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Abstract

This paper is mainly devoted to the study of controlled sweeping processes with polyhedral moving sets
in Hilbert spaces. Based on a detailed analysis of truncated Hausdorff distances between moving polyhe-
dra, we derive new existence and uniqueness theorems for sweeping trajectories corresponding to various
classes of control functions acting in moving sets. Then we establish quantitative stability results, which
provide efficient estimates on the sweeping trajectory dependence on controls and initial values. Our final
topic, accomplished in finite-dimensional state spaces, is deriving new necessary optimality and subop-
timality conditions for sweeping control systems with endpoint constrains by using constructive discrete
approximations.
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1. Introduction and problem formulation

In this paper we consider a family of sweeping processes with controlled polyhedral moving
sets defined on a Hilbert space H. To describe this family, fix some x¢ € H and, for arbitrary con-
trol functions (u, b) : [0, T] — H™ x R™ satisfying xo € C(,,5)(0), define the moving polyhedral
set

Clupy (1) :={x e H| (ui (), x) <bi(r) (i=1,....m)} (€[0,T]. (1.1)
This induces the controlled sweeping process (S(u,b)) given by

—x(@) e Nc(u.b)(;) (x(1)) a.e. t €[0,T], x(0) =xp € Cqu,)(0), (1.2)

where N¢(x) stands for the classical normal cone of convex analysis defined as
Nc(x):={veH | (v,y—x) <0} if x e C and N¢(x):=0 else. (1.3)

We emphasize that the differential inclusion in (1.2) comes along with the hidden pointwise state
constraints x(t) € C(,p(t) for all ¢ € [0, T], because otherwise the normal cone is empty by
definition.

Uncontrolled sweeping processes were introduced and initially studied by Moreau [27-29]
and then were extensively developed in the literature, where the main attention was paid to the
existence and uniqueness of solutions and various applications; see, e.g., [1,6,7,20,22,17] with
their references.

Existence and uniqueness of class-preserving solutions x, ;) to the sweeping dynamics (1.2)
generated by control functions (u, b) in (1.1) from various classes in Hilbert spaces is the first
topic of our paper. Note that the standard approach to this issue (see, e.g., [22]) consists of
checking the Hausdorff Lipschitz continuity of the moving set (1.1). However, this does not make
much sense when the moving set is an unbounded polyhedron. The W !-2-preserving existence
and uniqueness results for moving polyhedra were obtained by Tolstonogov [34-36] and more
recently in [9] under certain qualification conditions in Hilbert and finite-dimensional settings;
see more discussions in Section 3. Here we develop a novel approach involving the truncation of
polyhedra and deriving refined error bounds. This allows us obtain new class-preserving results,
which shows that Lipschitz continuous (resp. absolutely continuous) controls in (1.1) uniquely
generate Lipschitz continuous (resp. absolutely continuous) trajectories of (1.2) under an explicit
and easily formulated uniform Slater condition for moving control polyhedra in separable Hilbert
spaces.

The second topic of our study addresses quantitative stability issues on the Holderian depen-
dence of solutions to (1.2) on the corresponding perturbations of controls

(u, b) in moving sets as well as the initial value xq in separable Hilbert spaces. To the best
of our knowledge, such questions have never been posted for the sweeping processes formulated
in (1.1) and (1.2). Based on the aforementioned truncation techniques and error bounds, we
establish efficient results in this direction in the W!-! control-trajectory framework.

The third topic we investigate here concerns an optimal control problem for the sweeping pro-
cess in (1.1) and (1.2) under the additional pointwise equality constraint on the u-component of
controls and geometric endpoint constraint x(, py € 2 on trajectories. Optimal control theory for
sweeping processes, with addressing the main issue of deriving necessary optimality conditions,
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has been started rather recently in [11] and then has been extensively developed in subsequent
publications (see, e.g., [2,5,8—10,12—14,19,15,38] and the references therein), which did not con-
cern however systems with endpoint constraints.' Problems of sweeping optimal control, that are
governed by discontinuous differential inclusions with intrinsic pointwise and irregular state con-
straints, constitute one of the most challenging class in modern control theory. We develop here
the method of discrete approximation, which allows us to constructively approximate the con-
strained control sweeping process under consideration by discrete-time sweeping systems with
perturbed endpoint constraints so that feasible and optimal solutions to discrete approximations
strongly converge to the designated feasible and locally optimal solutions of the original prob-
lem under the uniform Slater condition mentioned above. Employing then advanced tools of
first-order and second-order variational analysis and generalized differentiation, we derive new
necessary optimality conditions for discrete approximations that gives us efficient suboptimality
conditions for a general class of local minimizers in the original problem of sweeping optimal
control.

The rest of the paper is organized as follow. Section 2 presents major technical developments
on the truncation and error bounds, which are of their own interest while being widely used in
deriving the main results of the paper. Section 3 is devoted to establishing the class-preserving
existence and uniqueness theorems for the controlled sweeping process. Section 4 addresses
stability issues for sweeping trajectories under control and initial value perturbations. In Sec-
tion 5 we formulate an optimal control problem for the sweeping process (S, »)) with endpoint
constraint and construct its well-posed discrete approximations. We establish the W!-2-strong
convergence of feasible and optimal solutions. The final Section 6 provides necessary optimal-
ity and suboptimality conditions for such control problems via advanced tools of generalized
differentiation.

2. Error bounds and truncation of moving sets

This section plays a crucial role in describing and justifying our strategy to derive existence
and stability results for sweeping processes with controlled polyhedra in both finite-dimensional
and infinite-dimensional settings. The conventional by now theory of sweeping processes estab-
lishes the existence of Lipschitz continuous solutions of the sweeping dynamics via the Hausdorff
Lipschitz continuity of moving sets; see, e.g., Theorem 2 in [22] and its proof. Unfortunately, this
approach does not work for the case of unbounded moving polyhedra. For instance, in the case in
moving halfspaces, i.e., for m =1 in (1.1), the Hausdorff distance is either zero (if the two halfs-
paces coincide), or infinity otherwise. Hence the only “moving” halfspaces satisfying Hausdorff
Lipschitz continuity are constant in time, which clearly does not offer any freedom for control-
ling the process. However, when truncating the moving polyhedron with a ball, the Hausdorff
Lipschitz continuity may well be achieved. This suggests the following strategy, which will be
implemented in the paper. First we intend to show that Lipschitzian controls lead us to bounded
continuous solutions of the sweeping process and that the moving polyhedron truncated with a
ball sufficiently large to contain this solution is Hausdorff Lipschitz, which hence verifies the
actual Lipschitz continuity of the solution. The second step of our approach is to establish an
appropriate error bound for the truncation moving polyhedra.

1 After the submission of this paper, we got familiar with the publications [16,30] that derive, by using different tech-
niques, necessary optimality conditions for sweeping control problems with endpoint constraints and control functions
acting in additive perturbations of the dynamics, while not in the moving sets as we address here.
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For the reader’s convenience, we split this section into several subsections and present numer-
ical examples providing the driving forces for our approach.

2.1. Hausdorff Lipschitz continuity of truncated moving polyhedra

As discussed above, it is generally hopeless to ensure a Hausdorff Lipschitz estimate for
moving polyhedra (1.1) in the form

di (Cauy (), Cuy (1) <LlIs —t| V5,1 €[0,T]. 2.4)
Our efforts are now paid to establish a truncated estimate of type
dy (c(uyb)(s), C(ru’b)(t)) <Tls—t| Vs,i€l0,T], (2.5)

where r > 0 is appropriately given, and where C" := CNB (0, r). To accomplish this, we proceed
in following two steps. Our first step is to derive the weakened Hausdorff estimate given by

d(x, Capy(®) < LUxIDIs =t Vs,1 €[0,T] Vx € Ciup)(s) (2.6)
with some monotonically increasing function L(-). Estimate (2.6) clearly yields
d(x,Cup®) <Lls—1] Vs,1€[0,T] Vx € Cf, ) (s) 2.7)
with Z:=L (7). In the second step we prove the general estimate
d (. Cly () =3d (., Cupy(®) V1 €[0.T] Vx € B (O, r) 2.8)

for all r sufficiently large. Combining the latter with (2.7) will ensure the desired truncated
estimate (2.5). Details follow.

2.1.1. Limitations of Hoffman’s error bound

The first idea, which comes to our mind for proving (2.6), is the use of the classical Hoffman’s
error bound; see, e.g., [4, Theorem 2.200]. It guarantees in our setting that, for each ¢ € [0, T'],
there exists some L (t) :== L(¢t,u(t), b(t)) ensuring the distance estimate

d (x, Cupy () <L (1) max [(u; (1), x) —=bi ()] VxeH (2.9

provided that Cy p)(t) # @. Here, [f]4 := max{t, 0} for all # € R. In particular, for x € C, p)(s)
it follows from (u; (s), x) < b;(s) fori =1, ..., m, that

[(u;(2), x) — bi ()] (2.10)

=[{u; (), x) — (u;(s), x) + (u;(s), x) — bi(s) + bi(s) — b; (t)]+
< [ui (@), x) — (ui(s), x) +bi(s) —bi ()] +
< Mui @) —ui (I x| +1bi(s) = bi ()| Vi=1,...,m.
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When (u, b) is Lipschitz continuous, this combines with the previous estimate to give us (with
I-]l 5o referring to the maximum norm) the inequalities

d (x, Cupy () < L @) (lu(®) = u(s)lloo 121l + 15(s) = b(t) o)
<LOxI+DKls—t] ¥xeCups),
where K is a Lipschitz constant of (u, b). Therefore, if the function L (t) is bounded from
above on [0, T'], say by L*, then the desired estimate (2.6) would follow with the function
L (t) := (t + 1) L*, which is clearly monotonically increasing. Unfortunately, even for Lips-

chitzian controls (u, b), the function L (t) may be unbounded from above as can be seen from
the following example.

Example 1. In (1.1) put m :=2, H := R2, T := 1 and define the smooth (hence Lipschitz con-
tinuous) control pair

up (0):=0,1); b1 (@):=1; us (t) :=(t,—1); b2 (t) :=0.
For t € (0, 1], take x () := (¢ >, 1) and observe that

d(x (), Cup®)=t"—1"" and _max (i (1), x (1)) — bi(D)]y =172 — 1.

1

It thus follows from (2.9) that L @ >t forall re (0, 1]. Therefore, the function L (2) is
unbounded on [0, T'].

