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ABSTRACT

Data-driven methodology has become a key tool in computationally predicting

 The Author(s), under
material properties. Currently, these techniques are priced high due to com-
putational requirements for generating sufficient training data for high-preci-
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sion machine learning models. In this study, we present a support vector
regression (SVR)-based machine learning model to predict the stability of silicon
(Si)–alkaline metal alloys, with a strong emphasis on the transferability of the
model to new silicon alloys with different electronic configurations and struc-
tures. We elaborate on the role of the structural descriptor in imparting trans-
ferability to the model that is trained on limited data ( *  750 Si alloys) derived
from the Material Project database. Three popular descriptors, namely X-ray
diffraction (XRD), sine coulomb matrix (SCM), and orbital field matrix (OFM),
are evaluated for representing Si alloys. The material structures are represented
by descriptors in the SVR model, coupled with hyperparameter tuning tech-
niques like Grid Search CV and Bayesian optimization, to find the best per-
forming model for predicting total energy, formation energy and packing
fraction of the Si alloy systems. The models are trained on Si alloys with lithium
(Li), sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), and alu-
minum (Al) metals, where Si–Na and Si–Al systems are used as test structures.
Our results show that XRD, an experimentally derived characterization of
structures, performs most reliably as a descriptor for total energy prediction of
new Si alloys. The study demonstrates that by qualitatively selection of training
data, using hyperparameter tuning methods, and employing appropriate
structural descriptors, the data requirements for robust and accurate ML models
can be reduced.
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Introduction

Increasing demand for electric vehicles (EVs) has
highlighted the energy storage limitations of com-
mercial graphite anode-based lithium-ion batteries
(LIBs). Energy storage in graphite with an intercala-
tion mechanism offers low gravimetric energy den-
sities of 372 mAh g1     [1]. Alternatively, energy
storage in electrodes through a conversion mecha-
nism can promise a tenfold improvement in energy
densities. The most popular anode after graphite is
Silicon (Si), which has a gravimetric energy density of
3572 mAh g1 [2]. Si reacts with incoming Li to form an
alloying mixture of LixSi during battery charging [3].
Next, there is a pressing issue surrounding the
scarcity of Li for LIBs. To meet the requirements of
the future EV industry, we cannot rely solely on non-

atomistic simulation studies have also been con-
ducted on Si anodes in alkali ion batteries [18, 19]. It is
evident that Si anodes possess greater potential than
their competitor anodes for future multivalent cation
batteries and will remain a subject of extensive
research in the years to come [8, 20].

Considering that the stability of Si-based anodes
during electrochemical cycling is a primary con-
cern for future batteries, it is necessary to study how
Si anodes can maintain both low volume expansion
and high capacity simultaneously. Exploring these
possibilities of Si alloy anodes can be achieved by
varying the compositions and stoichiometry ratio of
Si and alloying multivalent cations. Prior to con-
ducting experiments, it is essential to assess the
synthesizability of any unknown structure based on
its stability. Density functional theory (DFT) can be
employed to predict the structural stability of mate-

renewable Li [4]. Therefore, active research efforts rials using energy hull diagrams. This method
are being made to develop advanced battery tech-
nologies beyond Li ion [5]. Due to the high capacity
offered by Si–Li anode, Si has found applications in
alkali earth metal batteries such as sodium (Na) ion
batteries [6], magnesium (Mg) ion batteries [7], and
calcium(Ca) ion batteries [8], to name a few. Similar
to Si–Li system, Si anode reacts with Mg to form
Mg2Si phase with a gravimetric density of 3816 mAh
g1 [9] and reacts with Ca to form Ca2Si alloys with a
maximum theoretical capacity of 3818 mAh g1 [8].
However, Si anode face challenges related to struc-
tural stability and volume expansion ( *  300% for
LIBs) that lead to premature fractures, capacity los-
ses, and limited cycle life of batteries [10–12]. There-
fore, before designing and experimenting such
battery materials, it is imperative to study the sta-
bility and structural assessment of Si-metal anodes
computationally.

