
Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

The yaq project: Standardized software enabling
flexible instrumentation

Cite as: Rev. Sci. Instrum. 94, 044707 (2023); doi: 10.1063/5.0135255
Submitted: 17 November 2022 • Accepted: 28 March 2023 •
Published Online: 12 April 2023

Kyle F. Sunden, Daniel D. Kohler, Kent A. Meyer, Peter L. Cruz Parrilla, John C. Wright,
and Blaise J. Thompsona)

AFFILIATIONS
University of Wisconsin–Madison, Madison, Wisconsin 53706, USA

a)Author to whom correspondence should be addressed: blaise.thompson@wisc.edu

ABSTRACT
Modern instrumentation development often involves the incorporation of many dissimilar hardware peripherals into a single unified instru-
ment. The increasing availability of modular hardware has brought greater instrument complexity to small research groups. This complexity
stretches the capability of traditional, monolithic orchestration software. In many cases, a lack of software flexibility leads creative researchers
to feel frustrated, unable to perform experiments they envision. Herein, we describe Yet Another acQuisition (yaq), a software project defin-
ing a new standardized way of communicating with diverse hardware peripherals. yaq encourages a highly modular approach to experimental
software development that is well suited to address the experimental flexibility needs of complex instruments. yaq is designed to overcome
hardware communication barriers that challenge typical experimental software. A large number of hardware peripherals are already sup-
ported, with tooling available to expand support. The yaq standard enables collaboration among multiple research groups, increasing code
quality while lowering development effort.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0135255

I. INTRODUCTION

Instrumentation development is a key part of the scientific
enterprise. Novel instruments are typically constructed of many
individual components that are both purchased and home-built.
Orchestration software must communicate with each hardware
component in the course of a scientific experiment. Orchestration
can involve the utilization of many interfaces: NI DAQmx,1 SCPI,2
ModBus,3 PICam,4 and Thorlabs APT,5 among many others. The
challenge of integrating all of these interfaces is a frustrating piece
of the modern instrument development process. Weeks can be spent
just integrating one new component into an existing project. In small
academic labs, these software interfaces are typically created by stu-
dent researchers without software development experience. Student
researchers rarely focus on software reusability, and a lack ofmainte-
nance and documentation can make such software more difficult to
use as time goes on. Scientists may struggle to rapidly innovate their
experimental design when each hardware addition requires major
software development.

Some large user facilities have addressed interface complexity
via the adoption of unified standards, such as EPICS6 or TANGO.7
The unified standards define a network interface for any hardware
component. Orchestration software can target these unified stan-
dards for reading and writing hardware states. Small background
services are written to translate the myriad component interfaces
into the standard EPICS IOCs and TANGO Devices. These pro-
grams are performant, open source, and have huge libraries of
existing hardware interface support but require expert manage-
ment to set up and provide descriptions via a separate server pro-
gram. In our experience, EPICS and TANGO do not scale well to
single-investigator lab environments.

As smaller research labs have grown in experimental complex-
ity, many individual labs have created domain-specific orchestration
software. In the last few years, several open-source projects by-
and-for small-scale experimentalists have grown in popularity.8–15

Although this growth is encouraging, many of these are limited by
their focus on particular types of hardware or particular experimen-
tal domains. More work needs to be done to catalog, compare, and

Rev. Sci. Instrum. 94, 044707 (2023); doi: 10.1063/5.0135255 94, 044707-1

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/rsi
https://doi.org/10.1063/5.0135255
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0135255
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0135255&domain=pdf&date_stamp=2023-April-12
https://doi.org/10.1063/5.0135255
https://orcid.org/0000-0001-6167-8059
https://orcid.org/0000-0003-4602-2961
https://orcid.org/0000-0002-3802-5743
https://orcid.org/0000-0003-3981-6114
https://orcid.org/0000-0002-6926-1837
https://orcid.org/0000-0002-3845-824X
mailto:blaise.thompson@wisc.edu
https://doi.org/10.1063/5.0135255


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

contrast the large number of open-source projects that now exist.
Most small custom research instrumentation continues to rely on
monolithic software that has hard-coded interface support for each
particular connected device. These monolithic applications tend to
be inflexible and difficult to develop.

We have created a new network-based communication stan-
dard for scientific instrumentation, yaq (Yet Another acQuisi-
tion).16 This standard borrows the most important ideas from
established projects used by large user facilities while retaining
the simplicity appropriate for small research labs. We have built
this standard to be self-describing, portable, and reusable wher-
ever possible. Via the yaq interface, we provide easy-to-use hard-
ware support for scientists to use with their choice of experiment
orchestration software.