Remark 1. There are certain special cases in which Hoffiman’s error bound leads us to a bounded
function L (t) in (2.9) on the interval [0, T'], even for non-Lipschitzian controls (u, b). We men-
tion the following:

1. In the case of a moving halfspace (i.e., m =1 and u(t) # 0 for all t € [0, 1]) with a continu-
ous control u : [0, T] — H and an arbitrary control b : [0, T] — R, we have that

d (x, Capy®) = lu@® I~ [u @), x) = b®)1y < L™ [{u(0), x) — b(0)],

forallt €[0,1] and all x € H, where L := i[r(l)fl] lu(?)] > O.
r€0,

2. In the case where variable control functions are situated only on the right-hand side of (1.1),
i.e, when u (t) =u # 0) while b : [0, T] — R is arbitrary, it follows from [21, Proposi-
tion 4.6] that

.....

whenever C, py(t) # ¥ forall t € [0, T'].
Example 1 illustrates the drastic impact of fully controlled polyhedral moving sets on Hoft-
man’s error bound starting from dimension two, even for smooth controls. Fortunately, it turns

out that—despite the fact that the approach using Hoffman’s error bound sketched above is not
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viable for our purposes—we may find an alternative path based on (2.6), in order to reach the
desired goal. To support this idea, let us revisit Example 1 and observe that the sweeping process
generated by the Lipschitzian control in this example does admit a unique Lipschitzian solution
for an arbitrary initial point xg € C( 5)(0).

Example 2. Consider the control pair (#, b) defined in Example 1 and fix an arbitrary initial
point xg € C(y,)(0). We subdivide the initial polyhedron as C(, ) (0) = €21 U £, with the sets

Q= {x € Cup)(0) | x2 <x1} and Q;:={x € Ciu.p)(0)| x2 > x1}.
If xo € Q3, then for an arbitrary time ¢ € (0, 1) the boundaries of the two controlled halfspaces

have no contact with xg. Consequently, x(¢#) = 0 for all # € (0, 1), and hence x (1) = x¢ for all
t € [0, 1]. In contrast, for xo € 2] we get

X0 t €0, ] 1 o
)C(t): y(t) te(tl,tz) s Z‘l:x()_’2’ IZZ{ ”xOHZ_l ” 0”_ ’
(1/t,1) te€(n,l1] X0,1 00 else
lxol| o
y1(t)=—F——=, and y2 (1) = .

Here 71 denotes the time when the second halfspace (the moving one) becomes binding for xg
for the first time, i.e., when txo,1 = x0,2. This gives us the indicated formula for #;. For t < #;
both halfspaces are nonbinding for xg; so x(¢) = 0, and hence x (t) = x¢ for all ¢ € [0, #]. For
t > t1 the second halfspace is binding. The first halfspace also becomes binding at a certain time
ty > t1; so we have xp (f) = 1 for all ¢ € [1, 1]. Since the second halfspace keeps binding, it
follows that 7x1 (f) = x5 (t) = 1 from where we conclude that xj (#) = 1/t during this period of
time. It remains to determine the trajectory x (¢) for ¢ € (1, 1), as well as the switching time #;.
Since in this interval only the second halfspace is binding, we derive the following relations from
the sweeping dynamics:

—x(1) € Nci ) (x(@)) =Ry (1, =1) Vi e(t1,n).
Consequently, there exists a function A () < 0 such that
X)) =tr(t); x(t)=-r(@) Vie(n, n).

On the other hand, with the second halfspace being binding, we also have that rx; (#) = x> (¢) for
all t € [t1, 1p). This tells us therefore that

x2 (1)
x1 (1)

X1(t) = —tizx(t) = — @) = x1(Ox1 () +X20)x2 (1) =0 Vie(t,n).

The solution to the latter differential equation is given by x% )+ x% (t) = C, where the constant
C can be identified from the fact that x (t;) = xo, which yields C = llxoll%. Along with the
equality 7x1 (t) = x2 (¢), we identify the function y(¢) indicated in the formula above. Finally,

the switching time #, is determined from the relation y; () = 1. Observe that for ||xo|| < V2
the first halfspace is never binding in the given time interval [0, 1]. It is easy to check that the
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determined solution x(#) is Lipschitz continuous on the entire interval [0, 1], and as such it has
to be unique due [22, Theorem 3].

2.1.2. Uniform Slater condition and weakened Hausdorff estimate

As shown in our subsequent analysis, the reason why the announced result—that Lipschitzian
controls yield Lipschitzian solutions of the sweeping process—can be maintained in Example 1
despite the fact that an argumentation via Hoffman’s error bound does not apply, consists in the
fulfillment of an appropriate constraint qualification. Now we introduce this qualification condi-
tion, which plays a crucial role not only in establishing existence and stability results presented
in what follows, but also in the two last sections of the paper dealing with the verification of
the strong convergence of discrete approximations and the derivation of necessary optimality
conditions for sweeping optimal control.

Here is this easy formulated and natural qualification condition.

Definition 1. We say that the moving polyhedron in (1.1) generated by the given control pair
(u, b) satisfies the UNIFORM SLATER CONDITION if

Vt €[0,T] 3x € H such that (u; (t),x) <b; (t) Vi=1,...,m. 2.11)

We emphasize that, unlike the boundedness of L (t) in Hoffman’s error bound estimate (2.9),
this constraint qualification is essential for our desired result. Indeed, a simple two-dimensional
example taken from [13, Example 2.3] shows that, even for smooth control functions, the sweep-
ing process (1.2) may not admit a solution when (2.11) is violated. On the other hand, we see
below that (2.11) yields the weakened Hausdorff estimate (2.6), which is the first step mentioned
in the introduction to this section.

Before deriving (2.6) via (2.11), we show that the following seemingly stronger version of
(2.11) has been used in the earlier work on the existence of solutions to sweeping processes
defined by moving polyhedra [9, Assumption (H4)]:

de>0Vre[0,T] 3x € Hwith (u; (t),x)<b;j(t)—e Vi=1,...,m (2.12)

It turns out, however, that this “strong uniform Slater condition” is equivalent to the uniform
Slater condition formulated in (2.11).

Proposition 1. Assume that the control (u, b) in (1.1) is continuous. Then conditions (2.11) and
(2.12) are equivalent.

Proof. Since (2.12) obviously yields (2.11), it remains to verify the opposite implication. As-
sume that (2.12) fails, which tells us that

1
VneN 3, el0, T] VxeH i e{l,...,m} with (u; (¢,),x) > b; (t,) — —.
n

For some subsequence #,, € [0, T1, there exists # € [0, T'] such that #,, — #. Fix an arbitrary
vector x € ‘H and then get

V€N Fip e (1,m) with {ui (i) ) > iy () — -
k

414



R. Henrion, A. Jourani and B.S. Mordukhovich Journal of Differential Equations 366 (2023) 408—443

Selecting another subsequence, find i* € {1,..., m} such that iy, = i*. Therefore, we have the
inequalities

1
(i (1) - x) > i (1) - o forall [N,
1

Passing there to the limit as [ — oo gives us (u;« (f), x) > by« (). Since x € H was chosen
arbitrarily, we arrive at

He0,T] Vx eH Ai* efl,...,m} with (u (7), x) = b= (),
which contradicts (2.11) and thus completes the proof of the proposition. O

Now we turn to the announced proof of the weakened Hausdorff estimate (2.6). Given § > 0,
define the §-moving polyhedron by

Colp@ ={xeH| (wi(t).x) <bi() =8 (i=1.....m)} (te[0.T]). (2.13)

To proceed, we first present the following crucial technical lemma involving continuous con-
trols (u, b) € C([0, T], H™) x C([0, T1, R™) in the moving polyhedron (1.1) endowed with the
maximum norm

w,b)|| o = max ui @) + max
I, B)ll o i@l 1e[0,71,i=1

_ 1bi ()]
te[0,T],i=1,..., m

,,,,,

The associated closed ball in this space centered at (u,b) with radius » > 0 is denoted by
Boo ((u, b), r).

Lemma 1. Fix continuous control (it, b) € C([0, T], H™) x C([0, T1, R™) satisfying the uniform
Slater condition (2.11). Then there exists ¢ > 0 such that whenever y € (0, &) we can find a
continuous function x € C([0, T1, H) for which

~ ) X _ - E—Yy

x(t)eC (H)Vtel0,T] Y(u,b) e B:=B ( u,b), —————— ) (2.14)
“?) <\ 5T R

Furthermore, we have the estimate

Su,by(t, x)
x) — faup (@, X))

forallt €[0,T], all x € H\Cu,p)(t), and all (u, b) € B, where f(, p)(t, x) = max;=1, ... (u; (t),
x) — b;(t). Finally,

d(x, Caup) (1)) < lx — X))l vt €[0, T] (2.15)
f(u,b) (l,

d(x, Cu py() <
lx =X (@)l min { Ly max [(ui () —ui(s), x) +bi(s) = bj (r>]+} (2.16)
Sforall w,b), W' ,b')eB, all s,t €[0,T], and all x € Cyy p)(s).
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Proof. As shown in Proposition 1, the imposed uniform Slater condition (2.11) is equivalent to
(2.12) for (u, b) := (u, b). Using the latter and choosing & > 0 therein, pick an arbitrary number
y € (0, &) and define

2
P ety

€(0,¢).
Then condition (2.12) tells us that

Vi €[0,T] Ix e X with (it; (t),x) <bi(t) —e<b;(t)—8 Vi=1,...,m.

In other words, for each ¢ € [0, T] the convex set C ((2) 5) (#) admits a Slater point. This ensures the
inclusion
C((g)l;)(t) Cel {xeH| (@ (1), x) <bi (1) =8} Vrel0,T]

which in turn allows to conclude (by invoking, e.g., [3, Theorem 3.1.5]) that C ((3);5) 0, TI=H

is a lower semicontinuous multifunction. Since the images C ((;)13)
t € [0, T], the classical Michael selection theorem ensures the existence of a continuous function
X €C([0, T], H) with

(t) are closed and convex for all

~ 8)
x(t) € C(M) (t) Vtel0,T].

Next we fix an arbitrary continuous control (u, b) € B and get by the definition of § the following
inequalities:

(i (1) ,x(1)) — b (1) < (u; (1) , X)) + llu; (£) —it; O - |1X@)| — bi (r)

<bi (1) = 8+ llu; (1) — i; ()| - IXOI| = bi (¢)

2
<3E-y)=ds—y Viel0.T]Vi=1..m.

Thus ¥ € C([0, T]. H) and X(1) € V) (1) for all £ € [0, T, which verify (2.14).

Addressing the second assertion of the lemma, fix arbitrary elements ¢ € [0, T'], (u,b) € B,
and x € H\C(,,p)(¢). Remembering the construction of f(, ), we have that f, ) (t,x) > 0 by
x € H\Cu,p) () and f(, p) (2, X(t)) < —y < 0 by the already proved relation (2.14), define

. Sawp (@, x)
T faun (%) = fup (6, X))

€(©,1).

