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Abstract
The paper proposes and justifies a new algorithm of the proximal Newton type to solve
a broad class of nonsmooth composite convex optimization problems without strong
convexity assumptions. Based on advanced notions and techniques of variational anal-
ysis, we establish implementable results on the global convergence of the proposed
algorithm as well as its local convergence with superlinear and quadratic rates. For
certain structured problems, the obtained local convergence conditions do not require
the local Lipschitz continuity of the corresponding Hessian mappings that is a crucial
assumption used in the literature to ensure a superlinear convergence of other algo-
rithms of the proximal Newton type. The conducted numerical experiments of solving
the l1 regularized logistic regression model illustrate the possibility of applying the
proposed algorithm to deal with practically important problems.
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1 Introduction

In this paper we consider a class of optimization problems of the following type:

min
x∈Rn

F(x) := f (x) + g(x), (1)

where both functions f , g : R
n → R̄ := (−∞,∞] are proper, convex, and lower

semicontinuous (l.s.c.), while being structurally different from each other. Namely,
f is assumed to be twice continuously differentiable with the Lipschitz continuous
gradient∇ f on its domain.On the other hand, g ismerely continuous on its domain; see
Assumption1.1 for the precise formulations. It has beenwell recognized thatmodel (1),
known as a composite convex optimization problem, frequently appears in a variety of
applications including, e.g., machine learning, signal processing, and statistics, where
f is a loss function and g is a regularizer; we keep this terminology here. Note that
problem (1) contains in fact implicit constraints written as x ∈ � := dom g.

It is typical in applications that problems of type (1) have a large size, which
makes attractive to compute their solutions by employing first-order algorithms such
as the proximal gradient method (PGM). Given each iterate xk , the PGM constructs
a new xk+1 by solving the following optimization subproblem, which approximates
the smooth function f in (1) by the linear model:

min
x∈Rn

lk(x) + 1

2t
‖x − xk‖2 with lk(x) := f (xk) + ∇ f (xk)T (x − xk) + g(x), (2)

where T indicates the matrix transposition, and where t > 0 represents the step size
of PGM. As well known, the PGM applied to (1) generates a sequence of iterates that
converges at least sublinearly of rate O(1/k) (see, e.g., [1, 2]) and linearly with respect
to the sequence of cost function values—provided that f is strongly convex; see e.g.,
[3]. Refined results on linear convergence of the PGM are derived under various error
bound conditions as in [4–8].

When f is a twice continuously differentiable function, it is natural to expect
algorithms having faster convergence rates by exploiting the Hessian ∇2 f (xk) of f
at each iterate xk and constructing the next iterate xk+1 as a solution to the following
quadratic subproblem:

min
x∈Rn

qk(x) := f (xk) + ∇ f (xk)T (x − xk) + 1

2
(x − xk)T Hk(x − xk) + g(x), (3)

where Hk is an appropriate approximation of the Hessian ∇2 f (xk). Methods of this
type to solve composite optimization problems (1) are unified under the name of
proximal Newton-type methods; see, e.g., [9]. To the best of our knowledge, the ori-
gin of such methods to solve nonsmooth composite optimization problems given in
form (1) can be traced back to the generalized proximal point method developed by
Fukushima and Mine [10] who in turn considered it as an extension of Rockafellar’s
proximal point method [11] to find zeros of maximal monotone operators and sub-
gradient inclusions associated with convex functions. On the other hand, the general
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scheme of successive quadratic approximations to solve optimization-related prob-
lems is a common idea of Newton-type and quasi-Newton methods; see the books
[12, 13] with their bibliographies. For particular subclasses of composite problems
(1), the quadratic approximation scheme (3) contains special versions of the proximal
Newton-type methods known as GLMNET [14], newGLMNET [15], QUIC [16], the
Newton-LASSO method [17], the projected Newton-type algorithms [3, 18], etc.

Observe further that, due to the convexity of both functions f and g with f being
smooth, problem (1) can be equivalently written as the generalized equation

0 ∈ ∇ f (x) + ∂g(x) (4)

in the sense of Robinson [19], where ∂g(x) is the subdifferential of g at x , and where
the used subdifferential sum rule does not require any qualification conditions due
to the smoothness of f ; see, e.g., [20, Proposition 1.30]. Then subproblem (3) for
constructing the new iterate xk+1 in the proximal Newton method for (4) reduces to
solving the following partially linearized generalized equation at the given iterate xk :

0 ∈ ∇ f (xk) + Hk(x − xk) + ∂g(x). (5)

Various results on the local superlinear and quadratic convergence of iterative
sequences {xk} for (5) are obtained in the literature in the framework of quasi-Newton
methods for generalized equations under different kinds of regularity conditions
imposed on ∂ F from (1); see, e.g., the books [12, 13, 21] with the references and
discussions therein. In particular, Fischer [22] proposes an iterative procedure to solve
generalized equations and proves local superlinear and quadratic convergence of iter-
ates under a certainLipschitz stability property of the corresponding perturbed solution
map. More specifically, paper [22] develops a quasi-Newton algorithm to solve (1)
in the framework of (5) that exhibits a local superlinear/quadratic convergence in the
setting where g is the indicator function of a box constraint, and where Hk in (3)
is taken as the regularized Hessian Hk := ∇2 f (xk) + αk I with {αk} being a posi-
tive vanishing sequence satisfying certain conditions. The main assumptions of [22]
include the local Lipschitz continuity of the Hessian ∇2 f (x) and the upper Lipschitz
continuity/calmness of the perturbed solution map (1) at the points in question.

However, how to build a reasonable globalization of the local scheme given by (3)
has not been completely resolved yet. Various globalizations of the proximal Newton
method can be found in the literature, see, e.g., [9, 23–25]. Unfortunately, all these
works require f to be strongly convex. In particular, paper by Byrd et al. [23], which
addresses the special case of problem (1) with g := λ‖x‖1 and λ > 0, proposes imple-
mentable inexactness conditions and backtracking line search procedures to design a
globally convergent proximal Newton method, but the local superlinear and quadratic
convergence results therein are established under the strong convexity assumption on
f . Quite recently, in [26], the inexactness conditions and backtracking line search
procedures of [23] is applied to develop a proximal Newton method for (1) with prov-
ing its local convergence of superlinear and quadratic rates by using the Luo-Tseng
error bound condition [5] instead of the strong convexity assumption in [23]. How-
ever, the convergence results in [26] have a crucial flaw. To achieve a local quadratic
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convergence rate, the authors of [26] require that parameters of their method satisfy a
certain condition involving the constant in the error bound, which is extremely chal-
lenging to estimate. Note to this end that the strong convexity assumption has not been
imposed by using some other Newton-type algorithms such as the one based on the
forward-backward envelope (FBE), which is different from the proximal Newton-type
method developed below; see, e.g., [27] and the references therein.

In this paper we design a new globally convergent proximal Newton-type algorithm
to solve composite convex optimization problems of class (1) under the following
standing assumptions on the given data without requiring the strong convexity of the
loss function f :

Assumption 1.1 Impose the following properties of the loss function and the regular-
izer in (1):

(1) Both functions f , g : R
n → (−∞,∞] are proper, l.s.c., and convex.

(2) The effective domain of the loss function dom f := {x | f (x) < ∞} is open, and
f (x) is twice continuously differentiable on a closed set � ⊃ dom f .

(3) The regularizer g(x) is continuous on its domain and ∅ �= dom g ⊂ dom f .
(4) The gradient ∇ f (x) is Lipschitz continuous on a closed set � from (ii) with

Lipschitz constant L1 > 0.
(5) Problem (1) has a nonempty solution setX ∗ := argminx∈Rn F(x)with the optimal

value F∗.
Basic convex analysis tells us that the imposed assumptions (2) and (3) ensure the

fulfillment of the subdifferential sum rule ∂ F(x) = ∇ f (x)+∂g(x) for all x ∈ dom g;
see, e.g., [28, Corollary 2.45].

Our main contributions can be summarized as follows:

(1) We develop a globally convergent proximal Newton-type algorithm to solve (1)
with an implementable inexact condition for subproblem (3) and a new reasonable
backtracking line search strategy. Our line search procedure does not require any
restrictive assumptions. It is shown in this way that if the subgradient mapping
∂ F is metrically subregular at some limiting point of the iterative sequence, the
backtracking line search procedure accepts a unit step size when the iterates are
close to the solution. Furthermore, we prove that the proposed proximal Newton-
type algorithm exhibits a local convergence with the quadratic convergence rate.
Numerical experiments are performed to solve the l1 regularized logistic regression
problem that illustrate the efficiency of the proposed algorithm.

(2) We establish novel local convergence results for the proposed algorithm under the
metric q-subregularity assumption imposed on the subgradient mapping ∂ F for
any positive number q > 1

2 . If q < 1, the obtained results require less restrictive
assumptions in comparison with the case of metric subregularity (q = 1) to ensure
a superlinear convergence of iterates, while for q > 1 we achieve a convergence
rate that is higher than quadratic.

(3) When the loss function f in (1) satisfies additional structural assumptions, we
obtain a local superlinear convergence rate of our proposed algorithm with-
out imposing the Lipschitz continuity of the Hessian matrix ∇2 f (x). The latter
assumption is crucial for establishing a fast convergence of the previously known
algorithms of the proximal Newton type.
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The rest of the paper is organized as follows. Section 2 briefly overviews the notions
and results of variational analysis needed for the subsequent material. An concrete
example is also given to justify our motivation of using metric subregularity instead
of the Luo-Tseng error bound condition. In Sect. 3 we present our proximal Newton-
type algorithm and establish its global convergence. In Sect. 4, for the cases where
q ∈ (0, 1] and q > 1, we separately derive local fast convergence results under the
metric q-subregularity of ∂ F . Specially, local superlinear and quadratic convergence
of the proposed algorithm under metric subregularity are given. Section 5 is devoted to
problem (1) with a certain structure of the loss function f and establishes in this case
a superlinear convergence of the proposed algorithm without the Lipschitz continuity
of the loss function Hessian. Finally, Sect. 6 conducts and analyzes numerical experi-
ments to solve the practically important l1 regularized logistic regression problem by
implementing the designed proximal Newton-type method.

2 Preliminaries from variational analysis

Here we recall and discuss some material from variational analysis that is broadly
used in what follows. The reader can find more details and references in the books
[20, 21, 29].

