
Investigating the relation between gravitational wave tests of general relativity

Nathan K. Johnson-McDaniel,1, 2 Abhirup Ghosh,3 Sudarshan Ghonge,4

Muhammed Saleem,5, 6 N. V. Krishnendu,7, 8 and James A. Clark9, 4

1Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,

University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK
2Department of Physics and Astronomy, University of Mississippi, University, Mississippi 38677, USA

3Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam-Golm, Germany
4Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

5School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
6Chennai Mathematical Institute, Siruseri 603103, Tamil Nadu, India

7Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Callinstr. 38, D-30167 Hannover, Germany
8Leibniz Universität Hannover, D-30167 Hannover, Germany

9LIGO, California Institute of Technology, Pasadena, California 91125, USA

(Dated: February 2, 2022)

Gravitational wave observations of compact binary coalescences provide precision probes of strong-field

gravity. There is thus now a standard set of null tests of general relativity (GR) applied to LIGO-Virgo detections

and many more such tests proposed. However, the relation between all these tests is not yet well understood.

We start to investigate this by applying a set of standard tests to simulated observations of binary black holes

in GR and with phenomenological deviations from GR. We consider four types of tests: residuals, inspiral-

merger-ringdown consistency, parameterized phasing (two varieties), and modified dispersion relation. We

also check the consistency of the unmodeled reconstruction of the waveforms with the waveform recovered

using GR templates. These tests are applied to simulated observations similar to GW150914 with both large

and small deviations from GR and similar to GW170608 just with small deviations from GR. We find that

while very large deviations from GR are picked up with high significance by almost all tests, more moderate

deviations are picked up by only a few tests, and some deviations are not recognized as GR violations by any

test at the moderate signal-to-noise ratios we consider. Moreover, the tests that identify various deviations with

high significance are not necessarily the expected ones. In particular, the parameterized tests recover PN test

parameters much closer to zero than their true values in some cases. Additionally, we find that of the GR

deviations we consider, the residuals test is only able to detect extreme deviations from GR that no longer look

like binary black hole coalescences in GR. The reconstruction comparison shows more promise for detecting

relatively small GR deviations in an unmodeled framework, at least for high-mass systems.

I. INTRODUCTION

Gravitational wave (GW) observations have provided our

first probes of the dynamics of general relativity (GR) in the

strong field, highly dynamical regime. A variety of tests were

applied to the first detection [1] and other detections in the

first observing run of the advanced GW detectors (O1) [2]

and more tests have been added as subsequent detections have

been analyzed by the LIGO and Virgo collaborations [3–11].

These observations have so far revealed no inconsistencies

with the predictions of GR and future observations with up-

graded and new detectors [12–18] will place even more strin-

gent bounds on any possible deviations from GR’s predic-

tions, or potentially reveal more subtle deviations that have

eluded detection to date. These improved results will come

both from more sensitive observations of individual signals, as

well as by combining together many detections. See, e.g., [19]

for predictions of the sensitivity of tests of GR with future de-

tectors.

However, the tests so far applied by the LIGO and Virgo

collaborations are all null tests of one sort or another—none

of them is testing a specific alternative theory. There are ways

of mapping the results of some of these tests to constrain spe-

cific alternative theories, e.g., using the results of the param-

eterized tests that vary post-Newtonian (PN) coefficients [20–

24]. However, these mappings require significant assumptions

that may not be valid in practice. This is due in part to the

relatively low PN order and linearization in the coupling con-

stant of the calculations used in the mapping. However, per-

haps even more importantly, the LIGO-Virgo constraints on

deviations in individual PN coefficients from their GR values

that are mapped onto the constraints on modified theories are

not necessarily valid constraints on those PN coefficients in a

theory where multiple PN coefficients vary, and/or when the

merger-ringdown phase is also modified, as we shall see here.

The LIGO-Virgo analyses are designed to detect deviations

from GR, not to measure individual PN coefficients. As dis-

cussed in [25], tests against specific alternative theories are

preferable, and there is preliminary work on such constraints

in [26, 27], though still with simplified waveform models.

In fact, numerical simulations in alternative theories are not

yet quite advanced enough to provide even single waveforms

that could be used to check the performance of the tests car-

ried out to date, though such simulations are progressing (see,

e.g., [28–34] for binary black hole simulations and [35–37]

for simulations of binary neutron stars), as are analytical cal-

culations (e.g., [21, 26, 38–49]). Additionally, while there is

progress in simulations that could be used as proxies for non-

GR effects, e.g., of charged binary black holes [50, 51], and of

binaries of black hole mimickers, such as boson stars [52–59],

these are also not quite advanced enough to provide wave-

forms of the quality required for data analysis.
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Given this, as well as the continued proposals for new null

tests of GR or of binary black hole nature (e.g., [60–77]), it

is important to understand the relation between the tests be-

ing applied to the data, to decide which set of tests is most

efficacious at detecting a range of plausible deviations from

GR and how a deviation from GR would show up in the var-

ious tests. For the present study, we restrict ourselves to the

four waveform-based tests applied to the binary black hole

signals through O2 [7] (with updated results for more events

in [10, 11]), namely the residuals test; the inspiral-merger-

ringdown (IMR) consistency test; the parameterized test of

GW generation, both the Test Infrastructure for GEneral Rela-

tivity (TIGER) and Flexible Theory-Agnostic (FTA) varieties;

and the parameterized test of propagation. We also compare

the unmodeled waveform reconstructions with the waveforms

inferred from the modeled GR analysis, as carried out in [78–

80].

To do this, we apply the tests to simulated observations of

waveforms with parameters similar to GW150914 [81] and

GW170608 [82], as a paradigmatic high- and low-mass event,

respectively. We also apply the tests to simulated observations

of non-GR waveforms of the type used in the parameterized

tests (purely phenomenological in the case of the tests of GW

generation, and coming from the dispersion due to a massive

graviton for the GW propagation test), as well as the self-

consistently modified effective-one-body (EOB) waveforms

used to check the performance of the IMR consistency test

in [83, 84].

We give an overview of the tests considered in Sec. II, de-

scribe the specifics of the simulated observations in Sec. III,

present the results of the tests in Sec. IV, and conclude in

Sec. V. We give the two-dimensional IMR consistency test

plots in the Appendix.

II. TESTS OF GR

Here we give an overview of the tests of GR we consider in

this study. All these tests rely on accurate models for binary

black hole waveforms in GR, for which we primarily use the

IMRPhenomPv2 model [85–87] as in all but the latest LIGO-

Virgo tests of GR with binary black holes (e.g., [1, 7, 10]).

IMRPhenomPv2 models gravitational waves from black hole

binaries on quasicircular orbits including the leading effects

of spin precession. The LIGO-Virgo analyses also use the

SEOBNRv4 ROM model [88] to give a check of the effects of

waveform systematics, though it only allows for nonprecess-

ing spins. Here we only use SEOBNRv4 ROM for the FTA

parameterized test, since this is the only test for which that

model is used to obtain the primary results in the LIGO-Virgo

analyses.

The analysis of GW data is often carried out in the frame-

work of Bayesian inference and this framework is also used

for all these tests in some form. In particular, to sample

the likelihood, we use the implementation of nested sam-

pling [89] in the LALInference code [90], which is part of

the LIGO Scientific Collaboration Algorithm Library Suite

(LALSuite) [91]. We compute the likelihood integral from a

low frequency of 20 Hz to the Nyquist frequency of 1024 Hz,

as used in the LIGO-Virgo tests of GR for GW150914 and

GW170608 (the two events we use as models for our simu-

lated observations) in [7].1 Additionally, two tests also use the

BayesWave code [92, 93], which uses Morlet-Gabor wavelets

to model the gravitational wave signal, as opposed to a wave-

form model based on GR.

The first two tests described below use BayesWave to check

the consistency of the waveforms inferred from the data us-

ing a GR model and LALInference. In one test we subtract

the best-fit GR waveform inferred by LALInference from the

data and use BayesWave to compute the residual signal-to-

noise ratio (SNR). For the second test, we use BayesWave to

reconstruct the waveform directly from the data and compare

the overlap of the reconstructed waveform with the GR wave-

forms that the LALInference analysis finds are good fits to

the data. The third test we consider also tests the consistency

of the signal, this time of the low- and high-frequency por-

tions. Both of these portions are used to infer the final mass

and spin and these two inferences are then checked for consis-

tency. The next pair of tests checks that various parameterized

deviations from the GR waveform model are consistent with

their GR value of zero—the two tests differ in how these pa-

rameterized deviations are introduced. The final test we con-

sider introduces a parameterized dispersion relation and con-

strains deviations from the nondispersive propagation of GWs

in GR. Henceforth, we use the following abbreviations to refer

to the various tests: IMR: Inspiral-Merger-Ringdown consis-

tency test; TIGER: Test Infrastructure for GEneral Relativity

parametrized test; FTA: Flexible Theory-Agnostic parameter-

ized test; MDR: test of the Modified Dispersion Relation. We

now describe these tests in full detail.

A. Residuals

Ground based GW detectors are characterized by noise

from various sources in different parts of the frequency spec-

trum (see, e.g., [94, 95] for a discussion of noise sources in

the Advanced LIGO detectors). The noise in the detector in

any given time is generally assumed to be stationary Gaussian

noise colored by the detector power spectral density (PSD).

