso problems. The
numerical experiments conducted to solve an important class of nonsmooth Lasso problems
by using the suggested algorithm are compared in detail with the corresponding calculations
by using some other first-order and second-order algorithms.

Our future research includes efficient calculations of second-order subdifferentials and
proximal mappings used in this paper for broader classes of convex and nonconvex problems
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with further applications to practically important models of machine learning, statistics, etc.
We also intend to establish a global superlinear convergence of our damped generalized
Newton algorithms for problems of quadratic composite optimization with extended-real-
valued regularizers without the positive-definiteness requirement on the quadratic term.

Acknowledgements The authors are grateful to two anonymous referees for their helpful remarks and com-
ments that allowed us to significantly improve the original manuscript. Our thanks also go to Alexey Izmailov
for his useful remarks on the algorithm developed in Sect. 3 and toMichal Kočvara and Defeng Sun for helpful
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