Throughout the paper, we use the standard notation. Recall that R
n signifies an

n-dimensional Euclidean space with the inner product 〈·, ·〉 and the norm denoted by
‖ · ‖, while the 1-norm is signified by ‖ · ‖1. For any matrix A ∈ R

m×n we have
‖A‖ := maxx �=0

‖Ax‖
‖x‖ with σ̃min(A) standing for the smallest nonzero singular value

of A. The symbols Br (x) and Br (x) denote the open and the closed Euclidean norm
ball centered at x with radius r > 0, respectively, while we use B and B for the
corresponding unit balls around the origin. Given a nonempty subset � ⊂ R

n , denote
by bd� its boundary and consider the associated distance function dist(x;�) :=
inf{‖x − y‖ ∣

∣ y ∈ �} and the indicator function δ�(x) equal 0 if x ∈ � and ∞
otherwise. The graph of a set-valued mapping/multifunction � : R

n ⇒ R
m is given

by gph� := {(x, υ) ∈ R
n × R

m | υ ∈ �(x)}, and the inverse to � is �−1(υ) :=
{x ∈ R

n | υ ∈ �(x)}.
The following fundamental properties of set-valued mappings are employed in the

paper to establish fast local convergence results for the proposed proximal Newton-
type algorithm.

Definition 2.1 Let � : R
n →→ R

m be a set-valued mapping, let (x̄, ῡ) ∈ gph�, and
let q > 0.

(1) We say that � is metrically q- subregular at (x̄, ῡ) with modulus κ > 0 if
there is ε > 0 such that

dist
(

x;�−1(ῡ)
) ≤ κ dist

(

ῡ;�(x)
)q for all x ∈ Bε(x̄). (6)

(2) � is said to be metrically subregular at (x̄, ῡ) if q = 1 in (6).
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(3) We say that� is strongly metrically q- subregular at (x̄, ῡ)withmodulus
κ > 0 if there exists ε > 0 such that

‖x − x̄‖ ≤ κ dist
(

ῡ;�(x)
)q for all x ∈ Bε(x̄).

The metric subregularity property has been well recognized and applied in vari-
ational analysis and optimization numerical aspects. The reader can find more
information and references in [20, 21] with the commentaries and the bibliographies
therein. In this paper we employ metric subregularity of subgradient mappings, which
form a remarkable class of multifunctions with special properties. Various sufficient
conditions and characterizations of this property of subgradient mappings are given in
[30–32] in terms of certain second-order growth conditions imposed on the function
in question.

Themetric q-subregularity of order q ∈ (0, 1), known also asHölder metric subreg-
ularity, is much less investigated, while some verifiable conditions for the fulfillment
of this property can be found in, e.g., [33–35].Note that theHöldermetric subregularity
is clearly a weaker assumption in comparison with the standard metric subregularity
property.

The case of higher-order metric subregularity with q > 1 in (6) is largely open in
the literature. One of the reasons for this is that the corresponding metric q-regularity
property with q > 1 does not make sense, since it holds only for constant mappings.
Nevertheless, it is shown in [36] that the higher-order metric subregularity is a useful
property in variational analysis and optimization. This property is characterized for
subgradient mappings in [36] via a higher-order growth condition, and its strong
version fromDefinition 2.1(iii) is applied therein to the convergence analysis of quasi-
Newton methods for generalized equations.

Next we consider the proximal mapping

Proxg(u) := argmin
{

g(x) + 1

2
‖x − u‖2

∣
∣
∣ x ∈ R

n
}

, u ∈ R
n, (7)

associated with a proper function g : R
n → R̄. A crucial role of proximal mappings

has been well recognized not only in proximal Newton-type algorithms (see, e.g., [9,
23]), but also in other second-order methods of numerical optimization. In particular,
we refer the reader to the very recent papers [37, 38], where the proximal mappings
are used for designing superlinearly convergent Newton-type algorithms to find tilt-
stable local minimizers of nonconvex extended-real-valued functions and to solve
subgradient inclusions in a large generality. If g is l.s.c. and convex, then the proximal
mapping (7) is single-valued and nonexpansive on R

n , i.e., Lipschitz continuous with
constant one; see, e.g., [29, Theorem 12.12].

It is important to emphasize that in many practical models of type (1) arising, in
particular, inmachine learning and statistics, the proximalmapping associatedwith the
regularizer term g (e.g., when g is the l1-norm, the group Lasso regularizer, etc.) can
be easily computed. This is the case of the l1 regularized logistic regression problem
in our applications developed in Sect. 6.
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Having (7), define further the prox-gradient mapping associated with (1) by

G(x) := x − Proxg
(

x − ∇ f (x)
)

, x ∈ R
n, (8)

and present some properties of (8) used in what follows. Note that G(x) is generally
defined in terms of a positive parameter L > 0 asGL(x) := x −Prox 1

L g

(

x − 1
L ∇ f (x)

)

.
In order to concentrate on the main idea, we simply set L = 1 throughout this paper.
All of the results in this paper can be easily extended to the casewith a given positive L .
Thanks to the convexity, we have that G(x) = 0 if and only if x ∈ X ∗. The following
proposition provides an upper estimate for ‖G(x)‖ by dist(0; ∇ f (x) + ∂g(x)) and
shows that G(x) is Lipschitz continuous. It can be seen as a direct combination of [39,
Theorem 3.5] and [40, Lemma 10.10].

Proposition 2.1 Let ∇ f be Lipschitz continuous with modulus L1 on R
n. Then we

have the estimates

‖G(x)‖ ≤ dist(0; ∇ f (x) + ∂g(x)) for all x ∈ dom f ,

‖G(x) − G(y)‖ ≤ (2 + L1)‖x − y‖ for any x, y ∈ dom f .

The next proposition is a combination of [39, Theorems 3.4 and 3.5].

Proposition 2.2 Let ∇ f be Lipschitz continuous with modulus L1 around x̄ , and let the
mapping ∇ f (x) + ∂g(x) be metrically subregular at (x̄, 0), i.e., there exist numbers
ε, κ > 0 such that

dist(x;X ∗) ≤ κ dist
(

0; ∇ f (x) + ∂g(x)
)

for all x ∈ Bε(x̄).

Then whenever x ∈ Bε(x̄) we have the estimate

dist(x;X ∗) ≤ (1 + κ)(1 + L1)‖G(x)‖.

The following proposition gives a reverse statement to Proposition 2.2 while pro-
viding an estimate of the norm of (8) via the distance to the solution set of the convex
composite problem (1).

Proposition 2.3 Let ∇ f be Lipschitz continuous with modulus L1 on R
n. Then we

have the estimate

‖G(x)‖ ≤ (2 + L1)dist(x;X ∗) for all x ∈ dom f .

Proof Observe first that themappingG(x) is well-defined and single-valued for all x ∈
dom f due to the aforementioned result of [29]. It easily follows fromAssumption 1.1
that the nonempty solution set X ∗ is closed and convex; hence each point x ∈ R

n

has the unique projection πx ∈ X ∗ onto X ∗. Note that G(πx ) = πx − Proxg(πx −
∇ f (πx )) = 0 for πx ∈ X ∗. Thus we verify the claim of the proposition by

‖G(x)‖ = ‖G(x) − G(πx )‖ ≤ (2 + L1)‖x − πx‖, x ∈ dom f ,
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where the inequality holds since G(x) is (2 + L1)-Lipschitz continuous by Proposi-
tion 2.1. ��

Next we obtain an extension of Proposition 2.2 to case where the subgradient
mapping ∇ f + ∂g in (1) satisfies the Hölder subregularity property in the point in
question.

Proposition 2.4 Let ∇ f be Lipschitz continuous with modulus L1 around x̄, and let
the mapping ∇ f (x)+ ∂g(x) be metrically q-subregular at (x̄, 0) with q ∈ (0, 1], i.e.,
there exist ε1, κ1 > 0 such that

dist(x;X ∗) ≤ κ1dist
(

0; ∇ f (x) + ∂g(x)
)q

for all x ∈ Bε1(x̄).

Then we find constants ε2, κ2 > 0 that ensure the estimate

dist(x;X ∗) ≤ κ2‖G(x)‖q whenever x ∈ Bε2(x̄). (9)

Proof By (8) we have the inclusions

G(x) ∈ ∇ f (x) + ∂g
(

x − G(x)
)

and

G(x) + ∇ f
(

x − G(x)
) − ∇ f (x) ∈ ∇ f

(

x − G(x)
) + ∂g

(

x − G(x)
)

for all x ∈ dom f .When x ∈ Bε1(x̄)∩dom f , it follows from the imposed assumption
that

dist
(

x − G(x);X ∗) ≤ κ1 dist
(

0;G(x) + ∇ f
(

x − G(x)
) − ∇ f (x)

)q

≤ κ1(1 + L1)
q‖G(x)‖q ,

which leads us to the resulting estimates for such x :

dist(x;X ∗) ≤ dist
(

x − G(x);X ∗) + ‖G(x)‖
≤ (1 + κ1(1 + L1)

q)max
{‖G(x)‖, ‖G(x)‖q}

.

Applying now Proposition 2.3 tells us that, whenever dist(x;X ∗) ≤ 1/(2 + L1) and
x ∈ dom f , we get

‖G(x)‖ ≤ (2 + L1)dist(x;X ∗) ≤ 1.

Letting ε2 := min{1/(2 + L1), ε1} and remembering that q ≤ 1 bring us to the
inequality

dist(x;X ∗) ≤ (1 + κ1(1 + L1)
q)‖G(x)‖q for all x ∈ Bε2(x̄),

which verifies (9) with κ2 := (1 + κ1(1 + L1)
q) and thus completes the proof of the

proposition. ��
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Finally, we establish a sufficient condition for the metric q-subregularity of the
subgradient mapping ∇ f (x) + ∂g(x). Recall first the following characterization of
metric q-subregularity, which is a direct specification of [36, Theorem 3.4] in the
convex case.

Proposition 2.5 Let x̄ ∈ dom F, ῡ ∈ ∂ F(x̄), and q > 0. Then we have the equivalent
statements:

(1) ∂ F is metrically q-subregular at (x̄, ῡ).
(2) There are two positive numbers ε and c such that

F(x) ≥ F(x̄) + 〈ῡ, x − x̄〉 + c · dist(x; (∂ F)−1(ῡ)
) 1+q

q for all x ∈ Bε(x̄).

The aforementioned sufficient conditions for the metric q-subregularity of the sub-
gradient mapping ∇ f (x) + ∂g(x) as formulated as follows.

Proposition 2.6 Let x̄ ∈ X ∗, and let q > 0. Suppose ∂g is strongly metrically q-
subregular at (x̄,−∇ f (x̄)). Then ∇ f (x)+∂g(x) is metrically q-subregular at (x̄, 0).

Proof Since ∂g is strongly metrically q-subregular at (x̄,−∇ f (x̄)), we have
(∂g)−1(−∇ f (x̄)) = {x̄}, and Proposition 2.5 gives us positive numbers ε and c
such that

g(x) ≥ g(x̄) + 〈−∇ f (x̄), x − x̄〉 + c‖x − x̄‖ 1+q
q for all x ∈ Bε(x̄).

The convexity of f implies that

f (x) ≥ f (x̄) + 〈∇ f (x̄), x − x̄〉 for all x ∈ R
n .

Summing up the above two inequalities gives us

F(x) ≥ F(x̄) + c‖x − x̄‖ 1+q
q ≥ F(x̄) + c · dist(x;X ∗)

1+q
q for all x ∈ Bε(x̄).