Over the last two decades, numerous computa-
tional efforts have been dedicated to understanding
the Si–Li microstructures in the alloy mixtures and
structural integrity of Si-based anodes [13–16]. Fan
et al. [17] studied the effect of increasing Li concen-
tration on the electro-mechanical stability of amor-
phous LixSi anode by molecular dynamics (MD)
simulations. They reported atomic bonding transi-
tions from covalent to metallic bonds of a-LixSi under
various loading conditions. The study details how
mechanical property of a-LixSi changes during lithi-
ation under different loading conditions. Similar

involves calculating the formation energy of all pos-
sible stoichiometric ratios for a given composition
using DFT. The structures with the lowest formation
energy are considered the most stable, and an energy
hull diagram can be created to illustrate the relative
stability of different compositions. This approach has
been successfully demonstrated in various studies
[21, 22]. Another important characteristic of a struc-
ture is the packing fraction, which describes the
degree of porosity within the material. This parame-
ter is expressed as a dimensionless quantity and
represents the ratio of the total volume occupied by
the crystal atoms to the volume of the unit cell. A low
packing fraction indicates highest stability of an
unknown material [23].

Theoretical studies based on simulations have
proven to be valuable in providing design insights
and performance predictions for experimental design
[24]. Lately, the efficiency of computational simula-
tions has diminished with the increasing complexity
of materials. Quantum mechanics-based DFT meth-
ods are limited to small atomic systems consisting of
approximately 200 atoms or fewer due to their com-
putational expense [25]. On the other hand, classical
Newtonian simulations like MD require less com-
putational power and can be a viable alternative to
simulating larger atomic systems. However, these
techniques significantly abate the thermodynamic
accuracy of disordered structures [26]. Furthermore,
there is a lack of available interatomic potentials in
the literature for newer material combinations [27].
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Machine learning (ML) techniques have been Regression (SVR) [54]-based ML model. SVR is a
widely adopted in material modeling to predict supervised learning approach well-suited for han-
energy and simulate materials more efficiently dling nonlinear regression problems [55]. It serves as
[28–31]. ML is actively being researched to tackle
various material science challenges, including prop-
erty prediction, material discovery, and system opti-
mization [32–34]. Common ML models used in this
field include regression [35, 36], Gaussian approxi-
mation [37, 38], graph neural networks (GNN) [28],
and high-dimensional neural networks (HDNN) [39].
ML approaches in material systems can be catego-
rized into graph-based and descriptor-based methods
[40]. Graph-based models may not be well-suited to
handle long-range inter-atomic interactions in con-
densed solid state systems such as Si alloys. On the
other hand, the descriptor-based approach offers
more flexibility for feature engineering, allowing
researchers to incorporate a broader range of atomic
interactions in both spatial and dimensional aspects.
Jihang et al. [41] predicted molecular property by
four descriptor-based ML models and four graph-
based models. The results revealed that the graph-
based models required higher computational costs

an efficient alternative to more advanced methods
like HDNN, which require extensive computational
resources and data for training the model [56–58]. By
coupling SVR with advanced statistical techniques,
solid-state material properties can be predicted with
high accuracy and minimal data requirements [59].
Thus, SVR is an ideal approach for rapidly predicting
the stability of materials such as Si alloys, which have
broad applications in the energy domain [60–64] but
limited available data. We utilize the Si-based data
from the MPD to train the SVM model for predicting
the total energy per atom, formation energy per atom
and PF of the Si-based alloy structures. The focus lies
in selecting suitable structural descriptors that enable
the model to achieve the best transferability, high
prediction accuracies, and least dependence on data
quantity. Three common descriptors are employed to
convert atomic structures into ML inputs, and trai-
ned model’s performance is evaluated on completely
new Si alloys. We demonstrate that the SVR model

and resources compared to the descriptor-based exhibits high predictive accuracy for Si alloys com-
models.

The selection of appropriate descriptors is crucial
and should be based on the specific task at hand

pared to more advanced approaches that require
extensive data generation through ab initio simula-
tions for training [65, 66].

including their compatibility with the targeted
machine learning algorithm [42–44]. Descriptors are
numeric vectors that characterize the atomic or
molecular structure and serve as inputs to ML mod-
els [40]. Various descriptors have been proposed for
materials, including the coulomb matrix (CM) [45],
sine coulomb matrix (SCM) [46], atom-centered
symmetry functions (ACSF) [47], smooth overlap of
atomic orbitals (SOAP) [48], and orbital field matrix
(OFM) [49], among others. Each descriptor has been
designed to meet material science field requirements
but may not have broad applicability across different
domains. By combining a well-defined descriptor and
an appropriate model, ML techniques can leverage
the wealth of experimental and simulation data
available in established databases such as Material
Project Database (MPD) [50], Open Quantum Mate-
rials Database [51], AFLOW [52] and Inorganic
Crystal Structure Database (ICSD) [53], to address
some of the most pressing predictive and discovery
challenges among materials.

