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A COUNTEREXAMPLE TO THE HK-CONJECTURE THAT IS
PRINCIPAL

ROBIN J. DEELEY

ABSTRACT. Scarparo has constructed counterexamples to Matui’s HK-conjecture.
These counterexample and other known counterexamples are essentially prin-
cipal but not principal. In the present paper, a counterexample to the HK-
conjecture that is principal is given. Like Scarparo’s original counterexample,
our counterexample is the transformation groupoid associated to a particular
odometer. However, the relevant group is the fundamental group of a flat man-
ifold (and hence is torsion-free) and the associated odometer action is free. The
examples discussed here do satisfy the rational version of the HK-conjecture.

INTRODUCTION

Matui’s HK-conjecture [14] predicts a strong relationship between the homology
and K-theory of an important class of groupoids (the precise statement is given
below). There are counterexamples to this conjecture in the essentially principal
case. The first counterexample is due to Scarparo [22] and a stronger counterex-
ample (due to Ortega and Scarparo) can be found in [16]. On the other hand,
there have been a number of positive results, starting with Matui’s original work
[14], also see [1, 9, 15, 17, 25]. In particular, there has been quite a bit of success
verifying the conjecture for particular classes of principal (rather than essentially
principal) groupoids, see in particular [1, Corollary C] and [17, Remark 3.5].

Nevertheless, the goal of this paper is the construction of a counterexample to
Matui’s HK-conjecture that is principal (rather than just essentially principal). Tt
is worth noting that our examples do satisfy the rational version of the conjecture.

I will now state the HK-conjecture and outline the construction of the counterex-
ample. The reader unfamiliar with the various terms used below can see Section 1
for precise definitions. The statement of the HK-conjecture is as follows:

Conjecture 0.1. Suppose that G is a second countable, étale, (essentially) princi-
pal, minimal, ample groupoid. Then

K.(Cr(G)) = @ H,2(G)

where K. (C(G)) is the K -theory of the reduced groupoid C*-algebra of G and H,(G)
is the homology of G.

Like Scarparo’s counterexample [22], the counterexample in the present paper is
obtained from an odometer, see [22, Section 2] and the references therein for more
on odometer actions. Unlike in [22] the relevant group is torsion-free. The starting
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point is a flat manifold, Y, with an expanding endomorphism g : ¥ — Y in the
sense of Shub [23]. By [23, Proposition 3], g is an n-fold covering map (for some
n > 2) and one obtains a chain of finite index subgroups

m(Y) D gu(m(Y)) D gi(m(Y)) > -+

where 71 (Y) is the fundamental group of Y and g, is the map induced by g.
Associated to this chain of finite index subgroups is an odometer action. This is an
action of m1(Y) on a Cantor set, 2. Furthermore, the action is minimal in general
and is free in our case (see Proposition 2.1). In particular, the transformation
groupoid associated to this action (denoted by Q x 71 (Y")) satisfies the hypotheses
of the HK-conjecture and because the action is free is in addition principal.

Next, using results of Scarparo [22, Section 2.2] and the Baum—Connes conjec-
ture, the K-theory of the reduced C*-algebra of  x m1(Y") is shown to be the
inductive limit group associated to an inductive system of the form:

K.Y)>KJ(Y)=> K.J(Y)— ...

where K, (Y) is the K-homology of Y. Likewise, using [22, Section 2.3], the homol-
ogy of 2 x 1 (Y) is shown to be the inductive limit group associated to an inductive
system of the form:

H.Y)—> H.(Y)—> H.(Y)— ...
where H,(Y") is the homology of Y. Key to both these inductive limit results is the
fact that Y is a model for By (Y).

Based on the structure of these inductive limits, the problem is reduced to con-
structing a flat manifold where the K-homology and homology are not isomorphic
(see Theorem 0.2 below), while at the same time controlling the maps in the induc-
tive limits.

In regard to the first of these requirements, the following is proved in Section 4:

Theorem 0.2. For any d > 9, there exists a d-dimensional flat manifold Y with
the property that

[T(E.(Y))] <| @ T(H.t2i(Y))]

where, for a finitely generated abelian group G, T(G) denotes its torsion subgroup
and |T(QG)| denotes the number of elements in T(G) (which is finite in our situa-
tion).