It follows from the convexity of f, ) (t, -) that
Sy @ (1 =2)x +23(1)) < (1 = A) faup) (t, X) + Afup) X)) =0,
and so (1 — L)x + AX(#) € C(y,p)(¢). This verifies (2.15), which can be written as
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d(x, Caupy(®) < llx — (1 = x + 23X @) | =4llx =X @)

It remains to justify the final assertion of the lemma. To proceed, fix arbitrary elements
5,1 €[0,T1, (u,b), (u',b") € B, and x € C(up)(s). If x € C( (1), then (2.16) holds trivially.
Supposing now that x ¢ C,/ 41y (1) gives us f p)(t,x) >0 and f(, 5 (t,X(1)) < —y by (2.14).
Therefore, (2.15) yields

d(x, Cyrpy (1))

- S oy (@, x)
T fw )t X) = fu ), X(1))

<y (f(u',b') (t. %) = foup) (s, x)) lx =X (because of x € C(u,b)(S))
<y =XOI max [wi@) = ui(s), x) +bi(s) = bi(0)],, -

lx =N < ™" farw @ 0llx =@

Since X(t) € c(f,) 1y (®) € Caur (1) by (2.14), we also have that d(x, Cqyp (1) < I|lx — F(0)]].
Combining the above verifies (2.16) and completes the proof. O

We are now in a position to derive the weakened Hausdorff estimate (2.6).
Theorem 1. Let (u, b) be a Lipschitz continuous control along which the moving polyhedron
(1.1) satisfies the uniform Slater condition (2.11). Then there exist constants K1, Ky > 0 such
that the weakened Hausdorff estimate (2.6) holds with the monotonically increasing function
L :R, — Ry defined by
Lr)=Kir+1)Fr+Kz) (r=0). 2.17)

Proof. We again employ the uniform Slater condition (2.11) in the equivalent form (2.12) by
Proposition 1. Then we get from (2.16) in Lemma 1 that

2 ~
d@x, Cupy(®) = “llx =Xl max [{u;(t) = ui(s), x) + bi(s) = bi()]4

along a continuous function x(-) for all s,¢ € [0,T] and all x € C(,p)(s). Define » :=
n[lé,u; | X ()|l > 0 and denote by K > 0 a Lipschitz constant of the control pair (u, b). Then
telo,

we have the estimate
2K R 2K
d(x, Cu,p () < Tllx =xONUlxll + 1D fs — ] < »e (Nl ll =+ 2¢0) (lxll + 1) |s — ¢

forall s,t € [0, T] and all x € C, p)(s). This is exactly (2.6) with the monotonically increasing
function L (r) ;=8 'K (r + ) r +1). O

Remark 2. The moving polyhedron C, py defined in Example | does satisfy the uniform Slater
condition. To see this, select the constant solution x (t) = (0,0.5) in (2.11). Thus the estimate
(2.6) can be verified in this example via Theorem 1, while the usage of Hoffiman’s error bound
does not lead us to the desired result. The reason is that Hoffman’s error bound—if applicable
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as in the special cases mentioned in Remark 1—would necessarily bring us to an affine function
L in (2.6); see the discussion above in Example 1. Yet, a closer inspection of the example shows
that such an affine function L cannot work in this example. Indeed, consider the sequences

x™ = (2n,0) € Clupy (0); th:=n"' (neN).

Assuming that estimate (2.6) holds with an affine function L (r) := ar + b and choosing s := 0,
we arrive at the following contradiction

n< mzd (x(n)’ C(u,b)(tn)) < (a H_x(ﬂ)

=Qan+byn~' <2a+|b| VneN.

+b) tn

On the other hand, the choice of the quadratic function (2.17) by Theorem I allows us to derive
the weakened Hausdorff estimate (2.6) in this example.

2.1.3. General truncation lemma

The last subsection of this section accomplishes the second step of our approach outlined in
the introduction to this section. The following general truncation result clearly implies the desired
estimates (2.8) for truncating polyhedra.

Lemma 2. Let (X, || - ||) be a normed space, and let C be a nonempty, closed, and convex subset
of X. Define the truncating set C" := C NB (0, r) for r > 0. Then we have the estimate

d(x,C") < %d(x C) VxeB(0,r) Vr>d(0,C). (2.18)

Consequently, it follows that
d(x,C")<3d(x,C) VxeB(@O,r) Yr >3d(0,C). (2.19)

Proof. Pick arbitrary elements » > d (0,C), x e B(0,r), and ¢ with 0 <e <r —d(0,C). If
x € C, then x € C" and (2.18) holds trivially. Assume now that x ¢ C, and so d(x,C) > 0.
Choose xq, y € C such that

lxoll < B:=d(0,C)+¢, lx —yll <d(x,C)+minfe, d (x,C)}. (2.20)

If |yl <r, then y € C", and (2.18) follows from the inequality in (2.20). Therefore, it remains
to examine the case where ||y|| > r. The equality in (2.20) combined with ¢ < r — d(0, C) gives
us the estimate ||xg|| < 8 < r. Therefore, there exists y € (0, 1) such that ||z|| = r for z :=
(1 —y)y + yxo. The convexity of C readily ensures that z € C". Then we have

r={d=p)lyll+ylxoll or equivalently, y (lyll — llxoll) < lIyll =7

Due to ||y|| > r > B > ||xo]|, the latter implies that

oll < Iyl =r
Tyl =8
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Taking into account that ||x|| <r brings us to

Iyl <y —xll+lxll <d(x,C) + &+,

and therefore we arrive at the estimate

Iyl + B8

dx,C .
Iy —p Ot

lz =yl <

Combining all the above leads us to the relationships

2
lz—xll < lz= vl + Iy —xl = A+ 28 e oy 4o < (z+ —’3) (d(x, C) +e).
Iyl =B "

Since z € C" and ¢ was chosen arbitrarily with 0 < ¢ <r —d(0, C), we get

2d(0, C)

d(x,Cr) < <2+ m

) d(x, ),
which verifies (2.18) and thus completes the proof of the truncation lemma. O

3. Existence and uniqueness of sweeping solutions

The main goal of this section is establishing two class-preservation existence and uniqueness
theorems for polyhedral controlled sweeping processes defined in (1.1) and (1.2) under the uni-
form Slater condition (2.11) in the setting of separable Hilbert spaces. Namely, we aim at proving
that Lipschitz continuous controls (u, b) uniquely generate Lipschitz continuous trajectories of
S(u.p) and that absolutely continuous (of class W1 controls uniquely generate sweeping trajec-
tories of the same class. Note that results of this type in the W2 control-trajectory framework
we obtained in [34-36] for various types of sweeping processes under appropriate assumptions
in separable Hilbert spaces. Similar preservation results of class W!? were established in [9]
in finite dimensions under the strong uniform Slater condition (2.12) reducing to (2.11) as we
now know. Observe also that results of this type in class of W' were derived in [13,12] for
polyhedral sweeping processes in finite-dimensional spaces under essentially stronger qualifica-
tion conditions than (2.11) used in what follows. Our approach below is strongly based on the
truncation procedure and error bound estimates developed in the previous section.

Here is the first theorem dealing with Lipschitzian controls.

Theorem 2. Let ‘H be a separable Hilbert space. Assume that (u, b) is Lipschitz continuous
control and that the moving polyhedron C, py in (1.1) satisfies the uniform Slater condition
(2.11) along this control pair. Then the sweeping process (S(u,b)) admits a unique Lipschitz
continuous solution.

Proof. Theorem 1 ensures the existence of a monotonically increasing function L : Ry — R
satisfying the weakened Hausdorff estimate (2.6). This gives us for each r > 0 a constant L=
L (r) such that (2.7) holds. Thus for all » > 0, all s, # € [0, T'], and all x € C, 1) (s) with ||x|| <7
there is y € C(, p)(¢) satisfying
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Ix =yl < (L, +1)Is —1].

Indeed, the latter is obvious with the choice of y := x in the case where s = ¢, and this follows
from (2.7) and from d (x, Cu,b) (t)) < (Z, + l) |s — t] in the case where s # t. Since the linear
function s — (Z, +1) s trivially belongs to W2 [0, T1, it is r-weakly uniformly lower semi-
continuous from the right for p =2 in the sense of Tolstonogov [34, eq. (2.2)]. Therefore, we
deduce from [34, Lemma 2.1 and Lemma 3.1] that the sweeping process (S(M,b)) has a unique
solution x* € W12 ([0, T1,H). In particular, the trajectory x*(¢) is absolutely continuous on
[0, T']. It remains to show that x*(¢) is Lipschitz continuous on this interval. To proceed, define

p = max ||x* (t)\

; =3 1 3.21
t€[0,T] ’ Pt ( )

and then fix arbitrary s, t € [0, T] and
X € C(’u’b)(s) =Cup(s)NBO,r).

As a solution to (S(u, b)), the function x*(z) satisfies the hidden state constraint x* (¢) € C p)(?).
Therefore, we obtain

r=3p+1=3|x* @) +1>3d(0,Cpun).

This allows us to invoke the truncation result from Lemma 2 to get
d (x, Clon (z)) <3d (x, Clup (1)) - (3.22)

On the other hand, Theorem 1 yields (2.6) and hence gives us a constant L such that (2.7) holds
for our selected s, ¢ € [0, T]. Combining this with (3.22), and recalling that s, #, x were chosen
arbitrarily, we arrive at the estimate

d (x, c(’u,,,)(t)) <3Lls—1] Vs, t€[0,T] Vx € Cly o).
Interchanging the roles of s and 7 readily yields the desired Lipschitz Hausdorff estimate (2.5)
of the truncated moving polyhedron with modulus 3L. Employing the standard existence re-

sult from [22, Theorem 2]) leads us to deducing from the obtained estimate that the truncated
sweeping process (S(,p)) defined as

—x(t) € chu,m(l) (x()) ae.te[0,T], x(0)=x0 € C(ru’b) 0) (3.23)

admits a Lipschitz continuous solution X(-). It follows from the definitions in (3.21) that for all
r > p we have the inclusions

X* (1) € Clupy () NB (0, p) € Clupy (1) NintB (0, 7) € C, (1) V1 € [0, T1.

On the one hand, the resulting inclusion justifies the feasibility of the initial point in (g'(u b)) due
to xo = x™* (0). On the other hand, it tells us that
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Ner o (x*(1) = Ny (x*@) Viel0,T].