In this study, we predict the stability and packing
fraction (PF) of Si alloys using the Support Vector

Methodology

Dataset preparation

The dataset used in this study consists of 745 inor-
ganic structures comprising Si and AxSiy     alloys,
where A represents elements such as Li, Na, K, Mg,
Ca, and Al. The stoichiometric ratios of A and Si are
denoted by x and y, respectively. The dataset
includes associated properties such as total energy
per atom, packing fraction, and formation energy per
atom. In MPD, researchers widely utilize DFT cal-
culations based on the ground state energy to deter-
mine the total energy of compounds [67]. They
evaluate the thermodynamic stability of a compound
by considering Gibbs Free Energy (DG) while utiliz-
ing change in enthalpy (DH) as a practical approxi-
mation [68]. This simplification effectively equates
DG and DH to the change in internal energy (DU),
enabling the use of total internal energy as an
approximation for thermodynamic stability at
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absolute zero temperature (0 K) [68]. A compound’s
formation energy (DHf) is determined by considering
the ground state energies of its constituent elements
and the combination itself [69]. It quantifies the dif-
ference between the total enthalpy of the compound
and the sum of the enthalpies of the constituent ele-
ments, considering their stoichiometric fractions [68].
Notably, cohesive energy and formation energy share
a relationship, where the cohesive energy represents
energy release and the formation energy represents
energy consumption, with opposite signs to reflect
bond formation or breakup [69]. To retrieve the
dataset, we utilized the MPD and accessed it through
the application programming interface (API) using
Matminer [70] and Python Materials Genomics (py-
matgen) [71] libraries in python. Python dataset
extraction implementation available on GitHub (htt
ps://github.com/joy1303125/Si-based-Material-stab
ility-prediction/tree/main).

Figure 1 shows a sample structure from each AxSiy

alloy, representing the Si alloys with different ele-
ments A. In the dataset, all the metals (A) are either
monovalent or bivalent, except for the case of Al. We
used this dataset to validate the transferability of the
ML model to multivalent AxSiy alloys. Specifically, 12
NaxSiy and 3 AlxSiy structures are considered as the
test dataset, while the remaining dataset as our

Figure 1 Representative atomic structures from the dataset
consisting of inorganic crystal structures of Si and AxSiy alloys,
where A = Li, Na, K, Mg, Ca and Al, x and y represent
stoichiometric ratio of A and Si. List of Si-based metal anode

training dataset. Additional information regarding
the test structures can be found in Table S7.

Descriptors

The key to any ML model’s success is the rightful
representation of the atomic structures. The choice of
the descriptors is sensitive to the learning labels and
the model’s paradigm. Traditionally, the process of
selecting suitable descriptors involves a trial-and-er-
ror [44] approach. In this study, we employ multiple
descriptors to represent atomic structures and eval-
uate their performance in predicting the stability
metrics of the structures. The three descriptors com-
pared in the study are X-ray diffraction pattern
(XRD), sine coulomb matrix (SCM), and orbital field
matrix (OFM). The primary characteristics of each of
these descriptors have been detailed in supplemen-
tary section.

Support vector regression

SVR is a regression model that utilizes a statistical
learning approach to forecast continuous values. It
fits a hyperplane to the data in n-dimensional space
and employs Vapnik’s insensitive region approach to
create a generalized model with high prediction

structures are represented as a Na3Si, b  Mg2Si, c AlSi, d  Si, e

CaSi2, f LiSi, g K4Si23 where n is the total number of sample
structures present for each alloy category.