Then the conclusion of the proposition immediately follows from Proposition 2.5. ��
Metric subregularity is a weaker assumption than the Luo-Tseng error bound con-

dition. We conclude this section by giving a specific example verifying this statement.

Example 1 Consider the following problem of composite convex optimization:

minx∈Rn f (x) + g(x) with f (x) := cT x and g(x) := ‖x‖,

where c ∈ R
n is such that‖c‖ = 1. Problems of this type frequently appear in statistical

learning models. It can be easily calculated that the optimal value is F∗ = 0 and the
optimal solution is X ∗ = {−γ c | γ ≥ 0}. We know that for any x̄ ∈ X ∗ the mapping

∇ f (x) + ∂g(x) = c + ∂‖x‖
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is metrically subregular at (x̄, 0) since ∂‖x‖ is metrically subregular on its graph; see,
e.g., [8, Lemma 4].

On the other hand, the Luo-Tseng error bound fails. Indeed, if this condition holds,
then there exist κ, ε, η > 0 such that for any x satisfying F(x) ≤ η and ‖G(x)‖ ≤ ε

we get

dist(x;X ∗) ≤ κ‖G(x)‖.

Let ck → cwith ‖ck‖ = 1, k ∈ N. Setting xk := γk(−ck)with γk := 1√
−cT ck+1

→ ∞
gives us

F(xk) = γk

(

−cT ck + ‖ck‖
)

=
√

−cT ck + 1 → 0,

c − ck = c + xk

‖xk‖ ∈ ∇ f (xk) + ∂g(xk).

It follows from Proposition 2.1 that we have the estimate

‖G(xk)‖ ≤ dist
(

0; ∇ f (x) + ∂g(x)
) ≤ ‖c − ck‖ → 0.

However, letting θk := arccos( cT (c−ck)‖c−ck‖ ) → π/2 tells us that

dist(xk;X ∗)
‖G(xk)‖ ≥ γk

√

1 − (cT ck)2

‖c − ck‖ = γk sin(θk) → ∞,

which clearly contradicts the Luo-Tseng error bound condition.

3 The new algorithm and its global convergence

In this section we describe the proposed proximal Newton-type algorithm to solve
the class of composite convex optimization problems (1) with justifying its global
convergence under the standing assumptions.

Given a current iterate xk for each k = 0, 1, . . ., we select a positive semidefi-
nite matrix Bk as an arbitrary approximation of the Hessian ∇2 f (xk) satisfying the
standing boundedness assumption:

there exists M ≥ 0 such that ‖Bk‖ ≤ M whenever k = 0, 1, . . . . (10)

If the gradient mapping ∇ f is uniformly Lipschitz continuous along the sequence of
iterates with constant L1, then (10) holds for Bk = ∇2 f (xk) with M = L1. In the
general case of Bk , pick any constants c > 0 and ρ ∈ (0, 1] and, using the prox-
regular mapping (8), consider the positive number αk := c‖G(xk)‖ρ and define the
quasi-Newton approximation of the Hessian of f at xk by

Hk := Bk + αk I for all k = 0, 1, . . . , (11)
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which is a positive definite matrix. Then similarly to [23], but with the different
approximation (11), denote

rk(x) := x − Proxg

(

x − ∇ f (xk) − Hk(x − xk)
)

(12)

and select x̂ k as an approximate minimizer of the quadratic subproblem for (1) given
by

min
x∈Rn

qk(x) := f (xk) + ∇ f (xk)T (x − xk) + 1

2
(x − xk)Hk(x − xk) + g(x) (13)

with the residual number ‖rk(x̂ k)‖measuring the approximate optimality of x̂ k in (13).
Observing that ‖rk(x̂ k)‖ = 0 if and only if x̂ k is an exact solution to subproblem (13),
we use the nonnegative number ‖rk(x̂ k)‖ with rk(x) taken from (12) as the optimality
measure of x̂ k in subproblem (13). Adapting the scheme of [23] in our new setting,
let us impose the following two estimates as inexact conditions for choosing x̂ k as an
approximate solution to subproblem (13):

‖rk(x̂ k)‖ ≤ ηk‖G(xk)‖ and qk(x̂ k) ≤ qk(xk) (14)

with the parameter ηk := ν min{1, ‖G(xk)‖�} defined via (12) and some numbers
ν ∈ [0, 1) and � > 0. Since any exact solution to subproblem (13) always fulfills
the two inexact conditions in (14), a point x̂ k satisfying (14) always exists. For many
application problems, the mapping Proxg is easy to calculate, thus inexact conditions
(14) can be readily verified. In the case where dist

(

0; ∂qk(x̂ k)
)

is easy to estimate,
because ‖rk(x̂ k)‖ ≤ dist

(

0; ∂qk(x̂ k)
)

always holds (see, e.g., [39, Theorem 3.5]), we
can use dist

(

0; ∂qk(x̂ k)
) ≤ ηk‖G(xk)‖ for verifying the first inexact condition in (14).

Using the above constructions and the line search procedure inspired by [41, 42], we
are ready to propose the proximal Newton-type algorithm designed as in Algorithm 1.
In the proposed Algorithm 1, we add Step 4, that is inspired by [41, 42], to check
whether the prox-gradient residual ‖G(x̂ k)‖ of the inexact solution x̂ k to subproblem
(3) decreases to be under a given fixed ratio, which is smaller than one, times the
previous value. If it does, then we will update the next iterate xk+1 by using the
Newton direction dk with a unit step size to let xk+1 = x̂ k and skip the backtracking
line search in Step 5. Otherwise, we use the conventional backtracking line search
procedure in Step 5 to find a conservative step size for updating the next iterate. It is
shown in Theorem 4.1 below that Step 4 always gives us a unit step size when the
iterate xk is close to the solution under the metric q-subregularity condition.

In the rest of this section, we show that the proposed algorithm globally con-
verges under the mild standing assumptions, which are imposed above and will not be
repeated. Let us start with the following lemma providing a subgradient estimate for
subproblem (13) at the approximate solution.
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Algorithm 1 Proximal Newton-type method

1: Choose x0 ∈ R
n , 0 < θ, σ, γ < 1, C > F(x0), ᾱ, c > 0, and ρ ∈ (0, 1].

2: for k = 0, 1, . . . do

1. Update the approximation of the Hessian matrix Bk .

2. Form the quadratic model (3) with Hk := Bk + αk I and αk := min
{

ᾱ, c‖G(xk )‖ρ
}

.

3. Obtain an inexact solution x̂k of (3) satisfying the conditions in (14).
4. If k = 0, let ϑ1 := G(x0) and go to Step 5. For k ≥ 1, if ‖G(x̂k )‖ ≤ σϑk and F(x̂k ) ≤ C , let

tk := 1, ϑk+1 := ‖G(x̂k )‖, and go to Step 6. Otherwise, let ϑk+1 := ϑk and go to Step 5.
5. Perform a backtracking line search along the direction dk := x̂k − xk by setting tk := γ mk , where

mk is the smallest nonnegative integer m such that

F(xk + γ mdk ) ≤ F(xk ) − θαkγ m‖dk‖2. (15)

6. Set xk+1 := xk + tkdk .

3: end for

Lemma 3.1 Given an approximate solution x̂k to (13), there exists a vector ek ∈ R
n

such that

ek ∈ ∇ f (xk) + Hk(x̂ k − xk) + ∂g(x̂ k − ek) and ‖ek‖
≤ ν min

{‖G(xk)‖, ‖G(xk)‖1+�
}

. (16)

Proof Let ek := rk(x̂ k) = x̂ k − Proxg(x̂ k − ∇ f (xk) − Hk(x̂ k − xk)). Then we have

ek ∈ ∇ f (xk) + Hk(x̂ k − xk) + ∂g(x̂ k − ek),

which follow from (7). Using finally the inexact conditions (14) for x̂ k , we verify the
claim of the lemma. ��

The next lemma provides elaborations on Step 5 of the proposed algorithm with
the decreasing of the cost function in (1) by the backtracking line search.

Lemma 3.2 Let tk be chosen by the backtracking line search in Step 5 of Algorithm 1
at iteration k. Then we have the step size estimate

tk ≥ γ (1 − θ)αk

L1
(17)

with the cost function decrease satisfying

F(xk+1) − F(xk) ≤ −γ θ(1 − θ)

2L1

(
(1 − ν)αk

1 + M + αk

)2

‖G(xk)‖2. (18)

Proof Since x̂ k is an inexact solution to (3) obeying the conditions in (14), it follows
that

0 ≥ qk(x̂ k) − qk(xk) = lk(x̂ k) − lk(xk) + 1

2
(x̂ k − xk)T Hk(x̂ k − xk),
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where lk is the linear part of qk defined in (2). This yields

lk(xk) − lk(x̂ k) ≥ 1

2
(x̂ k − xk)T Hk(x̂ k − xk) ≥ 1

2
αk‖x̂ k − xk‖2. (19)

By G(xk) = xk − Proxg(xk − ∇ f (xk)) we deduce from the stationary and subdiffer-
ential sum rules that

G(xk) ∈ ∇ f (xk) + ∂g
(

xk − G(xk)
)

.

Furthermore, Lemma 3.1 gives us the condition ek ∈ ∇ f (xk) + Hk(x̂ k − xk) +
∂g(x̂ k −ek) for x̂ k with ek satisfying the estimate ‖ek‖ ≤ ν‖G(xk)‖. Themonotonicity
of the subgradient mapping ∂g ensures that

〈G(xk) + Hk(x̂ k − xk) − ek, xk − G(xk) − x̂ k + ek
〉 ≥ 0,

which therefore leads us to the inequality

‖G(xk) − ek‖2 ≤ ‖G(xk)‖2 − 2
〈

ek,G(xk)
〉 + ‖ek‖2 + (x̂ k − xk)T Hk(x̂ k − xk)

≤ 〈G(xk) − ek, xk − x̂ k + Hk(xk − x̂ k)
〉

≤ ∥
∥G(xk) − ek

∥
∥ · ∥

∥xk − x̂ k + Hk(xk − x̂ k)
∥
∥.

Using again the condition ‖ek‖ ≤ ν‖G(xk)‖ together with ‖Bk‖ ≤ M from (10)
results in

‖G(xk)‖ ≤ ‖G(xk) − ek‖ + ‖ek‖ ≤ (1 + M + αk)‖x̂ k − xk‖ + ν‖G(xk)‖.

Remembering the choice of ν ∈ [0, 1), we estimate the prox-gradient mapping (8) at
the iterate xk by

‖G(xk)‖ ≤ 1 + M + αk

1 − ν
‖x̂ k − xk‖. (20)

Next let us show that the backtracking line search along the direction dk = x̂ k − xk in
Step 5 is well-defined and the proposed step size ensures a sufficient decrease in the
cost function F . It follows from the Lipschitz continuity of ∇ f that

f (xk + τdk) ≤ f (xk) + τ∇ f (xk)T dk + L1

2
τ 2‖dk‖2 for any τ ≥ 0,

and thus we deduce from the definition of lk in (2) that

F(xk) − F(xk + τdk) ≥ lk(xk) − lk(xk + τdk) − L1

2
τ 2‖dk‖2.
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912 B. S. Mordukhovich et al.