Therefore, x*(-) being a solution to (S(u b)) is also a solution to (S(u b)) Since x*(¢) is absolutely
continuous on [0, 7] as an element of W2 ([0, T], ), and since (S(u b)) can have at most one
absolutely continuous solution by [22, Theorem 3], we conclude that x*(-) = X(-). This ensures
that x*(¢) is Lipschitz continuous on [0, T'], since X(¢) is so. Thus we complete the proof. O

Our next goal in this section is establish the existence of a unique absolutely continuous so-
lution of the sweeping process (S(,,, b)) generated by any absolutely control (u, b) in the moving
polyhedron (1.1) under the same uniform Slater condition. Recall that the norms on the spaces
of absolutely continuous functions W“([O, T1,H™) and Wl’l([O, T1, R™) are defined, respec-
tively, by

el 1.1 —Znu <0>||+Zf||u ®ldt, [1bllr.1 —Zlb <0>|+Zf|b (t)ldt.

llo 110

The norm on the product space W1 ([0, T1, H™) x WHI([0, T1, R™)) is ||(u, b)|[1.1 := ||u|l1.1 +
6111, and the induced ball around (u, ) with radius r is By 1 ((u, b),7r).

The proof of the following theorem elaborates a reduction idea from [33] that allows us to
deal with non-Lipschitzian controls of the sweeping dynamics.

Theorem 3. Let 1 be a separable Hilbert space. Take (u, b) € WH1([0, T1, H™) x W-1([0, T,
R™) and suppose that the moving polyhedron C, p) in (1.1) satisfies the uniform Slater condi-
tion (2.11). Then the control pair (u, b) generates a unique solution x € Wh1 ([0, T, H) of the
sweeping process (S(u,h)) in (1.2).

Proof. It follows from the Newton-Leibniz formula that

t
IIf(t)—f(s)IIS/Hf(r)Hdr Ve wh (0,71, %)

whenever s, t € [0, T] with s < t. Therefore, for all such s, t we have

t

3 i () — wi )+ 1bi (1) — bi(s)] < onm(r)u+|15i<r>|dr+r—s

i=1 $oi=1
=y (@) -yl (3.24)
with the strongly increasing and absolutely continuous function

t

y() =1+ f > i () + 16 ()l dr (3.25)

o =l
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For eachindex i =1, ..., m, introduce the pair (u/. b/.) 1[0, y(T)] - H x R by

1’71

(uf, b7) (@) = (i, bi) (v~ (x)), T €10, ¥(T)].

Then we readily have the relationship

Cau (@) =Cun(y~ ' (), Tel0,y(T)]. (3.26)

Since y_l(O) =0, it follows from (3.26) that xo € C(y,5)(0) = C(,,1)(0). Therefore, the sweep-
ing process

(Stwr) : —i(1) € ey (o) (0(1))  ae.Te [0, ()], x(0)=x0
is exactly of type (S,»)) as in (1.2). Furthermore, (3.24) yields

lu}(x)) —ui ()| + b (r) = b{()| < |11 — 2| V1, m2€[0,y(T)] Vi=1,....m,

which tells us that the control (u’ b ) is Lipschitz continuous on the interval [0, y (T)]. Observe
also that C(, 5y satisfies the uniform Slater condition (2.11) on this interval since Cy, ») does so
on the original interval [0, T']). This allows us to invoke Theorem 2, applied now to the control
(', '), and conclude that the modified sweeping process (S, ,,) admits a unique Lipschitzian
solution y(-) with some modulus K. For all ¢ € [0, T], set z (¢) := y (y(¢)), which implies that
z(t) ==y (y()) y @) forae.r €[0, T]. Hence

Izl =y y)lly@®) =Ky@) ae t€[0,T].

Since y(-) is a solution to (S’

w b’)) while y (t) > 0 for a.e. t € [0, T], we get by using (3.26) that

—2() =5 (P O) (1) € PONC,yrn Y@ O) = Ney @) @)

= Ncg,. 0 (2()) ae.r€[0.T].

It follows from (3.25) that y € W1 ([0, T],R), and so z € W1([0, T, H) as well. Further-
more, we have that z (0) = y (¥ (0)) = y(0) = xg because y(-) is a solution of (Séu, b’))' This
allows us to conclude that z(-) is a solution of the original sweeping process (S(,,, b)) and—being
absolutely continuous on [0, T']—it is unique by [22, Theorem 3]. O

Finally in this section, we present a consequence of Theorem 3 ensuring the result of this type
for the §— moving polyhedron (2.13). This result is important to our applications to stability in
the next section.

Corollary 1. Let H be a separable Hilbert space, and let the uniform Slater condition (2.11) be
satisfied along a given control (I/_t b) e wL([0, T1, H™) x WLL([0, T1, R™). Then there exists
& > 0 such that for all numbers § € [0, €) the perturbed sweeping process

—ie N(CEE)E) (), x(1)) ae.tel0,T], x©0)=%(0)¢c C((;)E) ) (3.27)
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admits a unique absolutely continuous solution. Here Cég)[;) is defined in (2.13) and X(-) is the
(

continuous selection x(t) € C ( (t) taken from (2.14).

3)
ii,b)
Proof. As in the proof of Lemma 1, choose ¢ > 0 from (2.12) and pick é € [0, ). Then C(ﬁ’g) =
()
)y
The result now follows from Theorem 3. O

with b defined by E, =b; —8§asi=1,...,m, also satisfies the uniform Slater condition.

4. Quantitative stability of the perturbed sweeping dynamics

In this section, we investigate the stability of solutions to controlled polyhedral sweeping
processes with respect to perturbations of controls and initial values of the sweeping dynamics.
Theorem 3 allows us to associate with each absolutely continuous control (u, b) satisfying (2.11)
and with the initial value x(0) = x¢ € C(y ) (0) the unique absolutely continuous solution x,_4)
of the sweeping process (S(u,b)). In contrast with the previous analysis, where the initial point
xo was fixed, we now compare solutions of (S(u, h)) corresponding not only to different controls
but also to different initial points. To emphasize this dependence, let us write (Sw,p.xy)) for
the sweeping process (S(u,b)) corresponding to the initial condition x(0) = xo € C(,,p) (0) and
denote its unique solution by x, p x,)- We begin with the following estimate, which is based on
Lemma 1 and uses the arguments from the proof of Proposition 3 in [18].

Lemma 3. Assume that H is a separable Hilbert space, and that the uniform Slater condition
(2.11) holds for some given control (ii,b) € W-1([0, T1, H™) x WL1([0, T1,R™). Then there

exists € > 0 such that for all § € (0, ¢), for all controls (u,b) € By 1 ((ﬁ, I;), m), and for

all corresponding solutions x(-) to the sweeping processes (S(u,h, xg)) we have the estimate

IR S :
X = 5 (Xlloo + l1yslloc +0t5) (14 llyslloc + cts) > (i ()] + 16i (1)])
i=1

ae. t€[0,T]. (4.28)

Here x(-) stands for the continuous selection x(t) € C E;) 5) (t) taken from (2.14), ys(-) refers to the

associate unique solution of the perturbed sweeping process (3.27) guaranteed by Corollary 1,
and the constant o is defined by

2

T T
as :=f||y's(t)||dt+ /Ily'a(t)lldt + [1x(0) — X (0) || (4.29)
0 0

Proof. As in previous proofs, we choose ¢ > 0 from perturbed uniform Slater condition (2.12)
equivalent to the assumed one (2.11) by Proposition 1. Fix an arbitrary § € (0, ¢), then fix an
arbitrary control pair

_ )
(u,b) € By ((ﬁ,b), W) (4.30)
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and denote by x(-) the corresponding unique solution of the sweeping process (S(u, b, xO)) due to
Theorem 3. By the absolute continuity of the triple (u, b, x), the derivatives x(t), u; (¢) and Bi (1)
exist for almost all ¢ € [0, 1]. Fixing now any such time ¢ and then get

x(t—=s)=x{) —s@x @) +ax(s), uit—s)=u;(t)—s@;t)+a,;(s))
bi(t — ) = b;i(t) — s(bi (1) + ap i (),

where limg_pax(s) = 0, limgoa,;(s) = 0 and limg_oapi(s) = 0. Since x(t — s) €
Cu,b) (t —s) for all s, we deduce from (2.16) that

x(t —5) € Cupy(H)+
éIIX(l —s5)—x) ;(Ilui(l —s)—ui@®| - lIx(t =)+ 1b; (t —5) — b; (1)) |B,

where B refers as usual to the unit ball in . Using the convexity of the Cy, ;)(#) and passing to
the limit s |, O, gives us the inclusion

1 N o .
—x(t) € T(Cu,p) (1), x()) + gllx(t) x|l Z (it D1 - 1lx @)1 + 15 (1)]) B,

i=1

where T (S, u) stands for the tangent cone to a convex set S at u in the sense of convex analysis.
As —x(1) € N(Cu.p)(1), x(1)), we arrive at

1 N oo .
%1% < 1) - EIIX(I) x| Z (liti D1 - Ix @+ 16 (D]) 4

i=1

which in turn implies, since ¢ was arbitrarily chosen from a subset of full measure on [0, T'], the
derivative norm estimate

1 N W .
x@) < EIIX(t) —x@) | Z (It O - lx @1 + i (1)])  a.e.t €0, T1. (4.31)

i=1

To proceed further, let ys(-) be the unique absolutely continuous solution to the sweeping process
(3.27) according to Corollary 1. Since (u; (t), ys(¢)) <b; (t) — 8 forall t € [0, T] and all i =
1,...,m, we deduce from (4.30) that

(i (), ys(1)) — bi (1) < (ui (1) — ;i (1), ys (1)) + bi (t) — bi (1) =
< llu—itllollyslloo + 16 = blloo — 8
<llu—illiillyslloo + 16— bll11 —8
<. b) = @ b)l11(1+[lyslloc) =8 <0 Vi e[0,T].
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Therefore, ys(t) € C,,p)(t) for all t € [0, T]. Remembering that x(-) solves the original sweep-
ing process (S(u,h’xo)), it follows that —x(¢) € Ncgp ) (x(1)) for a.e. t € [0, T'], and hence we
have

d1 N
EE”x(t) —YsON7 = (X (@) — y5(1), x(1) — ys(1))

= (X (@), x(1) — ys()) + (=ys (@), x(1) — ys5(1))
= {(=ys(@0), x(®) — ys (@) < Iys O - 1x(2) — ys (@) lloo-

This brings us to the estimate

Ix(@) = ys@I*  [1x©0) =% (0) ||
2 2

T
s||x—ya||oo~/||y‘s<t>||dr Vi €0, 7],
0

which implies on turn that

T
_ 2 0 _AO 2
ol BOZEOL < - st [ 15s01ar.
0

2 2

Consequently, we arrive at the inequality

T
Ilx — ysl2, —2 / 135 @)lldz | 11x = yslloo — lX(0) =% (0) ||> < 0.
0

Invoking the definition of « in (4.29) gives us the estimate

lx = yslloo < ats. 4.32)

which being combined with (4.31) verifies the claimed inequality (4.28) and thus completes the
proof of the lemma. O