https://github.com/joy1303125/Si-based-Material-stability-prediction/tree/main
https://github.com/joy1303125/Si-based-Material-stability-prediction/tree/main
https://github.com/joy1303125/Si-based-Material-stability-prediction/tree/main
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ability [72]. SVR has several hyperparameters to
choose, such as the tube width (epsilon), suit-
able kernels (linear, polynomial, or radial basis
function), the regularization parameter C, and
gamma. The appropriate selection of these parame-
ters requires applying additional hyperparameter
tuning techniques. Two different types of hyperpa-
rameter tuning techniques are Grid Search CV and
Bayes Search CV. Both techniques can be imple-
mented in Python using the scikit-learn library [73].
The model can be evaluated using the repeated
K-fold cross-validation technique to avoid overfit-
ting. In this work, SVR algorithm has been imple-
mented on python library called scikit-learn [73]. The
training data is divided into a fivefold cross-valida-
tion dataset, where onefold is considered as a vali-
dation dataset, and the rest of the fold is going onto
training the model. Each fold result is repeated 10
times to keep away from the noise in the predictions.
Two different optimization techniques, Grid Search
CV and Bayes Search CV, have been used for the best
hyperparameters of our SVR model. Details of these
two hyperparameters are detailed in supplementary
section (see section 2.1 and 2.2).

Results and discussion

In this section, we discuss our model’s exploratory
data analysis and performance for the test dataset of
Si alloys described in Section ‘‘Dataset preparation.’’
Prediction results of system total energy and packing
fraction (PF) for validation and test data are com-
pared using root mean square error (RMSE) value. In
addition, model’s prediction ability is tested for 3
different types of structural descriptor detailed in
supplementary section 1 (see Supporting Information
section 1.1–1.3).

Exploratory data analysis

We analyzed the data distribution before fitting the
model to interpret trends in mean, variance, fre-
quency, and outliers. For interpreting the complete
data, violin plots are used that come within seaborn
python library [74]. The violin plot displays the inner
interquartile range as a thick black box and the
median value as a white dot. In Fig. 2, violin plots
depict the data pattern of output labels in the AxSiy

dataset, namely total energy/atom, PF, and

formation energy/atom. From Fig. 2a, b, it is evident
that KxSiy and NaxSiy structures exhibit the highest
variance for both output labels, total energy/atom
and PF, compared to the remaining data (LixSiy,
MgxSiy, CaxSiy; AlxSiy and Siy). The protruding plots
beyond the interquartile range for NaxSiy and M gxSiy

structures in Fig. 2a, b suggest the presence of out-
liers in the data. In Fig. 2c, for the formation energy
per atom data, we observe outliers in MgxSiy struc-

tures compared to the rest of the dataset. We test all
our results by removing outliers followed by the
modified Z score method [75] (shown in Tables S4–
S6). In regards to the improvement in the perfor-
mance of the trained model, the cross-validation
dataset exhibits better outcomes compared to the
original data points. However, when evaluating the
test dataset, we observe a degradation in perfor-
mance (as depicted in Tables 1, 2 and 3, S4–S6).

Model performance

To access the prediction capability of the SVR model,
the model is fitted on training data as described in
Section ‘‘Dataset preparation.’’ Each training data is
further sectioned into training and validation data-
sets based on the fivefold cross-validation method,
which separates 20% of the total training datapoints
for the model validation during the training. The
RMSE between the predicted and actual output val-
ues is employed to measure the model’s accuracy.
The model performance of the two trained models is
evaluated by predicting the total energy/atom, for-
mation energy/atom and PF values for NaxSiy and
AlxSiy structures, respectively. The performance of
trained SVR models is detailed in Sections ‘‘Test
dataset study on NaxSiy and AlxSiy structures for total
energy and PF prediction’’ and ‘‘Test dataset study on
NaxSiy and AlxSiy structures for formation energy/
atom prediction.’’

Test dataset study on NaxSiy and AlxSiy structures

for total energy and PF prediction

In the first experiment, SVR is trained on 730 struc-
tures of AxSiy alloys, where A = Li, K, Mg, and Ca.
Hyperparameter tuning for SVR is performed using
both Grid Search CV and Bayes Search CV, resulting
in different sets of hyperparameter values, which are
tabulated in Tables 1 and 2. For each of these
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Figure 2 Data distribution of Si and AxSiy alloy structures based
on a Total energy/atom (eV/atom) b  Packing fraction c Formation
energy/atom. Black bar represents the interquartile range, white

dot shows the median value and data that falls outside the
interquartile range is considered as outliers.