This implies by the convexity of g that

lk(xk) − lk(xk + τdk) ≥ τ
(

lk(xk) − lk(xk + dk)
)

.

Combining the latterwith (19) andusing the choice of θ ∈ (0, 1)yield the relationships

F(xk) − F(xk + τdk) − θαkτ

2
‖dk‖2 ≥ lk(xk)

− lk(xk + τdk) − L1

2
τ 2‖dk‖2 − θαkτ

2
‖dk‖2

≥ τ
(

lk(xk) − lk(xk + dk)
) − L1

2
τ 2‖dk‖2 − θαkτ

2
‖dk‖2

≥ (1 − θ)τ
αk

2
‖dk‖2 − L1

2
τ 2‖dk‖2

= τ

2
‖dk‖2((1 − θ)αk − L1τ

)

.

(21)

This tells us that the backtracking line search criterion (15) fulfills when 0 < τ ≤
(1−θ)αk

L1
, and thus the step size tk satisfies the claimed condition (17). Substituting now

τ := tk ≥ γ (1−θ)αk
L1

into (21) and employing the estimate of ‖G(xk)‖2 from (20), we
arrive at the inequalities

F(xk) − F(xk + tkdk) ≥ θαk tk
2

‖dk‖2

≥ γ θ(1 − θ)α2
k

2L1

(
1 − ν

1 + M + αk

)2

‖G(xk)‖2,

which verify the decreasing condition (18) and thus completes the proof of the lemma.
��

Now we are ready to prove the global convergence of Algorithm 1. Define the sets

K := {

0, 1, . . .
}

and K0 := {0} ∪ {

k+1∈ K
∣
∣ Step 5 is not applied at iteration k

}

.

(22)

Theorem 3.1 Let {xk} be the sequence of iterates generated by Algorithm 1 with an
arbitrarily chosen starting point x0 ∈ R

n under the standing assumptions made. Then
we have the residual condition

lim inf
k→∞ ‖G(xk)‖ = 0 (23)

along the prox-gradient mapping (8). Furthermore, the boundedness of {xk} yields the
convergence to the optimal value limk→∞ F(xk) = F∗ and ensures that any limiting
point of {xk} is a global minimizer in (1).
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Proof First we consider the case where the set K0 is infinite. We can reorganize K0 in
such a way that 0 = k0 < k1 < k2 < . . .. It follows from Step 4 of Algorithm 1 that
the estimate

‖G(xk�+1)‖ ≤ σ‖G(xk� )‖ whenever � = 0, 1, . . .

holds with the chosen number σ ∈ (0, 1) in the algorithm, and therefore we get

0 ≤ lim inf
k→∞ ‖G(xk)‖ ≤ lim sup

�→∞
‖G(xk� )‖ ≤ lim

�→∞ σ�‖G(xk0)‖ = 0,

which clearly yields (23). The continuity ofG(·) ensures that ‖G(x̄)‖ = 0 for a limiting
point x̄ of the sequence {xk}k∈K0 , and thus x̄ ∈ X ∗. Consider now any limiting point
x̄ of the entire sequence of iterates {xk}k∈K . If there exists k̄ such that k ∈ K0 for
all k ≥ k̄, it is easy to see that x̄ is a global minimizer of (1). Otherwise, for any
k /∈ K0, denote by k� ∈ K0 the largest number satisfying k� < k, and hence we get
the following estimate from Step 5:

F∗ ≤ F(xk) ≤ F(xk−1) ≤ . . . ≤ F(xk� ).

When the sequence {xk}k∈K0 is bounded, since any limiting point of {xk}k∈K0 is a
global minimizer of (1) as already shown, it follows that lim�→∞ F(xk� ) = F∗. This
readily verifies by the constructions above that limk→∞ F(xk) = F∗, and thus any
limiting point of {xk}k∈K provides a global minimum to (1).

Next we consider the case where K0 is finite and denote k̄ := maxk∈K0 k. It follows
from Lemma 3.2 that for any k > k̄ we get

F(xk+1) − F(xk) ≤ −γ θ(1 − θ)

2L1

(
(1 − ν)αk

1 + M + αk

)2

‖G(xk)‖2,

which therefore tells us that

∞
∑

k=k̄

γ θ(1 − θ)

2L1

(
(1 − ν)αk

1 + M + αk

)2

‖G(xk)‖2 ≤ F(xk̄) − F∗ ≤ 0.

The latter implies in turn that

lim
k→∞

γ θ(1 − θ)

2L1

(
(1 − ν)αk

1 + M + αk

)2

‖G(xk)‖2 = 0.

Remembering the choice of αk = min
{

ᾱ, c‖G(xk)‖ρ
}

with ᾱ, c, ρ > 0 ensures that

lim
k→∞ ‖G(xk)‖ = 0,

hence (23) holds. This readily verifies by the continuity of G(·) that any limiting point
of {xk}k∈K provides a global minimum to (1). ��
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914 B. S. Mordukhovich et al.

We conclude this section with a consequence of Theorem 3.1 giving an easily
verifiable condition for the boundedness of the sequence of iterates in Algorithm 1.
Recall that a function ϕ : R

n → R̄ is coercive if ϕ(x) → ∞ provided that ‖x‖ → ∞.

Corollary 3.1 In addition to the standing assumptions imposed above, suppose that
the cost function F in (1) is coercive. Then we have limk→∞ F(xk) = F∗ for the
sequence of iterates {xk} generated by Algorithm 1, and any limiting point of {xk} is
a global minimizer of (1).

Proof According to Steps 4 and 5 of Algorithm 1, the sequence {xk} generated by the
algorithm satisfies the condition F(xk) ≤ C for all k. Then the coercivity of F implies
that the sequence {xk} is bounded. Thus we deduce the conclusions of the corollary
from Theorem 3.1. ��

4 Fast local convergence under metric q-subregularity

This section is devoted to the local convergence of the proximal Newton-type Algo-
rithm 1 under the imposed metric q-subregularity in both cases where q ∈ (0, 1]
and q > 1. In the first case, which is referred to as the Hölder metric subregularity,
we do not consider any q ∈ (0, 1], but precisely specify the lower bound of q and
respectively modify some parameters of our algorithm. Namely, for the case where
q = 1, i.e., the metric subregularity assumption of the subgradient mapping in (1)
holds, the main result here establishes superlinear local convergence rates depending
on the selected exponent ρ ∈ (0, 1] in the algorithm, which gives us the quadratic
convergence in the case where ρ = 1. Our analysis partly follows the scheme of [22]
for a Newtonian algorithm to solve generalized equations with nonisolated solutions
under certain Lipschitzian properties of perturbed solution sets. Note that the imposed
metric subregularity allows us to avoid limitations of the line search procedure (needed
for establishing the global convergence of our algorithm in Sect. 2 that is not addressed
in [22]) to achieve now the fast local convergence. The imposedmetric q-subregularity
assumption is weaker for q < 1 than the metric subregularity, but allows us to achieve
a local superlinear (while not quadratic) convergence of the algorithm. In the other
case where q > 1, we achieve a higher-than-quadratic rate of the local convergence
of the proposed algorithm.

Starting with the Hölder metric subregularity, we first provide the following norm
estimate of directions dk in the proposed Algorithm 1.

Lemma 4.1 Let {xk} be the sequence generated by Algorithm 1, and let x̄ ∈ X ∗ be any
limiting point of the sequence {xk}. In addition to the standing assumptions, suppose
that the subgradient mapping ∇ f (x) + ∂g(x) is metrically q-subregular at (x̄, 0)
for some q ∈ (0, 1], that the Hessian ∇2 f is locally Lipschitzian around x̄, that
αk = min

{

ᾱ, c‖G(xk)‖ρ
}

with ᾱ, c > 0, ρ ∈ (0, q], and � ≥ ρ in Algorithm 1,
and that the estimate ‖Bk − ∇2 f (xk)‖ ≤ C1 dist(xk;X ∗) holds with some constant
C1 > 0. Then there exist positive numbers ε and c1 such that for dk := x̂ k − xk we
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have the direction estimate

‖dk‖ ≤ c1 dist(xk;X ∗) as xk ∈ Bε(x̄). (24)

Proof Remembering that x̂ k is an inexact solution to (3) satisfying conditions (14),
we apply Lemma 3.1 and find a vector ek such that the relationships in (16) hold.
Denoting by πk

x the (unique) projection of xk onto the solution map X ∗, we get by
basic convex analysis that 0 ∈ ∇ f (πk

x ) + ∂g(πk
x ) and thus

∇ f (xk) − ∇ f (πk
x ) + Hk(π

k
x − xk) ∈ ∇ f (xk) + Hk(π

k
x − xk) + ∂g(πk

x ).

Since the mapping ∇ f (xk)+ Hk(· − xk)+ ∂g(·) is strongly monotone on R
n with

constant αk , we have

〈∇ f (xk) − ∇ f (πk
x ) + Hk(π

k
x − xk) − ek + Hkek , π

k
x − x̂ k + ek〉 ≥ αk‖πk

x − x̂ k + ek‖2.

Combining the above with the algorithm constructions gives us the estimates

‖πk
x − x̂ k + ek‖ ≤ 1

αk
‖∇ f (xk) − ∇ f (πk

x ) + Hk(π
k
x − xk) − ek + Hkek‖

≤ 1

αk

(

‖∇ f (xk) + ∇2 f (xk)(πk
x − xk) − ∇ f (πk

x )‖

+‖(Hk − ∇2 f (xk))(πk
x − xk)‖ + ‖ek − Hkek‖

)

≤ 1

αk

(

‖∇ f (xk) + ∇2 f (xk)(πk
x − xk) − ∇ f (πk

x )‖

+ ‖Bk − ∇2 f (xk)‖ · ‖xk − πk
x ‖ + αk‖xk − πk

x ‖ + (1 + M)‖ek‖
)

≤ 1

αk

(

‖∇ f (xk) + ∇2 f (xk)(πk
x − xk) − ∇ f (πk

x )‖ + ‖Bk

− ∇2 f (xk)‖ dist(xk;X ∗) + αkdist(xk;X ∗) + (1 + M)ν‖G(xk)‖1+�
)

,

(25)

where the third inequality follows from the choice of Hk = Bk +αk I while the fourth
inequality is implied by ‖ek‖ ≤ ν‖G(xk)‖1+�. Since the Hessian mapping ∇2 f is
locally Lipschitzian around x̄ , there exist positive numbers ε2 and L2 such that for any
x, y ∈ Bε2(x̄) we get

‖∇ f (x) + ∇2 f (x)(y − x) − ∇ f (y)‖ ≤ L2

2
‖x − y‖2.