Now we are ready to establish the main stability result.
Theorem 4. Let H be a separable Hilbert space, and let the uniform Slater condition (2.11)
hold for a given control pair (u, b) € wll ([0, T1, H™) x wLlL([0, T1, R™). Then there exist a
number p > 0 and a continuous function K : H x H — R such that for all control pairs

u,b), (', b') [W”([O, T1,H™) x wh1([o, T],]R’”)] NBy (G B). ). (4.33)

for all initial values xo € C,p)(0), x(’) € Cw 1)(0), and the associated solutions x, x" to the
sweeping processes (S(u,b, xo)) and (S(u,’ W, x(’)))’ respectively, we have

|x) = x'@)|” < | x0 = xp||* + K o, ) I — ', b — Bl V2 €0, T1. (4.34)
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Proof. As above, we employ the equivalent description (2.12) of the uniform Slater condition
(2.11) and take & > 0 from Proposition 1. Fixing an arbitrary number ¢ € (0, ¢), define the quan-
tity

i { d €9 } (4.35)
0 :=min , = ; :
L4+ llyslloe 31+ 11X100)

where x(-) is the continuous selection X(t) € CE;)E) (1) satisfying (2.14), and where ys(-) is

the unique absolutely continuous solution to the perturbed sweeping process (3.27) taken
from Corollary 1. Select arbitrary controls (u, b), (u’,b") from (4.33), arbitrary initial values
x0 € Cu,1)(0), x() € Cw.p)(0), and the associated solutions x, x’ to the sweeping processes
(S@u.b.x0)) and (8( >), respectively. Then it follows from (4.32) that

u' b x|,
lx = Yslloo <as and [lx" — yslloo < g (4.36)
for a5 defined in (4.29) and «j defined by the same formula with the initial value x (0) = xo

replaced by the initial value x’ (0) = x(’). Lemma 3 gives us estimate (4.28) for the control (u, b)
as well as the corresponding estimate

151 < 87" (IFloo + 1slloo + ) (14 1yslloe +at5) D (i )] +16;(1)])

i=1

ae.te(0,T] “4.37)

for the control (1, b"). Denoting now

C:=(as + lIyslloc + [ ¥lloc) (1 + s + I yslloo) .
C" = (a5 + [1yslloo + 1¥lloo) (1 + a5 + s lloo) (4.38)

and integrating (4.28) ensure that

t m t
/||fc<s)||dssaf‘cZ/(nm(s)n+|Bi(s>|)ds Vielo,T].
0

i=1 0

Therefore, recalling that (u, b) € By 1 (i, b), p) yields
t
/nx(s)uds =57 Cllw. bl =87C (p+ (@), ,)- (4.39)
0
Similarly, the integration of (4.37) gives us

t
/ X" (s)|lds <8’ (,0 + || (@, b)| M) . (4.40)
0
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Letnow ¢ € [0, T'] be from a subset of full measure such that x(r) and x’(¢) exist. We clearly have
x(t) € Cqu,p)(t) and x'(t) € C(, 1y (t). Since a ball in the || - ||1,1-norm is contained in a ball of
the same radius in the || - ||oo-norm, the construction of p in (4.35) allows us to employ the error
bound (2.16) from Lemma 1. This ensures the existence of x; € C(y p)(t) and x| € C(, p)(?)
with

,,,,,

<5 x@) —=FOI (lu@) — ' O x @] + || @) — ' @)]|)
<57 x @) =FONA + Ix @D @) — ' (1), b(t) — b’ @)

Similar considerations bring us to the estimate

') = x| < 87X () = XD A+ 11X O DA @) — ' (1), b(@) = b @)]I.

Since x(-) and x'(-) are absolutely continuous solutions to (S(u,;,, xo)) and (S(u/,b/, x(/))), respec-
tively, we deduce from —x(t) € N¢,, , o) (x(t)), —X'(1) € Ne, (x'(1)), and the obtained
estimates of ||x(¢) — x| and ||x'(¢) — xi || that

%% |x@) = x|
= (k@) = X'(1), x(t) = x"(1)) = (X (1), x (1) — x"(1)) — (X"(1), x () — (1))
= (@), x(1) — x7) + (£(), x] = X' () + (X' (), X" (1) — x1) + (£ (1), x1 — x(1))
< (X(0), xp = x"(0) + (K1), x1 — x(1))
<@ NlIx] = x" Ol + 1% Olllxr — x @)l
<8 H(IEOIIX' @) —=ONA + IO + 1F Olllx @) —ONA + Ix @)
AlQu(2) —u'(0), b(t) = b'(1))].

For all ¢ € [0, T'] define the function

X (@0 :=8""(IK' @) =XONA + 1K' O + lx (@) =TI+ D)) -

Then the latter estimate can be rewritten as
d 1

) |x@) = x' @) |7 < x @ (1£O 1+ I1F @) 1) — ' @), be) — b @)Il. (4.41)

It follows from (4.36) and (4.38) that x (1) < 8! (C + C’). As t was arbitrarily chosen from a
subset of full measure of [0, T'], we integrate (4.41) and then employ (4.39) and (4.40) to get

|x0) —x' @) = [x©) —x'©|

t

<s'(c+C) / (I 1E ) 1 @ls) —u'(s), b(s) — b () lids

0
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t

<57 (C+C) I —u' b~ B)lloo / (5@ + 1)) ds
0

=52+ (p+ @B, ) I —u'b =)o

K (x0,x0)

for all t € [0, T']. By (4.38), C and C’ depend continuously on s and a7, respectively, which in
turn depend continuously on xo and x(, by (4.29)). Thus we verify that the obtained continuous
function K (xg, x/p) ensures the claimed estimate (4.34), and we are done with the proof of the
theorem. O

To conclude this section, we present a direct consequence of Theorem 4 for the case where the
initial value xq in (1.2) is fixed. In this case the function K (-) in the estimate (4.34) is constant.

Corollary 2. Let H be a separable Hilbert space, let the uniform Slater condition (2.11) hold
for a given control (ii,b) € W-1([0, T1, H™) x WL1([0, T1,R™), and let xq € C(ﬁ,E) be an
arbitrarily given initial value in (1.2). Then there exist positive numbers p and K such that for
all controls (u, b), (u', b') satisfying (4.33) and the corresponding solutions x(-) and x'(-) of the
Sweeping processes (S(u,b,xo)) and (S(u/,b/,x())) with xg € C(,)(0) N Cy 1) (0), respectively, we
have

|x(@) —x'(0) ||2 <K|@w—u',b-b)|w Vtel0,T]
5. Discrete approximations of controlled sweeping processes

The last two sections of the paper are devoted to the study of the following optimal con-
trol problem for the sweeping process (1.2) with controls in polyhedral moving sets (1.1) and
additional endpoint constraints as well as the pointwise equality constraints on the u-control
functions:

min [f(u,b)|(u, by e W20, TI, R™ x R™), |lui®)|=1G=1,...,m)
xw.p)(T) € 2}, P)

where Q C R" is a closed subset, f is a cost function (specified later on), and x5y is the unique
trajectory of the polyhedral sweeping process (S(u,b)) from (1.2) generated by a control pair
(u,b) = (u(-), b(-)) of the above class on [0, T']. Such a control pair (u, b) is called a feasible
solution to (P) if ||u(¢)||=1 for all t € [0, T'] and x, 4)(T) € 2 for the corresponding trajectory
of (1.2). Note that our focus in what follows is on Lipschitzian controls in (P), which uniquely
generate by Theorem 2 Lipschitzian sweeping trajectory under the imposed uniform Slater con-
dition (2.11). At the current stage of our developments for (P), we have to restrict ourselves to
the case of finite-dimensional state spaces.

Our main goal here is to develop the method of discrete approximations to investigate the
sweeping control problem (P) and its discrete counterparts from both viewpoints of stability
and deriving necessary suboptimality and optimality conditions. Stability issues address the con-
struction of finite-difference approximations of sweeping differential inclusions such that their
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feasible solutions strongly approximate a broad class of canonical controls in the original sweep-
ing process; this notion is introduced in the paper for the first time. Furthermore, we construct
a sequence of discrete-time optimal control problems (Py) always admitting optimal solutions,
which W1-2-strongly converge to a prescribed local minimizer of the intermediate class (be-
tween weak and strong, including the latter) of the original sweeping control problem (P). This
opens the door to derive necessary optimality conditions for such minimizers of (P) by using
advanced tools of variational analysis and (first-order and second-order) generalized differentia-
tion. Furnishing this approach, we concentrate here on deriving necessary optimality conditions
for problems (Py) with the approximation number k € N being sufficiently large. The obtained
necessary optimality conditions for (Py) serve as constructive suboptimality conditions for in-
termediate local minimizers of (P) that are convenient for numerical implementations. This is a
clear advantage of the method of discrete approximations in comparison with other methods of
deriving necessary optimality conditions for continuous-time variational and control problems.
In our separate publication, we are going to realize the involved limiting procedure of passing to
the limit from the obtained necessary optimality conditions for (Px) (i.e., suboptimality condi-
tions for (P)) to derive exact necessary optimality conditions for intermediate local minimizers
of continuous-time sweeping control problems of type (P).

The method of discrete approximations was developed in [23,24] to establish necessary subop-
timality and optimality conditions for Lipschitzian differential inclusions. Sweeping differential
inclusions are highly discontinuous, and the machinery of Lipschitzian variational analysis is not
applicable in the sweeping framework. Further developments of this method in various sweeping
control settings can be found in [2,9,8,10,13,14] and the references therein. However, neither
these publications, nor those of [5,15,38] exploring other approaches to deriving optimality con-
ditions in different models of sweeping optimal control address additional endpoint constraints
x(T) € 2 on sweeping trajectories.

In this section we focus on the construction of discrete approximations for the constrained
sweeping dynamics and local minimizers of (P) with obtaining stability/convergence results,
while the next section is devoted to reviewing the required tools of generalized differentiation
and their applications to necessary optimality conditions for discrete approximation problems
(Py) giving us suboptimality conditions for intermediate local minimizers of (P).

Let us start with introducing a new notion of canonical controls for problem (P) that plays a
crucial role in our developments.

Definition 2. We say that a control pair (u, b) € WH2([0, T], R™" x R) is CANONICAL for prob-
lem (P) if the following conditions hold:

e The functions u(-) and b(-)) are Lipschitz continuous on [0, T].

e The uniform Slater condition (2.11) is satisfied along (u, b).

e We have the constraints

lui ()| =1 forall t €[0,T] and i =1,...,m.
o The derivatives u(-) and 15(') are of bounded variation (BV) on [0, T] together with the deriva-
tive of the unique Lipschitz continuous trajectory x(-) of (1.2) generated by the control pair

(u,b).