To analyze a potential GW candidate event, we model the de-

tector time series as a summation of signal and noise (see,

e.g., [96]),

d(t) = h(t) + n(t). (1)

Here d(t) is the detector data, h(t) is the GW model wave-

form, and n(t) is Gaussian noise. The boldface notation

here is used to specify that the quantities are vectors with

one component each for every detector in the ground-based

1 The analysis of GW170608 required a larger minimum frequency of 30 Hz

in the LIGO Hanford detector, due to the detector state at the time [82]. We

have used a low frequency of 20 Hz in all detectors.
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GW detector network. We infer the best-fit (maximum like-

lihood) waveform, hmaxL(t), using LALInference and a GR

model waveform, here IMRPhenomPv2. If hmaxL(t) is an ac-

curate estimate of the true signal, then the residual, defined

as r(t) = d(t) − hmaxL(t), should be consistent with noise.

We test this consistency by analyzing r(t) with BayesWave.

Since BayesWave relies on wavelets to model the signal wave-

form, any loud multi-detector coherent features in d(t) not

accounted for by the signal model h(t) are potentially re-

constructed as parts of the signal reconstruction. In the case

of a faithful reconstruction of the true underlying signal by

hmaxL(t), the BayesWave signal model will produce wave-

form samples whose median is consistent with noise.

Similar to [7, 10, 11], we constrain the loudness of the

residual by calculating the 90% credible upper limit on the

network SNR ρres of the waveform samples. For the case of

Gaussian noise, this tends to be . 5 for the LIGO-Hanford,

LIGO-Livingston, and Virgo network. Specifically, we gener-

ated 200 sets of simulated Gaussian noise timeseries in each

detector colored with the same “O3low” detector PSDs [12]

used in this analysis, and analyzed them with BayesWave. We

then computed the 90% credible upper limit on the network

SNR on each of these observations and found that 90th per-

centile of this distribution is ∼ 5.

B. Reconstructions

The residuals test is used to place constraints on the qual-

ity of the signal reconstruction by characterizing the resid-

ual and studying its consistency with background noise. The

waveform reconstructions test on the other hand, approaches

the question of signal consistency by studying the waveform

itself. LALInference and BayesWave both offer signal re-

constructions, hLI and hBW, respectively. Both these algo-

rithms rely on fundamentally different waveform models, i.e.,

GR-based and wavelet-based respectively. An agreement be-

tween their signal reconstructions gives support to the GR

model used in the LALInference reconstruction. We quan-

tify this agreement by computing the overlap between the two

waveforms. The overlap is defined as the noise weighted in-

ner product of two normalized signals (discussed further in,

e.g., [96]). In our case, following [97], we define

OB,L :=
〈hLI|hBW〉

√

〈hLI|hLI〉〈hBW|hBW〉
, (2)

where 〈·|·〉 applied to boldface quantities indicates an inner

product taken over the network, defined by

〈a|b〉 :=

n
∑

i=1

4Re

∫

∞

0

ãi(f)b̃i∗(f)

Si
n(f)

df. (3)

Here n is the number of detectors (3 in the cases we consider)

and the superscript i is used to denote the signal in the ith de-

tector, whose PSD is Si
n(f). ã

i(f) is the Fourier transform of

the time series ai, and the superscript ∗ denotes the complex

conjugate. Dividing by the PSD makes the overlap most sen-

sitive to differences in the waveforms at frequencies where the

detectors are most sensitive. The absolute value of the overlap

is bounded between 1 (complete agreement) and 0 (complete

disagreement). The overlaps for GW150914 and GW170608

are ∼ 0.98 and ∼ 0.58, respectively (see Fig. 2 in [97]). The

much smaller overlap for GW170608 is due to its smaller SNR

and particularly its lower mass, which spreads out the power

in the signal over a longer time and makes it more difficult

for BayesWave to reconstruct the signal accurately. We ex-

pect (and find) larger overlaps for the simulated GR cases with

no noise considered here, since both reconstructions are made

less precise by noise, particularly the non-Gaussian noise that

is actually present in gravitational wave detectors.

Since the values of the overlaps we find are generally quite

close to 1, we present results in terms of Ō := 1 − OB,L. We

compute Ō for the entire distribution of hLI with the median

hBW waveform and obtain a distribution on Ō. We use a point

estimate for hBW (i.e., the median waveform) since individual

BayesWave waveforms samples do not represent a physical

waveform, but their median does represent a physically stable

estimate of the true waveform. More details about this choice

can be found in [97].

C. IMR consistency test

A binary black hole coalescence goes through three distinct

phases: an initial inspiral where the two black holes spiral in

due to the backreaction from GW emission, a merger where

the two black holes coalesce to form a single remnant object,

and a final stage of ringdown where the remnant black hole

settles into a stable Kerr configuration through the emission of

a quasinormal-mode spectrum of gravitational waves. Within

the stationary phase approximation, the low- (high-)frequency

portion of the frequency domain gravitational-wave signal fre-

quencies comes from the early (late) portion of the time do-

main signal (see, e.g., the illustration in Fig. 10 of [84]).

Thus, one can test the consistency of the inspiral and merger-

ringdown portions of the signal by checking the agreement of

the low- and high-frequency portions of the signal. Specifi-

cally, we choose to split the analysis at a frequency fcut given

by the (redshifted) frequency of the innermost stable circular

orbit corresponding to the remnant black hole [98]. One can

then use these mutually exclusive parts of the signal to obtain

two independent measurements of the initial masses and spins

and then apply analytical fits to numerical relativity simula-

tions [99–101] to these quantities to infer independent esti-

mates of the mass and spin of the final black hole, (Mf, χf).
2

The inspiral-merger-ringdown (IMR) consistency test

checks that these two independent estimates of the final mass

and spin are consistent with each other, as they must be if the

data is well described by the waveform model used to perform

this inference. We thus define fractional deviations in the es-

2 As in [3], we average the fits and augment the aligned-spin final spin fits

with the contribution from in-plane spins [102]. However, as in [7, 10, 11],

we do not evolve the spins before applying the fits, for technical reasons.
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timates of the final mass and spin,

∆Mf

M̄f

:= 2
M insp

f −M postinsp
f

M insp
f +M postinsp

f

, (4a)

∆χf

χ̄f

:= 2
χinsp

f − χpostinsp
f

χinsp
f + χpostinsp

f

, (4b)

where the “insp” and “postinsp” superscripts denote the esti-

mates obtained from the inspiral and postinspiral portions of

the signal. These fractional deviations should be consistent

with zero if the waveform model is a good description of the

observed signal. As in [10, 11], we present results with a flat

prior on ∆Mf/M̄f and ∆χf/χ̄f.

We now describe how we obtain fcut. As in the applications

of the test to real gravitational wave data, e.g., [7, 10, 11],

we use the median values from the analysis of the simulated

observation using GR waveform models. Additionally, for

comparison, we also apply the test using the same fcut one

obtains from the GR simulated observations corresponding

to the modified GR cases (which are close to the values one

would obtain from the simulated waveforms themselves, as

one would expect). We show these comparisons of fcut and

the resulting IMR consistency results in the Appendix.

For comparison with the SNRs recovered by the other tests,

we compute a combined SNR from the inspiral and postinspi-

ral analyses. To do this, we note that the SNRs from the two

portions add in quadrature, so we can compute a probability

density for them as is done for the fractional deviations in the

Appendix of [84], giving

P (ρtot) =

∫ ρtot

0

Pinsp(ρinsp)Ppostinsp(
√

ρ2tot − ρ2insp)
√

ρ2tot − ρ2insp

ρtotdρinsp,

(5)

where P (ρtot), Pinsp(ρinsp), and Ppostinsp(ρpostinsp) denote the

probability densities for the total SNR and the SNRs in the

inspiral and postinspiral, respectively. Specifically, we change

variables from {ρinsp, ρpostinsp} to {ρinsp, ρtot}, where ρtot =
√

ρ2insp + ρ2postinsp, and marginalize over ρinsp, noting that it is

nonnegative and at most ρtot.

D. Parameterized tests of gravitational-wave generation

In an alternative theory of gravity, the equations of mo-

tion describing the orbital evolution of a coalescing compact

binary will in general be different from those in GR. Thus,

the frequency evolution of the GW emission will in general

be different from the one predicted by GR. The parametrized

tests aim to detect GR violations by allowing for deviations in

the frequency-domain phase coefficients of the GR waveform

models, as initially proposed in [103–106]

The early inspiral dynamics of the compact binary is de-

scribed with good accuracy using the well known PN approx-

imation to GR (see, e.g., [107]). The frequency-domain phase

in the PN approximation is obtained as an expansion in pow-

ers of the velocity parameter v, which is defined as a function

of frequency f , i.e., v = (πMzf)
1/3, where Mz is the total

redshifted mass of the binary. In the frequency domain, the

phasing for a nonprecessing (i.e., aligned-spin) binary can be

schematically written as (omitting additive constants and the

effect of a time shift)

Φ(f) =
3

128η v5

∑

k

(ϕkv
k + ϕklv

k ln v), (6)

where η := m1m2/(m1 +m2)
2 is the symmetric mass ratio

(m1,2 are the individual masses of the components of the bi-

nary) and the summation is taken over all the PN orders for

which we know the phase evolution. The terms ϕk and ϕkl

are PN coefficients which encode various physical effects in

the dynamics of the binary and hence are functions of binary

parameters such as masses and spins.

In the IMRPhenomPv2 waveform model, the inspiral por-

tion of the GW phasing is described using the PN phasing

augmented by phenomenological coefficients obtained by fit-

ting to numerical relativity waveforms. Similarly, the late in-

spiral and merger-ringdown portions of the GW phasing are

described by phenomenological expressions in powers of fre-

quency, which include the late inspiral (a.k.a. intermediate)

coefficients βi and merger-ringdown coefficients αi. The de-

pendence of αi and βi on binary parameters is also obtained

by fitting to numerical relativity waveforms. For convenience,

we denote the phasing coefficients in all three regimes collec-

tively by pi.
One version of the parametrized test is the Test Infras-

tructure for GEneral Relativity (TIGER) approach [106, 108,

109], whose implementation applied to LIGO-Virgo detec-

tions to date uses IMRPhenomPv2 as the underlying GR

model. In this method, one introduces dimensionless frac-

tional deviations δp̂k in each phasing coefficient pk as frac-

tional deviations from GR such that pk → pNS
k (1+ δp̂k)+ pS

k.