The construction of Y satisfying Theorem 0.2 relies on the theory of real Bott
manifolds, see [10, 12] and references therein, and the Atiyah—Hirzebruch spectral
sequence. Although not a direct application of [9, Remark 6.12], our construction
has a similar flavour. Then, using a result of Epstein and Shub [8] and the inductive

limits discussed above, it is shown that for any flat manifold, there is an expanding
endomorphism such that

T(H.(Q2xm(Y))) 2 T(H.(Y)).
Combining this last equation with the fact that
IT(KL(Cr(Q 3 m (V)] < [T(K(Y))|

and Theorem 0.2 completes the construction of the counterexample. Finally, it is
shown that every transformation groupoid associated to an odometer constructed
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from a flat manifold and expanding endomorphism (via the process discussed above)
satisfies the rational version of the HK-conjecture, see Theorem 3.5 for the precise
statement.

As reader might have noticed the construction involves quite a few “moving
parts”. I would encourage the reader to familiarize themselves with [22, Sections
2.1-2.3] and [23, Section 1]. I have followed [10, Sections 2 and 3] when considering
real Bott manifolds in Section 4. In addition, some basic knowledge of flat mani-
folds and the Atiyah—Hirzebruch spectral sequence is also assumed, although I have
explicitly listed the facts used.

In the next few paragraphs, future work is discussed. It is worth noting that
the dimension of the flat manifold constructed in Section 4 is nine (or more) and
that if a flat manifold satisfies the conclusion of Theorem 0.2, then its dimension
must be greater than or equal to four. A systematic study of flat manifolds as in
Theorem 0.2 would be an interesting future project, especially in light of the positive
results for low dimensional examples (see in particular, [1, Corollary C] and [17,
Section 3]). In particular, one can show that the dynamic asymptotic dimension
of an odometer associated to a flat manifold and expanding endomorphism is the
dimension of the manifold. As such, for any d > 9, we have a counterexample
with dynamic asymptotic dimension equal to d. It would be interesting to obtain
examples with smaller dynamic asymptotic dimension.

Based on the positive result of [1, Corollary C], one might ask if the following
conjecture holds:

Conjecture 0.3. Suppose that G is a second countable, étale, principal, minimal,
ample groupoid. Then there exists a (possibly different) groupoid G that is second
countable, étale, principal, minimal, and ample such that

K.(Cr(9)) = K.(CF(9))
and the HK-conjecture holds for G.

One approach to this conjecture would be to study the range of the K-theory
of groupoids satisfying the HK-conjecture (e.g., by satisfying the hypotheses of
[1, Corollary C] or ideally generalizations of it). As stated Conjecture 0.3 would
not be useful for computations. However, one could hope that there is an explicit
construction of G from G that would facilitate computations.

Although this paper makes no reference to Smale spaces. I would like to mention
that there is a connection between the unstable relation of a Smale space with
totally disconnected stable sets and odometer actions, see [19, page 194] for a
specific case. In future work, this connection will be explored in detail. For now,
it seems appropriated to mention that the counterexample in the present paper
can be used to show that there is a counterexample to the HK-conjecture in the
class of groupoids obtained from the unstable relation of Smale spaces with totally
disconnected stable sets. This is of interest in light of recent results of Proietti and
Yamashita [18] connecting the homology of étale groupoids to Putnam’s homology
theory for Smale spaces [20].
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1. PRELIMINARIES

1.1. Groupoids. Let G be a groupoid. Its unit space is denoted by G and its
range and source maps by 7,5 : G — G(®). The ordered pair g, h € G is composable
if s(g) = r(h) and their composition is denoted gh. The inverse of g € G is
denoted ¢—!. In this paper, all groupoids will be locally compact, Hausdorff, second
countable, with compact unit space. Moreover, all groupoids in the paper will be
étale, meaning that r and s are local homeomorphisms. In this case G(%) is an open
subset of G and the Haar system is given by counting measures. We say that G is
principal if for each z € G(©) the isotropy group

Gr={9€G|slg)=r(g) ==}
is trivial (i.e., equal to {z}). A groupoid, G, is essentially principal if the interior
of the set {g € G | s(g9) = r(g9)} is G°. Notice that principal implies essentially
principal, but the converse is false. A groupoid is ample if its unit space is totally
disconnected (e.g., the Cantor set).

To a groupoid satisfying the assumptions above, G, one can associate its reduced
groupoid C*-algebras. The resulting C*-algebra is denoted by C(G). The compu-
tation of the K-theory of C*(G) is an important problem in C*-algebra theory.