Here, we discuss the design of the yaq standard in the con-
text of challenges facing instrument designers. First, we discuss how
particularly challenging hardware interfaces can become seemingly
insurmountable barriers to software control. Next, we discuss how
inflexible orchestration software can limit experimental creativity.
Then, we focus on challenges that arise when enhancing or modify-
ing existing instruments with new hardware. Finally, we discuss the
heavy softwaremaintenance burden that many instrument designers
face. In each case, we will highlight how the yaq project is designed
to alleviate that challenge. Several case studies provide a view into
the flexible ways that yaq can be applied to perform different scien-
tific experiments. This paper provides an overview of the concepts
and motivations behind yaq. Refer to the yaq website for a formal
specification of the yaq standard.16

II. HARDWARE INTERFACE CHALLENGES
In this section, we describe the architecture of the yaq frame-

work in light of three major barriers that we have encountered in
scientific instrumentation development. First barrier:Multiple inter-
faces are used to communicate with each component of the system.
A fully automated system must be able to use all of these inter-
faces, a daunting task for scientists who do not specialize in software
development. Second barrier: Certain specialty hardware has incon-
venient interface requirements. A camera will only work with an
obsolete interface card and drivers for Windows XP. A data acqui-
sition manufacturer provides an Application Programmer Interface
(API) that only works in Python 3.7. A graduate student wishes to
drive several stepper motors using a Raspberry Pi. Third barrier:
Some hardware interfaces are blocking. A graphical user interface
stalls while waiting for a camera to collect data. Custom orchestra-
tion software needs to be closed before the manufacturer’s config-
uration software can be used. A graduate student finds themselves
needing to master advanced concepts in concurrency to orchestrate
many motors performantly.

Figure 1 diagrams the yaq architecture. Here, we show three
different computers connected via an Ethernet network. The top
and bottom computers are connected to monitors for interactive
use, whereas the middle computer is only accessible via the net-
works. This diagram might represent a complex scientific instru-
ment involving several operator terminals as well as embedded
computers. At the top, a single computer is connected to four
hardware peripherals through RS232, TTL, USB, and PCI as indi-
cated by the colored lines. That same computer is running four

FIG. 1. A simplified network diagram for a hypothetical instrument. Three com-
puters are connected via orange Ethernet cables and a network switch (middle
right). Some of the computers are also connected to hardware peripherals via one
of the six interfaces (colored lines). For each interface, the computer runs a yaq
daemon (small colored squares). The top and bottom computers are also running
yaq client applications.

separate programs, one for each peripheral. These small, targeted,
programs are managed by the operating system and run in the
background. It is conventional to call such programs “daemons.”17
The middle computer is connected to two additional peripher-
als and runs daemons for each. Besides communicating with the
hardware peripheral, each daemon can communicate with other
programs, “clients,” through the network. The four client pro-
grams shown in Fig. 1 can each communicate with all six hardware
peripherals shown. As an example, a client running on the bot-
tom computer could communicate with the RS232 peripheral shown
in green via the following path: client ↔ network switch ↔ top
computer↔ daemon↔ hardware peripheral. This powerful archi-
tecture can be used on a single computer or used across many
networked computers, including fully remote operator interfaces.
This client–server architecture offers similar network capabilities to
EPICS and TANGO. As we will show, the usage of standards and the
creation of tooling make this architecture accessible to instrument
builders outside of large facilities.

In yaq, communication between daemons and clients is per-
formed over TCP/IP using Apache Avro RPC.18 Avro provides an
agreed-on standard for efficient serialization of data and method
calls from a remote (client) process. Practically, the yaq inter-
face looks like a collection of methods or functions, which Avro

Rev. Sci. Instrum. 94, 044707 (2023); doi: 10.1063/5.0135255 94, 044707-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/rsi


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

calls “messages.” Each message has defined input parameters and
output return types. A sensor might implement a message called
“get_measured,” which takes no parameters and returns a dictio-
nary mapping channel names to the numeric or array data. A motor
would implement a pair of messages for setting and reading back the
motor position: “set_position(float position)→ null” and
“get_position() → float.” Messages make up the lowest level
functionality of the yaq interface. Each daemon supports a collec-
tion of messages for its unique functionality, called the “protocol.”
When a client first connects to a daemon over TCP/IP, the daemon
provides a complete description of its own protocol. We, therefore,
refer to the daemons as “self-describing.”