Here the superscripts NS and S denote the nonspinning and

spinning parts of the GR phasing coefficients. The fractional

deviations are only scaled by the nonspinning part of the coef-

ficients to avoid cases where the spin contributions cause the

GR coefficient to vanish. Additionally, these coefficients only

modify the phasing of the underlying aligned-spin waveform

model (IMRPhenomD), not the precessing dynamics used to

twist up those waveforms to obtain the final IMRPhenomPv2

precessing waveform model.

A second approach is the Flexible Theory-Agnostic (FTA)

approach, introduced in [6], which is not tied to a specific

waveform model, but only considers the inspiral PN coeffi-

cients. Here it is applied using the SEOBNRv4 ROM wave-

form model as the GR baseline, as in the LIGO-Virgo anal-

yses [7, 10, 11]. Unlike the TIGER approach, where the de-

viations in the early-inspiral and late-inspiral coefficients af-

fect all the higher-frequency portions of the waveform through

the C2 matching used to stitch together the different parts of

the IMRPhenomD model [86], in the FTA approach, the de-

viations are tapered to zero at some frequency. Here, as in

the LIGO-Virgo analyses [7, 10, 11], this frequency is cho-

sen to be 0.35 times the peak frequency of the SEOBNRv4

model. This choice is designed to be consistent with the end

of the early-inspiral portion of IMRPhenomD (GMzf/c
3 =
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0.018) [86] used in TIGER. The FTA deviations are pa-

rameterized in terms of the spinning PN coefficients, unlike

TIGER’s use of just the nonspinning part. They are then

mapped to the TIGER parameterization to obtain the final re-

sults, as discussed in [7, 10, 11]. Since both tests only modify

the nonprecessing phasing, their results are then directly com-

parable.

If the waveform model used (e.g., IMRPhenomPv2 or

SEOBNRv4 ROM) is a good description of the signal, all of

the fractional deviations introduced in the test should be con-

sistent with zero. Thus, one ideally would constrain all the δp̂k
simultaneously, as one would in general expect all of them (at

least above some PN order) to simultaneously deviate from

their GR values if there is a deviation from GR. However,

the fractional deviations are highly correlated, so in practice

it is very difficult to measure all of them with current SNRs—

see [1] for an explicit illustration of this with GW150914.

Nevertheless, recent works have shown that the ability to con-

strain multiple PN coefficients together can be improved with

multiband observations by LISA and third-generation ground-

based detectors [110, 111], and/or with the use of principal

component analysis [112, 113]. However, here we follow

the procedure in the most recent LIGO-Virgo testing GR pa-

pers [7, 10, 11] and only vary one deviation parameter at a

time. This has been shown to be sufficient to detect at least

some deviations from GR [109].

For this first study, we consider the 2PN early-inspiral co-

efficient δϕ̂4, since it corresponds to the leading order of the

deviation from GR in the inspiral phasing of our modified

EOB waveforms. We also consider the 1PN coefficient δϕ̂2

in a few cases, since it corresponds to the PN order of the

massive graviton dephasing we use for simulated observations

and the modified dispersion relation test. We also consider

the TIGER late-inspiral and merger-ringdown parameters δβ̂2

and δα̂2 since they are somewhat better constrained than the

other late-inspiral and merger-ringdown parameters, respec-

tively (see the Appendix of [7]).

E. Modified dispersion test

General relativity predicts that GW propagation is nondis-

persive. That is, the velocity of propagation is independent of

the waves’ frequency. This property is equivalent to a mass-

less graviton (using quantum terminology here and in the fol-

lowing for convenience, though we are only concerned with

classical effects here). On the other hand, certain alternative

theories of gravity predict a massive graviton or other disper-

sion effects as the waves travel from the source to the observer

(see, e.g., [3, 114]). We thus consider a parameterized disper-

sion relation, following [114], which encompasses the leading

predictions of a number of different alternative theories,

E2 = p2 c2 +Aα pα cα. (7)

Here Aα is the amplitude of the modified dispersion (zero

in GR) and has dimension of [Energy]2−α; α is a dimen-

sionless constant. In particular, α = 0 and A0 > 0 cor-

responds to a massive graviton with mass mg = A
1/2
0 /c2.

We will frequently use the dimensionless quantity Ã0 :=
A0/(10

−44 eV2), since this is a convenient scale for the am-

plitudes we are considering.

As discussed in [7], one can reasonably take gravitational

waves near the source to be those predicted by GR to a very

good approximation. The only modification to the waveform

is the dephasing that builds up over the waves’ propagation

to Earth [see [7] for the explicit expressions, though the ex-

ponent in that paper’s Eq. (4) should be 1/(2 − α), as noted

in [10]].3 For instance, in the massive graviton case, the length

scale of the Yukawa modification to the Newtonian potential

is constrained to be much larger than the size of the binary, so

this modification’s effect on the binary’s dynamics is negligi-

ble. For this first analysis, we restrict to the case α = 0, thus

including the massive graviton case, though we also allow for

A0 < 0 along with A0 > 0.

As in [3, 7, 10, 11], we sample separately for A0 > 0 and

A0 < 0 (the sampling is carried out in the logarithm of an

effective wavelength and the results are then reweighted to

a flat prior in A0). We also combine together the A0 > 0
and A0 < 0 probability distributions (weighted by their ev-

idences) to allow us to quote the quantile of the distribu-

tion corresponding to the GR value of A0 = 0, again as

in [7, 10, 11], as well as the SNR distribution.

The dephasing from the modified dispersion relation maps

onto a modified PN coefficient in the inspiral for certain val-

ues of α, notably corresponding to a modified 1PN coefficient

for the α = 0 case we consider. However, the modified disper-

sion dephasing affects the entire waveform, and thus is quite

different from the TIGER and FTA modifications to the PN

coefficients described in Sec. II D, which are only applied to

the inspiral portion of the waveform.

III. SIMULATED OBSERVATIONS

We consider a variety of simulated observations, both with

and without deviations from GR. Specifically, we consider

waveforms with the modifications used in both the param-

eterized tests of GW generation and in the modified disper-

sion tests and their GR analogs, given by the IMRPhenomPv2

waveform model. We still use IMRPhenomPv2 as the base

waveform in the FTA case, instead of SEOBNRv4 ROM,

which is used in the application of the test, to avoid introduc-

ing another GR model. We also consider the EOB waveforms

used to check the performance of the IMR consistency test

in [83, 84], described in more detail below, as well as their GR

analogs. The modified EOB waveforms are only available for

nonspinning systems, since they are obtained by modifying an

EOB code for nonspinning binaries. Thus, we only consider

simulated observations of nonspinning binaries in this paper.

Additionally, since we use waveform models that only contain

the dominant quadrupolar modes of the GW signal to analyze

3 We use the same TT + lowP + lensing + ext cosmological parameters

from [115] as in [7, 10, 11].
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TABLE I. Parameters of the waveforms considered in this study (most given to three significant digits): Mz and DL are the binary’s redshifted

total mass and luminosity distance, while “RA” and “dec.” denote the right ascension and declination, respectively. The mass ratio is 1.22 for

the (modified) EOB waveforms and 1 for all others and the polarization angle is 3.9 rad in all cases. Each non-GR parameter corresponds to a

separate waveform (in the TIGER/FTA case, two different waveforms).

Name

GR parameters non-GR parameters

Mz DL inclination RA dec. GPS time mod. EOB MDR TIGER/FTA

[M�] [Mpc] [rad] [rad] [rad] [s] a2 Ã0 δϕ̂4

GW150914-like (M72) 72.2 452 2.83 1.68 −1.27 1126259462
400 5 −13
40 1 −2

GW170608-like (M20) 19.9 364 2.15 3.64 0.89 1180922494 40 10 −2

these waveforms, we just include these modes of the modi-

fied EOB waveforms, to avoid any systematics from omitted

higher modes, though these would be expected to be minor for

the nonspinning close-to-equal-mass cases we consider.

A. EOB waveforms with modified energy flux

As detailed in [84], the modified EOB waveforms modify

the energy flux in the IHES EOB model [116, 117] by mul-

tiplying the (`,m) modes of the waveform that first enter the

energy flux at 2PN, viz., the (3,±2), (4,±4), and (4,±2)

modes, by a factor a
1/2
2 , so the modes’ contribution to the

energy flux is multiplied by a2.4 We then iteratively adjust

the mass and spin of the final black hole used to calculate

the quasinormal mode (QNM) frequencies for the ringdown

model so that the waveforms satisfy energy and angular mo-

mentum balance (using modes through ` = 7, to match the

highest ` in the tabulated QNM results). We still use this older

EOB model instead of a more recent one because it is imple-

mented in Matlab and thus easy to modify and has a ring-

down model given purely in terms of Kerr QNMs, without

any further fits. Updating this modified EOB waveform con-

struction to more recent EOB models that include spin, such

as [88, 118] (with extensions to higher modes in [119, 120]

and precession in [121–123]), will be the subject of future

work.

To give an idea of the effect of these large deviations in the

energy flux on the binary’s dynamics, we consider the mass

of the final black hole as a fraction of the total mass Mf/M
and the dimensionless spin of the final black hole χf. For the

a2 = 400 case, these are Mf/M = 0.86 and χf = 0.30,

while for a2 = 40 they are Mf/M = 0.92 and χf = 0.57.