Observe that the corresponding trajectory to (1.2) generated by a canonical control pair may
not satisfy the endpoint constraint x, ) (T) € 2, i.e., not any canonical pair is feasible for (P).
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To proceed with our approach, we construct a sequence of discrete approximations of the
sweeping process (Sq,p)) from (1.2) over the controlled polyhedron (1.1) without any appeal to
optimization as in (P). For each k € N define the discrete mesh on [0, 7] by

A== <t <. <l <iyy=T] G.1)
w1thh ]+1—tk¢0 j=0,...,v(k) — 1, as k - oco. Denote
F(u,b,x):=Ncu,np), Clu,b):= {x eR” } (i, x) <b; (i = 1,...,m)}. 5.2)

The following theorem tells us that any canonical control pair (u, b) and the corresponding
sweeping trajectory x(-) can be W1-2-strongly approximated by feasible solutions to discrete
sweeping processes defined on the partition Ay from (5.1) and appropriately extended to the
continuous-time interval [0, T].

Theorem 5. Let (ﬁ(-), E(~)) be a canonical control pair for (P), and let x(-) be the corresponding
unique solution of the Cauchy problem in (1.2). Then there exist a mesh Ay in (5.1), a sequence
of piecewise linear functions (uk( 4, bk( ), xk( -)) on [0, T] and a sequence of positive numbers
8k 4 0 as k — oo such that (7% (0), b (0, 3% (0)) = (i1(0), b(0), xo),

18 < Hﬁf(:ﬁ)” <145 forall Keny, i=1,....m, (5.3)
) =3 + -, < <db ) with =T e F(@E %), R ah). 7 (1))
for j = .,v(k) — 1, k € N, and the sequence {(uk( -, bk( ), xk( -))} converges to (u(-), b(-),

x(-)) as k — 00 in the W2-norm topology on [0, T1.

Proof. As mentioned, the existence of the unique Lipschitz continuous trajectory x(-) of the
Cauchy problem for the polyhedral sweeping process in (1.2) generated by the given canonical
control pair (it(-), b(-)) follows from Theorem 2. Now we are in a position to deduce the claimed
assertions from [9, Theorem 4.1] under the BV assumption on i(-), b(-), and X(-). Indeed, the
qualification condition (H4) from [9, Theorem 4.1] is equivalent to the uniform Slater condition
(2.11) by our new result obtained in Proposition 1. Thus the application of [9, Theorem 4.1] gives
us all the assertions claimed in this theorem. O

From now on, we consider for simplicity problem (P), where the cost function is defined in
the Mayer form via a given terminal state function ¢ : R” — R by

fu,b) == (xyp(T)).

If the function ¢ is lower semicontinuous, then problem (P) admits a (global) optimal solution
in W2([0, T], R x R™) provided that there is a bounded minimizing sequence of feasible
solutions; see [9, Theorem 3.1] and its proof. Since our main attention is paid to deriving nec-
essary (sub)optimality conditions in (P), it is natural to define an appropriate notion of local
minimizers.
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The notion of local minimizers of our study in this paper occupies an infermediate position
between the classical notions of weak and strong minimizers in variational and control problems,
while encompassing the latter. Following [23], where this notion was initiated for Lipschitzian
differential inclusions (see also [24] for more details), we keep the name “intermediate” for the
version of this notion in the setting of our sweeping control problem (P).

Definition 3. We say that a feasible control pair (it, b) for (P) is an INTERMEDIATE LOCAL
MINIMIZER in this problem if there exists € > 0 such that

9 (x5 5(1)) < @(xup(T))

for any feasible solution to (P) satisfying the condition

e, b) = @, b)Y 12 + Ixup = x5 pllwr < (5.4

The notion of strong local minimizer for (P) is a particular case of Definition 3, where the
norm [|x,,p — x; jlly12 in (5.4) is replaced with the norm ||x, , — x; jllc in the space of con-
tinuous functions C([0, T'], R"). It is not hard to construct examples showing that there exist
intermediate local minimizers to (P) that fail to be strong ones; see [23,24,37] even for simpler
problems.

Having F(u, b, x) from (5.2), fix a Lipschitz continuous intermediate local minimizer (u, l;)
for (P) with the corresponding sweeping trajectory X(-) := x; ; and assume that the uniform
Slater condition (2.11) holds along (iz, b). Take the mesh Ay from (5.1) and identify the points
t}‘ with the index j if no confusion arises. Consider now discrete triples (u*, b*, x*) with the
components

k pk ky._ ok k k k 1k k k _k k
(u,b,x)._(uo,ul,...,uv(k),bo,bl,...,bv(k),xo,xl,...,xv(k))

and form the sequence of discrete approximation problems (Py) by:

minimize <p(xf(k))+ 5.5)
v(k) 1 ,+ _uk bk pk kK 2
: | Coxk 4 L.
/ H( ] ]+hk ] , ]+hk ]) _ (M(t),b(t),.x(t))
y j J
over the triples (u¥, b, x¥) subject to the following constraints:

X ext =S FGA, B8 b, =0, v -1, (5.6)
xg =x0 € Cy 5(0), (uf. by) = (i1(0), b(0)), x5y, € Q2+ &B, (5.7)
=< |ub(D)| <146 forall Fea, i=1,...m, (5.8)
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k
v()—1 741
k 1k k SN T E 2 €
PR B (AR B CONIORION T (5.9)
J=0 &
J
(k) 1t;§+l k k ok ko k k 2
N uby —uh b —b Xt — X P e
> (“hk iy ’)—(xm,a(r),b(t)) dt<>. (510
j=0 i j j

1

where {§x} in (5.8) is taken from Theorem 5 applied to (u, b) and can be chosen such that both
inequalities in (5.8) are strict, where ¢ > 0 in (5.9) and (5.10) is taken from Definition 3 of
the intermediate local minimizer (it, b) for (P), and where the sequence {&} of the endpoint
perturbations in (5.7) is defined by

£ = |¥5(T) = %(T)| - 0 as ke N (5.11)

via the sequence {3{]‘ (-)} approximating x (-) in Theorem 5.

The next theorem establishes the existence of optimal solutions to problems (Px) forall k € N
and then shows that any sequence of optimal controls {(@*, b¥)} to (Py) constructed for the given
canonical intermediate local minimizer (it, b) of (P), together with the corresponding sequence
of discrete trajectories {X¥} piecewise linearly extended to the whole interval [0, T'], strongly
W12-converge as k — oo to the prescribed local optimal triple (i, b, %) for (P).

Theorem 6. Let (ii, b) be a canonical intermediate local minimizer for (P) with the correspond-
ing sweeping trajectory x(-). The following assertions hold:

(i) If the cost function ¢ is lower semicontinuous around x(T), then each problem (Py) admits
an optimal solution whenever k € N is sufficiently large.

(@i) If in addition ¢ is continuous around x(T), then every sequence of optimal solutions
{(@*, b)) 1o (Py) and the corresponding sequence of discrete trajectories {x*}, being piece-
wise linearly extended to [0, T), converge to (it,b,%) as k — oo in the norm topology of
w20, T, R™ x R™ x R").

Proof. To verify (i), observe first that the set of feasible solutions to problerrL (Py) is nonempty
for all large k € N. Namely, we show that the approximating sequence {(it*, b*, %)} from The-
orem 5, being applied to the given canonical intermediate local minimizer (i, b) of the original
problem (P), consists of feasible solutions to (Px) when k is sufficiently large. Indeed, the dis-
crete sweeping inclusions (5.6) with the initial data in (5.7) are clearly satisfied for {(i?k , bk , Xk )}
together with the control constraints (5.8), the conditions in (5.9) and (5.10) also hold for large
k by the W!-2-convergence of the extended triples {(@Z (1), b* (1), ¥ (1))} to ((t), b(1), ¥(t)) on
[0, T] as kK — oo, and the fulfillment of the endpoint constraint in (5.7) for the approximating
trajectories %¥ () follows from x(T') € €2 and the definition of & in (5.11) by Theorem 5 applied
to the canonical intermediate local minimizer (i, b). It follows from the construction of (Py)
and the structure of F in (5.2) that the set of feasible solutions to (P%) is closed. Furthermore,
the constraints in (5.8)—(5.10) ensure the boundedness of the latter set. Since ¢ is assumed to be
lower semicontinuous around x(7'), the existence of optimal solutions to such (Py) follows from
the classical Weierstrass existence theorem in finite dimensions.
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Now we verify assertion (ii) of the theorem. Consider an arbitrary sequence {(ﬁk ), b* ), xk N}
of optimal controls to (Px) and the associated trajectories of (5.6) that are piecewise linearly ex-
tended to [0, T']. We aim at proving

11m / | a* @), b (), & k() — (ﬁ(t),l;(t),)?(t))szt:O, (5.12)

which readily yields the claimed convergence in (ii). Supposing on the contrary that (5.12)
fails gives us a subsequence of k — oo (no relabeling) along which the limit in (5.12) equals

to some o > 0. Due to (5.10), the sequence (@ (1), b* (1), X5 (1))} is weakly compact in
L%([0, T],R™ x R™ x R"), and hence it contains a subsequence that converges to some
triple (9%(-), 92 (), 9% () € L2([0, T],R™ x R™ x R") weakly in this space. Employing
Mazur’s weak closure theorem tells us that there is a sequence of convex combinations of
(it% (-), b*(-), X*(-)), which converges to (9(-), 92 (-), 9 (-)) strongly in L2([0, T], R"" x R™ x
R™), and hence almost everywhere on [0, T'] along a subsequence. Define

t
(@), b(1), X (1)) := (ﬁ(O),l;(O),xo)—f—/(ﬂ”(t),ﬂb(t),ﬁx(r))dr forall £ € [0, T
0
and get that (ﬁ(r),?@, (1) = (1), 90 (1), v* (1)) for ae. t € [0, T]. It follows from the
construction of (u(¢), b(t),x(t)) and the passage to the limit as k — oo in (5.7)~(5.10) that
lZ@)|| =1 on [0, T], that x(T) € 2, and that (z(z), b(t), x(¢)) belongs to the e-neighborhood of

@@(-), b(-), (-)) in the norm topology of W20, T], R™ x R™ x R™). Let us now check that
the limiting triple (u(-), b(-), x(-)) satisfies the sweeping inclusion

—X(1) € NCyy oy (x (1)) forace. 1 €[0,T] (5.13)
over the controlled polyhedron. It follows from (5.6) due to (1.1) and (5.2) that
(k. # ) < B @) forall i=1,....m, all j=0, v(t) =1, and ke N.
Passing there to the limit as k — oo ensures the conditions
(@i (1), %(1)) <b;(t) forall i=1,...,m and 1 €[0, T}, (5.14)

ie., x(t) C(ﬁ(t)’g(t)) on [0, T']. To proceed further, we use the construction of F in (5.2) and
rewrite (5.6) along the optimal triple @@k, bk, 7%) for (Py) as

7 = F @)
hi.