The homology of G was defined in [5] and will be denoted by H.(G). Some basic
facts of this theory are the following:

(1) If X is a finite CW-complex with the trivial groupoid structure, then the
groupoid homology is isomorphic to the standard cohomology of X.
(2) If G is a group, then H,(G) is isomorphic to the group homology of G.
Hence if BG is the classifying space of G, then H.(G) = H,.(BG).
In the present paper, only the second item and some results in [22] relating groupoid
homology to classical homology will be needed. As such, a detailed introduction to
groupoid homology is not needed.
With this notation introduced, Matui’s HK-conjecture [14] for principal groupoids
is the following:

Conjecture 1.1. Suppose that G is a second countable, étale, principal, minimal,
ample groupoid. Then

K.(Cr(G)) = EB H.12:(G)

The rational version of this conjecture (again in the principal case) is the follow-
ing:
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Conjecture 1.2. Suppose that G is a second countable, étale, principal, minimal,
ample groupoid. Then

K.(C}9)®Q = @Hmi(g) ®Q

We will provide a counterexample to the first of these conjectures, but our exam-
ples satisfying the weaker rational HK-conjecture. If one weakens the assumption of
being principal in these two conjectures to being essentially principal (as in Matui’s
original formulation [14]) then there are counterexamples to both, see [22].

It is worth noting that all groupoids in the present paper are amenable.

1.2. Group theory considerations. Let G be an abelian group. The torsion
subgroup of G is denoted by T(G). When G is finitely generated, T(G) is finite.
The number of elements in a finite group, F, is denoted by |F|. Given an inductive
systems of groups of the form,

RN RN

the associated inductive limit group is denoted by lim_, (G, ;). An element is
denoted by [, k] where v € G and k € N, see [20] for more on inductive limits and
this notation.

The next few results are certainly known, but it is useful to have them recorded
for later use.

Proposition 1.3. Suppose G is a finitely generated abelian group, n is an integer
greater than or equal to one, and a : G — G and B : G — G are group homomor-
phisms satisfying o o 8 = multiplication by n. If for each v € T(G), ny = v then
Blre) : T(G) = T(G) is an isomorphism.

Proof. By assumption, for any v € T'(G), (a0 f)(y) = ny = . Hence, B|r(q) is
injective. But T'(G) is finite (since G is finitely generated abelian) so (|7 (¢ is also
surjective.

Proposition 1.4. Suppose G is a finitely generated abelian group, n is an integer
greater than or equal to one, and for each i, a; : G — G and B; : G — G are group
homomorphisms satisfying c; o B; = multiplication by n. If for each v € T(G),
ny =, then the map ® : T(G) — T(lim_, (G, 5;)) defined via

7= [, 0]

is an isomorphism.

Proof. 1t is clear that ® is a group homomorphism. That @ is injective follows
because each f; is injective.

To show that ® is onto, let [¥,k] € T(lim— (G, 3)). By the definition of the
inductive limit group,

k1(Bra © Bra—1 0+ 0 Bry1)(7) =0
for some k1, ks € N. Applying agq1 0+ ag,—1 © g, leads to
ki -n*2(3) = 0.
It follows that 7 is in T(QG).
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The previous proposition ensures that for each 4, (3;)|r () is an isomorphism.
Hence, we can form

v = (((B)lr(e)) oo ((B)lr) ~H)A)-

One checks that

D(y) =[7,0] = [(Be o Bo)(7), k] = [¥, k]

as required. ([

Proposition 1.5. Suppose G is a finitely generated abelian group,

RN RN

is an inductive system, and lim_, (G, ;) is the inductive limit group. Then T(lim_, (G, 53;))
is a finite group and |T((G, 5;))| < |T(G)|.

Proof. Since G is finitely generated abelian, T(G) is a finite group. Take M =
|T(G)| + 1 elements in T'(lim_, (G, §;)), which we write as

[717k1]7 [/727k2]7' 7[7M7kM]

As in the proof of the previous result, we can assume that v; € T(G) for each
i = 1,...,M. Furthermore, by applying the connecting maps in the inductive
system, we can assume that k1 = ko = ... = kj;. It follows from the pigeonhole
principle that there exists ¢ # j such that v; = y;, which completes the proof. [

1.3. Flat manifolds. A flat manifold refers to a closed, connected, Riemannian
flat manifold. Throughout this section and the rest of the paper, Y is a flat manifold
with dimension d. Examples of flat manifolds in low dimensions include the circle,
the torus and the Klein bottle, see [3] for more details and many more examples
(see in particular page 41 of [3]). The following basic properties will be used. The
first two can be found in for example [3] and the third follows from the first two.

(1) The fundamental group of Y, m1(Y), is torsion-free and fits within the
following short exact sequence:

02" m(Y)—=F—=0

where Z¢ is maximal abelian and F is a finite group (called the holonomy).

(2) The short exact sequence in the previous statement is obtained from a
|F'|-fold cover of Y by the d-torus. This covering map is denoted by p.

(3) It follows from the previous statements that Y is a model for the classifying
space B(m1(Y)) and likewise R? is a model for E(m(Y)). Furthermore,
71(Y") is amenable and hence the Baum—Connes conjecture with coefficients
holds for 1 (Y).