Each individual communication between the client and the
daemon involves one message being requested by the client and the
response returned from the daemon. If multiple messages are sent
simultaneously, the daemon processes one message at a time. The
protocol is preemptive: in the case of a conflict, the daemon will
obey the last message to arrive. By being completely open to mes-
sages from multiple clients, yaq makes it possible to accidentally
supersede a message. This has not become a problem for our usage
where instruments are controlled by single scientists who can clearly
see all of the clients interacting with their system. Typically, there
is just one client sending “set_position,” and many clients polling
“get_position” to record data or display real-time information. Users
may choose to implement access control systems, but we do not fore-
see building access control into the yaq protocol. This is similar to
how access control works, in practice, at some large facilities.

yaq introduces a concept called “traits,” which are
collections of related messages that are shared among mul-
tiple protocols. Motors implement the “has-position”
trait, which defines “set_position,” “get_position,” and
“get_units.” Sensors would implement the “is-sensor” trait,
which defines “get_measured,” “get_channel_names,” and
“get_channel_units.” Protocols that implement a trait must
support all of the messages from the trait. Traits are compositional:
a given protocol may implement several traits at once. For example,
a protocol representing a monochromator with several gratings
might implement both “has-position” and “has-turret,” where
the latter defines special messages for choosing which grating is
used. Importantly, specific protocols can also implement arbitrary
additional messages that are not defined by any trait.

We have carefully defined yaq traits to maximize interoperabil-
ity while not excluding hardware with unusual features. New traits
can be discussed by the community through the yaq enhancement
proposal system. It is crucial that multiple hardware interface exam-
ples be considered when defining traits. Configuration that is unique
to a single interface is best handled through protocol-specific mes-
sages. For example, our protocol for interfacing with a specific data
acquisition card provides a message for setting the segment count.
Unique messages are available through script-based and graphical
clients, but the usage of such messages in scripts naturally limits
portability.

We now describe how the yaq architecture addresses the
three hardware interface barriers described at the beginning of this
section. The first hardware interface barrier: Multiple incompati-
ble interfaces are used to communicate with each component of
the system. yaq provides a unified TCP/IP interface to all hardware
peripherals based on the well-described Avro RPC protocol. The

trait system was introduced in pursuit of our primary goal of easing
the client development process. Clients can trust that protocols that
implement a given trait will behave in similar ways. The standard-
ized yaq interface presents the same set of interactions for client-side
scientific code, simplifying the experience of using hardware.

The second hardware interface barrier: Certain specialty hard-
ware has inconvenient interface requirements. Since yaq enables
multiple machines, any hardware requirements can be addressed by
putting a machine for that specific hardware on the network. The
Raspberry Pi, which drives several stepper motors, can be placed
onto a private network to communicate with the primary instrument
computer using yaq. Because each yaq daemon is running in its
own process, the software environment can be tailored to its needs.
A client running up-to-date Python 3.11 communicates seamlessly
with a daemon running Python 3.7.

The third hardware interface barrier: Some hardware interfaces
are blocking or slow. Experimental orchestration often means doing
several things at once, e.g., simultaneously moving several motors.
To accomplish this task performantly, monolithic orchestration
software often necessitates separate threads for each component
hardware interface, a fragile pattern in which small mistakes become
both critical and elusive errors.When writing orchestration software
using yaq, slow hardware interfaces are replaced by fast Avro-RPC.
In our experience, the yaq interface is responsive enough to give
good performance when orchestrating tens of motors using a singly
threaded client. There is a limit where using TCP becomes a bottle-
neck for large responses, such as those from cameras or other high-
throughput sensors. In our experience, this limit is ∼1megapixel. For
larger sensors, a pure yaq approachmay not be appropriate. There is
a longer discussion of timing and order-of-operations control details
using yaq in the supplementary material.

III. EXPERIMENTAL FLEXIBILITY
Existing experimental orchestration software is often highly

inflexible. An experimentalist will spend many hours in the lab
manually repeating acquisitions because it is too challenging to add
repetition functionality to their software. A laser lab needs to spend
weeks on software development when introducing a single new step
into its experimental procedure. Researchers are disappointed to
realize that they are forced to start from scratch when develop-
ing software for a similar instrument built with trivially different
hardware.