Furthermore, the imposed assumption that ‖Bk − ∇2 f (xk)‖ ≤ C1 dist(xk;X ∗) and
the fact that xk ∈ Bε2(x̄) implying πk

x ∈ Bε2(x̄) give us the estimate

‖πk
x − x̂ k + ek‖ ≤ 1

αk

(( L2

2
+ C1

)

dist(xk;X ∗)2 + αkdist(xk;X ∗) + (1 + M)ν‖G(xk)‖1+�
)
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916 B. S. Mordukhovich et al.

provided xk ∈ Bε2(x̄). Next we employ the relationships

‖dk‖ = ‖x̂ k − xk‖ ≤ ‖πk
x − x̂ k + ek‖

+‖πk
x − xk‖ + ‖ek‖ with ‖ek‖ ≤ ν‖G(xk)‖1+� (26)

together with ‖G(xk)‖ ≤ (2 + L1) dist(xk;X ∗) by Proposition 2.3 to obtain that

αk‖dk‖ ≤
(

L2

2
+ C1

)

dist(xk;X ∗)2 + 2αk dist(xk;X ∗)

+ (1 + M + αk)ν‖G(xk)‖ρ(2 + L1)
1+�−ρdist(xk;X ∗)1+�−ρ

(27)

provided that xk ∈ Bε2(x̄). The assumed metric q-subregularity of ∇ f (x) + ∂g gives
us by Proposition 2.4 numbers ε1, κ1 > 0 with

dist(x;X ∗) ≤ κ1‖G(x)‖q for all x ∈ Bε1(x̄).

Supposingwithout loss of generality that ε1≤min{1, ε2} andαk =min
{

ᾱ,c‖G(xk)‖ρ
}

= c‖G(xk)‖ρ when xk ∈ Bε1(x̄) and remembering that ρ ∈ (0, q] imply that

αk = c‖G(xk)‖ρ ≥ cκ
− ρ

q
1 dist(x;X ∗)

ρ
q ≥ cκ

− ρ
q

1 dist(x;X ∗) as xk ∈ Bε1(x̄).

(28)

Since ρ ∈ (0, q] and � ≥ ρ, we deduce from (27) and (28) the existence of positive
numbers ε and c1 ensuring the fulfillment of estimate (24) claimed in the lemma. ��

Next, under the imposed Hölder metric subregularity, we show that the set K0
defined in (22) is infinite.

Lemma 4.2 Let {xk} be the sequence generated by Algorithm 1, and let x̄ ∈ X ∗ be
any limiting point of {xk}. In addition to the standing assumptions, suppose that the
mapping ∇ f (x) + ∂g(x) is metrically q-subregular at (x̄, 0) for some q ∈ (0, 1],
that the Hessian ∇2 f is locally Lipschitzian around x̄, that αk = min

{

ᾱ, c‖G(xk)‖ρ
}

with ᾱ, c > 0, ρ ∈ (0, q], and � ≥ ρ in Algorithm 1, and that the estimate ‖Bk −
∇2 f (xk)‖ ≤ C1 dist(xk;X ∗) holds with some constant C1 > 0. Then the set K0
defined in (22) is infinite.

Proof On the contrary, suppose that K0 is finite and denote k̄ := maxk∈K0 k. Arguing
as in the proof of Lemma 3.1 tells us that

lim
k→∞ ‖G(xk)‖ = 0.

According to Lemma 4.1, there exist positive numbers ε and c1 such that for dk :=
x̂ k − xk we have

‖dk‖ ≤ c1 dist(xk;X ∗) as xk ∈ Bε(x̄),

123



A globally convergent proximal Newton-type method… 917

which implies that lim infk→∞ ‖dk‖ = 0. Combining this with the (2+ L1)-Lipschitz
continuity of ‖G(x)‖ as follows from Proposition 2.1 gives us

lim inf
k→∞ ‖G(x̂ k)‖ ≤ lim

k→∞ ‖G(xk)‖ + lim inf
k→∞ (2 + L1)‖dk‖ = 0.

Hence there exists k > k̄ such that k ∈ K0; a contradiction showing that the set K0 is
infinite. ��

Having Lemmas 4.1, 4.2, and the previous estimates in hand, next we derive the
following fast local convergence result for Algorithm 1 with a particular choice of
parameters under the imposedHölder metric subregularity of the subgradient mapping
∇ f + ∂g with an appropriate factor q.

Theorem 4.1 Let {xk} be the sequence generated by Algorithm 1, and let x̄ ∈ X ∗ be
any limiting point of the sequence {xk}k∈K0 , where K0 is defined in (22). In addition
to the standing assumptions, suppose that the subgradient mapping ∇ f (x) + ∂g(x)

is metrically q-subregular at (x̄, 0) with q ∈ ( 12 , 1], that the Hessian mapping ∇2 f is
locally Lipschitzian around x̄, that αk = min

{

ᾱ, c‖G(xk)‖ρ
}

, ᾱ, c > 0, ρ ∈ [ 12 , q],
and � ≥ ρ in Algorithm 1, and that ‖Bk − ∇2 f (xk)‖ = O(‖G(xk)‖). Then there
exists a natural number k0 such that

tk = 1 for all k ≥ k0,

and the sequence {xk} converges to the point x̄ . Furthermore, this convergence is
superlinear with the rate of ρ + q > 1 in the sense that there exist a positive number
C0 and a natural number k0 for which

‖G(xk+1)‖ ≤ C0‖G(xk)‖ρ+q whenever k ≥ k0, (29)

and dist(xk;X ∗) converges R-superlinearly to 0 in the sense that limk→∞
k
√

dist(xk;X ∗) = 0.
In particular, when the subgradient mapping ∇ f (x) + ∂g(x) is metrically subreg-

ular at (x̄, 0), i.e., q = 1, and when ρ = 1, we have the quadratic convergence of
xk → x̄ with the exponent ρ + q = 2 in (29), and there exists a positive constant C̃0
such that

dist(xk+1;X ∗) ≤ C̃0dist(xk;X ∗)2 whenever k ≥ k0. (30)

Proof Observe first that the assumed metric q-subregularity of the mapping ∇ f (x)+
∂g(x) at (x̄, 0) gives us positive numbers ε1 and κ1 such that for all p near 0 ∈ R

n we
have the inclusion

�(p) ∩ Bε1(x̄) ⊂ X ∗ + κ1‖p‖q
B with �(p) := {

x ∈ R
n

∣
∣ p ∈ ∇ f (x) + ∂g(x)

}

.

(31)
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Employing Proposition 2.4 allows us to find κ2 > 1 ensuring the estimate

dist(x;X ∗) ≤ κ2‖G(x)‖q whenever x ∈ Bε1(x̄). (32)

Since ‖Bk −∇2 f (xk)‖ = O(‖G(xk)‖), we deduce from Proposition 2.3 the existence
of C1 > 0 with

‖Bk − ∇2 f (xk)‖ ≤ C1 dist(xk;X ∗). (33)

Recalling that x̂ k is an inexact solution of (3) satisfying (14) and using Lemma 3.1
give us

ek ∈ ∇ f (xk) + Hk(x̂ k − xk) + ∂g(x̂ k − ek) with

‖ek‖ ≤ ν min
{‖G(xk)‖, ‖G(xk)‖1+�

}

.

By setting x̃ k := x̂ k − ek , we have the inclusion

ek − Hkek ∈ ∇ f (xk) + Hk(x̃ k − xk) + ∂g(x̃ k),

which implies therefore that

Rk(x̃ k, xk) := ∇ f (x̃ k) − ∇ f (xk) − Hk(x̃ k − xk)+ek −Hkek ∈∇ f (x̃ k)+∂g(x̃ k).

(34)

The latter reads, by the above definition of the perturbed solution map �(p), that
x̃ k ∈ �(Rk(x̃ k, xk)). Since∇2 f is locally Lipschitzian around x̄ , there exist numbers
L2, ε2 > 0 such that

‖∇ f (x) + ∇2 f (x)(y − x) − ∇ f (y)‖ ≤ L2

2
‖x − y‖2 for any x, y ∈ Bε2(x̄).

(35)

Then choose by Lemma 4.1 a small number 0 < ε1 < min{1, ε2} such that

‖dk‖ ≤ c1dist(xk;X ∗) for all xk ∈ Bε1(x̄) (36)

with some c1 > 0. Since ‖x̃ k − x̄‖ ≤ ‖xk − x̄‖ + ‖dk‖ + ‖ek‖ with ‖dk‖ → 0 and
‖ek‖ → 0 when xk → x̄ as k → ∞, we find 0 < ε3 ≤ ε1 such that x̃ k ∈ Bε1(x̄)

whenever xk ∈ Bε3(x̄). We also assume that ε3 is sufficiently small with ‖G(x)‖ < 1
for all x ∈ Bε3(x̄). This leads us to the relationships
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‖Rk(x̃ k, xk)‖ = ‖∇ f (x̃ k) − ∇ f (xk) − Hk(x̃ k − xk) + ek − Hkek‖
= ‖∇ f (x̃ k) − ∇ f (xk) − (Bk + αk I )(x̃ k − xk) + ek − Hkek‖
≤ ‖∇ f (x̃ k) − ∇ f (xk) − ∇2 f (xk)(x̃ k − xk)‖

+ ‖Bk − ∇2 f (xk)‖ · ‖x̃ k − xk‖ + αk‖x̃ k − xk‖
+ (1 + M)‖ek‖ ≤ L2

2
‖x̃ k − xk‖2 + C1 dist(xk;X ∗)‖x̃ k − xk‖

+ αk‖x̃ k − xk‖ + (1 + M)ν‖G(xk)‖1+�

(37)

if xk ∈ Bε3(x̄), where the second inequality follows from (35), ‖Bk − ∇2 f (xk)‖ ≤
C1 dist(xk;X ∗), and ‖ek‖ ≤ ν‖G(xk)‖1+�. We have by Proposition 2.3 that ‖ek‖ ≤
ν‖G(xk)‖ ≤ ν(2 + L1)dist(xk;X ∗) for this choice of xk . Thus it follows that

‖x̃ k − xk‖ ≤ ‖x̂ k − xk‖ + ‖ek‖ = ‖dk‖
+‖ek‖ ≤ ‖dk‖ + ν(2 + L1)dist(xk;X ∗),

which being combined with (37), Proposition 2.3, and � ≥ ρ gives us c2 > 0 such
that

‖Rk(x̃ k, xk)‖ ≤ c2‖dk‖2 + c2 dist(xk;X ∗)2 + c2αkdist(xk;X ∗)
+αk‖dk‖ for all xk ∈ Bε3(x̄).