Both of these pairs are outside the region of pairs obtainable

in GR, shown in Fig. 6 of [84]. For comparison, the final

mass and spin in the GR case obtained using the fit in the

IHES EOB code are Mf/M = 0.95 and χf = 0.68, which

agree with those obtained from the self-consistent calculation

with the GR value of a2 = 1 to the number of digits shown,

only differing from them by one in the next decimal place

4 We call this factor a2 instead of α2 (as in [84]) to avoid confusion with the

δα̂2 parameterized test parameter.

(i.e., by ∼ 10−3). For all the other non-GR waveforms con-

sidered, the radiated energy and angular momentum are un-

changed from their GR values, since only the frequency do-

main phase is altered, and these quantities just depend on the

frequency domain amplitude, as one can see by converting the

expressions in, e.g., [124] to the frequency domain using the

Parseval-Plancherel identity (i.e., the unitarity of the Fourier

transform) and noting that the time derivatives of the strain

become multiplication by the frequency in the frequency do-

main.

B. Parameter choices

For the binary’s GR parameters, we consider a case

like GW150914 [81] as well as a lower-mass case like

GW170608 [82] (as both of these are consistent with be-

ing nonspinning)..5 For the GW150914-like cases, we con-

sider both large and moderate GR deviations, while for the

GW170608-like cases, we only consider moderate GR devia-

tions (for the massive graviton [MDR] case, this corresponds

to a larger value of A0 than in the GW150914-like case, since

the test is less sensitive for this lower-mass system at a some-

what smaller distance). The mass ratio of the (modified) EOB

waveforms was chosen to be the same as a numerical rela-

tivity simulation, SXS:BBH:310 [126–128], in case it proved

necessary to compare with these waveforms, though this did

not end up being the case. The other simulated observations

are equal mass, due to a bug in their creation. The param-

eters of all the simulated observations are given in Table I.

The other GR parameters were obtained from the sample from

the GWTC-1 [78] release [129] that corresponds to the me-

dian of the marginalized total mass distribution. There is a

slight difference in the right ascension of the GW150914-like

case from what this procedure gives, due to a transcription

error—its value for the closest sample is 1.59 rad. Addition-

ally, there was a transcription error in the inclination angle,

right ascension, and declination for the GW170608-like case

and their values were permuted, while they should have been

5 We expect that the different total masses of the two cases will lead to a

difference in the accuracy to which the parameters can be inferred, due to,

e.g., the number of cycles in band, as discussed in, e.g., [125], in addition

to the difference in accuracy from the different SNR.
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FIG. 1. The GW150914-like waveforms in the time domain. We show the real part of the ` = m = 2 spin-(−2)-weighted spherical harmonic

mode of the strain, aligning the non-GR waveforms (blue) with the corresponding GR waveforms (grey) at 20 Hz, which is also the frequency

at which the plots start. The larger GR deviation is on the left, and thus those plots have a larger vertical axis range than those on the right.
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FIG. 2. The analog of Fig. 1 for the GW170608-like waveforms. We still align the waveforms at 20 Hz, but only show the final ∼ 1 s of the

signal.

2.46, 2.15, and 0.50. The right ascension and declination val-

ues given in Table I are wrapped so the declination has a mag-

nitude less than π/2.

We chose the magnitude of the larger GR deviation for the

modified EOB waveforms to be the same as the one used

in [83] to illustrate that the IMR consistency test could pick

up a self-consistent deviation from GR that is significant but

passes the binary pulsar tests and is close enough to GR wave-

forms that it would likely be detected by a matched filtering

pipeline using GR waveforms, since it gives a fairly high SNR

in such a pipeline. In the inspiral, this deviation corresponds

to a parameterized test modification of δϕ̂4 ' −14.6 We thus

chose δϕ̂4 = −13 for the parameterized test simulated obser-

vations with the larger GR deviation. (We used −13 instead

of −14 by mistake, but found that the resulting TIGER and

FTA waveforms are already very different from the GR wave-

forms, so we did not want to use a larger magnitude devia-

tion.) For the massive graviton simulated observation with the

6 We compute this using the TaylorF2 stationary phase approximation ex-

pression for the frequency domain phase in terms of the binary’s PN bind-

ing energy and (modified) energy flux, as in [130].

larger deviation, we chose a value of A0 that is well outside of

the posterior probability distribution for GW150914 shown in

Fig. 8 of [7].

For the smaller GR deviation, we chose a ten times smaller

deviation in the modified EOB waveforms (still twice as large

as the deviation used to check the IMR consistency test for

a population of detections in [84]) and the corresponding

parameterized test deviation rounded to the nearest integer,

δϕ̂4 = −2 (so 1 + δϕ̂4 is about ten times smaller than in

the larger case). In the massive graviton case, we chose the

A0 values to be around the 90% bounds for GW150914 and

GW170608 given in Table IV of [7]. Even the smallest mas-

sive graviton deviation is still much larger than we would ex-

pect given the latest bound of 1.27 × 10−23 eV/c2 on the

graviton mass mg from the analysis of confident GWTC-2

binary black hole events [10], which corresponds to Ã0 ≤

1.61×10−2, since mg = A
1/2
0 /c2. We choose these relatively

large values of the graviton mass because we are interested in

deviations from GR that could potentially be detected with a

single event at the moderate SNRs we consider, while the ob-

servational bound on the mass of the graviton is obtained by

combining together the constraints from many events.

We plot all these waveforms in the time domain in Figs. 1
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FIG. 3. The GW150914-like and GW170608-like waveforms in the frequency domain. Each of the pairs of plots shows the (frequency-

domain) phase (left) and amplitude (right) of the real part of the ` = m = 2 spin-(−2)-weighted spherical harmonic mode of the strain. We

align the phases at 20 Hz and set the time shift so that the phase derivative at 20 Hz is 1 s (a somewhat arbitrary choice selected to reduce

sharp gradients in the plot near 20 Hz). We then plot the ratio of the phase of the non-GR waveforms to the corresponding GR phase. The

dashed lines correspond to the waveforms with smaller GR violations. In the GW170608-like case, the FTA and TIGER phases are almost

identical, but the FTA dephasing is slightly greater, as it is in the other cases. For the non-EOB waveforms, we only plot the amplitude of the

GR waveform, since these non-GR waveforms only modify the frequency-domain phase. The amplitude is scaled to show the contributions to

the SNR integrand, compared to the amplitude spectral density of the noise (cf., e.g., Fig. 1 in [2]); we also show the LIGO noise curve we use

in the analysis, for comparison (the O3low one from [12]).
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and 2 and in the frequency domain in Fig. 3. The frame files

for all these simulated observations are available at [131].

IV. RESULTS

We now analyze all the simulated observations from Sec. III

with the tests described in Sec. II. In all cases we use a three-

detector LIGO-Virgo network with the O3low noise curves

from [12] used to construct the likelihood. However, the sim-

ulated observations themselves do not contain any noise, so

we are effectively averaging over noise realizations [132]. We

use a low-frequency cutoff of 20 Hz, so the GW150914-like

simulated observations have network optimal signal-to-noise

ratios (SNRs) of 54 (53 for the GR EOB simulated obser-

vation), except for the modified EOB simulated observation

with the larger (smaller) GR deviation, which has a network

optimal SNR of 40 (50). (The GR deviations in the non-

EOB cases do not affect the SNR, since they do not affect

the frequency-domain amplitude.) For the GW170608-like

simulated observations, the network optimal SNRs are all 21
(though there are small differences between the Phenom and

EOB GR waveforms that are hidden by the rounding to the

nearest integer), except for the IHES modified GR simulated

observation, which has a network optimal SNR of 20. We

use the same priors here as in the LIGO and Virgo collabora-

tions’ application of these tests to GW150914 and GW170608

in [7], though we had to increase some prior ranges to account

for the wider posteriors due to the GR deviations. In particu-

lar, we choose flat priors on the IMR consistency test, TIGER,

FTA, and MDR deviation parameters.

We give a summary of the results in Figs. 4, 5, and 6 and

Table II. The GR quantiles in the table are the quantile at

which the GR value of the test is recovered. They are two-

dimensional for the IMR consistency test, where smaller val-

ues indicate better consistency with GR, and one-dimensional

for all other tests, where values around 50% indicate better

consistency with GR. We see that the tests all find that the

GR simulated observations are consistent with GR within the

90% credible level and discuss the results on the non-GR sim-

ulated observations in detail in the following. We show the

network matched-filter SNRs recovered by the various analy-

ses in Figs. 7, 8, and 9. In the notation of Sec. II B, the net-

work matched-filter SNR of data d with waveform model h is

ρMF := 〈d|h〉/
√

〈h|h〉. Finally, we show the recovery of the

final mass and spin (for the non-BayesWave tests) in Figs. 10,

11, and 12. These are computed the same way as for the IMR

consistency test, as described in Sec. II C.

A. GW150914-like cases

1. Larger GR deviations

We find that all of the GW150914-like simulated observa-

tions with the larger GR deviation are identified as not consis-

tent with GR at the 90% credible level by at least three tests

(see Table II). For the TIGER and FTA simulated observa-

tions, with their very large GR deviations, all the tests pick up

the deviations, except surprisingly for the MDR test for the

TIGER simulated observation, though the α2 TIGER case re-

covers GR just inside the 90% credible interval. For the mod-

ified EOB simulated observation, all the tests recover a strong

GR deviation except for the residuals and TIGER β2 tests.