J

€ NC i ity ) (=0, v@®) =1, keN).  (5.15)

Recalling the piecewise linear extensions (uk(t) bk (t) ik(t)) of the discrete triples ik, b*, x )
and their strong W1 2-Convergence to the triple (u(z), b(t) X(1)) satisfying (5.14) tells us by pass-
ing to the limit in (5.15) as k — oo that the sweeping inclusion (5.13) holds for (u(z), b(t), x(0)).
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The verification of the latter involves the usage of the aforementioned Mazur theorem and the
outer semicontinuity (closed-graph) property of the convex normal cone (1.3) with respect to
pointwise perturbations of the moving polyhedron Cy, ;) in (5.13).

All the above shows that the limiting triple (i, 75, X) is a feasible solution to problem (P) while
satisfying the e¢-localization condition (5.4). Passing finally to the limit in () with taking into
account the assumed continuity of ¢ and remembering the value o > 0 of the chosen limiting
point of the sequence in (5.12), we get that ¢(X(T)) < ¢(x(T)). This contradicts the imposed
local optimality of (iz, b) in (P) and hence completes the proof of theorem. O

6. Optimality conditions via discrete approximations

The results of the previous section show that optimal solutions to the finite-dimensional
discrete-time problem (Py) are approximating suboptimal solutions to the original sweeping
control problem (P) of infinite-dimensional dynamic optimization. Therefore, necessary opti-
mality conditions for solutions to problems (Px), when k € N is sufficiently large, can be viewed
as (necessary) suboptimality conditions for the prescribed intermediate local minimizers of (P).
This observation allows us to justify solving the original sweeping control problem by apply-
ing appropriate numerical techniques based on necessary optimality conditions for the discrete
approximations.

Each discrete-time problem (P;) can be reduced to a nondynamic problem of mathematical
programming in finite-dimensional spaces. As we see, problems (Py) contain constraints of spe-
cial types, the most challenging of which are given by increasingly many inclusions in (5.6) that
come from the sweeping dynamics. The latter constraints of the graphical type require appropri-
ate tools of generalized differentiation to deal with. In particular, Clarke’s nonsmooth analysis
cannot be applied here, since his normal cone is usually too large for graphical sets associated
with velocity mappings in (1.2) and (5.6). In fact, the only (known to us) machinery of general-
ized differentiation suitable for these purposes is the one introduced by the third author and then
developed by many researchers; see, e.g., the books [24,25,32] and the references therein. We
now briefly review what is needed in this paper.

Given a set ® C R" locally closed around z € ®, the (Mordukhovich basic/limiting) normal
cone to © at 7 is defined by

N(z;9)=Ng(2) := 6.1)

{veR" |3z — Z, wr € M(zi; Q). ax >0 with o (zx — wi) — v},

where I1(z; ®) :={w € O | ||z — w|| = d(z, ®)} is the Euclidean projector of z € R" onto ®.
While for convex sets ® the normal cone (6.1) agrees with the classical one (1.3), in general the
set of normals (6.1) may be nonconvex even for simple sets as, e.g., the graph of the absolute
value function |- | at 7 = (0,0) € RZ. Nevertheless, the normal cone (6.1) for sets, as well as
the coderivatives of set-valued mappings and (first-order and second-order) subdifferentials of
extended-real-valued functions generated by (6.1), enjoy comprehensive calculus rules that are
based on variational and extremal principles of variational analysis.

Given further a set-valued mapping F: R" =2 R" with the graph gph F := {(x, y) € R" x
R™ | y € F(x)} locally closed around (x, ¥) € gph F, the coderivative of F at (x, y) is defined
by

D*F(x,5)(u):={veR"| (v,—u) € N((X,7); gph F)}, ueR™ (6.2)
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Given finally an extended-real-valued function f: R” — R := (—00, 0o] lower semicontinuous
around x with f(x) < oo and the epigraph epi f := {(x, @) € R+ | ¢ > f(x)}, the (first-order)
subdifferential of f at x can be defined geometrically via the normal cone (6.1) as

Aaf (@) :=={veR"| (v,—1) e N((x, f(X)); epi f)}, (6.3)

while it admits various analytic descriptions that can be found in the aforementioned books.
Observe that the normal cone (6.1) is the subdifferential (6.3) of the indicator function 8¢ (x)
of ®, which equals 0 for x € ® and oo otherwise. The second-order subdifferential of f at x
relative to x € df (x) is defined as the coderivative of the first-order subdifferential mapping by

92 f (%, 0)(d) := (D*af )X, 0)(d), deR". (6.4)

This construction naturally arises in optimal control of sweeping processes of type (1.2), where
the right-hand side is described by the normal cone mapping. We look for second-order eval-
uations of the coderivative in (6.4) applied to the normal cone mapping F in (5.2) generated
by the control-dependent convex polyhedron C(u, b) in the sweeping process (1.2). The result
needed in this paper follows from [13, Theorem 4.3], where it was derived by using calculations
in [26] and Robinson’s theorem of the calmness property of polyhedral multifunctions [31]. To
formulate the required result, consider the matrix

A=uli=1,....mj=1,...,n)

with the vector columns u; as well as the transpose matrix AT. As usual, the symbol L indi-
cates the orthogonal complement of a vector in the corresponding space. Having the controlled
polyhedron C(u, b) in (5.2), take its active indices at (u, b, x) with x € C(u, b) denoted by

I(u,b,x):={ie{l,....m}| (ui,x) =b;}.

The positive linear independence constraint qualification (PLICQ) at (u, b, x) is

[ Z o;u; =0, o ZO] - [ozi =0 forall i € I(x,u,b)]. (6.5)
iel (x,u,b)

This condition is significantly weaker than the classical linear independence constraint qual-
ification (LICQ), which corresponds to (6.5) with o; € R while not being used in this paper.
Considering the moving polyhedron as in (1.1), it is not hard to check that our basic uniform
Slater condition from (2.11) is equivalent to the fulfillment of PLICQ along the feasible triple
(x(2),u(t),b(t)) forall ¢ € [0, T]; see [9] for more discussions on this topic.

Given x € C(u, b) and v € N (x; C(u, b)), define the sets

qgi =0 for all i with either (u;,x) <b; or p; =0, or(u;,y) <0,

Qp) = { gi >0 forall i suchthat (u;,x)=2>b;, p; =0, and (u;,y) >0,

P(y):=|peNgn(Ax —b)| ATp=v} for ye ﬂ ui,
{i | pi>0)
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where the normal cone to the nonpositive orthant R” is easy to compute.

Now we are ready to present the required evaluation of the coderivative of the normal cone
mapping F'(x, u, b) generated by the controlled polyhedron in (5.2). The following lemma is a
slight modification of [13, Theorem 4.3].

Lemma 4. Taking F and C(u, b) from (5.2), suppose that the active vector columns {u; | i €
I(u,b, x)} are positively linearly independent for any (u, b, x) with x € C(u,b). Then for all
such (u,b,x), all ve N(x; C(u, b)), and all y € Ny, p,.>o}uiL we have the coderivative upper
estimate

ATq
p1y +qix
D*Fu.b.x,vy(»c | : . (6.6)
oo | | pmy £ amx
—q

Note that imposing the LICQ condition instead of PLICQ ensures that the set P(y) is a sin-
gleton and that the inclusion in (6.6) holds as equality; see [13, Theorem 4.3]. However, for the
purpose of this paper it is sufficient to have the inclusion in (6.6) under the less restrictive PLICQ.

To proceed further, we need one more auxiliary result giving us necessary optimality condi-
tions for a finite-dimensional nondynamic problem of mathematical programming with finitely
many equality, inequality and inclusion (geometric) constraints. The next lemma is obtained by
combining the necessary optimality conditions from [25, Theorem 6.5] for mathematical pro-
grams containing one geometric constraint and the intersection rule for limiting normals taken
from [25, Corollary 2.17]. Arguing in this way, we can derive necessary optimality conditions
for mathematical programs described by lower semicontinuous cost and inequality constraint
functions as well as continuous functions describing equality constraints. However, we confine
ourselves to considering problems with just locally Lipschitzian functions for cost and inequality
constraints and smooth functions for equality constraints, since only such functional constraints
appear in mathematical programs to which we reduce the discrete-time sweeping control prob-
lems (Py).

Lemma 5. Consider the following problem of mathematical programming:

minimize fo(z) as z € RY subject to
fi@ <0 fori=1,...,s,
gi(@)=0 for j=0,...,r1,
2€0; for j=0,...,1,

(MP)

where all the functions f; and g; are real-valued. Given a local minimizer Z to (M P), assume
that the functions f; are locally Lipschitzian around z for i =0, ...,s, the functions g; are
continuously differentiable around this point for j =0, ..., r, and the sets ® j are locally closed
around 7 for all j =0,...,1. Then there exist nonnegative numbers Ay, ..., As, real numbers
o, - - -, Wy, and vectors zj eR4 for j =0,...,1, not equal to zero simultaneously, such that

rifi@) =0 fori=1,...,s,
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Z}’f €N(z;0;) for j=0,...,1,
1 s r
=Y Ged M+ Y Ve,
j=0 i=0 j=0

Having Lemma 4 and Lemma 5 in hand, we are now in a position to establish necessary con-
ditions for optimal solutions to problems (Py) from (5.5)—(5.10) whenever the approximation
number k € N is sufficiently large. The obtained relationships involve the given intermediate
local minimizer for the sweeping optimal control problem (P) and thus present necessary subop-
timality conditions for the original continuous-time problem due to Theorem 6. For any x € R",
y=01,...,Vym) ER" with y; e R" i =1,...,m), and « = (a1, ..., a,) € R™ we use the
symbols

rep,, () :=(x,...,x) e R" and [«, y]:= (@1¥1, ..., %mYm) € R"".