Then the direction estimate (36) together with (32) and the one of αk =
min

{

ᾱ, c‖G(xk)‖ρ
}

ensures the existence of a positive constant c3 ensuring the esti-
mates

‖Rk(x̃ k, xk)‖ ≤ c2(c
2
1 + 1)dist(xk;X ∗)2 + αk (c1 + c2) dist(xk;X ∗)

≤ c2(c
2
1 + 1)κ2

2‖G(xk)‖2q + αk (c1 + c2) κ2‖G(xk)‖q

≤ c3 max
{‖G(xk)‖2q , ‖G(xk)‖ρ+q}

≤ c3‖G(xk)‖ρ+q for all xk ∈ Bε3(x̄),

(38)

where the last inequality follows from ‖G(xk)‖ ≤ 1 and ρ ≤ q. Recalling that
Rk(x̃ k, xk) ∈ ∇ f (x) + ∂g(x) and using ‖G(x)‖ ≤ dist(0; ∇ f (x) + ∂g(x)), which
comes from Proposition 2.1, yield

‖G(x̃ k)‖ ≤ ‖Rk(x̃ k, xk)‖ ≤ c3‖G(xk)‖ρ+q for all xk ∈ Bε3(x̄).

Combining the latter with the (2+ L1)-Lipschitz continuity of ‖G(x)‖, which comes
from Proposition 2.1, and with ‖ek‖ ≤ ν‖G(xk)‖1+� as � ≥ ρ, gives us

‖G(x̂ k)‖ ≤ (c3 + (2 + L1)ν)‖G(xk)‖ρ+q , (39)
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and thus we arrive at the estimate

‖G(x̂ k)‖ ≤ (c3 + (2 + L1)ν)‖G(xk)‖ρ+q−1 · ‖G(xk)‖

provided xk ∈ Bε3(x̄). Since ρ + q − 1 > 0 and ‖G(xk)‖ ≤ (2 + L1) dist(xk;X ∗),
which comes from Proposition 2.3, this allows us to find 0 < ε0 < ε3 such that

‖G(x̂ k)‖ ≤ σ ‖G(xk)‖ for xk ∈ Bε0(x̄). (40)

Remembering that C > F(x0) ≥ F∗ and that F is continuous on the open domain
dom F , we select a positive number ε0 to be so small that

sup
x∈Bε0 (x̄)

F(x) ≤ C . (41)

Let us next we introduce the positive constants

σ̃ := σ q < 1 and ε̃ := min

{(
1 − σ̃

2c1κ2(2 + L1)q
ε0

) 1
q

,
1

2
ε0,

1

1 + c1
ε0

}

and show that if xk0 ∈ Bε̃ (x̄) with some k0 ∈ K0, then for any k ≥ k0 we have

k + 1 ∈ K0, tk = 1, xk+1 = x̂ k, and xk+1 ∈ Bε0(x̄). (42)

To verify (42), set first k := k0 and deduce from xk ∈ Bε̃ (x̄) that

‖x̂ k − x̄‖ ≤ ‖xk − x̄‖ + ‖dk‖ ≤ ‖xk − x̄‖ + c1 dist(xk;X ∗) ≤ (1 + c1)‖xk − x̄‖ ≤ ε0,

where the second inequality comes from (36). It follows from (40) and k0 ∈ K0 that

‖G(x̂ k)‖ ≤ σ ‖G(xk)‖ = σϑk .

Observe also that (41) obviously yields F(x̂ k) ≤ C . Then by Step 4 of Algorithm 1
we get k + 1 ∈ K0, tk = 1, xk+1 = x̂ k , ϑk+1 = ‖G(xk+1)‖, and xk+1 ∈ Bε0(x̄).
To justify further (42) for any k > k0, proceed by induction and suppose that for all
k − 1 ≥ � ≥ k0 we have

� + 1 ∈ K0, t� = 1, x�+1 = x̂�, x�+1 ∈ Bε0(x̄), and hence

ϑ� = ‖G(x�)‖, ‖G(x�+1)‖ ≤ σ ‖G(x�)‖.
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This readily implies the estimates

‖x̂ k − xk0‖ ≤
k

∑

�=k0

‖d�‖ ≤
k

∑

�=k0

c1κ2 ‖G(x�)‖q ≤
k

∑

�=k0

c1κ2σ̃
�−k0 ‖G(xk0)‖q

≤ c1κ2
1 − σ̃

‖G(xk0)‖q ≤ c1κ2(2 + L1)
q

1 − σ̃
‖xk0 − x̄‖q ,

(43)

where the second inequality follows from (32) and (36), while the last inequality is a
consequence of Proposition 2.3. Therefore, it gives us the conditions

‖x̂ k − x̄‖ ≤ ‖x̂ k − xk0‖ + ‖xk0 − x̄‖ ≤ c1κ2(2 + L1)
q

1 − σ̃
ε̃q + ε̃ ≤ ε0.

Arguing as above, we get that ‖G(x̂ k)‖ ≤ σϑk and F(x̂ k) ≤ C , which ensures that
(42) holds for any k ≥ k0 and thus verifies these conditions in the general case.

Now we prove the claimed convergence xk → x̄ as k → ∞ with the convergence
rate (29),where x̄ is the designated limiting point x̄ of the sequence {xk}k∈K0 .As shown
above, for any k ≥ k0 we have k + 1 ∈ K0, tk = 1, xk+1 = x̂ k , and xk+1 ∈ Bε0(x̄).
Using the conditions in (42) and the arguments similarly to to the proof of (43), we
are able to show that

‖xk − x̄‖ ≤ c1κ2(2 + L1)
q

1 − σ̃
‖xk̃ − x̄‖q + ‖xk̃ − x̄‖ for any k ≥ k̃, (44)

whenever k̃ ≥ k0. This shows that the sequence {xk} is bounded. Picking any limiting
point x̃ of {xk} and passing to the limit as k → ∞ in (44) lead us to the estimate

‖x̃ − x̄‖ ≤ c1
1 − σ̃

‖xk̃ − x̄‖ + ‖xk̃ − x̄‖.

Recalling that x̄ is a limiting point of {xk}k∈K0 , we pass to the limit as k̃ → ∞ in
the estimate above and get ‖x̃ − x̄‖ = 0, which implies that {xk} converges to x̄ .
Finally, employing (39) gives us numbers C0, k0 > 0 such that the claimed condition
(29) holds. Then ‖G(xk+1)‖q ≤ Cq

0 (‖G(xk)‖q)ρ+q for any k ≥ k0, which means that
‖G(xk)‖q converges Q-superlinearly to 0. Combined the latter with (32) implies that
dist(xk;X ∗) converges R-superlinearly to 0.When the subgradient mapping∇ f (x)+
∂g(x) is metrically subregular at (x̄, 0), we have the following condition by setting
q = ρ = 1 in (29):

‖G(xk+1)‖ ≤ C0‖G(xk)‖2 whenever k ≥ k0.

Employing (32) and ‖G(xk)‖ ≤ (2 + L1) dist(xk;X ∗), which comes from Proposi-
tion 2.3, gives us a positive number C̃0 such that the claimed condition (30) holds.
This completes the proof of the theorem. ��

123



922 B. S. Mordukhovich et al.

The concluding result of this section concerns the other kind of metric q-
subregularity of the subgradient mapping in (1) in the case where q > 1. As discussed
in Sect. 2, this type of higher-order metric subregularity is rather new in the literature,
and it has never been used in applications to numerical optimization. The following the-
orem shows that the higher-order subregularity assumption imposed on the subgradient
mapping ∂ F at the point in question allows us to derive a counterpart of Theorem 4.1
with establishing the convergence rate, which may be higher than quadratic. Indeed,
Proposition 2.5 characterizes the metric q-subregularity of the subgradient mapping
by an equivalent 1+q

q growth condition for each q > 0. Based on this equivalence for
q > 1, the imposed metric q-subregularity implies a sharper growth behavior of F
around the solution point in comparison with the quadratic growth. Consequently, the
convergence rate faster than the quadratic rate can be achieved.

Theorem 4.2 Let {xk} be the sequence generated by Algorithm 1 with αk =
min

{

ᾱ, c‖G(xk)‖ρ
}

as ρ ∈ (0, 1], and let x̄ ∈ X ∗ be any limiting point of {xk}k∈K0 ,
where K0 is taken from (22). In addition to the standing assumptions, suppose that
the mapping ∇ f (x) + ∂g(x) is metrically q-subregular at (x̄, 0) with q > 1, that the
Hessian ∇2 f is locally Lipschitzian around x̄, that ‖Bk − ∇2 f (xk)‖ = O(‖G(xk)‖),
and that � ≥ q(1+ ρ)− 1 in (14). Then there exists k0 such that tk = 1 for all k ≥ k0
and that {xk} converges to the point x̄ with the convergence rate q(1 + ρ). The latter
means that for some k0, C0 > 0 we have

dist(xk+1;X ∗) ≤ C0 dist(xk;X ∗)q(1+ρ) whenever k ≥ k0. (45)

Proof It follows from the imposedmetric q-subregularity conditionwith a fixed degree
q > 1 that

�(p) ∩ Bε1(x̄) ⊂ X ∗ + κ1‖p‖q
B for some ε1, κ1 > 0 (46)

whenever p ∈ R
n is sufficiently close to the origin. Following the proof of Theo-

rem 4.1, we arrive at the estimate of ‖Rk(x̃ k, xk)‖ in (38) with some constant c3 > 0,
where x̃ k := x̂ k − ek while Rk(x̃ k, xk), x̂ k , and ek are defined and analyzed simi-
larly to the case of Theorem 4.1. Then there exists ε3 ∈ (0, 1] such that x̃ k ∈ Bε1(x̄)

when xk ∈ Bε3(x̄). Since x̃ k ∈ �(Rk(x̃ k xk)), we combine this with (46) and get the
estimates

dist(x̃ k;X ∗) ≤ κ1‖Rk(x̃ k, xk)‖q ≤ κ1cq
3‖G(xk)‖q(1+ρ)

≤ κ1cq
3 (2 + L1)

qdist(xk;X ∗)q(1+ρ) and

dist(x̂ k;X ∗) ≤ dist(x̃ k;X ∗) + ‖ek‖
≤ κ1cq

3 (2 + L1)
qdist(xk;X ∗)q(1+ρ) + ν‖G(xk)‖1+�

≤ (κ1cq
3 (2 + L1)

q + ν(2 + L1)
1+�)dist(xk;X ∗)q(1+ρ) whenever xk ∈ Bε3(x̄).

(47)

Employing the induction arguments as in the proof of Theorem 4.1 yields the existence
of a natural number k0 such thatwe have k+1 ∈ K0, tk = 1, xk+1 = x̂ k , xk+1 ∈ Bε3(x̄)
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when k ≥ k0, and that the sequence {xk} converges to x̄ as k → ∞. Hence the second
estimate in (47) gives a positive number C0 and a natural number k0, which ensure
the fulfillment the claimed convergence rate (45) and thus complete the proof. ��

5 Superlinear local convergence with non-Lipschitzian Hessians

As seen in Sect. 4, the imposed local Lipschitz continuity of the Hessianmapping∇2 f
plays a crucial role in the justifications of the local convergence results obtained therein.
In this sectionwe show that the latter assumption canbedroppedwith preserving a local
superlinear convergence of Algorithm 1 for a rather broad class of loss functions f that
naturally appear in many practical models arising in machine learning and statistics,
which includes, e.g., linear regression, logistic regression, and Poisson regression.