Unique experiments will always need custom orchestration and
user experience. We believe that novel instrumentation develop-
ment naturally and necessarily includes the creation of targeted
software. Developing experimental software is an iterative process
tied to the scientific goals of the instrument. Often experimental-
ists must apply their specialty scientific knowledge to develop this
software.19

In our view, software inflexibility is a natural consequence of
the typical software development practices used by custom instru-
ment builders. Instrumental software is often built as onemonolithic
program that does everything from providing a graphical interface,
through hardware interfacing, and writing data files. Such software
is typically impossible to debug without access to real hardware,
often requiring all of the hardware to be available to simply start
the program. As such, instrumentation software development time

Rev. Sci. Instrum. 94, 044707 (2023); doi: 10.1063/5.0135255 94, 044707-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/rsi
https://www.scitation.org/doi/suppl/10.1063/5.0135255


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

is in conflict with valuable data acquisition time. The hardware inter-
faces that these programs implement are typically made quickly
and without regard to standardization with similar hardware. The
orchestration routines are intimately tied to the particular hardware
configuration of one instrument.

yaq is architected to encourage better software development
practices when creating such programs. In a yaq context, orches-
tration code and graphical control interfaces are implemented as
clients. These clients are automatically simpler because they only
need to implement the yaq standard and do not need to include the
vast array of hardware-specific communication interfaces. Beyond
this, clients can use traits to interact with similar hardware identi-
cally. A client written to perform a two-dimensional fluorescence
experiment using two Acton monochromators will also work with
Horiba monochromators without any modification.

Figure 2 shows that yaq supports a diverse array of client types.
At the top, we represent the most lightweight interface to yaq,
Python scripting. yaqc20 is a Python client that is excellent for using
in scripts or any other Python program. The code shown creates
three client objects that could be used directly through an interactive
Python prompt or in a reusable script. Each client object provides
Python methods for each Avro message specified by the associated
protocol.

FIG. 2. Representations of three very different yaq client experiences. Top:
lightweight scripting. Middle: graphical user interface. Bottom: integration with
Bluesky for data collection. In all three cases, the same daemons are addressed.

In the middle, the same three hardware peripherals are repre-
sented in an interactive, graphical form. yaqc-qtpy21 is a graph-
ical application that builds interactive controls based on traits for
any conceivable yaq protocol. The self-describing yaq interface is
used to provide graphical elements for the most commonly used
messages. yaqc-qtpy is an invaluable tool that provides a “free”
graphical user interface (GUI) to any daemon.

At the bottom, we graphically represent the integration between
yaq and the Bluesky project.22 Bluesky provides a powerful orches-
tration layer for conducting and recording data for a wide variety
of experimental procedures. Bluesky has no built-in hardware inter-
face support, instead relying on packages to create hardware inter-
faces that are compatible with their Hardware Protocol definitions.
yaqc-bluesky23 is a specialized client that adapts any yaq protocol
into Bluesky. Similar translation layers could be built for a vari-
ety of orchestration software such as PyMoDAQ,8 PyMeasure,13 or
TRSpectrometer.10

All three types of clients represented in Fig. 2 have been shown
addressing the same three hardware peripherals. All types of clients
can be used simultaneously to interact with the same instrument
in different modes. Client sophistication can be introduced natu-
rally, as novel experiments are tested and refined. Different clients
can specialize in different requirements of a custom instrument.
For example, yaqc-qtpy can provide a quick interface for set-
ting and viewing hardware positions, whereas Bluesky can focus on
experimental data acquisition.

The Landis Group at UW-Madison is currently working on
a new type of flow reactor: the Wisconsin Quench Kinetics Reac-
tor (WiQK). This reactor incorporates several computer-controlled
valves and syringe pumps as well as various sensors. The set of
hardware peripherals is rapidly changing as researchers continue
to test and refine their design. Only a few researchers are actively
using the reactor during this prototyping stage. These researchers
are experimentalists who have limited background in software devel-
opment. The Landis Group has written basic Python scripts to
orchestrate hardware for their reactor. These lightweight scripts
can be extensively refactored by the experimentalists as the hard-
ware and orchestration strategy changes dramatically during WiQK
development. This approach ensures that the Landis Group is not
slowed down by complex, inflexible orchestration software. Once the
reactor is complete, more sophisticated graphical clients will be cre-
ated to accommodate end users who were not involved as the reactor
was built.

The Wright Group at UW-Madison needs to orchestrate a
large variety of hardware in multidimensional scans for their com-
plex spectroscopy experiments.24,25 This need for exquisite hardware
control has resulted in several prior attempts at “home-built” orches-
tration software.26–30 Now, using yaq, the Wright Group has been
able to move to Bluesky rather than inventing their own sophis-
ticated control software “from scratch.” The Wright Group uses
simulated hardware to enable client development away from active
laboratory computers. Hardware simulation allows Wright Group
researchers to create polished client interfaces without interrupting
ongoing experiments. Clients developed by the Wright Group have
proved flexible enough to be used on four laser systems, each with
different complements of hardware. Moving forward, the Wright
Group will spend less energy developing control software and more
energy developing creative spectroscopy experiments.