The next result is well-known, see for example [7, Lemma 2.7].

Proposition 1.6. If v € T(H.(Y)), then the order of x divides |F|. In particular,
for any k € N and x € T(H.(Y)), (|F| + 1)fz = x.
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1.4. The Atiyah—Hirzebruch spectral sequence. A number results concerning
the Atiyah—Hirzebruch spectral sequence are collected for future use. None of them
are new and all are likely well-known to experts. The results are summarized here
so that the computations in Section 4 are as easy as possible. Although a number of
the results below hold in more generality, throughout X is assumed to be a closed
connected orientable manifold with dimension d.

Before getting to the spectral sequence, a few fundamental properties of the
Steenrod square maps (see for example [11, Chapter 10 Section 8]) are discussed
as they are relevant for the differentials in the spectral sequences. Recall that
for each non-negative integer m, the Steenrod square map of degree m is a map
Sq™ : H¥(X;Z/27) — H*™(X;Z/2Z). We will only need these maps when m = 2
or 3 and the formal definition is not required. The only properties needed are the
following:

(1) for k = m it maps z to 2 Uz (we denote z U z by x2);
(2) we have that Sq* = r o 8 0 Sq* where
(a) B: H*2(X;Z/27) — H**3(X) is the Bockstein map and
(b) r: H*3(X) — H*3(X;Z/27Z) is the reduction mod two map.

We now move to the spectral sequences. The reader is invited to review [11,
Chapter 21] for the notation used here. In addition, note that p and ¢ have been
suppressed from the notation of the differentials. We have the following fundamen-
tal properties of the Atiyah—Hirzebruch spectral sequences for K-theory { EZ;9} and
K-homology {E," } (recall that X is an orientable manifold):

H,(X) qiseven
3 o~ 2 o~
W B, =57, = {

q is odd
HP(X) gqiseven
P:qd ~ P9 ~
(2) B3 = Ej _{ 0 q is odd

(3) The Atiyah—Hirzebruch spectral sequence for K-homology is a module over
the Atiyah—Hirzebruch spectral sequence for K-theory. In particular, if
x € H*(X) and [X] is the fundamental class of X associated to a particular
orientation, then we have

&3 (z N [X]) = ds(z) N [X] £ 2 N d3(X).

(4) The differential ds : H*(X) — H**3(X) is given by £ o Sq? o r where
(a) r: H¥(X) — H*(X;Z/27) is the reduction mod two map,
(b) Sq? : H¥(X;Z/27Z) — H*?(X;Z/27) is the Steenrod square map,
and
(c) B: H*2(X;7/2Z) — H**3(X) is the Bockstein map.
(5) If d # 0, then

IT(K«(X))| <] @T(H*—i-%(X))"

A short justification of this fact proceeds as follows. Since the Chern char-
acter is an isomorphism after tensoring with the rational numbers, the
differentials in the Atiyah—Hirzebruch spectral sequence are pure torsion
morphisms (see for example [11, Chapter 21: Remark 4.7 and Theorem
4.8] in the case of K-theory rather than K-homology). This implies that
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for all p, q

|T(Hp(X))| gqiseven

4 3y —
T(Ep o)l < IT(E, )| = { 1 g is odd

Moreover, since d® # 0, there exists p, ¢ such that

|T(Hp(X))| gqiseven

4 3y —
T(Ep o)l < IT(E, o)l = { 1 q is odd

where we have used the fact that the relevant torsion groups are finite
because all groups considered are finitely generated abelian. Likewise, for

all p, q
(B2 < (T(E2 ) = { [THE)] ¢is even
pe P 1 q is odd

and for at least one p, ¢

o0 s v _ | |IT(Hp(X))| gqiseven
IT(Ep)l < [T(Eq)l = { 1 q is odd

Using this and the fact that the Atiyah—Hirzebruch spectral sequence con-
verges to the K-homology of X, it follows that (see for example [11, Chapter
21: Assertion 4.3 and 4.5] in the context of K-theory)

IT(K.(X))| < IT(EB H.y2i(X))].

This completes the proof.

Finally, recall that the Stiefel-Whitney classes of X (see for example [11, Chap-
ter 10 Definition 3.7]) are classes w;(X) € H*(X;Z/27Z) and the integral Stiefel-
Whitney classes of X are classes W;(X) € H'(X). We only need the following

property:
r(Ws(X)) = ws(X)

where 7 : H3(X) — H?(X;Z/27Z) is the reduction mod two map.

Proposition 1.7. Suppose X is an orientable manifold and ds is non-zero. Then
d3 is also non-zero.