The class of loss functions f of our consideration in this section satisfies the fol-
lowing structural properties.

Assumption 5.1 The loss function f : R
n → R̄ of (1) is represented in the form

f (x) := h(Ax) + 〈b, x〉, (48)

where A is an m × n matrix, b ∈ R
n , and h : R

m → R̄ is a proper, convex, and l.s.c.
function such that:

(1) h is strictly convex on any compact and convex subset of the domain dom h.
(2) h is continuously differentiable on the set dom h, which is assumed to be open,

and the gradient mapping ∇h is Lipschitz continuous on any compact subset
� ⊂ dom h.

Due to the strict convexity of h, the linear mapping x → Ax in (48) is invariant
over the solution set X ∗ to (1). This is the contents of the following result taken from
[5, Lemma 2.1].

Lemma 5.1 Under the fulfillment of Assumption 5.1 there exists ȳ ∈ R
m such that

Ax = ȳ for all x ∈ X ∗.

The next lemma is a counterpart of Lemma 4.1 without imposition the local Lips-
chitz continuity of the Hessian∇2 f . By furnishing a similar while somewhat different
scheme in comparison with Lemma 4.1, we establish new direction estimates of Algo-
rithm 1 used in what follows. Note that we do not exploit in the lemma the structural
conditions on f listed in Assumption 5.1.

Lemma 5.2 Let {xk} be the sequence generated by Algorithm 1 with αk =
min

{

ᾱ, c‖G(xk)‖ρ
}

and ρ ∈ (0, 1), and let x̄ ∈ X ∗ be any limiting point of {xk}. In
addition to Assumption 1.1 and (10), suppose that the Hessian mapping ∇2 f is con-
tinuous at x̄ ∈ X ∗, that ‖Bk − ∇2 f (xk)‖ → 0 as k → ∞, and that the subgradient
mapping ∇ f (x) + ∂g(x) is metrically subregular at (x̄, 0). Then given an arbitrary
quantity δ > 0, there exist ε > 0 and k0 ∈ N such that for dk := x̂ k − xk we have the
estimates
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αk‖dk‖ ≤ δ dist(xk;X ∗) and ‖dk‖ ≤ δ dist(xk;X ∗)1−ρ

when xk ∈ Bε(x̄) and k > k0. (49)

Proof Since x̂ k is an inexact solution to subproblem (3) satisfying (14), we get by
Lemma 3.1 that there exists ek for which both conditions in (16) hold. Taking the
projection πk

x of xk onto the solution setX ∗ and arguing as in the proof of Lemma 4.1
bring us to the inequality in (25), which together with the direction estimate in (26)
ensures that

αk‖dk‖ ≤
(

‖∇ f (xk) + ∇2 f (xk)(πk
x − xk) − ∇ f (πk

x )‖ + ‖Bk − ∇2 f (xk)‖dist(xk;X ∗)

+ 2αk dist(xk;X ∗) + (1 + M + αk)ν‖G(xk)‖1+�
)

.

(50)

It follows from the mean value theorem and the choice of πk
x as the projection of xk

onto X ∗ that

‖∇ f (xk) + ∇2 f (xk)(πk
x − xk) − ∇ f (πk

x )‖ = ‖(∇2 f (xk) − ∇2 f (ξ k))(πk
x − xk)‖

≤ ‖∇2 f (xk) − ∇2 f (ξ k)‖dist(xk;X ∗),

where ξ k := λk xk + (1 − λk)πk
x for some λk ∈ (0, 1), and hence ξ k → x̄

when xk → x̄ as k → ∞. Then passing to the limit as k → ∞ and using the
assumed continuity of ∇2 f at x̄ show that ‖∇2 f (xk) − ∇2 f (ξ k)‖ → 0. Since
αk = min

{

ᾱ, c‖G(xk)‖ρ
} → 0 and ‖G(xk)‖ ≤ (2 + L1)dist(xk;X ∗) by Propo-

sition 2.3, and since ‖Bk − ∇2 f (xk)‖ → 0 as k → ∞, for any δ > 0 we find ε > 0
and k0 ∈ N such that

αk‖dk‖ ≤ δ dist(xk;X ∗) when xk ∈ Bε(x̄) and k > k0,

which justifies the first estimate in (49). To verify finally the second one in (49),
employ Proposition 2.2 and the above expression of αk to find positive numbers ε1
and c1 ensuring the inequality

αk ≥ c1 dist(xk;X ∗)ρ for all x ∈ Bε1(x̄).

Combining the latter with the first estimate in (49) tells us that for the fixed number
δ > 0 there exist ε > 0 and k > k0 such that the second estimate in (49) is also
satisfied, and thus the proof is complete. ��

By the same arguments as in the proof of Lemma 4.2, we can also show that the
set K0 defined in (22) is infinite in the setting of Lemma 5.2. Now we are ready to
derive the promised result showing that the sequence of iterates, which are generated
by Algorithm 1 for the structured problem (1) considered in this section, converges
superlinearly to a given optimal solution x̄ ∈ X ∗ without the local Lipschitz continuity
assumption on the Hessian mapping ∇2 f .
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Theorem 5.1 Let {xk} be the sequence of iterates generated by Algorithm 1 with
αk = min

{

ᾱ, c‖G(xk)‖ρ
}

and ρ ∈ (0, 1), and let x̄ ∈ X ∗ be any limiting point
of the sequence {xk}k∈K0 with the set K0 defined in (22). Suppose in addition to the
assumptions of Lemma 5.2 that the loss function f is given in the structured form
(48) under the fulfillment of Assumption 5.1, and that at each iteration step k the
matrix Bk is represented in the form Bk = AT Dk A, where A is taken from (48) while
Dk ∈ R

m×m is some positive semidefinite matrix. Then there exists a natural number
k0 such that tk = 1 for all k ≥ k0, and that the sequence {xk} converges to x̄ with the
superlinear convergence rate, i.e., there is k1 for which we have

dist(xk+1;X ∗) = o
(

dist(xk;X ∗)
)

whenever k ≥ k1. (51)

Proof Proceeding similarly to the proof of Theorem 4.1, at each iteration step k we
have the vectorRk(x̃ k, xk) defined in (34) with x̃ k := x̂ k − ek , where x̂ k is an inexact
solution of (3) satisfying (14), and where ek is taken from (16). These relationships
and the mean value theorem applied to the gradient mapping ∇ f on [xk, x̃ k] give us
a vector ξ̃ k := λ̃k xk + (1 − λ̃k)x̃ k with some λ̃k ∈ (0, 1) such that

‖Rk(x̃ k, xk)‖ = ‖∇ f (x̃ k) − ∇ f (xk) − Hk(x̃ k − xk) + ek − Hkek‖
= ‖∇ f (x̃ k) − ∇ f (xk) − (Bk + αk I )(x̃ k − xk) + ek − Hkek‖
≤ ‖∇ f (x̃ k) − ∇ f (xk) − ∇2 f (xk)(x̃ k − xk)‖ + ‖Bk − ∇2 f (xk)‖ · ‖x̃ k − xk‖

+ αk‖x̃ k − xk‖ + (1 + M)‖ek‖
≤ ‖(∇2 f (ξ̃ k) − ∇2 f (xk))(x̃ k − xk)‖ + ‖(Bk − ∇2 f (xk))(x̃ k − xk)‖

+ αk‖dk‖ + (1 + M)ν‖G(xk)‖1+�.

Let π̃k
x and πk

x be the projections of x̃ k and xk onto X ∗, respectively. Then it
follows from Lemma 5.1 that Aπ̃k

x = Aπk
x . By Assumption 5.1 we have ∇2 f (x) =

AT ∇2h(x)A, and thus

(∇2 f (ξ̃ k) − ∇2 f (xk)
)

(x̃ k − xk) = (∇2 f (ξ̃ k) − ∇2 f (xk)
)

(x̃ k − π̃k
x + πk

x − xk).

Using the assumed representation Bk = AT Dk A of the matrix Bk , we similarly get
that

(

Bk − ∇2 f (xk)
)

(x̃ k − xk) = (

Bk − ∇2 f (xk)
)

(x̃ k − π̃k
x + πk

x − xk).

Plugging the obtained expressions into the above estimate of ‖Rk‖ gives us

‖Rk(x̃ k, xk)‖ ≤ ‖(∇2 f (ξ̃ k) − ∇2 f (xk))(x̃ k − π̃k
x + πk

x − xk)‖
+ ‖(Bk − ∇2 f (xk))(x̃ k − π̃k

x + πk
x − xk)‖

+ αk‖dk‖ + (1 + M)ν‖G(xk)‖1+�

≤ ‖∇2 f (ξ̃ k) − ∇2 f (xk)‖(dist(x̃ k;X ∗) + dist(xk;X ∗)
)
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+ ‖Bk − ∇2 f (xk)‖(dist(x̃ k;X ∗) + dist(xk;X ∗)
)

+ αk‖dk‖ + (1 + M)ν(2 + L1)
�dist(xk;X ∗)1+�.

It follows from the second estimate of Lemma 5.2 that ‖dk‖ → 0 as k → ∞ and
xk → x̄ . Since xk → x̄ implies that x̃ k → x̄ as k → ∞, the assumed continuity of
∇2 f at x̄ and the above construction of ξ̃ k tell us that ‖∇2 f (ξ̃ k) − ∇2 f (xk)‖ → 0
as k → ∞ and xk → x̄ . Now the first estimate of Lemma 5.2 ensures that αk‖dk‖ =
o(dist(xk;X ∗)) as k → ∞ and xk → x̄ . Combining this with ‖Bk − ∇2 f (xk)‖ → 0
as k → ∞ allows us to conclude that for any δ > 0 there exist a positive number ε

and a natural number k0 such that

‖Rk(x̃ k, xk)‖ ≤ δ
(

dist(x̃ k;X ∗) + dist(xk;X ∗)
)

whenever xk ∈ Bε(x̄) and k > k0.