Table 1 SVR hyperparameters, descriptor used and associated results for NaxSiy and AlxSiy test dataset for total energy/atom prediction

Descriptor
name

XRD

Sine

OFM

Hyperparameter tuning
technique name

Grid search CV
Bayes search cv
Grid search CV
Bayes search cv
Grid search CV
Bayes search cv

C Gamma

51 0.0001
600 1.38E-06
21 0.05
4.98        0.15
11           0.01
276.76 0.009

Epsilon

5.00E-05
1.56E-0.6
0.1
0.02
0.0005
0.008

Train RMSE
(eV/atom)

0.17
0.55
0.1
0.1
0.13
0.08

Test RMSE
(eV/atom)

0.28
0.55
1.12
1.16
0.57
0.65

Validation RMSE
(eV/atom)

0.23
0.73
0.21
0.21
0.16
0.15

Table 2 SVR hyperparameters, descriptor used and associated results for NaxSiy and AlxSiy test dataset for PF prediction

Descriptor
name

XRD

Sine

OFM

Hyperparameter tuning technique
name

Grid search CV
Bayes search cv
Grid search CV
Bayes search cv
Grid search CV
Bayes search cv

C Gamma

1 0.1
600 2.06E-05
1 0.1
1.96 0.08
1         0.01
0.43 7.00E-03

Epsilon  Train
RMSE

0.005 0.004
3.00E-06 0.01
0.005 0.02
0.02 0.02
5.00E-05 0.022
2.00E-04 0.02

Test Validation
RMSE RMSE

0.1 0.04
0.07 0.03
0.2 0.04
0.2 0.04
0.11 0.03
0.11 0.03
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Table 3 SVR hyperparameters, descriptor used and associated results for NaxSiy and AlxSiy test dataset for formation energy/atom
prediction

Descriptor
name

XRD

Sine

OFM

Hyperparameter tuning
technique name

Grid search CV
Bayes search cv
Grid search CV
Bayes search cv
Grid search CV
Bayes search cv

C Gamma

1 0.01
103.21 9.00E-04
1 0.01
1.73 5.00E-03
201 0.01
5.64 0.5

Epsilon

0.05
0.07
0.05
1.72E-05
0.005
0.007

Train RMSE
(eV/atom)

0.06
0.04
0.12
0.12
0.07
0.06

Test RMSE
(eV/atom)

0.09
0.08
0.17
0.17
0.2
0.09

Validation RMSE
(eV/atom)

0.13
0.12
0.13
0.13
0.12
0.12

hyperparameter sets, three SVR models are trained
with different structural input descriptors, as detailed
in Section ‘‘Descriptors.’’ In total, six SVR models are

models. The obtained RMSE value for total energy/
atom prediction and PF prediction is plotted for
validation (see Fig. 3a, b) and test dataset (see Fig. 3c,

trained, incorporating various combinations of d).
hyperparameters and structural descriptor methods.
The trained models are used to predict the total
energy/atom and PF of 12 NaxSiy     and 3 AlxSiy

structures as test datapoints. Figure 3 describes the

From the histograms in Fig. 3a, b, it is visible that
RMSE values for validation using Grid search and
Bayes Search are nearly identical, except for the total
energy/atom prediction using XRD descriptor in

results obtained during the validation and testing of 6 Fig. 3a, which shows validation results for total

Figure 3 Performance comparison of hyperparameter tuning
methods Grid Search CV and Bayes Search CV. a RMSE value
of total energy/atom for validation dataset, b  RMSE value of
packing fraction for validation dataset, c RMSE value of total
energy/atom for the test dataset (NaxSiy and AlxSiyÞ, d  RMSE

value of packing fraction for test dataset (NaxSiy and AlxSiyÞ.
Three     different     structural     descriptors     with     two     different
optimizations techniques generated 6 set of results labeled on
top right side.
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energy per atom prediction. Among the different
descriptor methods, the highest RMSE of 0.73 eV/
atom was obtained when using XRD descriptors with
Bayes Search CV parameters. On the other hand, the
lowest RMSE of 0.15 eV/atom was achieved when
employing OFM descriptors with Bayes Search CV
parameters. Regarding the PF prediction in valida-
tion dataset, the lowest RMSE of 0.03 was obtained
when using both XRD and OFM descriptors. Con-
versely, the highest RMSE of 0.03 was observed with
Sine descriptors (Fig. 3b).

(Fig. 3d), as noted in Table 2. Hence, the findings
from Fig. 4d–f and Table 1 provide compelling evi-
dence of the superior performance of XRD and OFM
descriptors over SCM descriptors in predicting both
total energy per atom and PF.