Rev. Sci. Instrum. 94, 044707 (2023); doi: 10.1063/5.0135255 94, 044707-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/rsi


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

IV. INCORPORATING NEW HARDWARE
In a yaq context, new hardware can be incorporated into an

instrument through the addition of a new daemon. The yaq archi-
tecture simplifies hardware interface development in several ways.
First, because daemons are separate and portable programs, the
development effort can be spread across the community of yaq
users. Often, researchers can download an existing daemon rather
than writing a new one. Second, yaq daemon development can be
performed separately from the particulars of any individual client.
Often, this separation allows initial hardware enablement work to
be done on a researcher’s personal machine before the new hard-
ware peripheral is installed in the instrument. Separability, portabil-
ity, and distributed development are advantages common to many
open-source hardware interface projects. Third, when developing
trait-compliant protocols, it becomes easy to design and fully test
your hardware interface. Traits are unambiguous and well described,
making an obvious target for development. Tooling exists to ver-
ify full trait compliance, for example, you can use yaqc-qtpy to
provide a graphical program to interact with your hardware immedi-
ately. Finally, as discussed in Sec. II, yaq provides options to design
using remote hardware or unusual interfaces when necessary.

We have created several tools to aid in daemon development.
First, a Python library, yaqd-core,31 which implements shared
functionality. Second, yaq-traits32 is a command line application
that allows the description of messages provided by a yaq proto-
col to be written in a human-readable fashion and translated into a
more fully described machine-readable format. The format it gener-
ates is an important part of how yaq protocols are self-describing.
This shields developers from the details of Apache Avro, which can
be somewhat esoteric.

Figure 3 shows the distribution of unique lines of Python code
written to implement each of the daemons in our current ecosys-
tem. Although lines of code are an imperfect metric, we use it here
to represent the amount of work required to create a daemon for

FIG. 3. Histogram of the number of lines for each implemented daemon. Some
daemons are implemented in ways that share code, resulting in apparent line
counts of less than 10. For example, the Thorlabs APT5 motor implementation
supports at least eight different daemons with each specifying only a handful
of constants. These are extreme examples that are not representative of most
hardware interfaces; hence, we omit them here.

a new hardware peripheral. Most interfaces, such as Brooks MFC,33
have been implemented in fewer than 100 lines of Python code. Even
the most complicated daemons are implemented in about 300 lines.
Implementing yaq daemons using Python is enabled through our
own tooling mentioned above and the large and growing ecosystem
of hardware interface libraries that Python now provides.34–37 In our
experience, the process of creating a new daemon involves about
a day of work after mastering communication with the hardware.
There are currently 72 daemons in the yaq project supporting at least
66 types of hardware, noting that some daemons support the same
hardware and others are software only. Because yaq is standards-
based, anyone can design and publish new daemons extending
our hardware support. A living list of all daemons and supported
hardware can be found on the yaq website.38

The Stahl Group at UW-Madison created a custom reactor that
monitors gasses being produced or consumed in the reaction head
space.39 This reactor incorporates a collection of sensitive pressure
transducers and a single-heating process value under computer con-
trol. yaq daemons are used to interface with each sensor and the
heater controller. Recently, experimentalists have been attempting
reactions involving smaller, slower, pressure changes. A fundamen-
tal flaw in the initial analog-to-digital converter board was revealed
by these attempts. As a result, a new digitizer has been purchased.
This new digitizer will be incorporated into the existing reactor
without modifying the existing graphical user interface and data
recording program, minimizing downtime.

V. TECHNICAL DEBT
Years after the original researchers leave, large mono-

lithic acquisition programs become unknowable, undocumented,
and unmaintained. A graduate student discovers a hard-coded
conversion factor that is incorrect years after implementation.
Scientists resort to sourcing an exact replacement for an old, bro-
ken oscilloscope due to their software’s reliance on that partic-
ular interface—newer, cheaper oscilloscopes are readily available.
A graduate student is forced to meticulously reverse engineer the
LabVIEW codebase that they inherited to understand the details
of their experiment. Software developers refer to the extra effort
required to modify or fix large unmaintained codebases as “technical
debt.”40 Technical debt grows especially fast in academic environ-
ments where graduate students are involved in projects for a limited
time.

The yaq approach favors many small single-purpose applica-
tions above the large monolithic ones. For daemons, the purpose of
each application is obvious and unambiguous. There is a strict, well-
defined interface that explicitly limits the kinds of interactions that
are provided to the hardware, thus limiting the opportunity for unin-
tended consequences. The lack of hardware interface code makes
yaq clients much simpler and easier to describe and maintain. Tools
like yaqd-fakes41 allow clients to be tested and improved outside
of their instrument, including the possibility of fully automated test-
ing. Simple, script-based clients written using the expressiveness of
Python can be read and understood in hours rather than weeks. Inte-
grations with communities like Bluesky offer powerful features that
are actively maintained across many institutions.