(52)

It follows from the metric subregularity assumption that we have inclusion (31) with
q = 1 and the perturbed solution map �(p) therein. Since x̃ k ∈ �(Rk(x̃ k, xk)) as
shown above, there is κ1 > 0 with

dist(x̃ k;X ∗)
≤ κ1‖Rk(x̃ k, xk)‖ ≤ κ1δ

(

dist(x̃ k;X ∗) + dist(xk;X ∗)
)

for all xk ∈ Bε(x̄) and k > k0,

which implies that dist(x̃ k;X ∗) = o(dist(xk;X ∗)) as k → ∞. Recalling the esti-
mates

dist(x̂ k;X ∗) ≤ dist(x̃ k;X ∗) + ‖ek‖ and ‖ek‖ ≤ ν‖G(xk)‖1+�

≤ ν(2 + L1)
1+�dist(xk;X ∗)1+� = o

(

dist(xk;X ∗)
)

,

we readily get, for all the numbers δ, ε, k0, k taken from (52), the conditions

dist(x̂ k;X ∗) = o
(

dist(xk;X ∗)
)

and dist(x̂ k;X ∗) ≤ δ dist(xk;X ∗), (53)

which ensure therefore the existence of a positive number ε0 and a natural number k0
such that

dist(x̂ k;X ∗) ≤ σ

(2 + L1)κ2
dist(xk;X ∗) whenever xk ∈ Bε0(x̄) and k > k0. (54)

Employing Lemma 5.2, suppose without loss of generality that there exists c1 > 0
with

‖dk‖ ≤ c1 dist(xk;X ∗)1−ρ for all xk ∈ Bε0(x̄) and k > k0. (55)
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Since C > F(x0) ≥ F∗ in our algorithm, and since F is continuous on dom F , let
us pick ε0 > 0 to be so small that condition (41) holds. Defining the positive numbers

σ̃ := σ

(2 + L1)κ2
< 1 and ε̃ := min

{
ε0

2
,
(1 − σ̃ 1−ρ

2c1
ε0

) 1
1−ρ

}

(56)

and invoking the set K0 from (22), we intend to show that if xk1 ∈ Bε̃ (x̄)with k1 > k0
and k1 ∈ K0, then

k + 1 ∈ K0, tk = 1, xk+1 = x̂ k, and xk+1 ∈ Bε0(x̄) whenever k ≥ k1. (57)

To prove it by induction, observe first that for k := k1 all the conditions in (57) can
be verified similarly to the proof of (42) in Theorem 4.1 with the replacement of k0
by k1. Considering now the general case where k > k1 in (57), suppose that the latter
holds for any k − 1 ≥ � ≥ k1, which clearly yields dist(x�+1;X ∗) ≤ σ̃ dist(x�;X ∗).
Then the above estimates and the parameter choice in (56) ensure that

‖x̂ k − xk1‖ ≤
k

∑

�=k1

‖d�‖ ≤
k

∑

�=k1

c1 dist(x�;X ∗)1−ρ

≤
k

∑

�=k1

c1σ̃
(1−ρ)(�−k1)dist(xk1 ;X ∗)1−ρ ≤ c1

1 − σ̃ 1−ρ
dist(xk1 ;X ∗)1−ρ

≤ c1
1 − σ̃ 1−ρ

‖xk1 − x̄‖1−ρ,

(58)

where the second inequality follows from (55). Thus by (56) and (58) we have

‖x̂ k − x̄‖ ≤ ‖x̂ k − xk1‖ + ‖xk1 − x̄‖ ≤ c1
1 − σ̃ 1−ρ

‖xk1 − x̄‖1−ρ + ‖xk1 − x̄‖ ≤ ε0,

which readily implies, similarly to the case where k = k1, the fulfillment of (57) for
any k ≥ k1. Moreover, remembering that x̄ is a limiting point of {xk}k∈K0 and using
(57) together with (58) allow us to check that for any k̃ ≥ k1 we have

‖xk − x̄‖ ≤ c1
1 − σ̃ 1−ρ

‖xk̃ − x̄‖1−ρ + ‖xk̃ − x̄‖ whenever k > k̃.

Further, let x̃ be any limiting point of the original iterative sequence {xk}. Then the
passage to the limit in the above inequality as k → ∞ gives us

‖x̃ − x̄‖ ≤ c1
1 − σ̃ 1−ρ

‖xk̃ − x̄‖1−ρ + ‖xk̃ − x̄‖ for all k̃ ≥ k1.

Passing finally the limit as k̃ → ∞ in the latter inequality and recalling that x̄ is a
limiting point of {xk}k∈K0 tell us that ‖x̃ − x̄‖ = 0, which verifies therefore that {xk}
converges to x̄ as k → ∞. The claimed estimate (51) of the convergence rate follows
now from (53), and this completes the proof of the theorem. ��
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To conclude this section, observe that the standard choice of Bk = ∇2 f (xk) in
Algorithm 1 clearly implies that the assumed representation Bk = AT Dk A and the
condition ‖Bk − ∇2 f (xk)‖ → 0 as k → ∞ hold automatically due to ∇2 f (xk) =
AT ∇2h(Axk)A and the positive semidefiniteness of the Hessian ∇2h(Axk) under
Assumption 5.1 on the loss function f imposed here.

6 Numerical experiments for regularized logistic regression

In the last section of the paper we conduct numerical experiments on solving the l1
regularized logistic regression problem to support our theoretical results and compare
them with the numerical algorithm from [26] applicable to this problem. All of the
numerical experiments are implemented on a laptopwith Intel(R) Core(TM) i7-9750H
CPU@2.60GHz and 32.00 GBmemory. All the codes are written inMATLAB 2021a.

Supposing that we have some given training data pairs (ai , bi ) ∈ R
n × {−1, 1}

as i = 1, . . . , N , the optimization problem for l1 regularized logistic regression is
defined by

min
x

1

N

N
∑

i=1

log(1 + exp(−bi xT ai )) + λ‖x‖1, (59)

where the regularization term ‖x‖1 promotes sparse structures on solutions, and where
λ > 0 is the regularization parameter balancing sparsity and fitting error. Problem (59)
is a special case of (1) with f (x) := 1

N

∑N
i=1 log(1 + exp(−bi xT ai )) and g(x) :=

λ‖x‖1. In all the experiments, the matrix Bk in our proximal Newton-type Algorithm 1
is chosen as the Hessian matrix of f at the iterate xk , i.e., Bk := ∇2 f (xk). We set
ν := 0.9 and � := ρ in the inexact conditions (14) for determining an inexact solution
x̂ k to subproblem (3). We also set θ := 0.1, σ := 0.5, γ := 0.5, C := 2F(x0),
ᾱ := 10−4 and c := 10−8, and then test the three values {0.1, 0.5, 1} of parameter ρ

in Algorithm 1. As shown in [8, Theorem 8], the subgradient mapping∇ f (x)+∂g(x)

is metrically subregular at (x̄, 0) for any x̄ ∈ X ∗. It can be easily verified that all the
assumptions required in Theorem 4.1 are satisfied, and hence the sequence of iterates
generated by the proposed algorithm for the tested problem (59) locally converges to
the prescribed optimal solution with a superlinear/quadratic convergence rate.

Here we test four real datasets “colon-cancer”, “duke breast-cancer”, “leukemia”
and “rcv1_train.binary” downloaded from the SVMLib repository [43]1, and their
sizes are given in Table 1, where nnz(A) denotes the number of nonzero elements of
the featurematrix A. All of these tested real datasets havemore columns than rows, and
hence the loss function f in the corresponding problem (59) is not strongly convex.
We use normr in Matlab to normalize the rows of each dataset to make them have
unit norm.

Since the IRPN algorithm proposed in [26] does not require f in (59) to be strongly
convex and problem (59) satisfies all the assumptions required by IRPN, we are going

1 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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Table 1 Tested datasets

Dataset Data points (N) Features (n) nnz (A) Density(A) (%)

colon-cancer 62 2000 124000 100

duke breast-cancer 44 7129 313676 100

leukemia 38 7129 270902 100

rcv1_train.binary 20,242 47,236 1498952 0.16

to compare our proposed proximal Newton-type Algorithm 1 with IRPN. Note that
the IRPN code is collected from https://github.com/ZiruiZhou/IRPN with some mod-
ifications to match the objective function in (59). We set θ = β := 0.25, ζ := 0.4,
η := 0.5 and c := 10−6 in IRPN as suggested in [26]. Also we set ρ := 0 and 0.5,
since these two specifications of IRPN perform best as shown in [26]. It should be
noticed that in such setting both our Algorithm 1 and IRPN require solving subprob-
lem (3) at each iteration. This subproblem can be solved by the coordinate gradient
descent method, which is implemented in MATLAB as a C source MEX-file.2

We also compare our proposed proximal Newton-type Algorithm 1 with the
proximal-Newton method PNOPT (Proximal Newton OPTimizer) proposed in [9],
although the theoretical result of PNOPT in [9] requires the strong convexity of f
in (59). Note that the PNOPT code is collected from http://web.stanford.edu/group/
SOL/software/pnopt/ with replacing the subproblem solver by the coordinate gradient
descent method mentioned above for a fair comparison.

The initial points in all experiments are set to be a zero vector. Each method is
terminated at the iterate xk if the accuracy TOL is reached by ‖G(xk)‖ ≤ TOL with
the residual ‖G(xk)‖ defined via the prox-gradientmapping (8). Themaximumnumber
of iterations for the coordinate gradient descent method to solve the corresponding
subproblems is 10000.

The achieved numerical results are presented in Tables 2, 3, 4, and 5.
We employ the two values {10−4, 10−6} of penalty parameter λ for each dataset

and the six levels {10−2, 10−3, 10−4, 10−5, 10−6, 10−7} of accuracy TOL in the algo-
rithms, and report the number of outer and inner iterations along with CPU time,
where the inner iterations denote the total number of coordinate descent cycles of
the coordinate gradient descent method during implementation. In all of the tests,
line search procedures of each tested method provide the unit step size. This may be
because the zero point is a good initial point for all tested problems. It can be observed
from the numerical results that our proposed proximal Newton-type Algorithm 1 with
ρ = 0.1 achieves the desired accuracy with the least total iteration number and time in
many tested problems. Though in some tested problems, PNOPT achieves the desired
accuracy with the least total iteration number and time, Algorithm 1 with ρ = 0.1 is
still comparable with PNOPT. Although there is no theoretical guarantee for PNOPT
in problems (59) in the absence of the strong convexity assumption, this algorithm
happens to be efficient in practice. It can also be seen that Algorithm 1 with ρ = 0.5
and 1 always achieves the desired accuracy with the least outer iteration number. This

2 The code is downloaded from https://github.com/ZiruiZhou/IRPN.
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supports the convergence rate result of Theorem 30 telling us that with larger values
of ρ Algorithm 1 achieves a higher order of the convergence rate. However, larger ρ

causes ηk in the inexact condition (14) to decrease faster, which makes the inexact
condition (14) more restrictive, and it will take more inner iterations for solving the
subproblem at each outer iteration. Hence, in practice, for the total computation time
we need to trade off between the outer iteration number and the inner iteration number
for solving each subproblem. For the l1 regularized logistic regression problem (59)
tested in this section, and when we use the coordinate gradient descent method for
solving the subproblem at each iteration of Algorithm 1, the value ρ = 0.1 seems to
be a good choice for achieving an overall efficient performance.
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