Although the implementation of Bayes Search CV
and Grid Search CV with SVR yields similar energy
and structural predictions, we emphasize that Bayes
Search CV is faster than the Grid Search CV. Grid
Search CV iterates over complete permutated com-
binations of hyperparameters, which takes 144 h on

In test datapoints, the XRD-Grid search-based 32 cores. In contrast, Bayes search CV completes the
model showed the lowest RMSE of 0.28 eV/atom for
total energy per atom prediction (Fig. 3c). The highest

search in just 0.08 h on the same computational
facility. Therefore, we can conclude that Bayes Search

RMSE of 1.16 eV/atom was observed with Sine CV is nearly 1800 times more efficient than Grid
descriptors. Regarding PF prediction in test data-
points, the XRD-Bayes model achieved the lowest
RMSE of 0.07, while the highest RMSE of 0.20 was
obtained with Sine descriptors (Fig. 3d). These results
emphasize the importance of selecting appropriate
descriptors and optimization strategies for accurate
predictions of total energy per atom and PF.

A comprehensive comparison of the performance
of hyperparameter tuning methods and structural
descriptors for total energy/atom and PF is presented
in Tables 1 and 2, respectively. Additionally, Fig. 1b
illustrates that the datasets exhibit a high degree of
skewness on MgxSiy dataset. Consequently, 371 data

points have been excluded by considering energy
above hull greater than 20 eV/atom, as they fall
outside the metastable material range [76]. However,
the performance in terms of the test and validation
datasets has decreased for all cases, as indicated in
Tables S1 and S2. Therefore, we have decided to
utilize the unfiltered dataset for our test and valida-
tion cases when predicting total energy per atom and
PF.

Figure 4 illustrates the predicted total energy/
atom and PF for test NaxSiy and AlxSiy structures,
utilizing the SVR models based on Grid Search CV
and Bayes Search CV. For comparison, the actual
values of total energy/atom and packing fraction are
depicted as red scatter plots in Fig. 4a–f. The total
energy predictive supremacy of the XRD descriptor is
evident in Fig. 4a. Regarding the packing fraction
prediction, Fig. 4d demonstrates that the XRD-Bayes
model outperforms the other descriptors (Fig. 4e, f).
The RMSE for PF of test NaxSiy and AlxSiy structures
ranges from 0.07 to 0.11 for all XRD and OFM models

Search CV based on the total execution time of the
two approaches.

Test dataset study on NaxSiy and AlxSiy structures
for formation energy/atom prediction

The histograms in Fig. 5a, b depict the RMSE values
for both the validation and test datasets using Grid
search and Bayes search, with the exception of the
grid search CV parameter-based OFM test dataset
case (see Fig. 5b). Figure 5a demonstrates that the
best RMSE of 0.12 eV/atom is achieved when utiliz-
ing both XRD and OFM descriptors for the validation
dataset. On the other hand, Fig. 5b reveals that the
XRD-Bayes model achieves the lowest RMSE value of
0.08 eV/atom, while Sine descriptor performs poorly,
yielding an RMSE value of 0.17 eV/atom. Table 3
provides a comprehensive comparison of the per-
formance of hyperparameter tuning methods and
structural descriptors for formation energy/atom.

Figure 6a, b, c further supports the evaluation of
which descriptor correctly predicts the actual value
of formation energy/atom. The errors between pre-
dicted values and actual values are lowest for for-
mation energy/atom when structures are described
by XRD-Bayes, as shown in Fig. 6a. Conversely,
Fig. 6b illustrates the poor performance of the SCM
descriptor in predicting actual formation energy/
atom.

Due to heavy skewness toward MgxSiy structure in

the dataset (Fig. 1b), we excluded 371 data points
with energy above hul l [ 20  eV/atom [76]. All pre-
dictions for formation energy/atom were carried out
using Bayes search. The performance on the valida-
tion dataset exhibited a consistent RMSE. However,
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Figure 4 Comparing predictions using three structural descriptors with different hyperparameter search approaches for NaxSiy and AlxSiy
test dataset. a, b, c Total energy/atom of the test structures, d, e, f Packing fraction of the test structures.

for the test dataset, the model’s prediction ability
deteriorates, resulting in an increased RMSE value of
0.11 eV/atom (see Table S3), where the best RMSE
value obtained from Fig. 5b is 0.08 eV/atom. This
represents a 37.5% increase in test dataset error
compared to the RMSE value obtained with the
actual data points. Therefore, original dataset has the

help cope with the limited availability of data. The
hyperparameters and performance in terms of train-
ing, testing, and validation datasets for both the
original and filtered datasets are provided in Tables 3
and S3.