In yaq, each component of an instrument can be developed and
distributed separately. For example, two different instruments might

Rev. Sci. Instrum. 94, 044707 (2023); doi: 10.1063/5.0135255 94, 044707-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/rsi


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

happen to use the same temperature sensor. Because the temperature
sensor daemon is its own independent program, both instruments
can benefit from the same daemon. The growing “ecosystem” of
yaq daemons makes future instruments easier and easier to develop.
Growing this ecosystem is a collaborative effort where many yaq
users create portable daemons that they need and share them with
the community where they will be used and improved. yaq compo-
nents can be incorporated seamlessly into existing software projects,
including languages other than Python. For example, an existing
LabVIEWproject may provide additional hardware support via yaq.
In this way, a more modular instrument can be built gradually
without needing to overhaul all of the software simultaneously.

Software built by scientists often has incomplete and inade-
quate documentation.42 yaq attempts to automate daemon docu-
mentation as much as possible. Our website, https://yaq.fyi, auto-
matically builds generated reference pages for all known protocols.
These pages are automatically updated when new versions are pub-
lished. Our website also contains written and video tutorials on yaq
usage and development.

We have designed yaq to be easier to deploy and maintain
when compared with EPICS and TANGO. yaq daemons are Python
packages that can be installed on any platform using pip or conda.
There is no need for centralized management servers or databases
when using yaq. The Avro RPC standard unambiguously describes
the message signatures for any protocol; hence, users are always
aware of the capabilities their hardware supports. Traits enable inter-
changeability where possible. yaq can easily be used alongside other
experiment control software. We provide tooling (yaqd-control)
that makes it easy to configure, list, and manage daemons as back-
ground services on Windows, MacOS, or Linux (see supplementary
material for more details).

yaq is open-source software. Anyone can view, install, edit, and
suggest changes to our growing collection of daemons and clients.
Furthermore, anyone can create their own totally custom client or
daemon software separately by following the specified yaq standard.
Thirteen individuals have contributed code to the development of
yaq. Open-source development can be a powerful approach for
research communities looking to share software development and
maintenance burdens.43 It is our hope that a vibrant open-source
community will form around yaq. Although open-source develop-
ment is not a panacea,44 we hope that by maintaining a distributed
development strategy with a strict focus on only hardware interfaces,
the yaq project might prove sustainable.

VI. CONCLUSION
The yaq project defines a new general-purpose standard for

hardware control in the context of scientific instrumentation. This
standard has some of the powerful features of facility-scale stan-
dards while remaining simple enough for feasible implementation
and maintenance in small research labs. We have shown how this
approach alleviates common problems through discussion and case
studies. Designing around self-describing protocols is a productive
approach that has great promise in scientific software development.

SUPPLEMENTARY MATERIAL

See supplementary material for full set of line-count data
and script used to produce Fig. 3. More detailed examples of

orchestration using yaq, including scripts and graphical user inter-
faces. Detailed description of yaqd-control. Discussion and quan-
titative analysis of the yaq interface’s performance with large
arrays.

See supplementary material for a full description of the name
“yaq.”

ACKNOWLEDGMENTS
The authors would like to thank all yaq users and contributors.

We would also like to acknowledge the developers of the broader
open-source software community on which this project rests.

This work was supported by the National Science Foundation
under Grant No. CHE-1709060.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Kyle F. Sunden: Conceptualization (equal); Data curation (lead);
Software (lead); Writing – original draft (equal); Writing – review &
editing (equal). Daniel D. Kohler: Conceptualization (equal); Soft-
ware (supporting); Writing – original draft (supporting); Writing –
review & editing (supporting). Kent A. Meyer: Conceptualization
(equal); Software (supporting); Writing – original draft (support-
ing); Writing – review & editing (supporting). Peter L. Cruz Par-
rilla: Conceptualization (equal); Software (supporting); Writing –
original draft (supporting); Writing – review & editing (supporting).
John C. Wright: Conceptualization (equal); Funding acquisition
(lead); Supervision (supporting); Writing – original draft (support-
ing); Writing – review & editing (supporting). Blaise J. Thompson:
Conceptualization (equal); Software (equal); Writing – original draft
(equal); Writing – review & editing (equal).

DATA AVAILABILITY
The data that support the findings of this study are available

within the article and its supplementary material.