Proof. Fix an orientation on X to obtain the fundamental class [X] € Hq(X). If
d®([M]) # 0 then we are done.

Otherwise, take © € H*(X) such that ds(x) # 0. Then, using the module
structure, Poincaré duality, and the fact that d®([X]) = 0, we obtain

d*(z N [X]) = ds(a) N [X] # 0.
(]

Proposition 1.8. If X is an orientable manifold and w3(X)? is non-zero, then ds
is nonzero. In particular, under these assumptions on X,

IT(K«(X))| <| @T(H*-i-%(X))'
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Proof. Firstly, by assumption, Sq® (w3 (X)) = w3(X)? # 0. Then, since

Sa® (w3 (X)) = (ro B o8q*)(w3(X)),
it follows that
(8 08q*) (w3 (X)) # 0.
Finally, since r(W35(X)) = w3 (X),

d3(W3(X)) = (8 08q* or)(W3(X)) = (8 0 Sq®)(w3(X)) # 0.
This completes the proof of the first statement.
The “in particular” part of the theorem follows using the previous proposition

and Item (5) in the list of properties of the Atiyah—Hirzebruch spectral sequence.
O

2. EXPANSIVE ENDOMORPHISMS OF FLAT MANIFOLDS AND ODOMETERS

Throughout this section, Y is a flat manifold and g : ¥ — Y is an expanding
endomorphism. That is (see page 176 of [23]) there exists C > 0 and A > 1 such
that ||T'gkv|| > eA¥||v|| for each v € TY and strictly positive integer k. Here || - ||
denotes a fixed Riemannian metric, but it is worth noting that being expanding is
independent of the choice of metric (although the particular constants C' and A do
depend on the metric).

By [23, Proposition 3], ¢ is a covering map and since Y is compact, g is a n-fold
cover for some n > 2. By [23, Theorem 1], ¢ has a fixed point yo. We will use this
as our based point, so m1(Y) denotes 7(Y, o). Associated to g is a chain of finite
index, proper subgroup inclusions:

m(Y) D gu(m(Y)) D gZ(m(Y)) D - -
The associated odometer is obtained as follows. Let

0= lgn(ﬂzu fi—l)

where Q; = m1(Y)/gi(n(Y)) and f} , is given by inclusion of cosets. Each Q; is
a finite set (containing more than one element) and hence  is a Cantor set. An

element in € can be written as

(Yom1 (Y ), 119+(m1(Y)), 1292 (m1(Y)), . .).

The odometer action of 71 (Y") on § is defined via

Y- (om (Y), 1« (m1(Y)), 1292 (m1(Y)), - ..) = (790m1(Y), y71.9+(m1 (Y)), v3292 (w1 (V) .. ).

The odometer action is minimal, see for example [4, Section 2.1]. By Proposition
4 on page 181 of [23],

N g5 (r(¥)) = {e}

k>0
but (again see [4, Section 2.1]) this is not enough to conclude that the action is
free. This is because the subgroup g.(m1(Y)) C m1(Y) is typically not normal, see
[24, Corollary 1.18]. Nevertheless the odometer action associated to an expanding
endomorphism is indeed free and this is likely known. I was unable to find a precise
reference so a proof has been included.

Proposition 2.1. The odometer action associated to an expanding endomorphism
g:Y =Y is free.
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Proof. To begin, fix a Riemannian metric on Y and recall that yg is a fixed point
of g. The odometer action can be describe in terms of preimages of yo with respect
to g, g2, etc. To do so, notice that there is a one-to-one correspondence between
g~ (yo) and cosets associated to the subgroup g.(m1(Y)).

This correspondence is given as follows. Given a coset take a loop, 7, based at
Yo representing a class in that coset. Let 4 : [0,1] — Y denote the unique lift of
v to a path starting at yo. Then 7(1) € g~ 1(yo). Furthermore, this defines the
required one-to-one correspondence. One must check the process is well-defined
and one-to-one but this follow from elementary properties of covering space theory.