Theorem 7. Let (it, b) be a canonical intermediate local minimizer of (P) generated the trajec-
tory x = x(-) of the controlled polyhedral sweeping process (1.2) such that the cost function ¢
is locally Lipschitzian around x(T). Fix an optimal triple (X, b*, ¥) in problem (Py) with the
components

ik k 1k 1k ~k =k =
(u b*, x") _(uo,ul,... v(k),bo,bl,...,bv(k),xo,xl,...,xv(k))
and choose k € N to be sufficiently large. Denote the quantities
?H ’f+1
—k ~k Lk k
us, —ut b5 ., —b
uk ._ J+1 j_ = bk ._ J+l1
07" = / (h—k u(t)) dt, 07" := f (7hk b(t))
i ! ik /
J J

k

Ik —k
X — X .
07k = / (7”;;" / —)E(t)) di
I /
J

and define the set Qi := Q + &B, where & is taken from the construction of problem (Py).
Then there exist a multiplier \* > 0, an adjoint triple p (p] , p] , pjk) € Rtmntm (j —

0,...,v(k)), as well as vectors n* = (n](;""’nv(k) c Rm(\)(k)+l) alk — (a(l)k’.” ifk))
k)+1 41
RMCOD 2% = (2, a a2) eR R7COD gk = oo V) €R™ ) such thar
(k) —
. Ha]k —a H + | H + + ‘ P’ H #0, (6.7)
j:
Mt ot — o]+ 4] + [ ook | + [ otk | % 0. 6.8)
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and we have the following conditions:

e DYNAMIC RELATIONSHIPS, which are satisfied for all indices j =0,...,v(k) — 1 and i =

Z” ijo

uk uk
Pjqpi—Pj 2 [alk _ g2k ﬁk:I
k k[7J J
h hi
_ 1
= [yj’.‘,repm(xj?)] + |:n§,repm (—E)Lkefk — 2k +pfi1):| ,
J
Pj+1—P;j k
T e
j

1’]+1
Z%J i,

where the components of the vectors y]].‘ are such that

T 1
vk =00if (@, #) < B or nly =0, (i, — e Pk <0,
J

_ 1
vl 20 if (@l 7 =By, ol =0, (@ —pakert 4 pik ) > 0.
J

i _ 1
yi];- eR if nf.‘j >0, <u£‘j, —ﬁxkejk + p§i1> =0.
J

o COMPLEMENTARY SLACKNESS CONDITIONS:
1k k
o (‘uij
2k k
o (‘u

ij
[(ufj,x§><5§j]=>n{?j=o G=1,....m, j=0,...,v(k)—1),

—(1+ak))=o G=1,....m, j=0,...,v(k)),

—(1—5k))=0 G=1,....m, j=0,...,v(k),

[0 E) < By | = i =0 G=1oeim, j =0, v = ),

1 . .
nt; > 0= [( U,—ﬁkkefk—l—pjlj_l>:0:| (=1,....,m, j=0,...,v(k)—1).
J

e TRANSVERSALITY RELATIONSHIPS at the right end of the trajectory:

m
k ko o=k k. ko ook
Py € M 09(Fy ) + N (X745 ) + Z Miv o) Hiv()»
i=1
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(6.13)

(6.14)
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k 1k % -k k -k
Pﬁ(k) =-2 [“u(k) — Xk “u(k)] - I:nv(k)’ repm(xv(k))] ) (6.20)
pzv(k) = ’7w(k) >0, (i Uiy u(k)) < bzv(k) = qu(k) =0 (G=1....m). (6.21)

Proof. To reduce problem (Py) from (5.5)—(5.10) for each fixed k € N to a mathematical pro-
gram of type (M P) formulated in Lemma 5, we form the multidimensional vector

o (K k k k k k k k
7= (”0’ e Uy by, ..., bv(k),xo, e Xy V0o -+ V(=1
k k k k
Whs - e s Wyy—1s V0o - -+ yv(k)_1>
and consider the problem of minimizing the cost function

tk
v(k)—1 7!

1 . - .
fo@)=geg) +5 D f | (v — i), wk — b)Y —50)) |Par
Jj=0

1

subject to the five groups of inequality constraints

tk
vk)—1 JH!

fi(z) = Z /‘

j=0 %
j

(k. 65, %) = (@), l;(t),i(t))szt -5 =0,

tk
v(k)—1 JH!

hr@= /H(v’;,w’;,yf)—(ﬁ(n,l?(t),»?(r))szt—%50,

j=0 %
1

fii@ =l 1> = A+ 8)* <0 for i=1,....m, j=0,...,v(k),
Fi@ = =8 = Jub I <0, fori=1,....m, j=0,...,v(k),
i@ = (kg xE o) = Bhyy <0 for i=1,....m,

the three groups of equality constraints
g2 =ul | —ul —rh =0 for j=0,... v(k) -1,
gh@ =0k — b —hkwh =0 for j=0,....v() -1,
(@) =x}, —xf —hyi =0, for j=0,....,v(k) 1,

and the two groups of inclusion constraints

z€0;:={z| -y e Fh b5, xH} for j=0,....vk) -1,

J’ ]’

2€0,¢ = {z| (ub, b5, x&) are fixed, xv(k) € Qk},
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where those for j =0, ..., v(k) — | incorporate the constraints xj? eC (u]]?, blj‘.) for such j due to
the construction of F in (5.2).

As we see, the formulated nondynamic equivalent of problem (%) is written in the mathemat-
ical programming form (M P) as in Lemma 5 with the fulfillment all the assumptions imposed
in the lemma. Thus we can readily apply the conclusions of the lemma by taking into account
the particular structure of the functions and sets in the formulated equivalent of (). Employing
now the necessary optimality conditions of Lemma 5 to the optimal solution

s sk _ (=K T pk ., xk ¥ e 06 v

7:=7 _(MO’""Mv(k)’b()’""bv(k)’XO’""xv(k)’vo’""vv(k)*l’
_k — k Sk Sk
u)o,...,wu(k)_]vy()s-..syu(k)—l)

of problem (M P) = (Py), observe by Theorem 6 that the inequality constraints defined by the
functions fi and f, above are inactive at 7z for sufficiently large k, and thus the corresponding
multipliers will not appear in optimality conditions Taking this into account, we find by Lemma5
multipliers A% > 0, (Y, ..., BX) e R, p] (p] , p] , p]k) e Rmntntm for j =1,...,v(k), as
well as vectors

2t (oo Wiy o B B X0 s K U+ V-1
WGjs s Wny—1y Y00+ yiv(kH)j)
. k)+1 k)+1
for j =0,...,v(k), a'® = (apf, ... alf) € RO o2 = (2F, ..« @) € R"©*! such

that the complementary slackness conditions (6.14), (6.15), and
BE (i 4oy Tbiay) = Phyay) =0 for i =1,....m (6.22)
hold together with the normal cone inclusions

Z €EN(z;0)) for j= ., v(k) (6.23)

and the generalized Lagrangian condition

v(k) v(k)—1
- ertofn@ + Zﬁ Vi@ + Y. Ve 'k,
j=0 i=1 j=0 (6.24)
vk) m '
Y [a;fvff,»,- @)+ a2V T <z>],
j=0i=1
where g; = (g] , gl , gj) and where the dual elements A%, /3, , pj, zj, k and ?* are not all
zero simultaneously.
Looking at the graphical structure of the geometric constraints z € @ ; for j = Luk)—1,

we readily deduce from (6.23) that
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xt s —xt
ok K Jj+l1 AV -
(i bl x j},—y}‘j)eN(( b X — =g >,gphF>(J—0,...,v(k)—1)
J

with all the other components of z* equal to zero for these indices j. It follows from the coderiva-
tive definition (6.2) that the obtained normal cone inclusion can be equivalently written as

L X X
(%, b, x%) € D* F(uﬁ,bﬁ,xf,—”T)(yj]) for j=0,...,v(k)—1.  (6.25)
J

Since the mapping F is given in the particular form (5.2), we are able to use the coderivative
evaluation in (6.25) provided the fulfillment of PLICQ (6.5) along the discrete optimal solutions
for all k sufficiently large. As discussed above, the assumed uniform Slater condition (2.11) for
the given canonical intermediate local minimizer (u, b) of (P) yields PLICQ at (i, b, X). Since
the latter condition is robust with respect to perturbations of the initial triple and since the discrete
optimal solutions strongly converge to (u(-), b(), %) by Theorem 6, we are in a position to use
Lemma 4 in the coderivative inclusion (6.25). Prior to this, let us calculate the other terms in the
generalized Lagrangian condition (6.24).

First observe that the summation term in the cost function is smooth. Therefore, the usage of
the subdifferential sum rule from [25, Proposition 1.30(ii)] gives the precise calculation

v(k)—1
8f0(2)=3§0(3?f(k))+ Z (0,...,0,9}.41(’9]%,9;1()
=0

where zeros stands for the all components of z till ok , and where 0"k 9%k 0¥k are defined in
the formulation of the theorem. Further, with the usage of our notation presented before the
formulation of this theorem, we easily get

Y Vi) = (Zﬁ ik [ 8 repm(i’;(k))],—ﬁk>,

i=1

vk)—1 - if j=0

> Ve, @Tphy, =1 ph=ph, i =1 vk -1,
i=0 (ujbjxj) Pf(k) it j=v(k)

v(k)—1

Z Vg (Z)TP];H = (—hl({)P'fk’ —hipst. ... _hﬁ(k)flp:ffk)’

=0 (j,wj,yj)

k bk 1k bk k bk k k
—hopi", —hip; ""’_hv(k)—lpu(k)’ hol’l v_hll’z ""’_hu(k)—lpi(k))’
v(k) m

Yo V@ =2]aft i), ZZ“ V@ =2 @]
j=0i=1 j=0i=1

(=0,...,vk).
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To proceed with (6.24), it remains to express the dual element Zt(k) € N(z; Oy)) in (6.23)
corresponding the last geometric constraint Z, k) € ® ) in terms of the data of (Py). We directly
conclude from the structure of ©,() that the components of z]’f(k) corresponding to (ulé, bg, x(’)c )

are free (i.e., just belong to R™" x R™ x R"), that x;‘(k)u(k) € N()Ef(k); ), and that all the other

components are equal to zero. The fulfillment of PLICQ along (it%, b*, x*)} for all k sufficiently
large allows us to find unique vectors 7% € R’ such that
J
“ ko —xk
- +1 .
an‘jufj = —]4]CJ for j=0,...,v(k)— 1.
i=1 h J

For the last index j = v(k), we put n"ﬁ(k) =pke R’Y. Substituting all the above into the La-
grangian inclusion (6.24) with taking into account the coderivative upper estimate from Lemma 4
gives us the claimed necessary optimality conditions (6.9)—(6.21). Finally, the nontriviality con-
ditions in (6.7) and (6.8) follows directly from (6.9)—(6.21) and the nontriviality of the dual
elements in Lemma 5 for the mathematical program (M P) equivalent to (Py). Therefore, we
complete the proof of the theorem. O
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