REFERENCES
1See https://www.ni.com/en-us/support/documentation/supplemental/06/getting-
started-with-ni-daqmx–main-page.html for Getting started with NI-DAQmx;
accessed: 02 October 2022, 2022.
2Standard Commands for Programmable Instruments (SCPI), SCPI Consortium,
1999.
3MODBUS Application Protocol Specification, Modbus, 2012.
4PICam 5.x Programmer’s Manual, Teledyne Princeton Instruments, 2021.
5Thorlabs Motion Controllers Host-Controller Communications Protocol, Thor-
labs, 2022.
6L. R. Dalesio, M. R. Kraimer, and A. J. Kozubal, “EPICS architecture,” in
ICALEPCS (1991), Vol. 91.
7J.-M. Chaize, A. Götz, J. Meyer, M. Pérez, and E. Taurel, “TANGO—An object
oriented control system based on CORBA,” in ICALEPCS, 1999.
8S. J. Weber, “PyMoDAQ: An open-source python-based software for modular
data acquisition,” Rev. Sci. Instrum. 92, 045104 (2021).

Rev. Sci. Instrum. 94, 044707 (2023); doi: 10.1063/5.0135255 94, 044707-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/rsi
https://yaq.fyi
https://www.scitation.org/doi/suppl/10.1063/5.0135255
https://www.scitation.org/doi/suppl/10.1063/5.0135255
https://www.scitation.org/doi/suppl/10.1063/5.0135255
https://www.scitation.org/doi/suppl/10.1063/5.0135255
https://www.scitation.org/doi/suppl/10.1063/5.0135255
https://www.ni.com/en-us/support/documentation/supplemental/06/getting-started-with-ni-daqmx&tnqx2013;main-page.html
https://www.ni.com/en-us/support/documentation/supplemental/06/getting-started-with-ni-daqmx&tnqx2013;main-page.html
https://doi.org/10.1063/5.0032116


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

9N. Bogdanowicz, C. Rogers, S. Weber, Zakv, S. Pelissier, J. Wheeler, Cxz, F.
Marazzi, Eedm, and I. Galinskiy, (2022) “Instrumental: A python-based library
for controlling lab hardware,” Zenodo. https://doi.org/10.5281/zenodo.6591764
10P. Tapping, “TRSpectrometer documentation,” https://trspectrometer.
readthedocs.io/; accessed 02 October 2022, 2021.
11L. Koerner, “Instrbuilder: A Python package for electrical instrument control,”
J. Open Source Softw. 4, 1172 (2019).
12L. Campagnola, M. B. Kratz, and P. B. Manis, “ACQ4: An open-source software
platform for data acquisition and analysis in neurophysiology research,” Front.
Neuroinform. 8, 3 (2014).
13See https://pymeasure.readthedocs.io/ for PyMeasure; accessed: 02 October
2022, 2022.
14G. Giesbrecht, A. Amsellem, T. Bauer, B. Mak, B. Wynne, Z. Qin, and A. Per-
saud, “Hardware-control: Instrument control and automation package,” J. Open
Source Softw. 7, 2688 (2022).
15A. Shkarin (2022). “pyLabLib,” Zenodo. https://doi.org/10.5281/zenodo.
7324876
16The yaq protocol is fully specified by the set of accepted yaq Enhancement
Proposals at https://yeps.yaq.fyi/.
17E. S. Raymond, The New Hacker’s Dictionary, 3rd ed. (MIT Press, Cambridge,
MA, 1996).
18See https://avro.apache.org/docs/1.11.1/specification/ for Apache avro specifi-
cation; accessed: 02 October 2022, 2022.
19J. Segal, “When software engineers met research scientists: A case study,” Empir.
Softw. Eng. 10, 517–536 (2005).
20yaqc available on PyPI at https://pypi.org/project/yaqc/.
21yaqc-qtpy available on PyPI at https://pypi.org/project/yaqc-qtpy/.
22D. Allan, T. Caswell, S. Campbell, and M. Rakitin, “Bluesky’s ahead: A multi-
facility collaboration for an a la carte software project for data acquisition and
management,” Synchrotron Radiat. News 32, 19–22 (2019).
23yaqc-bluesky available on PyPI at https://pypi.org/project/yaqc-bluesky/.
24S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of
electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729
(2000).
25J. C. Wright, “Multiresonant coherent multidimensional spectroscopy,” Annu.
Rev. Phys. Chem. 62, 209–230 (2011).