Repeating this process with g=2(y0), ¢~ 2(yo0), etc, we have that  is homeomor-
phic to

{(y0,y1,Y2,--.) | yo is the fixed point above and ¢(y;i+1) = v}

where the topology is the subspace topology. Furthermore, the odometer action
with respect to this realization is given as follows. Let - be a loop based at yo
representing an element in m(Y) and y1 € g7 (o). Let 4 : [0,1] — Y be the
unique lift of v to a path starting at y;. Then [y] - y1 = F1(1). As with the
discussion at the topological space level, by repeating this process one obtains the
odometer action on the space

{(y0,y1,Y2,--.) | Yo is the fixed point above and g(y;+1) = yi}-

We can now show that the action is free. Let v be a loop based at y( representing a
class in 71 (Y"), which we can and will assume is smooth so that it has a well-defined
arclength. Suppose that

[’Y] ! (yO;ylny; e ) = (y07y15y27 . )

We must show that [y] is the identity in m1(Y). By the definition of the action
discussed above, we have that the unique lift of v to a path, 41 : [0,1] = Y starting
at y; satisfies the following:

(1) Because [v] - y1 = y1, 91 is a loop based at y; (rather than just a path
starting at y1);

(2) Because g is expanding and goj; = v (by the definition of lift), the arclength
of 44 is less than or equal to % where L is the arclength of v and C, X are

constants from the definition of expanding endomorphism.

Noticing that 47 is a loop, we denote it by 1. The process applied (to 7) above
can be applied to ;. We obtain a loop based at y2, 72 with arclength less than or
equal to # that is a lift of ;. Continuing the process, for each positive integer k,
we obtain a loop 7y based at y, with arclength less than or equal to ﬁ that is a
lift of yx—1. Since A > 1, there exists £ and open set U C Y containing y such that
U = R? and v.(t) € U for all t € [0,1]. Tt follows that 73 is nullhomotopic. But
then v = g* oy is also nullhomotopic and hence [y] is the identity in 7, (V). O

In summary, the properties discussed above imply the following.

Proposition 2.2. Suppose (as above) Y is a flat manifold and g : Y — Y s
an expanding endomorphism. Then the transformation groupoid associated to the
odometer action of m(Y) on Q is a second countable, étale, principal, minimal
groupoid. Moreover, its unit space is the Cantor set.
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Proof. The transformation groupoid of the action of a discrete group is always étale
and the unit space in our situation is Q (the Cantor set). The groupoid is clearly
second countable. It is minimal because the action is minimal and it is principal
because the action is free. (]

3. THE K-THEORY AND HOMOLOGY OF ODOMETERS

3.1. Homology. As in the previous section, Y is a flat manifold of dimension d,
g:Y — Y is an expanding endomorphism (it is an n-fold cover), € is the Cantor
set associated with the odometer action of m1(Y"), and © x 71 (Y") is the associated
transformation groupoid.

Theorem 3.1. The homology of Q x w1 (Y) is isomorphic to the inductive limit
group: lim_,(H.(Y),§;) where each g; : H.(Y) — H.(Y) with the property that
hi .

there exists H.(Y) — H.(Y) such that h; o §g; = multiplication by n. In
particular, g; is a rational isomorphism.

Proof. By [22, Proposition 2.4], the homology of © x 71(Y") is isomorphic to the
inductive limit group: _ ‘
lim(H.(pl (w1 (Y))), tri*)
—
i+1

where tr;"" is the transfer map in group homology. By [2, Proposition II1.9.5
(ii)], the connecting maps have the required property. Moreover, Y is a model for
B(m(Y)) and for each i, pi(m (Y)) = 7 (Y). Hence (for each i) H,(pi(m(Y))) =
H(Y).

Finally, the “in particular” part of the theorem follows from the fact that ﬁiogi =
multiplication by n. 0

3.2. K-theory. As in the previous section, Y is a flat manifold of dimension d,
g :Y — Y is an expanding endomorphism (it is an n-fold cover), and 2 is the Cantor
set associated with the odometer action of 71 (Y). The (reduced) transformation
groupoid C*-algebra of the odometer actions is C*(Q x m1(Y)) = C(Q) %, (V)
where we note that 1 (Y) is amenable so there is no difference between the full and
reduced C*-algebras so we will drop the r from the notation.

Theorem 3.2. The K -theory of C(Q) x 71 (Y) is isomorphic to the inductive limit
group:
tin (K. (1))

Moreover, each map §; : K.(Y) — K.(Y) is a rational isomorphism.

Proof. For the inductive limit part of the proof, we begin with the fact (see [22]
page 2544) that
C(Q) X 7T1(Y) = th(Ql) X 7T1(Y)
—

where Q; = m1(Y)/gi(m1(Y)) and the map in the inductive limit is obtained from
the map Q;41 — Q; defined using g™ (71 (Y)) C gi(m1(Y)). Furthermore, [22,
Proposition 2.3], implies that, for each i,

C(2i) x m (V) = My:(C) @ Cr(m (Y))

where we have used the fact that g is an n-fold cover and (for each 4) pi (71 (Y))
m1(Y). We have that

K (C() xm(Y)) = Ku(My: (C) © Cr(m(Y))) = Ko (Cr(m(Y))) = K. (Y)

o~
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where in the last step we have used the fact that 71 (Y") satisfies the Baum-Connes
conjecture, 71 (Y) is torsion-free, and Y is a model for B(m1(Y)).