The TIGER and FTA ϕ4 tests exclude GR at the 99% cred-

ible level or higher, but recover a value of δϕ̂4 that is much

smaller than the true value of ∼ −14. This is not surprising:

These tests are only varying a single PN coefficient, while the

simulated observation also has all 3PN and higher coefficients

modified and additionally modifies the merger and ringdown.

This illustrates that these tests are not designed to measure the

true PN coefficients, just to detect deviations from GR. The

massive graviton (MDR) simulated observation is identified

as a GR violation at the 90% credible level only with the IMR

consistency test, TIGER β2, and MDR analyses.

Since we find that the MDR test finds a strong deviation

from GR for the modified EOB simulated observation, we

also apply the TIGER and FTA ϕ2 analyses to this simulated

observation and the massive graviton simulated observation,

since this PN coefficient matches the α = 0 MDR dephasing

in the inspiral. We also ran the TIGER and FTA ϕ2 analy-

ses on the GR simulated observations, for comparison. We

compare with the TIGER and FTA ϕ4 analyses in Fig. 13 and

give the analog of Table II in Table III. We find that the ϕ2

analyses indeed pick up these GR deviations somewhat more

strongly than the ϕ4 analyses, except for the TIGER analysis

of the massive graviton simulated observation, where the GR

quantile is the same as the ϕ4 analysis. The TIGER and FTA

ϕ2 analyses of the modified EOB simulated observation find

increased SNR, illustrated in Fig. 14. The SNR distributions

for the ϕ2 analyses of the massive graviton and GR simulated

observations are almost identical to those for the ϕ4 analy-

ses. For the massive graviton case, the TIGER and FTA ϕ2

analyses recover a posterior that excludes the true value of

δϕ̂2 = −0.66, with a 90% lower bound of about half the true

value, similar to (though less dramatic than) their significant

underestimate of the true value of the testing parameter in the

modified EOB case.

We find that the residuals test is only able to identify the

TIGER and FTA simulated observations, with their very large

GR violations, as deviations from GR. Even though the mod-

ified EOB and massive graviton simulated observations also

have significant GR violations that are easily picked up by

some of the other tests, the distribution of residual SNRs is al-

most identical to that for the GR simulated observations. This

is in agreement with the results in Fig. 7, which show that the

GR analysis is able to recover most of the SNR in those cases.

We illustrate the residuals and their BayesWave recovery in

a few cases in the bottom panels of Fig. 15, which show the

residual detector data in the LIGO Livingston detector and

the recovered 90% credible interval with BayesWave. This

illustrates that while BayesWave is able to recover the resid-

ual signal very well when it is relatively significant, as for the

FTA case, it does not find any coherent signal in the residual

for the GR and modified EOB cases with their quite small and
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TABLE II. Summary statistics for the test parameters for all tests on all simulated observations (simul. obs.) considered. (The IMR consistency

test is not applicable to the GW170608-like cases.) For most tests, these are the GR quantiles as well as the median and surrounding 90%
credible interval. For the residual SNR, we give 90% upper bounds instead, except for the TIGER and FTA simulated observations with

larger GR deviations, where the probability distribution peaks well away from zero and we give the median and 90% credible interval. The

two BayesWave analyses do not provide GR quantiles. The GW150914-like and GW170608-like simulated observations are denoted by their

abbreviations M72 and M20, respectively. For the GW150914-like simulated observations, > denotes the case with the larger GR deviation and

< the one with the smaller deviation. The GR quantiles are one-dimensional (denoted QGR), so values around 50% indicate good agreement

with GR, in all cases except for the IMR consistency test, where they are two-dimensional, denoted QGR, and values around 0 indicate good

agreement with GR. In all cases they are rounded to the nearest percent. We discuss the strength to which GR is excluded when the GR

quantile is in the tails of the distribution in the text. We bold the GR quantiles where GR is excluded at the 90% credible level, so where the

GR quantile is outside the 90% credible interval around the median ([5, 95]%) for the one-dimensional quantiles.

Simul. Obs.

Res. Reconst. IMR consistency TIGER/FTA MDR

ρres

1−OB,L

[10−3]
QGR

[%]
∆Mf

M̄f

∆χf

χ̄f

ϕ4, TIGER ϕ4, FTA β2 α2 QGR

[%] Ã0QGR δϕ̂4
QGR δϕ̂4

QGR
δβ̂2

QGR δα̂2[%] [%] [%] [%]

M72

EOB, GR < 2.1 3.8+1.5
−1.0 4 0.0+0.2

−0.1 0.0+0.3
−0.2 50 0.0+0.8

−1.0 45 0.1+0.7
−0.8 62 0.0+0.1

−0.1 85 −0.1+0.2
−0.2 69 −0.3+0.9

−1.1

Phenom, GR < 2.1 3.7+1.5
−0.8 3 0.0+0.2

−0.1 0.0+0.3
−0.2 54 0.0+0.7

−0.8 61 −0.1+0.6
−0.6 52 0.0+0.1

−0.1 60 0.0+0.1
−0.2 68 −0.2+0.9

−0.8

modified EOB, > < 2.1 14.6+2.6
−2.0 100 0.4+0.2

−0.2 0.2+0.9
−0.7 99 −1.3+0.8

−0.8 100 −2.0+0.7
−0.6 64 0.0+0.1

−0.3 98 −0.3+0.2
−0.3 100 −2.9+0.8

−1.1

modified EOB, < < 2.0 6.0+1.7
−1.0 14 0.1+0.1

−0.1 0.0+0.4
−0.2 57 −0.1+0.8

−0.7 50 0.0+0.7
−0.7 79 −0.1+0.2

−0.1 94 −0.2+0.2
−0.2 95 −0.8+0.8

−0.7

MDR, > < 2.1 5.1+1.5
−1.0 90 0.1+0.2

−0.2 0.3+0.3
−0.2 93 −0.8+0.9

−0.9 91 −0.6+0.8
−0.7 1 0.2+0.1

−0.1 85 −0.1+0.2
−0.2 0 4.9+2.2

−1.7

MDR, < < 2.0 3.9+1.6
−0.9 15 0.0+0.2

−0.1 0.0+0.3
−0.2 45 0.1+1.0

−1.1 59 −0.1+0.8
−0.7 25 0.1+0.2

−0.2 41 0.0+0.2
−0.2 10 0.9+1.6

−1.1

TIGER, > 23.5+1.7
−1.7 114.4+2.7

−2.4 100 0.6+0.1
−0.1 −1.7+0.1

−0.1 100 −13.0+0.4
−0.4 100 −11.3+0.3

−0.3 0 0.8+0.2
−0.1 7 0.3+0.3

−0.3 71 −0.6+1.6
−1.2

TIGER, < < 2.0 5.3+1.4
−1.2 98 0.2+0.2

−0.1 0.0+0.2
−0.2 100 −2.0+0.6

−0.7 100 −1.6+0.5
−0.6 1 0.3+0.2

−0.2 89 −0.1+0.1
−0.3 99 −1.1+0.6

−0.9

FTA, > 26.8+1.7
−1.7 148.3+1.7

−1.4 100 0.8+0.1
−0.1 −1.8+0.1

−0.1 100 −13.9+0.5
−0.4 100 −13.0+0.3

−0.3 100 −2.6+0.1
−0.1 0 0.9+0.4

−0.3 100 −4.4+1.2
−0.9

FTA, < < 2.1 7.2+1.8
−1.2 97 0.2+0.3

−0.2 0.0+0.3
−0.2 100 −2.3+0.7

−0.8 100 −2.1+0.6
−0.5 1 0.4+0.2

−0.3 56 0.0+0.2
−0.2 97 −1.2+0.9

−0.6

M20

EOB, GR < 2.1 198+8
−6 – – – 30 0.3+1.0

−0.9 38 0.2+1.2
−1.2 63 0.0+0.2

−0.2 38 2+65
−27 49 0.1+5.9

−6.3

Phenom, GR < 2.1 195+10
−6 – – – 32 0.2+0.9

−0.9 43 0.1+1.2
−1.2 56 0.0+0.2

−0.2 44 1+67
−40 53 −0.4+4.5

−4.1

modified EOB < 2.1 207+10
−6 – – – 53 −0.1+1.1

−1.0 52 0.0+1.4
−1.3 49 0.0+0.2

−0.2 49 0+48
−45 86 −2.0+3.2

−2.0

MDR < 2.1 194+7
−5 – – – 34 0.2+0.9

−0.9 41 0.1+1.2
−1.1 54 0.0+0.2

−0.2 49 0+41
−30 39 0.9+5.6

−3.5

TIGER < 2.1 195+12
−7 – – – 98 −1.6+1.3

−1.1 99 −1.7+1.3
−1.4 5 0.3+0.2

−0.3 33 2+42
−10 15 6.4+3.6

−9.3

FTA < 2.1 191+10
−6 – – – 90 −1.1+1.4

−1.0 94 −1.4+1.5
−1.5 28 0.1+0.2

−0.3 35 1+37
−16 37 0.9+4.0

−3.7

TABLE III. The analog of Table II for the TIGER and FTA ϕ2 analy-

ses of the GW150914-like simulated observations (simul. obs.) with

the GR waveforms as well as the modified EOB and massive graviton

(MDR) waveforms with the larger GR deviation.

Simul. Obs.

ϕ2, TIGER ϕ2, FTA

QGR δϕ̂2
QGR δϕ̂2[%] [%]

EOB, GR 50 0.0+0.2
−0.2 49 0.0+0.2

−0.2

Phenom, GR 54 0.0+0.1
−0.2 64 0.0+0.1

−0.2

modified EOB, > 100 −0.3+0.2
−0.2 100 −0.4+0.1

−0.2

MDR, > 93 −0.1+0.1
−0.2 92 −0.2+0.2

−0.1

relatively small residuals, respectively.