26R. J. Carlson, “Quantitative aspects of high resolution, fully resonant, four-wave
mixing spectroscopy for the analysis of vibronic mode coupling in molecules,”
Ph.D. thesis, University of Wisconsin-Madison, 1988.
27K. A. Meyer, “Frequency-scanned ultrafast spectroscopic techniques applied
to infrared four-wave mixing spectroscopy,” Ph.D. thesis, University of
Wisconsin–Madison, 2004.
28S. Kain, “Transition of frequency-domain coherent multidimensional spectro-
scopic methods to the femtosecond time regime with applications to nanoscale
semiconductors,” Ph.D. thesis, University of Wisconsin-Madison, 2017.
29B. J. Thompson, “Development of frequency domain multidimensional spec-
troscopy with applications in semiconductor photophysics,” Ph.D. thesis, Univer-
sity of Wisconsin–Madison, 2018.
30K. F. Sunden, “yaq: Yet Another Acquisition a modular approach to
spectroscopy software and instrumentation,” Ph.D. thesis, University of
Wisconsin–Madison, 2022.
31yaqd-core-python available on PyPI at https://pypi.org/project/yaqd-core.
32yaq-traits available on PyPI at https://pypi.org/project/yaq-traits.
33yaqd-brooks-mfc-gf source code available on GitHub at
https://github.com/yaq-project/yaqd-brooks/.
34See https://pypi.org/project/pyserial for PySerial; accessed: 02 October 2022.
35See https://pypi.org/project/pyusb for PyUSB; accessed: 06 November 2022.
36See https://pypi.org/project/pyvisa for PyVISA; accessed: 06 November 2022.
37See https://pypi.org/project/pymodbus for PyModbus; accessed: 06 November
2022.
38See https://yaq.fyi/daemons/ and https://yaq.fyi/hardware/ for living lists of all
yaq daemons and supported hardware, respectively.
39C. A. Salazar, B. J. Thompson, S. M. M. Knapp, S. R. Myers, and S. S. Stahl,
“Multichannel gas-uptake/evolution reactor formonitoring liquid-phase chemical
reactions,” Rev. Sci. Instrum. 92, 044103 (2021).
40E. Allman, “Managing technical debt,” Commun. ACM 55, 50–55 (2012).
41yaqd-fakes available on PyPI at https://pypi.org/project/yaqd-fakes/.
42J. Segal, “Some problems of professional end user developers,” in IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC 2007) (IEEE,
2007).
43J. Cohen, D. S. Katz, M. Barker, N. Chue Hong, R. Haines, and C. Jay, “The four
pillars of research software engineering,” IEEE Softw. 38, 97–105 (2021).
44A. Nowogrodzki, “How to support open-source software and stay sane,” Nature
571, 133–134 (2019).

Rev. Sci. Instrum. 94, 044707 (2023); doi: 10.1063/5.0135255 94, 044707-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/rsi
https://doi.org/10.5281/zenodo.6591764
https://trspectrometer.readthedocs.io/
https://trspectrometer.readthedocs.io/
https://doi.org/10.21105/joss.01172
https://doi.org/10.3389/fninf.2014.00003
https://doi.org/10.3389/fninf.2014.00003
https://pymeasure.readthedocs.io/
https://doi.org/10.21105/joss.02688
https://doi.org/10.21105/joss.02688
https://doi.org/10.5281/zenodo.7324876
https://doi.org/10.5281/zenodo.7324876
https://yeps.yaq.fyi/
https://avro.apache.org/docs/1.11.1/specification/
https://doi.org/10.1007/s10664-005-3865-y
https://doi.org/10.1007/s10664-005-3865-y
https://pypi.org/project/yaqc/
https://pypi.org/project/yaqc-qtpy/
https://doi.org/10.1080/08940886.2019.1608121
https://pypi.org/project/yaqc-bluesky/
https://doi.org/10.1146/annurev.physchem.51.1.691
https://doi.org/10.1146/annurev-physchem-032210-103551
https://doi.org/10.1146/annurev-physchem-032210-103551
https://pypi.org/project/yaqd-core
https://pypi.org/project/yaq-traits
https://github.com/yaq-project/yaqd-brooks/
https://pypi.org/project/pyserial
https://pypi.org/project/pyusb%20for%20PyUSB
https://pypi.org/project/pyvisa%20for%20PyVISA
https://pypi.org/project/pymodbus%20for%20PyModbus
https://yaq.fyi/daemons/
https://yaq.fyi/hardware/
https://doi.org/10.1063/5.0043007
https://doi.org/10.1145/2160718.2160733
https://pypi.org/project/yaqd-fakes/
https://doi.org/10.1109/ms.2020.2973362
https://doi.org/10.1038/d41586-019-02046-0

		2023-07-06T16:42:19-0500
	Preflight Ticket Signature