Similar work has been done on predicting forma-
tion energy/atom, where the Kernel Ridge Regres-

advantage of using it as a training data point as they sion (KRR) model is trained on 11,674 material
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Figure 5 Performance comparison of hyperparameter tuning
methods Grid Search CV and Bayes Search CV. RMSE value of
formation energy/atom for (a) validation dataset, and (b) test
dataset (NaxSiy and AlxSiyÞ. Three different structural descriptors

Figure 6 Comparing predictions using three structural descriptors

with two different optimization technique generated 6 set of results
labeled on top right side.

actual data points (see Fig. 6a). All the test structures and their
with different hyperparameter search approaches for NaxSiy and
AlxSiy test dataset. a, b, c Formation energy/atom of the test
structures. XRD descriptors prediction value matches with the

properties are presented in supplementary information (see
Table S7).

structures collected from MPD [70]. The study accuracy [77]. They employed a CNN-OFM-based
reported the RMSE of formation energy/atom pre-
diction for validation datapoints to be 0.10 eV/atom.
This performance is comparable to our current SVM-
Bayes model, which achieved an RMSE of 0.12 eV/
atom on the validation dataset when trained with
only 730 structural data (see Fig. 7). Additionally,

model and observed that as the dataset size increased
from 750 to 4,000, the RMSE for formation energy per
atom on the validation dataset decreased from 0.18 to
0.10 eV/atom (see Fig. 7). Figure 7 compares the
errors noted in previously reported energy prediction
ML models and the training data used against the

another similar study demonstrated that increasing        presented SVR-Bayes-XRD model. However, by
the dataset size has a positive impact on prediction        excluding 21 outliers from the training data points



J Mater Sci

Figure 7 Performance
comparison of the presented
SVR-Bayes-XRD model with
previously reported [70, 77]
ML-based energy prediction
models in terms of RMSE
value and training dataset size.
SVR-Bayes-XRD model
shows better performance with
limited training data size in
comparison with previous
reports.

following the modified Z score method [75], we can        different from the training data (valency of cations).
obtain an RMSE value of 0.04 eV/atom, shown in the        These results demonstrate that the choice of
last bar of Fig. 7 and Table S4. This comparison
demonstrates that with the qualitative training data
selection, hyperparameter tuning methods, and use
of appropriate structural descriptors, ML models can

descriptor has more weight than the training data in
making an ML model transferable to new systems.
Moreover, the prediction accuracies were improved
by the coupled use of SVR with Grid search CV

overcome the need for extensive data requirements        method. In the two demonstrated experiments,
for training and accurate predictions.                                    hyperparameter selection by the Grid search CV

method showed better predictions for the new

Conclusion

In summary, we propose SVR-based machine learn-
ing method to speedily predict the thermodynamic
and structural stability of Si alloying anodes before
experimental design. The use of hyperparameter
tuning methods such as Grid Search CV and Bayes
Search CV, and the structural descriptors to convert
atomic coordinates to comprehensive machine
learning inputs have been elaborated. The predictive
ability of three different types of descriptors has been
studied for AxSiy atomic systems. XRD descriptor of
the AxSiy structures as input data for the SVR model
performed most reliably, especially considering the
training structures were a mix of crystal, amorphous
and different electronic configuration systems. While
the OFM descriptor predicted total energy/atom,
formation energy/atom and packing fraction with
the lowest errors and highest accuracies for similar
electronic configurations, OFM failed for the test
cases where electronic configurations were slightly

structures. Though training and prediction times
were shorter for SVR coupled with the Bayes search
CV method, SVR-Bayes approach is suitable for pre-
dicting the stability of similar structures where
transferability is not targeted. This study attempts to
establish that the requirements of large datasets for
machine learning-based approaches in material sci-
ence domain can be overcome with the qualitative
selection of training data, hyperparameter tuning
methods, and appropriate structural descriptors.
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