The comparison of reconstructions is more sensitive, find-

ing a distribution of overlaps that is disjoint from the one for

the GR simulated observations for the modified EOB case,

and a clear shift to larger mismatches for the massive gravi-

ton case, as well as clearly picking up the very large TIGER

and FTA GR violations. This can be seen qualitatively in

the top panels of Fig. 15, where the difference between the

BayesWave and LALInference reconstructions increases from

left to right with increasing size of the GR deviation, and

quantitatively through the overlaps given in Fig. 4 and Ta-

ble II. The reconstruction is also able to recover the most

SNR of any analysis for the modified EOB case, and is sec-

ond only to the TIGER (FTA) analysis for the TIGER (FTA)

simulated observation, as shown in Fig. 7. However, it only re-

covers about as much SNR as the GR analysis for the massive

graviton simulated observation, likely because the dispersion

spreads out the waveform, and the reconstructions do better

at recovering short waveforms—the modified EOB, TIGER,

and FTA waveforms are all significantly shorter than their GR

counterparts, as shown in Fig. 1.

For the cases where the GR quantile rounds to 0 or 100% in

Tables II and III, it is interesting to consider how strongly GR

is excluded. Here we use the scale of Gaussian standard devia-

tions σ, and quote a lower bound of 7σ for cases where the GR

quantile is even closer to 0 or 100%. We impose such a lower

bound because we have neglected the uncertainties in deter-

mining such high credible levels with a finite number of pos-

terior samples, given that these are rather extreme scenarios,

so these results should just be taken as roughly indicative of

the constraining power of the tests in such cases. For the mod-

ified EOB simulated observation, we find that GR is excluded

at greater than 7σ by the IMR consistency test, slightly greater

than 3σ by the TIGER ϕ2 test, by slightly greater than 4.5σ
and 4σ in the FTA ϕ4 and ϕ2 tests, and by slightly greater

than 5σ by the MDR test. For the massive graviton simulated

observation, GR is excluded at slightly greater than 4σ by the

MDR test. For the TIGER and FTA simulated observations,

GR is excluded at greater than 7σ by the IMR consistency test

as well as the TIGER and FTA ϕ4 tests and the TIGER β2
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FIG. 4. The results of the various tests on the GW150914-like GR simulated observations and those with the larger GR deviation presented

as violin plots of the posteriors on the deviation parameters and the associated 90% credible intervals. For the residual SNR, we give 90%
upper bounds instead of the 90% credible interval around the median, except for the TIGER and FTA cases where the distribution peaks well

away from zero. We write δ̄Mf := ∆Mf/M̄f and δ̄χf := ∆χf/χ̄f to save space. We scale Ō := 1 − OB,L differently for the TIGER and

FTA simulated observations, which give much larger values. We mark the GR value of zero with a dotted line for the non-BayesWave tests.

Additionally, for the TIGER, FTA, and massive graviton (MDR) simulated observations, we mark the true value of the corresponding test’s

parameter with a dashed line. For the modified EOB and massive graviton cases, we show the distribution of Ō for the corresponding GR case

as a dotted, unfilled violin, for comparison, since the distributions overlap or are relatively close to doing so.
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FIG. 5. Like Fig. 4, except for the GW150914-like simulated observations with the smaller GR deviation. Additionally, we are able to scale

Ō the same way for all cases and also show the corresponding GR distribution in all cases.

test. For the FTA simulated observation, GR is also excluded

at greater than 7σ by the TIGER α2 test and at slightly greater

than 4σ by the MDR test.

We now consider the recovery of the GR parameters. We

start by considering the TIGER simulated observation, where

the MDR analysis does not find a GR deviation, recovering an

unequal-mass (mass ratio of 0.66+0.08
−0.08, giving the median and

surrounding 90% credible interval) precessing system with

a nearly edge-on inclination and a highly spinning primary

(the primary spin posterior rails strongly against the high-spin

prior bound) with most of the primary spin in the orbital plane.

Both signs of A0 give very similar posteriors, which are also

very similar to those from the GR recovery. For instance, the

mass ratio median and 90% credible interval is the same for

the MDR recovery with both signs of A0 and the GR recov-

ery to the precision quoted above. There is also a much larger

difference in the recovered SNRs for the different tests for the

TIGER and FTA simulated observations than for the others—

see Fig. 7. This figure illustrates that the MDR recovery of

the TIGER simulated observation finds a matched filter SNR

very similar to the GR recovery, as would be expected, given

the similarity of the posteriors for other parameters.

Now considering the modified EOB simulated observation,

we find that all the tests except the IMR consistency test in-

spiral and MDR A0 < 0 cases find close to equal masses,

with an inclination angle and distance close to the true ones,

but favor large antialigned spins to give a large negative ef-

fective spin7 and thus reduce the length of the signal and the

final spin from their nonspinning GR values. The IMR con-

sistency test inspiral recovery favors an unequal-mass system

(mass ratio posterior peaking around 0.3) with a small spin on

the larger black hole and the smaller black hole’s spin uncon-

strained. The MDR A0 < 0 case finds large in-plane spins

with an effective spin posterior that peaks close to zero. In

both cases, they favor a slightly smaller inclination angle and

larger distance than the true values. These two tests also re-

cover slightly more matched filter SNR than the other tests—

see Fig. 7.

We also consider how well the (redshifted) final mass and

spin are recovered by the non-BayesWave analyses, plotting

7 The effective spin is defined by χeff := (m1χ
‖
1
+ m2χ

‖
2
)/(m1 + m2),

where mA and χ
‖
A

(A ∈ {1, 2}) are the holes’ masses and components

of the dimensionless spins parallel to the (Newtonian) orbital angular mo-

mentum, respectively. We consider this quantity here since it is a simple,

well-measured combination of the spins that is closely related to the domi-

nant spin-orbit coupling (see, e.g., [133, 134]).
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FIG. 6. Like Fig. 4, except for the GW170608-like simulated observations (for which the IMR consistency test is not applicable). Here we

scale the broad δα̂2 posteriors to make the plot easier to read and scale Ō by 10 instead of the scalings of 102 or 103 used in the previous

two plots. We also show the corresponding GR distribution of Ō in all non-GR cases, though there is almost complete overlap except in the

modified EOB case.

the values of the simulated observations and the joint poste-

rior distributions in Fig. 10. We find that the MDR, TIGER,

and FTA analyses always recover the true value in the 90%
credible region for their associated simulated observations, as

does the IMR consistency test postinspiral analysis in all cases

(albeit just barely for the modified EOB simulated observa-

tion). Additionally, the posteriors from many of the different

tests are disjoint for all of the GR violating cases except for

the massive graviton simulated observation.

For the MDR simulated observation, the IMR consistency

postinspiral and MDR analyses are the only ones to recover

the true values of the final mass and spin in the 90% credible

region. These and the IMR consistency inspiral analyses are

also the only ones to recover the true values of the individual
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FIG. 7. The posterior distributions of the recovered matched filter SNRs for the various tests applied to the GW150914-like GR simulated

observations and those with the larger GR deviation, as well as the matched filter SNR recovered by the median BayesWave reconstruction for

these cases. We also show the optimal SNR of the simulated observation, plotted as a vertical dotted line. The IMR results combine together

the inspiral and postinspiral posteriors to give a posterior on the SNR for the full frequency range, while the MDR results combine together

the positive and negative A0 results.

(redshifted) masses in the 90% credible region, though most

analyses recover the true value of the redshifted chirp mass

(Mzη
3/5) in the 90% credible region, except for the TIGER

β2 case, which recovers it at the 96% credible level. All the

analyses besides the IMR consistency and MDR tests recover

unequal masses, with a mass ratio . 0.5, and a positive ef-

fective spin, generally χeff & 0.4, except for the TIGER β2

analysis, for which χeff & 0.2. The IMR consistency inspiral

analysis also recovers χeff & 0.4 and prefers unequal masses,

even though there is support for equal masses. This prefer-

ence for unequal masses and positive effective spins is not

surprising, since both of these act to extend the inspiral, and
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FIG. 8. The analog of Fig. 7 for the GW150914-like simulated observations with the smaller GR deviation.

the signal is stretched out in time by the propagation effect, as

illustrated in Fig. 1.

2. Smaller GR deviations

For the GW150914-like simulated observations with

smaller GR deviations, we find that none of the tests recover

the GR deviations in the modified EOB and massive graviton

simulated observations above the 90% credible level (when

rounded), though the TIGER α2 and MDR analyses in the

modified EOB case find that GR is excluded at the 88% and

90% credible level, respectively. The massive graviton simu-

lated observations only have GR excluded at most at the 80%
credible level, with the MDR analysis. For the TIGER and

FTA simulated observation, several tests find GR to be ex-

cluded at the 90% credible level or higher, even at slightly

greater than 4σ up to slightly greater than 4.5σ for the TIGER

and FTA ϕ4 tests. This is not surprising, given that the

frequency-domain dephasings are significantly larger for the

TIGER and FTA cases than for the modified EOB and mas-

sive graviton cases, as illustrated in Fig. 3. What is interest-

ing is that the MDR analysis finds GR to be excluded at the

99% credible level for the TIGER simulated observation, even

though it only excluded GR at the 42% credible level for the

TIGER simulated observation with the larger deviation from

GR. This is likely due to the larger GR deviation leading to a

very short signal that is easier to fit with a GR template.

For the modified EOB simulated observation, the TIGER

and FTA ϕ4 analyses not only do not find a deviation from

GR but have no support at the true value of δϕ̂4 ' −2, show-

ing again that the constraints one obtains from such analyses

cannot be straightforwardly interpreted as constraints on PN

parameters.