For the second part of the proof, again by the Baum—Connes conjecture (now
with coefficients), for each 1,

KL (C() x m (V) = KK (Co(RY), O(9))
and the connecting maps in the inductive limit are given by
(90)+ : KEI'Y(Co(RY), C(0)) — KK (Co(RY), C(Q441))
where at the space level g; : Q;411 — € is defined using ¢"1 (71 (Y)) C gi(71(Y)).
The map g; is a covering map and hence there is a transfer map
(9:)! - KK (Co(R), C(Qig)) = KK (Co(RY), O(9)).

One can then show that (g;). is a rational isomorphism directly (compare with the
proof of [21, Lemma 4.2 Part 2] in the context of K-theory) or using the Chern
character to relate the inductive limit in the present theorem with the one for
homology in the previous section; the details are omitted. O

Remark 3.3. With a bit more work, one can show that the inductive limits in
both Theorems 3.1 and 3.2 are stationary. However this is not needed for the results
of the present paper. The fact that these inductive limits are stationary is similar
to my previous work with Allan Yashinski in [6] concerning the stable groupoid
C*-algebra of a Smale space with totally disconnected stable sets.

3.3. Main results.

Theorem 3.4. Suppose that Y is a flat manifold. Then there exists an erpanding
endomorphism g : Y — 'Y such that

T(H.(Q>xm(Y))) =T(H.(Y))

Proof. By the main result of [8] (see the theorem on page 140 of [8]), there exists
an expanding endomorphism g : Y — Y satisfying

(58— ¥

Xml gl
(SHt —L— Y
where

(1) p is the cover of Y by the torus discussed in Section 1.3 and
(2) xm is the map multiplication by m with m = |F|+1 (F was also discussed
in Section 1.3).

It follows that g is an n-fold cover with n = m?¢ = (|F|+1)?%. By Proposition 1.6
and the fact that the homology of Y are finitely generated, we can apply Proposition
1.4. The result then follows from an application of Proposition 1.4 to the inductive
limit in Theorem 3.1. O

Theorem 3.5. Suppose Y is a flat manifold and g : Y — Y is an expanding
endomorphism. Then

K(COQO)xm(Y)Q=K,(Y)®Q and H,(Axm(Y)) Q= H.(Y)® Q.
In particular, the rational HK-congjecture holds for Q x w1 (Y').
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Proof. Since taking the tensor product with the rationals respects inductive limits,
we can apply Theorem 3.2 to obtain

K. (C(@Q) 1 m(Y) © Q2 lim(K.(Y) © Q, §i ® idg).

Furthermore, Theorem 3.2 implies that §; ® idg is invertible. This completes the
proof for K-theory. For homology, the proof is the same with the use of Theorem
3.2 replaced by Theorem 3.1.

Finally, the rational HK-conjecture holds because the Chern character (from the
K-homology of Y to the even/odd homology of Y') is a rational isomorphism. O

Based on Theorem 3.4 we have the following:

Corollary 3.6. Suppose Y is a flat manifold with
T < [P T(Hurai(Y))]-

Then there exists an expanding endomorphism g : Y — Y such that the transfor-
mation groupoid associated to the odometer action of 1 (Y') is a counterezample to
the HK-conjecture. Moreover, the relevant groupoid is principal.

Proof. Take g : Y — Y as in Theorem 3.4. By Proposition 2.2, the groupoid
Q % 71(Y) satisfies the hypotheses of the HK-conjecture and is principal. Using
Proposition 1.5 and Theorem 3.4, we have

T (K(CH(Q@xm (Y)] < [T(EL(Y))] < [T(ED(Her2i(Y)))] =

T (EB H,9:(Q xm (Y))) ‘ .

In particular, K,(C*(2 x m1(Y))) 2 B, Hit2:(2 x w1 (Y)). O

The goal of the next section is the construction of a flat manifold satisfying the
condition in the previous corollary. It is worth noting that if Y satisfies

then dim(Y") > 4, see [13, Proposition 2.1 (ii)].

4. THE EXISTENCE OF THE REQUIRED FLAT MANIFOLD

Our goal is the construction of a flat manifold satisfying the condition in Corol-
lary 3.6. In fact, the following will be proved:

Theorem 4.1. For each d > 9, there exists a flat manifold Y of dimension d with
the property that

IT(E.(Y))] <| @ T(H.q2i(Y))]-

Recall that for an abelian group G, T(G) denotes its torsion subgroup.