We find the residuals test to be insensitive to all these

smaller modifications of GR, returning SNR distributions that

are almost identical to those for the GR simulated observa-

tions, likely because the GR analysis recovers almost all of the

SNR, as seen in Fig. 8. The reconstruction comparison finds

shifts to larger mismatches for the modified EOB, TIGER,

and FTA cases, compared to the GR cases, though not for

the massive graviton case. However, there is still consider-

able overlap of the posteriors in the TIGER and FTA cases.

The largest shift is seen for the modified EOB case, and even

there the posteriors have some overlap, unlike the disjoint pos-

teriors found in the case with the larger GR deviation. Inter-

estingly, the reconstruction recovers less SNR in the modified

EOB case than the median from the GR analysis, as seen in
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FIG. 9. The analog of Fig. 7 for the GW170608-like simulated observations. Here we do not show the SNR recovered by the median

BayesWave reconstruction since it is much smaller than the SNRs plotted for these spread-out signals, as can be seen from the overlaps plotted

in Fig. 6 and given in Table II.

Fig. 8. This is presumably because the signal is more spread

out with this smaller GR deviation than in the case of the large

GR deviation, where the reconstruction found more SNR than

the GR analysis did (see Fig. 7).

The final mass and spin recovery is shown in Fig. 11. We

find the same general pattern as before, with the true values for

these quantities lying inside the 90% credible regions for the

IMR consistency test postinspiral analysis and for the test as-

sociated with the waveform in the TIGER and FTA cases. The

true values fall just outside of the 90% credible region in the

massive graviton case with the MDR analysis, discussed fur-

ther below. The same patterns in the recovery of the mass ratio

and effective spin for the modified EOB and massive graviton

simulated observations noted above for the larger GR viola-

tions are still present here, just with reduced amplitude. That

is, the recoveries of the modified EOB simulated observation
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FIG. 10. The 90% credible regions of the joint posterior distributions of the recovered (redshifted) final mass and spin for the GW150914-like

GR and larger GR deviation simulated observations, along with the values of the simulated observations, plotted as plus signs.
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FIG. 11. The analog of Fig. 10 for the GW150914-like smaller GR deviation simulated observations.

prefer close to equal masses and negative effective spins to

give a shorter waveform and smaller final spin, while the re-

coveries of the massive graviton simulated observation prefer

unequal masses and positive effective spins, to give a longer

waveform. In fact, this preference is even seen in the MDR

A0 > 0 recovery of the massive graviton simulated observa-

tion and likely explains the bias seen in the final mass and spin

noted above.

B. GW170608-like cases

For the GW170608-like cases, we do not consider the IMR

consistency test, since it is not applicable to these low-mass,

moderate-SNR systems, and is thus not applied to GW170608

in [7, 10, 11]. The BayesWave analyses are also not as

well suited to these more spread-out signals as to the shorter

GW150914-like signals considered previously, but we show

their results anyway, for comparison, since these analyses are

applied to GW170608 itself in [7, 78].

In the GW170608-like cases, we find that the tests only

identify the GR deviations at or above the 90% credible level

in the TIGER case, and even there this is only for the TIGER

and FTA ϕ4 tests and the TIGER β2 test. However, in the FTA

case the FTA analysis finds a GR deviation at the 88% credi-

ble level. The most significant GR deviation for the modified

EOB case is again found by the MDR analysis, though this

time only at the 72% credible level. The TIGER and FTA

analyses also find that the true value of the deviation param-

eter (δϕ̂4 ' −2) is outside the 90% credible interval, though
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FIG. 12. The analog of Fig. 10 for the GW170608-like simulated observations.
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it is closer here than in the GW150914-like cases. The recon-

structions analysis finds a distribution of mismatches for the

modified EOB case that is shifted to larger values than for the

GR cases (and the other non-GR cases), though the distribu-

tions still overlap.

In the massive graviton case, not even the MDR analysis

finds a significant deviation from GR. In fact, the true value

of Ã0 = 10 is well outside of the 90% credible interval.

This is due largely to a bias in the recovery of the distance,

since the inferred distance determines how one converts the

observed dephasing into a bound on A0. This bias on the dis-

tance comes from the distance-inclination degeneracy, where

the distance and inclination angle both peak at significantly

larger values than the true ones. See, e.g., Fig. 9 in [90] for an

example of this bias for a simulated binary black hole observa-

tion in Gaussian noise and Fig. 1 in [135] for an example for

a simulated binary neutron star observation with zero noise.

However, the bias we find is a bit more extreme than in those

cases, with a median and 90% credible interval for the dis-

tance of 591+82
−168 Mpc for the GR analysis of the Phenom GR

simulated observation, compared to the true value of 364 Mpc.

We find this bias in all of our analyses of the GW170608-like

cases. In particular, the MDR recovery with both signs of A0

gives very similar results for the distance median and 90%
credible interval to the analysis of the Phenom GR simulated

observation.

If one uses the true values of the distance and redshift to

obtain the posterior on A0 from the posterior on λA,eff, which

is the parameter that directly enters the phase and is sampled

on [see, e.g., Eq. (2) in [7]], and scales λA,eff by (DL/D
true
L )2

so that the dephasing is unchanged, then one obtains a median

and 90% credible interval for Ã0 of 1.0+8.8
−3.9, so the true value

of Ã0 = 10 is much closer to being included. There are no no-

ticeable biases in the other parameters, though all the analyses

of the massive graviton case favor unequal masses and a posi-

tive effective spin, as was found for the other massive graviton

cases. This preference may explain the remaining bias in the

recovery of A0.

As illustrated in Fig. 9, the recovered SNR is not signif-

icantly different between the different tests except in a few

cases. Two of these cases are the TIGER and FTA simulated

observations, with their somewhat larger GR deviations. The

other cases are the TIGER α2 test for all simulated observa-

tions, with its very broad posteriors on the testing parameter.

These cases all have a broader posterior on the SNR, as well,

extending to lower values. The recovery of the final mass and

spin is shown in Fig. 12. None of the tests find the true values

for the modified EOB case in their 90% credible regions and

all the analyses prefer unequal masses and a negative effective

spin, as we found for the other modified EOB cases. The final

mass and spin are recovered in all the 90% credible regions

in the massive graviton case, but just for both the TIGER and

FTA tests in the TIGER and FTA cases.

V. SUMMARY AND CONCLUSIONS

We have studied how a selection of standard tests of GR

that are regularly applied to LIGO-Virgo observations of bi-

nary black holes respond to a variety of phenomenological

deviations from GR. Specifically, we considered the residu-

als test, IMR consistency test, TIGER and FTA parameter-

ized tests, and the MDR test. We also considered how well

the unmodeled reconstructions of the waveforms agree with

the GR waveforms that are found to describe the signal well.

The non-GR waveforms we considered are the ones with phe-

nomenological deviations in post-Newtonian coefficients used

in the TIGER and FTA tests, as well as the propagation effects

from a massive graviton, and a self-consistent modification

of the binary’s energy flux in the EOB framework. For all

of these waveforms, we considered a GW150914-like system

with larger and smaller GR deviations and a GW170608-like

system with smaller GR deviations. We also considered the
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Phenom GR case and the modified EOB and FTA cases with larger GR deviations. All quantities are shown here as they would appear

in the LIGO Livingston detector. The top panels show the true waveform, BayesWave 90% credible intervals (CI), and the LALInference

90% CI. The bottom panels show the residual data obtained by subtracting the maximum likelihood waveform obtained by the LALInference

GR analysis, and the 90% CI obtained by analyzing the residual data using BayesWave. The horizontal axis gives the time from the peak

of the waveform, and vertical axis gives the strain amplitude whitened using a filter given by the inverse amplitude spectral density of the

detector noise. The whitened strain is measured in units of the standard deviation of the noise, σnoise. Note that the disagreement between

the LALInference reconstruction and the simulated waveform increases from left to right consistent with the increase of the deviation of the

waveform morphology from GR from left to right. This is seen clearly in the bottom panels where the average amplitude of the residual time

series grows approximately by an order of magnitude in each plot.

GR analogs of the non-GR waveform models considered.

For the GW150914-like case with larger deviations of GR,

we found that the deviations from GR are detected at a high

credible level by most of the tests considered. However, even

for these large deviations, some tests find consistency with GR

at the 90% credible level. In particular, in the massive gravi-

ton case with the larger graviton mass, only the IMR consis-

tency test, TIGER β2, and MDR analyses exclude GR at the

90% credible level (and just barely for the IMR consistency

test). However, all other cases with large GR deviations are

identified as deviations from GR at the 90% credible level or

greater by at least five tests. Indeed, many of the larger GR

deviations are identified as such at very high credible levels,

greater than a Gaussian 5σ. (These very high credible levels

are likely because our simulated observations do not contain

noise.) For the GW150914-like smaller GR deviations, the

number of tests that find a significant GR deviation decreases

considerably. Most notably, none of the tests identify the mas-

sive graviton case as a GR violation above the 80% credible

level and the modified EOB case is only (just) identified as a

GR violation at the 90% credible level by the MDR analysis.

However, the TIGER and FTA modifications are identified as

GR violations at the 90% credible level or greater by all but

two of the tests considered.

For the GW170608-like case, with its smaller SNR, we

found that only the TIGER case is identified as a GR devi-

ation at the 90% credible level (by the TIGER and FTA tests),

though the FTA analysis almost identifies the FTA case as a

GR deviation at the 90% credible level and the MDR analy-

sis identifies the modified EOB waveform as a GR violation

at the 72% credible level. These are the only cases that are

identified as GR violations at such high credible levels.

One does not always find that the tests one expects to detect

a given GR violation strongly are actually effective in doing

so. Conversely, one finds that tests that one might not ex-

pect to be effective in detecting a given GR violation detect it

strongly. The most striking example of both of these is likely

the GW150914-like modified EOB waveform with the smaller

GR deviation. Here one might expect that the TIGER and

FTA tests that look for deviations in the 2PN phase coefficient

would find significant deviations from GR, since the leading

deviation in the inspiral phase in the modified EOB waveform

is at 2PN. However, this is not the case: Both of these tests find

excellent consistency with GR in this case, while the MDR

analysis recovers a deviation from GR at the 90% credible

level (albeit just barely). For another case where the TIGER

and FTA tests of inspiral PN coefficients do not recover the

deviation from GR as strongly as one might expect, in the
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GW150914-like massive graviton case with the larger GR de-

viation, where the leading order of the deviation in the inspi-

ral is at 1PN, the TIGER β2 intermediate coefficient test finds

a GR deviation at the 98% credible level, while the TIGER

and FTA 1PN analyses only find a deviation at about the 85%
credible level.

In fact, for the modified EOB waveform, the 2PN TIGER

and FTA analyses do not even recover the true value of the

deviation parameter within the 90% credible interval. This

is particularly true for the GW150914-like cases, though in

the case with the larger GR deviation, the TIGER and FTA

analyses do find a strong deviation from GR, even though

they underestimate the size of the deviation parameter by al-

most an order of magnitude. In the GW170608-like case, the

true value of the deviation parameter is slightly closer to the

boundary of the 90% credible region than in the GW150914-

like case with the smaller GR deviation, but still outside it.

The 1PN TIGER and FTA analyses of the GW150914-like

massive graviton case with the larger massive graviton mass

(the only massive graviton case we analyze with the 1PN anal-

yses) also recover significantly smaller deviations than the

true value.

The fact that the TIGER and FTA analyses do not recover

the true value of the modified PN parameter is not surprising.

These analyses are designed to detect deviations from GR,

not to measure individual PN coefficients: They only mod-

ify one PN coefficient at a time and include the post-inspiral

part of the signal in the analysis without attempting to account

for the expected modifications to this part of the waveform

in modified theories. This means that analyses that interpret

the TIGER and FTA results as constraints on PN parameters,

e.g., [22, 24], may be obtaining apparent constraints on mod-

ified theories that are significantly more stringent than actu-

ally allowed by the data. Additionally, this suggests that it

would be a good idea to apply similar checks to the method

for modifying the PN coefficients in [27], where the frequency

domain dephasing is applied to the entire signal. Given the

results here, it seems likely that this method will also under-

estimate the size of a potential GR deviation, invalidating the

constraints on alternative theories presented there. Develop-

ing a method to constrain deviations from PN coefficients ac-

curately in as generic a situation as possible would be a very

worthwhile endeavor. The method in [24] that restricts to the

low-frequency portion of the signal is a possible way to pro-

ceed, though it would still need to be validated with these sorts

of tests. In particular, it seems unlikely that the current setting

of the IMRPhenomD value for the end of the inspiral for the

high-frequency cutoff is the optimal choice. We provide the

frame files for our simulated observations [131] so they can

be used to perform such checks.

One also finds that the residuals test is not very sensi-

tive to most of the deviations from GR considered here. It

only excludes GR for the extreme deviations from GR in the

GW150914-like TIGER and FTA cases with the larger GR vi-

olations, where the waveforms do not look at all like those

from binary black hole coalescences in GR (see Fig. 1). Thus,

while the residuals test seems like a promising way to identify

deviations from GR (or more generally from the quasicircu-

lar binary black hole hypothesis) without making assumptions

about the exact nature of the deviations, it is likely only effec-

tive in detecting extreme deviations from GR, at least for the

relatively moderate SNRs that one expects for most detections

by current and near-future detectors.

The comparison of unmodeled and GR reconstructions ap-

pears to be more effective at identifying deviations from GR

than the residuals test: The distribution of mismatches be-

tween the two reconstructions is well separated from the dis-

tribution for the GR waveform in several cases where the

residuals test does not identify any deviation from GR, no-

tably for the GW150914-like modified EOB waveform with

the larger GR deviation. However, in our analysis we are only

comparing the mismatches between reconstructions to a sin-

gle GR case and with no noise. It is likely that the expected

distribution of mismatches in the GR case would broaden

considerably when considering a larger range of GR wave-

forms and detector noise, considerably weakening these re-

sults. Nevertheless, it is likely worth pursuing the reconstruc-

tion comparison as a test of GR for high-mass binary black

hole signals. It will, however, not be applicable to low-mass

signals, like the GW170608-like cases we consider, where the

power is spread out over about a second or more, making

it difficult for the unmodeled reconstructions to recover the

waveform accurately.

Finally, we found that the final mass and spin distributions

recovered by the different tests have disjoint 90% credible re-

gions for many of the tests with larger GR deviations. This

suggests that it might be worthwhile to develop a “meta IMR

consistency test” by comparing the recovery of the final mass

and spin (or other parameters) between different tests.

Of course, this is still quite a preliminary study, and there is

much more to do to assess the relation between different tests

of GR on gravitational wave data. For instance, it is important

to consider the effects on tests of GR of missing physics in

the waveform models, e.g., higher modes, for which there are

initial studies in [136, 137], as well as eccentricity (for which

there are fairly well developed numerical relativity calcula-

tions for binary black holes and some waveform models that

reproduce these results reasonably well in certain portions of

the parameter space, e.g., [138–151]). Other important phys-

ical effects to consider are those from gravitational lensing

(e.g., the effects calculated in [152] in the geometrical op-

tics regime as well as wave optics effects [153, 154]), and

the presence of a third body (e.g., the calculations in [155–

162]) and other environmental effects (e.g., from gas or dark

matter) [158, 163].

Similarly, one should consider waveforms from binaries of

black hole mimickers (see [63, 64] for some simple checks

using rescaled binary neutron star and black hole–neutron star

waveforms, respectively, and [164] for a toy model for such

waveforms). Finally, one needs to assess the effects of sys-

tematic errors in the baseline GR waveform models, which

could plausibly start to affect current combined constraints,

as discussed in [165], and will definitely be important even

for loud individual events in future detectors, as discussed in,

e.g., [166, 167].

One will also want to include more tests in future stud-
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ies and use waveforms from various alternative theories, once

they are computed with sufficient accuracy (there are also con-

structions of self-consistent waveforms based on analytical

knowledge of modified theories [168], also used in [169], that

could be useful in these sorts of studies before full numerical

waveforms are available). It is also important to consider the

effects of detector noise and calibration as well as systematics

in the GR waveform models; see [170] for a study of the ef-

fects of transient non-Gaussian noise features (“glitches”) and

their removal on TIGER. However, the most important study

will likely be considering populations of signals to determine

how well the tests perform when combining together multiple

observations to potentially detect smaller deviations from GR,

e.g., using the method in [171]. Here it will be particularly im-

portant to include the effects of spins and higher modes in the

simulated observations, which were not included in this initial

study.

Nevertheless, this study already indicates that one will re-

quire quite high SNRs, above the SNRs of ∼ 50 we con-

sidered here in the GW150914-like case, to be able to detect

some moderate deviations from GR in individual events with

the tests we consider here. This strongly motivates the need

for improvements in gravitational wave detectors, particularly

third generation ground-based detectors [13–15], to provide

the much larger SNRs that will allow one to distinguish rela-

tively small deviations from GR. Additionally, improvements

in the design of tests of GR and methods for combining to-

gether multiple observations will also be necessary to fully

exploit current and future gravitational wave detector data to

test GR.
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Appendix: Two-dimensional IMR consistency plots

Here we give the two-dimensional (2d) ∆Mf/M̄f , ∆χf/χ̄f

joint probability distributions for the IMR consistency test,

for comparison with analogous plots shown for analyses of

gravitational wave detections in [10, 11]. (The 2d plots

in the methods papers [83, 84] and earlier LIGO-Virgo pa-

pers [1, 3, 7, 180] are not exactly comparable, since they do

not use flat priors in ∆Mf/M̄f and ∆χf/χ̄f , and [1, 83] also

use a different normalization.) We show two sets of results

in Fig. 16. We first show the results corresponding to the re-

sults shown in Sec. IV, which infer fcut from the full IMR GR

analysis of each of the simulated observations, as discussed in

Sec. II C. Then, for comparison, we show the results obtained

with the same fcut as the corresponding GR simulated obser-

vation (i.e., fcut = 129 Hz for the modified EOB observations

and fcut = 131 Hz for all the others).

As expected, the difference between the results with the

IMR fcut and GR simulated observation fcut is largest for the

modified EOB case with the larger GR deviation, since this
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FIG. 16. The 90% credible regions of the joint probability distributions of ∆Mf/M̄f , ∆χf/χ̄f for the IMR consistency test applied to the

GW150914-like simulated observations. The left (right) column shows the results with larger (smaller) GR deviations. The top row shows

the results with the test’s cutoff frequency obtained using the GR analysis of the simulated observation being analyzed (given in Table IV),

while the bottom row fixes these to the values from each simulated observation’s corresponding GR case. The results for the GR simulated

observations are the same in all four panels.

is the case with the largest difference between the two cutoff

frequencies. Surprisingly, the 2 Hz difference in the TIGER

case with the larger GR deviation leads to disjoint probability

distributions, due to the extreme GR deviation in this case. In

all other cases, the differences with different fcut values are

not so significant, with substantial overlap of the probability

distributions, even in the MDR case with the larger GR de-

viation, which has almost as large a difference in fcut as the

modified EOB case with the larger GR deviation, though in

the opposite direction.
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