Based on Proposition 1.8 in Section 1.4, (for each d > 9) we need only construct
a flat manifold ¥ (of dimension d) such that

w1 (Y) =0 and w3(Y)? # 0

Notice that w;(Y) = 0 implies that the Y is orientable, which was a standing
assumption in Section 1.4.
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I would like to recommend the reader review Section 2 and 3 from [10] for an
introduction to the important class of flat manifolds called real Bott manifolds.

The case of d = 9 is considered first. Using the notation of [10] (see in particular,
page 1017), let Y(A) be the real Bott manifold associated to the matrix

0 0 0 01

o

N
Il
OO OO o oo
SO OO OO OO
SO OO OO
SO oo +HOO
SO O OO OO
SO, OO OO
OR OO OO O
O o

OO OO O~ OO

0 0 0 0 O

)
o

It is worth noting that the dimension of Y'(A) is in fact d = 9. The cohomology of
Y (A) with coefficients in Z/27Z is determined by A. This was proved in [12, Lemma
2.1] and can also be found on page 1020 of [10]. We have that

d
H*(Y (A); Z/2Z) = (Z)2Z) (21, ..., xd) /(2 = 2; Y Aijai | §=1,...,d)
i=1
For our specific choice of A, the relations are as follows:
(1) xf = 0,:103 = To11,.. .,;v§ = wgw7, and xg =xg(zr+...+21)

Moreover (again see page 1020 of [10]) the classes wq(Y (A)) and w3(Y (A)) are
given respectively by

d
w(Y(4) =Yy
=1
and
(2) ws(Y(A) = > vy
1<i<j<k<d

where, in general (see page 1017 of [10])

1—1
Yi = E Ap ik
k=1

In our specific situation
(3) y1 =092 =x1,...,ys =z7 and yg =1 +... + a7

By either applying [12, Lemma 2.2] or direct computation, one checks that
w1 (Y (A)) = 0 and hence Y (A) is orientable.

To show that w3 (Y (A4))? is non-zero is more involved. We will show that there is
an odd number of terms of the form z1 2224757677 in the expression of w3(Y (A))2.
To begin, we consider terms of the form y;y;yr where 1 <1 < j < 8. Collecting
terms and using Equation (3), we have

YiY; (yj+1+~ .. yg) = xiflxj,l(xjjq-l-. N I7+I1—|—. . —|—$7) = xi,lxj,l(xl—i-. . .—|—.’,Ej,1)

where we have used the fact that 2z; = 0 since we are working in H*(Y (A); Z/2Z).
Importantly for us, none of these terms contain an x7.
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This leaves terms of the form y;ysyg where i = 2,...,7 (where we have used the
fact that y; = 0). Using Equation (3) and the fact 22 = z7x¢, we have that

YiYsyo = Ti—127(x1 + X2 + T3 + T4 + T5).

Each of these terms can be further simplified using Equation (1). Explicitly, for
i =3, we have

Towr(x1 + o + x5 + x4 + x5) = xo227(T3 + T4 + T5).

A long but straightforward computation using the above considerations, Equation
(2), and the relations given in Equations (1) and (3) shows that there are exactly
three terms (they are zoxszy, Tsx722, and xex722) that square to x12oz4T5T627.
This is enough to conclude that w3 (Y (A))? # 0 as we are working in H*(Y (A); Z/27Z).
As mentioned above, it follows from Proposition 1.8 that

|T(K.(Y)] < | @ T(Hyy2i(Y))|

This completes the proof for d = 9.

For d > 9, there are a few options to generalize the construction used above.
One can add zeros to the matrix A above or again take a matrix with one’s along
the superdiagonal except for the last entry and in the last column except for the
last two entries. Explicitly, for d = 10, one can take

o
o
o
o
o

SO OO OO OO
DO DODDODDDODO OO =
SO OO OO o~ Oo
SO O OO oo+~ Oo
SO OO OO
OO O OO OO OO
OO OO OO OO
SO OH OO OO
OO O
SO OO OO o oo

or

OO OO OO o oo
OO OO O OO O
OO DO OO OO+ O
OO OO OO+ OO

[N eNeNeNoNael =l =No]
SO OO OO OO
OO OO OO0 OO
SO O OO OO
[=Nel HoNoNoNeNeNe Nl
OO R, PP R EFERFERF

s}
s}
o
o

This completes the proof of Theorem 4.1.

As mentioned above, if Y satisfies the conclusion of Theorem 4.1, then by Corol-
lary 3.6 we have a counterexample to the HK-conjecture that is principal. Thus,
we have counterexamples and can take the dimension of the relevant flat manifold
to be any integer greater than or equal to nine.
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